National Library of Energy BETA

Sample records for high power rf

  1. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  2. CLIC RF High Power Production Testing Program

    E-Print Network [OSTI]

    Syratchev, I; Tantawi, S

    2008-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production (~ 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation. The testing program overview and test results available to date are presented.

  3. High RF Power Production for CLIC

    E-Print Network [OSTI]

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  4. DEVELOPMENT AND TESTING OF HIGH POWER RF VECTOR MODULATORS*

    SciTech Connect (OSTI)

    Kang, Yoon W [ORNL; Wilson, Joshua L [ORNL; Champion, Mark [FNAL; Hardek, Thomas W [ORNL; Kim, Sang-Ho [ORNL; McCarthy, Mike [ORNL; Vassioutchenko, Alexandre V [ORNL

    2007-01-01

    A fan-out RF power distribution system can allow many accelerating cavities to be powered by a single high-power klystron amplifier. High-power vector modulators can perform independent control of amplitudes and phases of RF voltages at the cavities without changing the klystron signal. A prototype highpower RF vector modulator employing a quadrature hybrid and two ferrite phase shifters in coaxial TEM transmission lines has been built and tested for 402.5 MHz. RF properties of the design and results of high power testing are presented.

  5. Active high-power RF switch and pulse compression system

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

    1998-01-01

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  6. High power RF systems for the BNL ERL project

    SciTech Connect (OSTI)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  7. Possible high power limitations from RF pulsed heating

    SciTech Connect (OSTI)

    Pritzkau, D.P.; Bowden, G.B.; Menegat, A.; Siemann, R.H. [Stanford Linear Accelerator Center, Stanford University, California 94309 (United States)

    1999-05-01

    One of the possible limitations to achieving high power in RF structures is damage to metal surfaces due to RF pulsed heating. Such damage may lead to degradation of RF performance. An experiment to study RF pulsed heating on copper has been developed at SLAC. The experiment consists of operating two pillbox cavities in the TE{sub 011} mode using a 50 MW X-Band klystron. The estimated temperature rise of the surface of copper is 350&hthinsp;{degree}C for a power input of 20 MW to each cavity with a pulse length of 1.5 {mu}s. Preliminary results from an experiment performed earlier are presented. A revised design for continued experiments is also presented along with relevant theory and calculations. {copyright} {ital 1999 American Institute of Physics.}

  8. High Power RF Test Facility at the SNS

    SciTech Connect (OSTI)

    Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

    2005-05-16

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

  9. Klystron based high power rf system for proton accelerator

    SciTech Connect (OSTI)

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander, E-mail: manjiri@barc.gov.in, E-mail: manjiri08@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  10. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect (OSTI)

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  11. Klystron Cluster Scheme for ILC High Power RF Distribution

    SciTech Connect (OSTI)

    Nantista, Christopher; Adolphsen, Chris; /SLAC

    2009-07-06

    We present a concept for powering the main linacs of the International Linear Collider (ILC) by delivering high power RF from the surface via overmoded, low-loss waveguides at widely spaced intervals. The baseline design employs a two-tunnel layout, with klystrons and modulators evenly distributed along a service tunnel running parallel to the accelerator tunnel. This new idea eliminates the need for the service tunnel. It also brings most of the warm heat load to the surface, dramatically reducing the tunnel water cooling and HVAC requirements. In the envisioned configuration, groups of 70 klystrons and modulators are clustered in surface buildings every 2.5 km. Their outputs are combined into two half-meter diameter circular TE{sub 01} mode evacuated waveguides. These are directed via special bends through a deep shaft and along the tunnel, one upstream and one downstream. Each feeds approximately 1.25 km of linac with power tapped off in 10 MW portions at 38 m intervals. The power is extracted through a novel coaxial tap-off (CTO), after which the local distribution is as it would be from a klystron. The tap-off design is also employed in reverse for the initial combining.

  12. Performance of the high power rf system for the NIST--Los Alamos racetrack microtron

    SciTech Connect (OSTI)

    Cutler, R.I.; Young, L.

    1988-01-01

    The high power RF system of the NIST-LANL RTM has been tested at nominal full power levels and has accelerated electron beams successfully. RF stability and calibration measurements have been made using the accelerated electron beam. These measurements have been used to calculate the effective shunt impedance of the side- coupled accelerator structure. RF stability measurements were also performed using power meters and phase detectors. 7 refs., 4 figs.

  13. RF Distribution System for High Power Test of the SNS Cryomodule

    SciTech Connect (OSTI)

    Lee, Sung-Woo [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Broyles, Michael R [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Kim, Sang-Ho [ORNL] [ORNL; Phibbs, Curtis L [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Peglow, Robert C [ORNL] [ORNL; Vassioutchenko, Alexandre V [ORNL] [ORNL

    2012-01-01

    A four-way waveguide RF power distribution system for testing the Spallation Neutron Source (SNS) multi-cavity cryomodule to investigate the collective behavior has been developed. A single klystron operating at 805MHz for 1.3 msec at 60Hz powers the 4-way waveguide splitter to deliver up to 400 kW to individual cavities. Each cavity is fed through a combination of waveguide splitters and vector modulators (VM) to provide independent magnitude and phase controls. The waveguide vector modulator consists of two quadrature hybrids and two motorized waveguide phase shifters. The phase shifters and the assembled waveguide vector modulators were individually tested and characterized for low power and high RF power in the SNS RF test facility. Precise calibrations of magnitude and phase were performed to generate the look up tables (LUTs) to provide operational references during the cryomodule test. An I-Q demodulator module was developed and utilized to measure relative phases in pulsed high RF power operation. PLC units were developed for mechanical control of the phase shifters. Initial low/high power measurements were made using LabVIEW. An operation algorithm has been implemented into EPICS control for the cryomodule test stand.

  14. Advanced concepts for high power RF generation using solid state materials

    SciTech Connect (OSTI)

    Fazio, M.V.; Erickson, G.A. [Los Alamos National Laboratory (United States)

    1999-05-01

    Traditionally, high power radio frequency and microwave energy have been generated using electron beam driven hard-vacuum tubes such as klystrons and magnetrons. High-power solid-state sources of RF have not been available. It is well known that a non-linear, dispersive system can convert a pulse into an array of solitons. Although this effect has been exploited in the optical field, using non-linear optical materials, little work has been done in the field of high voltage electronics. It is the goal of this work, which is just beginning, to develop sources of RF in the few hundreds of megahertz to gigahertz range with power levels in the hundreds of megawatts to the gigawatt level. To generate solitons a high voltage pulse is fed onto a transmission line that is periodically loaded with a non-linear ceramic dielectric in the paraelectric phase. The combination of the non-linearity and dispersion causes the pulse to break up into an array of solitons. A soliton-based system has several components: the solid state, high voltage, high current switch to provide the initial high voltage pulse; a shock line to decrease the rise time of the initial pulse to less than a few nanoseconds; and the soliton generating transmission line where the high power RF is generated when driven by the fast rising pulse from the shock line. The approach and progress to date will be described. {copyright} {ital 1999 American Institute of Physics.}

  15. Effect of varying gate-drain distance on the RF power performance of pseudomorphic high electron mobility transistors

    E-Print Network [OSTI]

    Wong, Melinda F

    2005-01-01

    AIGaAs/lnGaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) are widely used in satellite communications, military and commercial radar, cellular telephones, and other RF power applications. One key figure of ...

  16. RF power generation

    E-Print Network [OSTI]

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  17. HIGH POWER RF DISTRIBUTION AND CONTROL FOR MULTI-CAVITY CRYOMODULE TESTING

    SciTech Connect (OSTI)

    Kang, Yoon W [ORNL; Broyles, Michael R [ORNL; Crofford, Mark T [ORNL; Geng, Xiaosong [ORNL; Kim, Sang-Ho [ORNL; Lee, Sung-Woo [ORNL; Phibbs, Curtis L [ORNL; Shin, Ki [ORNL; Strong, William Herb [ORNL

    2011-01-01

    Qualification of the superconducting radio-frequency (SRF) cavities in the cryomodules for the accelerating performance needs to be done through high power processing. A four-way waveguide power distribution system with independent control of power outputs has been being developed for testing the multi-cavity cryomodules for the SNS linac. SNS is employing two types of cryomodules: one type with three medium beta six-cell cavities and the other with four high beta six-cell cavities. The cryomodule that is being manufactured as a spare and the new crymodules for the future power upgrade project (PUP) of SNS will be high beta types. The four-way power distribution with independently controlled power outputs was considered useful for powering all cavities at the same time with a klystron amplifier since the SNS test facility was configured for a single klystron operation. Since certain interaction between the cavities under severe field emission was suspected in existing cryomodules, this type of high power test can be valuable for characterization of SRF cavities. By implementing a vector modulator at each arm of the splitting system, the amplitudes and the phases of RF outputs can be controlled independently. This paper discusses the present status of the development.

  18. Proposal to negotiate the renewal of a blanket purchase contract for the supply of high-power RF grid-tubes for the CERN accelerators

    E-Print Network [OSTI]

    2014-01-01

    Proposal to negotiate the renewal of a blanket purchase contract for the supply of high-power RF grid-tubes for the CERN accelerators

  19. RF Power Generation in LHC

    E-Print Network [OSTI]

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  20. High Power RF Tests on WR650 Pre-Stressed Planar Windows

    SciTech Connect (OSTI)

    Stirbet, Mircea [JLAB; Davis, G. Kirk [JLAB; Elliott, Thomas S. [JLAB; King, Larry [JLAB; Powers, Thomas J. [JLAB; Rimmer, Robert A. [JLAB; Walker, Richard L. [JLAB

    2009-11-01

    A new planar, ceramic window intended to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. It is based on the pre-stressed planar window concept tested in PEP II and LEDA. A test stand that made use of the 100kW CW 1500 MHz RF system in the JLAB FEL was commissioned and used to apply up to 80 kW traveling wave (TW)to the windows. Two different types of RF windows (brazed and diffusion bonded ceramics) with design specification of 50 kW CW in TW mode were successfully tested both as a gas barrier (intended to operate up to 2 psi) and as a vacuum barrier. The vacuum windows were able to maintain UHV quality vacuum and were successfully operated in the 10{sup -9} mbar range. An overview of the pre-stressed power windows, RF test stand, procedures and RF power testing results will be presented.

  1. Characterization of a klystrode as a RF source for high-average-power accelerators

    SciTech Connect (OSTI)

    Rees, D.; Keffeler, D.; Roybal, W.; Tallerico, P.J.

    1995-05-01

    The klystrode is a relatively new type of RF source that has demonstrated dc-to-RF conversion efficiencies in excess of 70% and a control characteristic uniquely different from those for klystron amplifiers. The different control characteristic allows the klystrode to achieve this high conversion efficiency while still providing a control margin for regulation of the accelerator cavity fields. The authors present test data from a 267-MHz, 250-kW, continuous-wave (CW) klystrode amplifier and contrast this data with conventional klystron performance, emphasizing the strengths and weaknesses of the klystrode technology for accelerator applications. They present test results describing that limitation for the 250-kW, CW klystrode and extrapolate the data to other frequencies. A summary of the operating regime explains the clear advantages of the klystrode technology over the klystron technology.

  2. High-power magnetron transmitter as an RF source for the electron collider ring of the MEIC facility

    E-Print Network [OSTI]

    Kazakevich, G

    2014-01-01

    A novel concept of high-power transmitters utilizing the Continuous Wave (CW) magnetrons, frequency-locked by phase-modulated signals has been proposed to compensate energy losses caused by Synchrotron Radiation (SR) in the electron ring of the MEIC facility. At operating frequency of about 750 MHz the SR losses are ~2 MW. They can be compensated by some number of Superconducting RF (SRF) cavities at the feeding power of about 100-200 kW per cavity. A high-power CW transmitters, based on magnetrons, frequency-locked by phase-modulated signal, allowing a wide-band control in phase and power, and associated with a wide-band closed feedback loop are proposed to feed the SRF cavities to compensate the SR losses of the electron beam in the MEIC collider electron ring.

  3. Electrical degradation mechanisms of RF power GaAs PHEMTs

    E-Print Network [OSTI]

    Villanueva, Anita A. (Anita Ariel), 1978-

    2007-01-01

    GaAs Pseudomorphic High-Electron Mobility Transistors (PHEMTs) are widely used in RF power applications. Since these devices typically operate at high power levels and under high voltage biasing, their electrical reliability ...

  4. High Current Density, Long Life Cathodes for High Power RF Sources

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Collins, George; Falce, Lou; Schwartzkopf, Steve; Busbaher, Daniel

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  5. Introduction Final Cooling Channel -High Frequency RF

    E-Print Network [OSTI]

    McDonald, Kirk

    Outline Introduction Final Cooling Channel - High Frequency RF Muon Collider Final Cooling Hisham Sayed February 27, 2014 1 / 10 #12;Outline Introduction Final Cooling Channel - High Frequency RF Table of Contents 1 Introduction 2 Final Cooling Channel - High Frequency RF 2 / 10 #12;Outline Introduction Final

  6. Recent advances in RF power generation

    SciTech Connect (OSTI)

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  7. Proposal to negotiate two blanket purchase contracts, without competitive tendering, for the supply of high-power RF grid-tubes for the CERN accelerators

    E-Print Network [OSTI]

    2005-01-01

    This document concerns the award of two contracts, without competitive tendering, for the supply of different types of RF high-power grid-tubes (triodes and tetrodes) for the operation of CERN accelerators. For the reasons set out in this document, the Finance Committee is invited to agree to the negotiation of two blanket purchase contracts, without competitive tendering, for the supply of different types of RF high-power grid-tubes (triodes and tetrodes) with: - THALES (FR) for a total amount of 6 800 000 euros (10 540 000 Swiss francs) for a period of five years, subject to revision for inflation from January 2006; - RICHARDSON (DE) for a total amount of 1 100 000 euros (1 705 000 Swiss francs) for a period of five years, subject to revision for inflation from January 2006.

  8. RF Power Generation in LINAC4

    E-Print Network [OSTI]

    Brunner, O; Schwerg, J N

    2010-01-01

    Linac4 is a lin­ear ac­cel­er­a­tor for neg­a­tive Hy­dro­gen ions (H-) which will re­place the old Linac2 as lin­ear in­jec­tor for the CERN ac­cel­er­a­tors. Its high­er en­er­gy of 160 MeV will give in­creased beam in­ten­si­ty in the down­stream ma­chines. Linac4 is about 100 m long, nor­mal-con­duct­ing, and will be housed in a tun­nel about 12 m below ground. The Linac4 tun­nel will be con­nect­ed to the ex­ist­ing chain of ac­cel­er­a­tors and can be ex­tend­ed to the new in­jec­tion chain. The high RF power for the Linac4 ac­cel­er­at­ing struc­tures will be gen­er­at­ed by thir­teen 1.3 MW klystrons, pre­vi­ous­ly used for the CERN LEP ac­cel­er­a­tor, and six new 2.8 MW klystrons of all op­er­at­ing at a fre­quen­cy of 352.2 MHz. The in­te­gra­tion of the RF power sys­tem in the build­ing is pre­sent­ed. The tech­ni­cal spec­i­fi­ca­tions and the per­for­mance of the var­i­ous high-pow­er el­e­ments are dis­cussed, ...

  9. RF power recovery feedback circulator

    DOE Patents [OSTI]

    Sharamentov, Sergey I. (Bolingbrook, IL)

    2011-03-29

    A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.

  10. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 4, APRIL 2008 1067 Nonuniform RF Overstress in High-Power

    E-Print Network [OSTI]

    Shapira, Yoram

    , IEEE Abstract--Nonuniform light emission from power transistors at 2­3-dB compression levels has been), light emission, parasitic oscillations, power transistor. I. INTRODUCTION THE PERFORMANCE of high-power amplifiers (HPAs) is continually being improved in terms of power density, efficiency, and gain, without any

  11. Design and fabrication of an RF power LDMOSFET on SOI

    E-Print Network [OSTI]

    Fiorenza, James G. (James George), 1972-

    2002-01-01

    This thesis studied thin-film Silicon-on-Insulator (SOI) LDMOSFET technology for RF power amplifier applications. To conduct this study, two generations of SOI RF power devices for portable wireless systems were designed ...

  12. The RF power system for the SNS linac

    SciTech Connect (OSTI)

    Tallerico, P.J.; Reass, W.A.

    1998-12-31

    The initial goal of the SNS project is to produce a 1 MW average beam of protons with short pulse lengths onto a neutron-producing target. The objective of the SNS RF system is to generate 117 MW peak of pulsed 805 MHz microwave power with an accelerated beam pulse length of 1.04 ms at a 60 Hz repetition rate. The power system must be upgradeable in peak power to deliver 2 MW average power to the neutron target. The RF system also requires about 3 MW peak of RF power at 402.5 MHz, but that system is not discussed here. The design challenge is to produce an RF system at minimum cost, that is very reliable and economical to operate. The combination of long pulses and high repetition rates make conventional solutions, such as the pulse transformer and transmission line method, very expensive. The klystron, with a modulating anode, and 1.5 MW of peak output power is the baseline RF amplifier, an 56 are required in the baseline design. The authors discuss four power system configurations that are the candidates for the design. The baseline design is a floating-deck modulating anode system. A second power system being investigated is the fast-pulsed power supply, that can be turned on and off with a rise time of under 0.1 ms. This could eliminate the need for a modulator, and drastically reduce the energy storage requirements. A third idea is to use a pulse transformer with a series IGBT switch and a bouncer circuit on the primary side, as was done for the TESLA modulator. A fourth method is to use a series IGBT switch at high voltage, and not use a pulse transformer. The authors discuss the advantages and problems of these four types of power systems, but they emphasize the first two.

  13. IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 5, MAY 2007 357 Direct Monitoring of RF Overstress in High-Power

    E-Print Network [OSTI]

    Shapira, Yoram

    Shapira, Senior Member, IEEE Abstract--Light emission from power transistors at a com- pression level Terms--Breakdown, high-power amplifier (HPA), impact ionization, light emission, parasitic oscillations improved in terms of power density, efficiency, and gain without any reduction in reliability re

  14. High Power Testing of a 17 GHz Photocathode RF Gun S.C. Chen, B.G. Danly, J. Gonichon, C.L. Lin, R.J. Temkin, S.R. Trotz, J.S. Wurtele,

    E-Print Network [OSTI]

    Wurtele, Jonathan

    High Power Testing of a 17 GHz Photocathode RF Gun S.C. Chen, B.G. Danly, J. Gonichon, C.L. Lin, R photocathode gun. The 11 2 cell, -mode, copper cavity was tested with 5-10 MW, 100 ns, 17.145 GHz pulses from without breakdown, a compact system, and high brightness. While existing RF guns operate from 144 M Hz

  15. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  16. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect (OSTI)

    Alex, J.; Schminke, W. [Thomcast AG, Turgi (Switzerland)

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  17. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    E-Print Network [OSTI]

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  18. RF Power Potential of 45 nm CMOS Technology Usha Gogineni

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    RF Power Potential of 45 nm CMOS Technology Usha Gogineni 1 , Jesús A. del Alamo 1 devices in recent years has motivated their use in millimeter-wave power applications. Specific, VT Abstract - This paper presents the first measurements of the RF power performance of 45 nm CMOS

  19. Efficiency enhancement techniques for RF and millimeter wave power amplifiers

    E-Print Network [OSTI]

    Ogunnika, Olumuyiwa Temitope, 1978-

    2012-01-01

    Power amplifiers are the circuit blocks in wireless transceivers that require the largest power budget because of their relatively low efficiencies. RF designers cannot depend solely on the development better semiconductor ...

  20. Deeply-scaled GaN high electron mobility transistors for RF applications

    E-Print Network [OSTI]

    Lee, Dong Seup

    2014-01-01

    Due to the unique combination of large critical breakdown field and high electron velocity, GaN-based high electron mobility transistors (HEMTs) have great potential for next generation high power RF amplifiers. The ...

  1. Deeply scaled CMOS for RF power applications

    E-Print Network [OSTI]

    Scholvin, Jörg, 1976-

    2006-01-01

    The microelectronics industry is striving to reduce the cost, complexity, and form factor of wireless systems through single-chip integration of analog, RF and digital functions. Driven by the requirements of the digital ...

  2. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    E-Print Network [OSTI]

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  3. Extremely high frequency RF effects on electronics.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  4. Design and Manufacture of the RF Power Supply and RF Transmission Line for SANAEM Project Prometheus

    E-Print Network [OSTI]

    Turemen, G; Unel, G; Alacakir, A

    2015-01-01

    A 1-5 MeV proton beamline is being built by the Turkish Atomic Energy Authority in collaboration with a number of graduate students from different universities. The most important aspect of the project, is to acquire the design ability and manufacturing capability of all the components locally. SPP will be an accelerator and beam diagnostics test facility and it will also serve the detector development community with its low beam current. This paper discusses the design and construction of the RF power supply and the RF transmission line components such as its waveguide converters and its circulator.

  5. RF power potential of 45 nm CMOS technology

    E-Print Network [OSTI]

    Putnam, Christopher

    This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

  6. A 12 GHz RF Power Source for the CLIC Study

    SciTech Connect (OSTI)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  7. RF Power Upgrade for CEBAF at Jefferson Laboratory

    SciTech Connect (OSTI)

    Andrew Kimber,Richard Nelson

    2011-03-01

    Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  8. Coating power RF components with TiN

    SciTech Connect (OSTI)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used.

  9. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01

    High Average Current RF Photo-Gun J. Qiang Lawrence Berkeleyradio-frequency (RF) photo-gun using a particle-in-cell/ion motion inside the gun so that the ion power deposition

  10. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect (OSTI)

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M. [Association Euratom-Belgian State, LPP-ERM-KMS, 1000 Brussels (Belgium); Bobkov, V.; Rohde, V.; Schneider, P. [Association Euratom-IPP, Max-Planck Institut für Plasmaphysik, 85748 Garching (Germany); Douai, D.; Kogut, D. [Association Euratom-CEA, CEA, IRFM, 13108 St Paul lez Durance (France); Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G. [Association Euratom-IEK-4, Forschungszentrum Jülich, 52425 Jülich (Germany); Moiseenko, V. [Institute of Plasma Physics NSC KIPT, 61108 Kharkiv (Ukraine); Noterdaeme, J.-M. [Association Euratom-IPP, Max-Planck Institut für Plasmaphysik, 85748 Garching, Germany and Ghent University, 9000 Ghent (Belgium); Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,?=?{sub H+}, and with its high cyclotron harmonics (HCH), ?=10?{sub cH+}? HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}?0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}?350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ?H} ?1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  11. Proposal for high pressure RF cavity test in the MTA

    SciTech Connect (OSTI)

    Yonehara, K.; /Fermilab

    2010-09-01

    In order to demonstrate the feasibility of high pressure hydrogen gas filled RF (HPRF) cavities for muon ionization cooling, an HPRF cavity must be tested with a high intensity charged beam. When an HPRF cavity is irradiated with an intense beam each incident particle generates about 1000 electrons and ions per cubic centimeter in a high pressure cavity via ionization. These ionization electrons are influenced by the RF field and the RF quality factor goes down. This Q factor reduction will be a problem with a multi bunch beam, e.g., a muon beam for a muon collider consists of a 12 to 20 bunch train beam with 5 ns timing gap. Thus, the RF field must recover in few nano seconds. We propose to use a 400 MeV proton beam in the MTA and measure a beam loading effect in the HPRF cavity and study the recovery mechanism of the RF field.

  12. Performance Analysis of Simultaneous Wireless Information and Power Transfer with Ambient RF

    E-Print Network [OSTI]

    Privault, Nicolas

    isotropic wireless power, and reception of the power by converting the harvested RF waves into electricity. INTRODUCTION RF energy harvesting techniques have evolved as a promis- ing and cost-effective solutionPerformance Analysis of Simultaneous Wireless Information and Power Transfer with Ambient RF Energy

  13. Study of high pressure gas filled RF cavities for muon collider

    E-Print Network [OSTI]

    Yonehara, Katsuya

    2015-01-01

    Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

  14. RF Power Production at the Two Beam Test Stand at CERN

    E-Print Network [OSTI]

    Syratchev, I

    2013-01-01

    The generation of short (250 ns) high peak power (135 MW) RF pulses by decelerating a high current (100 A) bunched (12 GHz) drive beam is one of the key components in the CLIC two beam acceleration scheme. Recent tests with drive beam deceleration at CERN's CTF3, using specially developed 1 m long CLIC Power Extraction and Transfer Structure (PETS) operated in a re-circulation regime have successfully demonstrated this concept. The results of these tests are presented.

  15. High performance RF MEMS metal-contact switches and switching networks

    E-Print Network [OSTI]

    Patel, Chirag D.; Patel, Chirag D.

    2012-01-01

    A Compact Cantilever-Based RF MEMS Switch andA High-Performance RF MEMS Metal-Contact Switch and Switch-B High-Q 3-/4-Bit RF MEMS Digitally Tunable Capacitors for

  16. Quasi-optical network analyzers and high-reliability RF MEMS switched capacitors

    E-Print Network [OSTI]

    Grichener, Alexander

    2011-01-01

    Chapter 3 High-Reliability RF MEMS Switched Capacitors 3.1Technology 1.2 RF MEMS Technology . . . . . . . . . . . . .Reliability High-Q Switched RF MEMS Capacitors” IEEE Int.

  17. Design of a new VHF RF power amplifier system for LANSCE

    SciTech Connect (OSTI)

    Lyles, John T M

    2010-01-01

    A major upgrade is replacing much of the 40 year-old proton drift tube linac RF system with new components at the Los Alamos Neutron Science Center (LANSCE). When installed, the new system will reduce the total number of electron power tubes from twenty-four to eight in the RF powerplant. A new 200 MHz high power cavity amplifier has being developed at LANSCE. This 3.2 MW final power amplifier (FPA) uses a Thales TH628 Diacrode{reg_sign}, a state-of-the-art tetrode that eliminates the large anode modulator of the triode-based FPA that has been in use for four decades. Drive power for the FPA is provided by a new tetrode intermediate power amplifier (and a solid-state driver stage). The new system has sufficient duty-factor capability to allow LANSCE to return to 1 MW beam operation. Prototype RF power amplifiers have been designed, fabricated, and assembled, and are being tested. High voltage DC power became available through innovative re-engineering of an installed system. Details of the electrical and mechanical design of the FPA and ancillary systems are discussed.

  18. High Power Coax Window

    SciTech Connect (OSTI)

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  19. RF/optical shared aperture for high availability wideband communication RF/FSO links

    DOE Patents [OSTI]

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  20. Report of the survey realized at the TIARA workshop on RF power generation, Uppsala, 17-19 June 2013

    E-Print Network [OSTI]

    Tanguy, C.

    2013-01-01

    Report of the survey realized at the TIARA workshop on RF power generation, Uppsala, 17-19 June 2013

  1. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect (OSTI)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  2. Dependence of nuclear spin singlet lifetimes on RF spin-locking power

    E-Print Network [OSTI]

    Stephen J. DeVience; Ronald L. Walsworth; Matthew S. Rosen

    2012-01-06

    We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between singlet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that in many biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power.

  3. Dependence of nuclear spin singlet lifetimes on RF spin-locking power

    E-Print Network [OSTI]

    DeVience, Stephen J; Rosen, Matthew S

    2012-01-01

    We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between singlet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that in many biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power.

  4. High gradient rf gun studies of CsBr photocathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10?? torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  5. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

    2013-11-04

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  6. Power Dependence of the RF Surface Resistance of MgB2 Superconductor.

    SciTech Connect (OSTI)

    Tajima, T.; Findikoglu, A. T.; Jason, A. J.; Krawczyk, F. L.; Mueller, F. M.; Shapiro, A. H.; Geng, R. L.; Padamsee, Hasan,; Romanenko, A.; Moeckly, B. H.

    2005-01-01

    Magnesium diboride (MgB{sub 2}) is a superconducting material that has a transition temperature (T{sub c}) of {approx}40 K, which is {approx}30 K higher than niobium (Nb) that has been used for most superconducting RF cavities in the past decades. Last year, it was demonstrated that the RF surface resistance of MgB{sub 2} can be lower than Nb at 4 K. One of the problems with other high-T{sub c} materials such as YBCO was its rapid increase in RF surface resistance with higher surface magnetic fields. Recently, we have shown that MgB2 shows little increase in the surface resistance up to {approx}120 Oe, equivalent of an accelerating field of {approx}3 MV/m. The highest field tested was limited by available power. This result is encouraging and has made us consider fabrication of a cavity coated with MgB{sub 2} and test it. Also, there is a potential that this material has a higher critical magnetic field that enables the cavity to run at a higher gradient than Nb cavities in addition to the possibility of operation at higher temperatures.

  7. High Thermal Conductivity Cryogenic RF Feedthroughs for Higher Order Mode Couplers

    SciTech Connect (OSTI)

    Charles Reece; Edward Daly; Thomas Elliott; H. Phillips; Joseph Ozelis; Timothy Rothgeb; Katherine Wilson; Genfa Wu

    2005-05-01

    The use of higher-order-mode (HOM) pickup probes in the presence of significant fundamental RF fields can present a thermal challenge for CW or high average power SRF cavity applications. The electric field probes on the HOM-damping couplers on the JLab ''High Gradient'' (HG) and ''Low Loss'' (LL) seven-cell cavities for the CEBAF upgrade are exposed to approximately 10% of the peak magnetic field in the cavity. To avoid significant dissipative losses, these probes must remain superconducting during operation. Typical cryogenic rf feedthroughs provide a poor thermal conduction path for the probes and provide inadequate stabilization. We have developed solutions that meet the requirements, providing a direct thermal path from the niobium probe, thorough single-crystal sapphire, to bulk copper which can be thermally anchored. Designs, electromagnetic and thermal analyses, and performance data will be presented.

  8. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    SciTech Connect (OSTI)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.

  9. Proc 12th conf. RF Power in Plasmas, Savannah, 1997 Ion-Bernstein Wave Mode Conversion

    E-Print Network [OSTI]

    Jaun, André

    Proc 12th conf. RF Power in Plasmas, Savannah, 1997 Ion-Bernstein Wave Mode Conversion in Hot-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained very different wavelengths. Where the spa- tial scale of two waves match, the power associated with one

  10. High performance RF MEMS metal-contact switches and switching networks

    E-Print Network [OSTI]

    Patel, Chirag D.; Patel, Chirag D.

    2012-01-01

    MEMS switches for RF applications,” MicroelectromechanicalMEMS switch with a corrugated diaphragm,” MicroelectromechanicalMEMS switch technology for high frequency applications,” in Microelectromechanical

  11. The RF-System of the New Gsi High Current Linac Hsi

    E-Print Network [OSTI]

    Hutter, G; Hartmann, W; Kube, G; Pilz, M; Vinzenz, W

    2000-01-01

    The RF part of the new high current injector-linac HSI consists of five cavities with the new operating frequency of 36 MHz instead of 27 MHz of the removed Wideroe type injector. The calculated power requirements of the cavities including beam load in three structures were between 110 kW for a rebuncher and 1.75 MW pulse-power for the two IH-cavities. The beam load is up to 150 kW for the RFQ and up to 750 kW for the two drift tube tanks. An additional 36 MHz debuncher in the transfer line to the Synchrotron (SIS) will need 120 kW pulse power. We decided to fulfil these demands with amplifiers of only two power classes, namely three amplifiers with 2 MW and six amplifiers with 200 kW pulse output power. The latter ones are also used as drivers for the 2 MW stages. The 200 kW amplifiers were specified in detail by GSI and ordered in the industry. The three 2 MW final amplifiers were designed, constructed and built by GSI. The paper gives an overview of the complete RF system and the operating performance of a...

  12. Power Reduction of CMP Communication Networks via RF-Interconnects M-C. Frank Chang

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    Power Reduction of CMP Communication Networks via RF-Interconnects M-C. Frank Chang , Jason Cong multiprocessors scale to a greater number of processing cores, on-chip interconnection networks will ex- perience dramatic increases in both bandwidth demand and power dissipation. Fortunately, promising gains can be re

  13. A new method for RF power generation for two-beam linear colliders

    SciTech Connect (OSTI)

    Braun, H.; Corsini, R.; D'Amico, T.; Delahaye, J. P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R. D. [CERN, Geneva (Switzerland); Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-07

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approx}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range.

  14. A new method for RF power generation for two-beam linear colliders

    SciTech Connect (OSTI)

    Braun, H.; Corsini, R.; DAmico, T.; Delahaye, J.P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I. [CERN, Geneva (Switzerland); Ruth, R.D. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approximately}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range. {copyright} {ital 1999 American Institute of Physics.}

  15. A new method of RF power generation for two-beam linear colliders

    E-Print Network [OSTI]

    Braun, H; D'Amico, T E; Delahaye, J P; Guignard, Gilbert; Johnson, C; Millich, Antonio; Pearce, P; Rinolfi, Louis; Riche, A J; Schulte, Daniel; Thorndahl, L; Valentini, M; Wilson, Ian H; Ruth, Ronald D

    1998-01-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency (~1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulti ng power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive is very flexible and can be used to accelerate beams for lin ear colliders over the...

  16. RF-MEMS capacitive switches with high reliability

    DOE Patents [OSTI]

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  17. RF Design and Operating Results for a New 201.25 MHz RF Power Amplifier for LANSCE

    SciTech Connect (OSTI)

    Lyles, John T. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Bratton, Ray E. [Los Alamos National Laboratory; Brennan, Nicholas W. [Los Alamos National Laboratory; Bultman, Nathan K. [Los Alamos National Laboratory; Chen, Zukun [Los Alamos National Laboratory; Davis, Jerry L. [Los Alamos National Laboratory; Naranjo, Angela C. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Sandoval, Gilbert M. Jr. [Los Alamos National Laboratory; Summers, Richard D. [Los Alamos National Laboratory

    2011-01-01

    A prototype VHF RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, and tested. The cavity amplifier has met the goals of generating 2.5 MW peak and 260 kW of average power, at an elevation of 2.1 km. It was designed to use a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube that is double-ended, providing roughly twice the power of a conventional tetrode. The amplifier is designed with tunable input and output transmission line cavity circuits, a grid decoupling circuit, an adjustable output coupler, TE mode suppressors, blocking, bypassing and decoupling capacitors, and a cooling system. The tube is connected in a full wavelength output circuit, with the lower main tuner situated 3/4{lambda} from the central electron beam region in the tube and the upper slave tuner 1/4{lambda} from the same point. We summarize the design processes and features of the FPA along with significant test results. A pair of production amplifiers are planned to be power-combined and installed at the LANSCE DTL to return operation to full beam duty factor.

  18. RF Power Potential of 90 nm CMOS: Device Options, Performance, and Reliability

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    of the RF power potential of the various device options offered in a state-of-the-art 90 nm CMOS foundry and reliability. In a modern foundry process, in addition to the nominal digital devices, it is common to offer in a foundry process. Technology The technology that has been studied in this work is a foundry 90 nm CMOS

  19. TESLA Report 2004-02 Anti-multipactor TiN coating of RF power

    E-Print Network [OSTI]

    N layers generation on surfaces which were not protected in this way previously. Thin TiN films on ceramicTESLA Report 2004-02 1 Anti-multipactor TiN coating of RF power coupler components for TESLA performance of couplers) J. Lorkiewicz1 , The Andrzej Soltan Institute for Nuclear Studies, Pl 05-400 Otwock

  20. Reliability of Capacitive RF MEMS Switches at High and Low Temperatures

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Reliability of Capacitive RF MEMS Switches at High and Low Temperatures Yong Zhu, Horacio D 60208-3111 Received 1 September 2003; accepted 24 February 2003 ABSTRACT: Some applications of RF MEMS temperatures in the range 60°C to 100°C are envisioned. The basic operation of a capacitive MEMS switch

  1. Design and Construction of a 500 KW CW, 400 MHZ Klystron To Be Used As RF Power Source For LHC/RF Component Tests

    SciTech Connect (OSTI)

    Pearson, Chris

    2003-05-05

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented.

  2. An Efficient Supply Modulator for Linear Wideband RF Power Amplifiers 

    E-Print Network [OSTI]

    Turkson, Richard

    2011-10-21

    of a class A Power amplifier in wideband wireless standards like WiMax is improved by dynamically controlling the bias current and supply voltage of the PA. An efficient supply modulator based on a switching regulator architecture is proposed...

  3. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01

    High Average Current RF Photo-Gun J. Qiang Lawrence Berkeleycurrent radio-frequency (RF) photo-gun using a particle-in-of high average current RF photo-guns have been proposed or

  4. Dependence of nuclear spin singlet lifetimes on RF spin-locking power Stephen J. DeVience a,

    E-Print Network [OSTI]

    Rosen, Matthew S

    Dependence of nuclear spin singlet lifetimes on RF spin-locking power Stephen J. DeVience a: Received 6 January 2012 Revised 14 March 2012 Available online 28 March 2012 Keywords: Nuclear singlet of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field

  5. Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources 

    E-Print Network [OSTI]

    Kurpad, Krishna Nagaraj

    2005-11-01

    The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the imaging frequency...

  6. Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns 

    E-Print Network [OSTI]

    Bosshard, John 1983-

    2012-08-20

    A fourth gradient channel was implemented to provide slice dependent RF coil phase compensation for arrays in dual-sided or "sandwich" configurations. The use of highly parallel arrays for single echo acquisition magnetic resonance imaging allows...

  7. VIBRATING RF MEMS FOR LOW POWER WIRELESS COMMUNICATIONS

    E-Print Network [OSTI]

    Nguyen, Clark T.-C.

    , bandpass filter, mixer, transceiver, receiver 1. INTRODUCTION Due to their need for high frequency,000. In addition, LC resonator tanks with Q's greater than 40 are required by voltage-controlled oscillators (VCO

  8. Novel ultra-low power RF Lateral BJT on 801-CMOS compatible substrate

    E-Print Network [OSTI]

    Ng, Wai Tung

    Novel ultra-low power RF Lateral BJT on 801-CMOS compatible substrate I-Shan Michael Sun, Wai Tung) in the range between 190-300 GHz*V. The frax of the optimal device reaches 46 GHz at collector current density) for the collector region, which is incompatible with thin-film SOI-CMOS [2]. An alternative that uses thin-film SOI

  9. High power 325 MHz vector modulators for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect (OSTI)

    Madrak, Robyn Leigh; Wildman, David; /Fermilab

    2008-10-01

    One of the goals of the low energy 60 MeV section of the HINS H{sup -} linac [1] is to demonstrate that a total of {approx}40 RF cavities can be powered by a single 2.5 MW, 325 MHz klystron. This requires individual vector modulators at the input of each RF cavity to independently adjust the amplitude and phase of the RF input signal during the 3.5 ms RF pulse. Two versions of vector modulators have been developed; a 500 kW device for the radiofrequency quadrupole (RFQ) and a 75 kW modulator for the RF cavities. High power tests showing the vector modulator phase and amplitude responses will be presented.

  10. Microsoft PowerPoint - rf_5year_review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N 3, I non 100%, I BS 70%, H 89 2.5, for t pulse > t LR . BPX: demonstrate the viability of high performance plasmas, B T 8T, I p 2 MA, P 6 MW, H 89 2, Z eff <...

  11. X-band rf power production and deceleration in the two-beam test stand of the Compact Linear Collider test facility

    E-Print Network [OSTI]

    Adli, E; Dubrovskiy, A; Syratchev, I; Ruber, R; Ziemann, V

    2011-01-01

    We discuss X-band rf power production and deceleration in the two-beam test stand of the CLIC test facility at CERN. The rf power is extracted from an electron drive beam by a specially designed power extraction structure. In order to test the structures at high-power levels, part of the generated power is recirculated to an input port, thus allowing for increased deceleration and power levels within the structure. The degree of recirculation is controlled by a splitter and phase shifter. We present a model that describes the system and validate it with measurements over a wide range of parameters. Moreover, by correlating rf power measurements with the energy lost by the electron beam, as measured in a spectrometer placed after the power extraction structure, we are able to identify system parameters, including the form factor of the electron beam. The quality of the agreement between model and reality gives us confidence to extrapolate the results found in the present test facility towards the parameter reg...

  12. Radio-frequency powered glow discharge device and method with high voltage interface

    DOE Patents [OSTI]

    Duckworth, Douglas C. (Knoxville, TN); Marcus, R. Kenneth (Clemson, SC); Donohue, David L. (Vienna, AT); Lewis, Trousdale A. (Oak Ridge, TN)

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  13. Radio-frequency powered glow discharge device and method with high voltage interface

    DOE Patents [OSTI]

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  14. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  15. RF breakdown experiments at SLAC

    SciTech Connect (OSTI)

    Laurent, L. [University of California Davis, Davis, California 95616 (United States); Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C. [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States)

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  16. Analysis of Longitudinal Beam Dynamics Behavior and RF System Operative Limits at High Beam Currents in Storage Rings

    SciTech Connect (OSTI)

    Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Tytelman, D.; /Dimtel, Redwood City

    2008-07-07

    A dynamics simulation model is used to estimate limits of performance of the Positron-Electron Project (PEP-II). The simulation captures the dynamics and technical limitations of the Low Level Radio Frequency (LLRF) system, the high-power RF components and the low-order mode coupled bunch longitudinal beam dynamics. Simulation results showing the effect of non-linearities on the LLRF loops, and studies of the effectiveness of technical component upgrades are reported, as well as a comparison of these results with PEP-II measurements. These studies have led to the estimation of limits and determining factors in the maximum stored current that the Low Energy Ring/High Energy Ring (LER/HER) can achieve, based on system stability for different RF station configurations and upgrades. In particular, the feasibility of the PEP-II plans to achieve the final goal in luminosity, which required an increase of the beam currents to 4A for LER and 2.2A for HER, is studied. These currents are challenging in part because they would push the longitudinal low-order beam mode stability to the limit, and the klystron forward power past a level of satisfactory margin. An acceptable margin is defined in this paper, which in turn determines the corresponding klystron forward power limitation.

  17. Rigorous Analysis of Traveling Wave Photodetectors under High-Power Illumination

    E-Print Network [OSTI]

    Aste, Andreas

    Rigorous Analysis of Traveling Wave Photodetectors under High- Power Illumination Damir Pasalic data has shown excellent agreement. I. INTRODUCTION High-power traveling-wave photodetectors (TWPDs and velocity mismatch between the optical and RF waves over the length of the TWPD. For high power handling

  18. High-Power Comparison Among Brazed, Clamped and Electroformed X-Band Cavities

    SciTech Connect (OSTI)

    Spataro, B.; /LNF, Dafne Light; Alesini, D.; /LNF, Dafne Light; Chimenti, V.; /LNF, Dafne Light; Dolgashev, V.; /SLAC; Higashi, Y.; /KEK, Tsukuba; Migliorati, M.; /Rome U.; Mostacci, A.; /Rome U.; Parodi, R.; /INFN, Genoa; Tantawi, S.G.; /SLAC; Yeremian, A.D.; /SLAC

    2012-04-25

    We report the building procedure of X-band copper structures using the electroforming and electroplating techniques. These techniques allow the deposition of copper layers on a suitable die and they can be used to build RF structures avoiding the high temperature brazing step in the standard technique. We show the constructed prototypes and low power RF measurements and discuss the results of the high power tests at SLAC National Accelerator Laboratory.

  19. High Power Cryogenic Targets

    SciTech Connect (OSTI)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  20. High performance RF and baseband building blocks for wireless receivers 

    E-Print Network [OSTI]

    Bahmani, Faramarz

    2007-09-17

    Because of the unique architecture of wireless receivers, a designer must understand both the high frequency aspects as well as the low-frequency analog considerations for different building blocks of the receiver. The ...

  1. High brightness symmetric emittance rf photoinjector preliminary design report

    SciTech Connect (OSTI)

    Colby, E.R.; Ostiguy, J.F. [Fermi National Accelerator Lab., Batavia, IL (United States); Rosenzweig, J.B. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1994-08-01

    A preliminary design for a high bunch charge (8 nC), low emittance (< 20 mm-mr) radiofrequency electron photoinjector matched to the requirements of the Tesla Test Facility is presented. A 1.5 cell iris coupled {pi}mode structure with high average accelerating gradient is chosen for its high shunt impedance, simplicity, and ability to accommodate an externally mounted solenoid for simultaneous beam divergence control and emittance compensation. Beam optics are optimized for an overall injector consisting of the electron gun followed by one linac capture section, a dipole chicane for magnetic bunch compression to achieve a bunch length corresponding to {sigma}{sub z} = 1 mm. Electrical and beam dynamical aspects of the photoinjector design are presented. A description of the proposed experimental program is included.

  2. High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers

    E-Print Network [OSTI]

    Popovic, Zoya

    High-Efficiency X-Band MMIC GaN Power Amplifiers Operating as Rectifiers Michael Litchfield, Scott two 10 x 100j.Lm power combined devices. The MMICs exhibit 67% and 56% power added efficiency at VDD a RF-to-DC efficiency of 64%. The output powers of the two MMIC PAs are around 3.2W. In rectifier mode

  3. High power connection system

    DOE Patents [OSTI]

    Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

    2000-01-01

    A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

  4. A high-gradient high-duty-factor Rf photo-cathode electron gun

    E-Print Network [OSTI]

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-01-01

    approximately 13 MV/m, but in the gun cell the fields couldBeam Radius [mm] End of rf gun Uncompensated Compensated 6preliminary analysis of the gun indicates that the fields in

  5. High resolving power spectrometer for beam analysis

    SciTech Connect (OSTI)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs.

  6. High power windows for WR650 waveguide couplers

    SciTech Connect (OSTI)

    Mircea Stirbet; Robert Rimmer; Thomas Elliott; Edward Daly; Katherine Wilson; Lynn Vogel; Haipeng Wang; Brian Carpenter; Karl Smith; Thomas Powers; Michael Drury; Robert Nichols; G. Davis

    2007-06-01

    Based on the robust, pre-stressed planar window concept successfully tested for PEP II and LEDA, a new design for planar ceramic windows to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. These windows should operate in pulsed or CW mode and sustain at least 100 kW average power levels. This paper describes an overview of the simulations performed to match the ceramics in WR650 waveguides, design details, as well as the RF measurements and performance assessed by RF power tests on several high power windows manufactured at JLAB. Funding Agency: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

  7. High-Power Options for LANSCE

    SciTech Connect (OSTI)

    Garnett, Robert W.

    2011-01-01

    The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

  8. Si-based RF MEMS components.

    SciTech Connect (OSTI)

    Stevens, James E.; Nordquist, Christopher Daniel; Baker, Michael Sean; Fleming, James Grant; Stewart, Harold D.; Dyck, Christopher William

    2005-01-01

    Radio frequency microelectromechanical systems (RF MEMS) are an enabling technology for next-generation communications and radar systems in both military and commercial sectors. RF MEMS-based reconfigurable circuits outperform solid-state circuits in terms of insertion loss, linearity, and static power consumption and are advantageous in applications where high signal power and nanosecond switching speeds are not required. We have demonstrated a number of RF MEMS switches on high-resistivity silicon (high-R Si) that were fabricated by leveraging the volume manufacturing processes available in the Microelectronics Development Laboratory (MDL), a Class-1, radiation-hardened CMOS manufacturing facility. We describe novel tungsten and aluminum-based processes, and present results of switches developed in each of these processes. Series and shunt ohmic switches and shunt capacitive switches were successfully demonstrated. The implications of fabricating on high-R Si and suggested future directions for developing low-loss RF MEMS-based circuits are also discussed.

  9. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect (OSTI)

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned with respect to time and power to moderate plasma damage to the photo-generating layer. Auger electron spectroscopy was used to analyze the composition and thickness of the emitter layers. AFM studies showed conformal growth on the GaAs substrates. Measurements at SLAC on the photoemitted electrons from high polarization substrates coated with amorphous silicon germanium indicated an ~10% relative drop in spin-polarization at the wavelength corresponding to the maximum spin-polarization when compared to the uncoated material,

  10. High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect (OSTI)

    Dolgashev, V.A.; Tantawi, S.G.; Nantista, C.D.; /SLAC; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2007-11-07

    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab.

  11. Cryogenic RF Material Testing with a High-Q Copper Cavity

    SciTech Connect (OSTI)

    Guo Jiquan; Tantawi, Sami; Martin, David; Yoneda, Charles [SLAC National Accelerator Laboratory, Menlo Park, CA (United States)

    2010-11-04

    An X-band RF cryogenic material testing system has been developed in the past few years. This system employs a high-Q copper cavity with an interchangeable flat bottom working under a TE{sub 013} like mode. By measuring the cavity Qs with a network analyzer, the system can characterize the surface resistance of different samples at different temperatures. Using a 50 MW 2{mu}s pulsed klystron, the system can measure the quenching H field for superconducting samples, up to 300-400 mT. In this paper, we will present the most recent developments of the system and testing results.

  12. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    SciTech Connect (OSTI)

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.; /SLAC

    2011-09-06

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE{sub 01}-TE{sub 10} mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ({ge} 1 {mu}s) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 {mu}s pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated that two of the key components of SLED-II; the Magic Tee and the 'Flower Petal' mode converter (converts between TE{sub 10} rectangular and TE{sub 01} circular modes), were not robust enough at higher power levels. Because of this, a major effort is underway to upgrade the existing devices to operate stably at the higher power levels, and also to investigate new components, which have inherently low field enhancement in their design and therefore more robust.

  13. High performance RF MEMS metal-contact switches and switching networks

    E-Print Network [OSTI]

    Patel, Chirag D.; Patel, Chirag D.

    2012-01-01

    applications,” in Microelectromechanical Systems Conference,force microscopy,” Microelectromechanical Systems, JournalRF applications,” Microelectromechanical Systems, Journal

  14. A long pulse 100 microseconds Klystron-Modulator for RF power generation in the Drive Beam Linac of the CLIC Two Beam Linear Collider

    E-Print Network [OSTI]

    Pearce, P

    1998-01-01

    This paper discusses the baseline, line-type modulator design being considered for powering the CLIC drive beam klystron RF sources. It is a conventional design but uses recent technology to improve efficiency and reliability. A high voltage pulse-forming network (PFN) charging system with several switched-mode power units in parallel enables a compact modulator layout with efficient conversion of the AC wall plug power into DC charging energy. The high power output stage consists of a simple Rayleigh, multi-cell PFN that is discharged by a thyratron switch, as a high power 100 microseconds long pulse, into the klystron load via a step-up pulse transformer. The parameters of this modulator, for a 3 TeV accelerator design, and suitable for powering an initial 25 MW, 937 MHz, multi-beam klystron are discussed. The parameter changes that will be required for using this modulator with the target design 50 MW multi-beam klystron when it becomes available are also given. The overall emphasis is to build reliability...

  15. 30 GHz High Power Production for CLIC

    E-Print Network [OSTI]

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  16. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  17. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  18. High power pulsed magnicon at 34-GHz

    SciTech Connect (OSTI)

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L. [Omega-P Inc., 202008 Yale Station, New Haven, Connecticut 06520 (United States)

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  19. Status of High Power Tests of Normal Conducting Single-Cell Structures

    SciTech Connect (OSTI)

    Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Higashi, Y.; Higo, T.; /KEK, Tsukuba

    2011-11-04

    We report the results of ongoing high power tests of single-cell standing wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the maximum gradient possibilities for normal-conducting rf powered particle beam accelerators. The test setup consists of reusable mode launchers and short test structures powered by SLACs XL-4 klystron. The mode launchers and structures were manufactured at SLAC and KEK and tested at the SLAC klystron test laboratory.

  20. HIGH-POWER, HIGH-EFFICIENCY FELS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01

    M. Kumada, "Scaling of the FEL-ID Equations", ELF Note 128,Instability in a High-power, Short- Wavelength FEL", Proc.of the Ninth FEL" Conference, Williamsburg (1988), and

  1. Cold Test Measurements on the GTF Prototype RF Gun

    SciTech Connect (OSTI)

    Gierman, S.M.

    2010-12-03

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. Based on longitudinal phase space measurements showing a correlated energy spread the gun was removed and re-characterized in 2002. The low power RF measurements performed on the gun are described below. Perturbative bead measurements were performed to determine the field ratio in the two-cell gun, and network analyzer measurements were made to characterize the mode structure. A second probe was installed to monitor the RF field in the first cell, and a diagnostic was developed to monitor the high-power field ratio. Calibration of the RF probes, a model for analyzing RF measurements, and Superfish simulations of bead and RF measurements are described.

  2. High Efficiency Envelope Tracking LDMOS Power Amplifier P. Draxler, S. Lanfranco, D. Kimball, C. Hsia, J. Jeong, J. van de Sluis, and P. M. Asbeck

    E-Print Network [OSTI]

    Asbeck, Peter M.

    1534 High Efficiency Envelope Tracking LDMOS Power Amplifier for W-CDMA P. Draxler, S. Lanfranco, D.4um gate length LDMOS transistor, to achieve high efficiency. High linearity is also achievedB, the measured overall power-added efficiency (PAE) is as high as 40.4 %. Within this system, the RF power

  3. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  4. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2010-03-04

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5–9 MW level of incident power. The compressed pulses observed had powers of 50–70 MW and durations of 40–70 ns. Peak power gains were measured to be in the range of 7:1–11:1 with efficiency in the range of 50–63%.

  5. Experience at Fermilab with high quantum efficiency photo-cathodes for rf electron guns

    SciTech Connect (OSTI)

    A. Fry, E. Hahn, W. Hartung, M. Kuchnir, P. Michelato and D. Sertore

    1998-10-01

    As part of the A0 Photo-injector collaboration at Fermi-lab [1, 2] and the TeSLA collaboration [3], a high bright-ness, low emittance electron source has been developed. In the process, a system was constructed for coating molybde-num cathodes with a layer of cæsium telluride (Cs2 Te), a photo-emissive material of high quantum efficiency (QE). The use of Cs2 Te was first investigated at CERN [4] and LANL [5]. The development of the systems for the TeSLA Test Facility Linac and the Fermilab Photo-injector was done in Milano [6]. The system at Fermilab incorporates manipulator arms to transfer a cathode from the preparation chamber into a 1.3 GHz photo-electron RF gun while it re-mains in an ultra-high vacuum (UHV) environment, in or-der to avoid the deleterious effects of residual gases on the QE. A first prototype electron gun has been operated with a photo-cathode for several months [1]. This paper describes preliminary results obtained with the first 2 photo-cathodes and the first gun. Some of the desired parameters for the TeSLA Test Fa-cility beam are given in Table 1. The desired characteristics for the photo-cathodes include (i) high QE, (ii) high current density (>500 A/cm{sup 2} ), (iii) long lifetime, and (iv) low field emission. The choice of Cs2 Te is a compromise between long lifetime, rugged metal cathodes with low QE (typi-cally between 10{sup -6} and 10{sup -4} and semiconductor cathodes with high QE (>10%), which generally have a short life-time because of their sensitivity to contamination.

  6. High linearity 1.5-2.5 GHz RF-MEMS and varactor diodes based tunable filters for wireless applications

    E-Print Network [OSTI]

    El-Tanani, Mohammed Ahmed

    2009-01-01

    5.2.3 RF-MEMS Tunable Capacitive Network . . . . . . . .5.3Wide-Bandwidth Miniaturized RF-MEMS Tun- ableApplications104 Appendix B RF MEMS Cantilever Fabrication

  7. The LHC Low Level RF

    E-Print Network [OSTI]

    Baudrenghien, Philippe; Molendijk, John Cornelis; Olsen, Ragnar; Rohlev, Anton; Rossi, Vittorio; Stellfeld, Donat; Valuch, Daniel; Wehrle, Urs

    2006-01-01

    The LHC RF consists of eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with very high beam current (more than 1 A RF component) and achieve excellent beam lifetime (emittance growth time in excess of 25 hours). Each cavity has an associated Cavity Controller rack consisting of two VME crates which implement high gain RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) which includes a Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation from phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007, the...

  8. Coherent THz Synchrotron Radiation from a Storage Ring with High-Frequency RF System F. Wang, D. Cheever, M. Farkhondeh, W. Franklin, E. Ihloff, J. van der Laan, B. McAllister, R. Milner, C. Tschalaer,

    E-Print Network [OSTI]

    Coherent THz Synchrotron Radiation from a Storage Ring with High-Frequency RF System F. Wang, D employs a high-frequency S-band rf system. The measured CSR spectral intensity enhancement with 2 m also uncovered strong beam instabilities that must be sup- pressed if such a very high rf frequency

  9. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  10. Wi-Fi Backscatter: Internet Connectivity for RF-Powered Devices Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, and David Wetherall

    E-Print Network [OSTI]

    Hochberg, Michael

    communi- cation KEYWORDS Backscatter; Internet of Things; Energy harvesting; Wireless 1. INTRODUCTION the pervasive vision of the "Internet of Things" [9]: objects that operate and communicate with each other when, lack the central component in this vision of an RF-powered Internet of Things: an ability to con- nect

  11. High Gradient Acceleration in a 17 GHz Photocathode RF Gun* S. C. Chen, J. Gonichon, 1;. C-L. Lin, R. J. Temkin, S. Trotz, B. G. Danly, and J. S. Wurtele

    E-Print Network [OSTI]

    Wurtele, Jonathan

    High Gradient Acceleration in a 17 GHz Photocathode RF Gun* S. C. Chen, J. Gonichon, 1;. C-L. Lin.icle acceleration at high mi- ccowave (RF) frequencies are under study at hIIT. The 17 GHz photocathode RF gun has, efforts have been made recent,ly t,o creat,e novel electron beam sources.[l] While existing RF guns

  12. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  13. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  14. Digital Control of RF Power Amplifiers for Next-Generation Wireless

    E-Print Network [OSTI]

    Asbeck, Peter M.

    systems for many years to come, multi- mode/multi-band mobile terminals will be required. This evolution and since a cell phone transmits roughly 30 dBm, any inefficiency in the power amplifier is one of the major

  15. High power gas laser amplifier

    DOE Patents [OSTI]

    Leland, Wallace T. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  16. RF digital-to-analog converter

    DOE Patents [OSTI]

    Conway, Patrick H. (Rancho Palos Verdes, CA); Yu, David U. L. (Rancho Palos Verdes, CA)

    1995-01-01

    A digital-to analogue converter for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration.

  17. RF digital-to-analog converter

    DOE Patents [OSTI]

    Conway, P.H.; Yu, D.U.L.

    1995-02-28

    A digital-to-analog converter is disclosed for producing an RF output signal proportional to a digital input word of N bits from an RF reference input, N being an integer greater or equal to 2. The converter comprises a plurality of power splitters, power combiners and a plurality of mixers or RF switches connected in a predetermined configuration. 18 figs.

  18. High power, high frequency, vacuum flange

    DOE Patents [OSTI]

    Felker, B.; McDaniel, M.R.

    1993-03-23

    An improved waveguide flange is disclosed for high power operation that helps prevent arcs from being initiated at the junctions between waveguide sections. The flanges at the end of the waveguide sections have counter bores surrounding the waveguide tubes. When the sections are bolted together the counter bores form a groove that holds a fully annealed copper gasket. Each counterbore has a beveled step that is specially configured to insure the gasket forms a metal-to-metal vacuum seal without gaps or sharp edges. The resultant inner surface of the waveguide is smooth across the junctions between waveguide sections, and arcing is prevented.

  19. Rugged Ceramic Window for RF Applications

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P.; Rimmer, Robert; Elliot, Tom; Stirbet, Mircea

    2009-05-04

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  20. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  1. High power couplers for Project X

    SciTech Connect (OSTI)

    Kazakov, S.; Champion, M.S.; Yakovlev, V.P.; Kramp, M.; Pronitchev, O.; Orlov, Y.; /Fermilab

    2011-03-01

    Project X, a multi-megawatt proton source under development at Fermi National Accelerator Laboratory. The key element of the project is a superconducting (SC) 3GV continuous wave (CW) proton linac. The linac includes 5 types of SC accelerating cavities of two frequencies.(325 and 650MHz) The cavities consume up to 30 kW average RF power and need proper main couplers. Requirements and approach to the coupler design are discussed in the report. New cost effective schemes are described. Results of electrodynamics and thermal simulations are presented.

  2. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    SciTech Connect (OSTI)

    Schmerge, J.

    2005-01-31

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels.

  3. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect (OSTI)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  4. Open-Loop Digital Predistortion Using Cartesian Feedback for Adaptive RF Power Amplifier Linearization

    E-Print Network [OSTI]

    Dawson, Joel

    leverage analog Cartesian feedback (CFB) to train a Cartesian look-up table, reducing DSP and power the CFB system does not continuously operate, we overcome the bandwidth limitation traditionally is that it is not robust to variations in process, supply voltage, temperature, and aging effects. Cartesian feedback (CFB

  5. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  6. Development of a Hybrid Power Supply and RF Transmission Line for SANAEM RFQ Accelerator

    E-Print Network [OSTI]

    Ogur, S; Unel, G; Alacakir, A

    2015-01-01

    SANAEM Project Prometheus (SPP) has been building a proton beamline at MeV range. Its proton source, two solenoids, and a low energy diagnostic box have been already manufactured and installed. These are going to be followed by a 4-vane RFQ to be powered by two stage PSU. The first stage is a custom-built solid state amplifier providing 6 kW at 352.2 MHz operating frequency. The second stage, employing TH 595 tetrodes from Thales, will amplify this input to 160 kW in a short pulsed mode. The power transfer to the RFQ will be achieved by the means of a number of WR2300 full and half height waveguides, 3 1/8" rigid coaxial cables, joined by appropriate adapters and converters and by a custom design circulator. This paper summarizes the experience acquired during the design and the production of these components.

  7. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, Thomas F. (Batavia, IL)

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  8. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  9. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H{sup ?} ion source

    SciTech Connect (OSTI)

    Ueno, A. Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-02-15

    The prototype rf-driven H{sup ?} ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H{sup ?} ion beam current of 60 mA within normalized emittances of 1.5 ? mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 ?s × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T{sub PE}) of about 120?°C compared with the typically used T{sub PE} of about 200?°C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H{sup ?} ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances.

  10. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect (OSTI)

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ?3%. With the torso landmarked at the xiphoid, human adult whole?body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  11. Linearity and Noise Improvement Techniques Employing Low Power in Analog and RF Circuits and Systems 

    E-Print Network [OSTI]

    Abdel Ghany, Ehab

    2012-12-07

    The implementation of highly integrated multi-bands and multi-standards reconfigurable radio transceivers is one of the great challenges in the area of integrated circuit technology today. In addition the rapid market ...

  12. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    SciTech Connect (OSTI)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.

  13. RF-driven Proton Source with a Back-streaming Electron Dump

    E-Print Network [OSTI]

    Ji, Q.

    2010-01-01

    RESULTS A. Atomic ion fraction for RF power above 500 W. AtI, the atomic ion fraction increases with the RF power, and

  14. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  15. High Power Laser Innovation Sparks Geothermal Power Potential...

    Energy Savers [EERE]

    project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat recovery from geothermal wells. Source: Foro Energy....

  16. High Power Laser Innovation Sparks Geothermal Power Potential...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Department's project partner Foro Energy lab tests a high power laser tool with a patented technology that could maximize heat recovery from geothermal wells. Source: Foro...

  17. First high power pulsed tests of a dressed 325 MHz superconducting single spoke resonator at Fermilab

    SciTech Connect (OSTI)

    Madrak, R.; Branlard, J.; Chase, B.; Darve, C.; Joireman, P.; Khabiboulline, T.; Mukherjee, A.; Nicol, T.; Peoples-Evans, E.; Peterson, D.; Pischalnikov, Y.; /Fermilab

    2011-03-01

    In the recently commissioned superconducting RF cavity test facility at Fermilab (SCTF), a 325 MHz, {beta} = 0.22 superconducting single-spoke resonator (SSR1) has been tested for the first time with its input power coupler. Previously, this cavity had been tested CW with a low power, high Q{sub ext} test coupler; first as a bare cavity in the Fermilab Vertical Test Stand and then fully dressed in the SCTF. For the tests described here, the design input coupler with Q{sub ext} {approx} 10{sup 6} was used. Pulsed power was provided by a Toshiba E3740A 2.5 MW klystron.

  18. High performance RF MEMS metal-contact switches and switching networks

    E-Print Network [OSTI]

    Patel, Chirag D.; Patel, Chirag D.

    2012-01-01

    design, devel- oped for medium- power applications (5-10 W), was also used to implement compact switching

  19. RF Processing Experience with the GTF Prototype RF Gun

    SciTech Connect (OSTI)

    Schmerge, J.F.

    2010-11-24

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. A total of five different metal cathodes (4 Cu and 1 Mg) have been installed on the GTF gun. The rf processing history with the different cathodes will be presented including peak field achieved at the cathode. The LCLS gun is intended to operate at 120 MV/m and fields up to 140 MV/m have been achieved in the GTF gun. After installing a new cathode the number of rf pulses required to reach 120 MV/m is approximately 5-10 million. Total emitted dark current and Fowler Nordheim plots are also shown over the life of the cathode. The GTF photo-injector gun is an S-band standing-wave structure, with two resonant cavities and an intervening thick washer (Figure 1). The flat, back wall of the first cavity is a copper plate that serves as photocathode when illuminated with ultraviolet light from a pulsed, high-power laser. RF power enters the gun through an iris on the outer wall of the second cavity, and is coupled to the first through the axial opening of the washer. The first cavity is often referred to as a half cell, because its full-cell length has been truncated by the cathode plate and the second cavity is called the full cell. The gun is designed to operate in a {pi} mode, with the peak field on axis in each cell approximately equal. The maximum in the half cell occurs at the cathode, and in the full cell near the center of the cavity. The field profile and tuning procedures are discussed in a separate tech note [1].

  20. High-Power Solar PanelHigh-Power Solar Panel Gives your mission electricity.

    E-Print Network [OSTI]

    Waliser, Duane E.

    Medium-Power Solar Panel 15 25 Gives your mission electricity. 8 POWER LIMIT 15 PROS: Low cost, medium mass. LastsHigh-Power Solar PanelHigh-Power Solar Panel 25 Gives your mission electricity. 9 POWER LIMIT 20 40 PROS: Medium cost, medium mass. Lasts a few years. CONS: Must have sunlight. Only works during daylight

  1. A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas

    E-Print Network [OSTI]

    Eremin, Denis; Mussenbrock, Thomas

    2015-01-01

    This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $\\gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma ...

  2. Racetrack microtron rf system

    SciTech Connect (OSTI)

    Tallerico, P.J.; Keffeler, D.R.

    1985-01-01

    The rf system for the National Bureau of Standards (NBS)/Los Alamos cw racetrack microtron is described. The low-power portion consists of five 75-W amplifers that drive two input ports in each of two chopper deflection cavities and one port in the prebuncher cavity. A single 500-kW klystron drives four separate 2380-MHz cavity sections: the two main accelerator sections, a capture section, and a preaccelerator section. The phases and amplitudes in all cavities are controlled by electronic or electromechanical controls. The 1-MW klystron power supply and crowbar system were purchased as a unit; several modifications are described that improve power-supply performance. The entire rf system has been tested and shipped to the NBS, and the chopper-buncher system has been operated with beam at the NBS. 5 refs., 2 figs.

  3. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  4. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  5. RF system considerations for accelerator production of tritium and the transmutation of nuclear waste

    SciTech Connect (OSTI)

    Tallerico, P.J.; Lynch, M.T.

    1993-11-01

    RF driven proton accelerators for the transmutation of nuclear waste (ATW) or for the production of tritium (APT) require unprecedented amounts of CW RF power at UHF frequencies. For both systems, the baseline design is for 246 MW at 700 MHz and 8,5 MW at 350 MHz. The main technical challenges are how to design and build such a large system so that it has excellent reliability, high efficiency, and reasonable capital cost. The issues associated with the selection of the RF amplifier and the sizes of the power supplies are emphasized in this paper.

  6. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  7. High Power Lasers... Another approach to

    E-Print Network [OSTI]

    1 High Power Lasers... Another approach to Fusion Energy John Sethian Plasma Physics Division Naval drive targets Can lead to an attractive electricity generating power plant Developing Laser Fusion Average Power Laser (HAPL) Program #12;4 Electricity Generator Reaction chamber The laser fusion energy

  8. High performance RF MEMS metal-contact switches and switching networks

    E-Print Network [OSTI]

    Patel, Chirag D.; Patel, Chirag D.

    2012-01-01

    T is grounded. For the creep test, the device was held downby FEM. Figure 5.35: Test setup for creep, reliability, andFigure 5.35: Test setup for creep, reliability, and power

  9. Abstract -A new analytical model for high-frequency noise in RF active CMOS mixers such as single-balanced and dou-

    E-Print Network [OSTI]

    Heydari, Payam

    Abstract - A new analytical model for high-frequency noise in RF active CMOS mixers such as single. The analytical model predicts that the output noise and NF are both a strong function of the LO frequency models for the mixer noise proposed in [1] and [2] are, therefore, incapable of accurately predicting

  10. 500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application

    SciTech Connect (OSTI)

    Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

    2012-07-03

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  11. 500 MW X-BAND RF SYSTEM OF A 0.25 GEV ELECTRON LINAC FOR ADVANCED COMPTON SCATTERING SOURCE APPLICATION

    SciTech Connect (OSTI)

    Chu, T S; Anderson, S G; Gibson, D J; Hartemann, F V; Marsh, R A; Siders, C; Barty, C P; Adolphsen, C; Jongewaard, E; Tantawi, S; Vlieks, A; Wang, J W; Raubenheimer, T

    2010-05-12

    A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

  12. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  13. HighHigh--LevelSynthesisforLevelSynthesisfor LowPowerLowPower

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    ;4 DesignQualityMeasuresDesignQualityMeasures ·Area ·Performance ·Power ·Testability1 HighHigh--LevelSynthesisforLevelSynthesisfor LowPowerLowPower SarajuP.Mohanty smohanty.Dynamicpowerdissipationdetails 3.Howtoreducedynamicpower? 4.EffectofFrequencyonEnergy/Power 5.Fewlow-powerresearchworks #12

  14. Integrated Circuit Blocks for High Performance Baseband and RF Analog-to-Digital Converters 

    E-Print Network [OSTI]

    Chen, Hongbo

    2012-02-14

    to the antenna as possible. Then the backend digital signal processor (DSP) can be programmed to deal with the digital data. The continuous time (CT) bandpass (BP) sigma-delta ADC with good SNR and low power consumption is a good choice for the software radio...

  15. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  16. Electronic power conditioning for dynamic power conversion in high-power space systems 

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01

    power conversion allows for improved methods of power conditioning. A block diagram of one such system that uses dynamic power conversion is shown in Fig. 4. The blocks labeled Energy Source, Primary Heat Rejection, snd User's Load are the same...ELECTRONIC POWER CONDITIONING FOR DYNAMIC POWER CONVERSION IN HIGH ? POWER SPACE SYSTEMS A Thesis by JAMES MICHAEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  17. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  18. RUI: Structure and Behavior of RF-Driven Plasma Filaments in High-Pressure Gases

    SciTech Connect (OSTI)

    Burin, Michael

    2014-11-18

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed, yet not well understood. We investigate filament properties in a plasma globe using a variable high voltage amplifier. Results from the 3-year grant period and their physics are discussed.

  19. Circuits and passive components for radio-frequency power conversion

    E-Print Network [OSTI]

    Han, Yehui, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    This thesis focuses on developing technology for high efficiency power converters operating at very high frequencies. The work in the thesis involves two aspects of such converters: rf (radio-frequency) power circuit design ...

  20. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  1. A New Four States High Deflection Low Actuation Voltage Electrostatic Mems Switch for RF Applications

    E-Print Network [OSTI]

    Robin, Renaud; Segueni, Karim; Millet, Olivier; Buchaillot, Lionel

    2008-01-01

    This paper presents a new electrostatic MEMS (MicroElectroMechanical System) based on a single high reliability totally free flexible membrane. Using four electrodes, this structure enables four states which allowed large deflections (4$\\mu$m) with low actuation voltage (7,5V). This design presents also a good contact force and improve the restoring force of the structure. As an example of application, a Single Pole Double Throw (SPDT) for 24GHz applications, based on this design, has been simulated.

  2. High Efficiency Broadband Envelope-Tracking Power Amplifiers

    E-Print Network [OSTI]

    Yan, Jonmei Johana

    M. ,   “   Wideband High Efficiency Envelope Tracking PowerPeter  M. ,  “High-Efficiency Envelope Tracking High PowerMemory! DPD! Drain! Efficiency! (%)! Gain! (dB)! Output!

  3. Pressurized H_{2} rf Cavities in Ionizing Beams and Magnetic Fields

    SciTech Connect (OSTI)

    Chung, M.; et al.

    2013-10-01

    A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10?18 to 10?16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

  4. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  5. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  6. Arc Detection and Interlock Module for the PEP II Low Level RF System

    SciTech Connect (OSTI)

    Tighe, R.; /SLAC

    2011-08-31

    A new arc detection and interlock generating module for the SLAC PEP-II low-level RF VXI-based system has been developed. The system is required to turn off the RF drive and high voltage power supply in the event of arcing in the cavity windows, klystron window, or circulator. Infrared photodiodes receive arc signals through radiation resistant optical fibers. Gain and bandwidth are selectable for each channel to allow tailoring response. The module also responds to interlock requests from other modules in the VXI system and communicates with the programmable logic controller (PLC) responsible for much of the low-level RF system's interlock functionality.

  7. The NASA CSTI High Capacity Power Project

    SciTech Connect (OSTI)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  8. Installation and test results of a high-power, CW klystrode amplifier at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Lynch, M.; Keffeler, D.; Rees, D.; Roybal, W. [Los Alamos National Lab., NM (United States); Sheikh, J. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1994-09-01

    The Chalk River Laboratory (CRL) 1.25 MeV, 267 MHz CW radio frequency quadrupole (RFQ) project has been moved to Los Alamos AOT Division as a collaborative effort between Los Alamos and Chalk River Laboratories. The RF part of this project includes two 267 MHz, 0.25 MW, CW klystrode transmitters. The klystrode is a relatively new type of RF source that combines the input structure from a conventional gridded tube and the output structure of a klystron. It is widely used within the UHF television band at reduced power (60 kW at peak of sync). However, this is the first application of a high power klystrode for a particle accelerator. This paper will describe the experimental configuration at Los Alamos, provide block diagrams of the klystrode transmitter, discuss the attributes of the klystrode which make it a desirable candidate for high efficiency CW accelerators, and present relevant test results.

  9. Diagnostics for High Power Targets and Dumps

    E-Print Network [OSTI]

    Gschwendtner, E

    2012-01-01

    High power targets are generally used for neutrino, antiproton, neutron and secondary beam production whereas dumps are needed in beam waste management. In order to guarantee an optimized and safe use of these targets and dumps, reliable instrumentation is needed; the diagnostics in high power beams around targets and dumps is reviewed. The suite of beam diagnostics devices used in such extreme environments is discussed, including their role in commissioning and operation. The handling and maintenance of the instrumentation components in high radiation areas is also addressed.

  10. High Power, Linear CMOS Power Amplifier for WLAN Applications /

    E-Print Network [OSTI]

    Afsahi, Ali

    2013-01-01

    Power ampli?er (PA)2x2 Chapter 5 Power Combining5.1 Wilkinson Power Combiner . . . . . . . . . . . .

  11. Optical power splitter for splitting high power light

    DOE Patents [OSTI]

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  12. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Residential and Utility Solar Power Generating Systems SunPower,Low Cost Thin Film Building-Integrated PV Systems Low Cost High Concentration PV Systems for Utility Power...

  13. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect (OSTI)

    Stout, Daniel S [ORNL] [ORNL; Assadi, Saeed [ORNL] [ORNL; Campisi, Isidoro E [ORNL] [ORNL; Casagrande, Fabio [ORNL] [ORNL; Crofford, Mark T [ORNL] [ORNL; DeVan, Bill [ORNL] [ORNL; Hardek, Thomas W [ORNL] [ORNL; Henderson, Stuart D [ORNL] [ORNL; Howell, Matthew P [ORNL] [ORNL; Kang, Yoon W [ORNL] [ORNL; Geng, Xiaosong [ORNL] [ORNL; Stone Jr, William C [ORNL] [ORNL; Strong, William Herb [ORNL] [ORNL; Williams, Derrick C [ORNL] [ORNL; Wright, Paul Alan [ORNL] [ORNL

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  14. RF modulation studies on the S band pulse compressor

    E-Print Network [OSTI]

    Shu, G; Pei, S; Xiao, O

    2015-01-01

    An S band SLED-type pulse compressor has been manufactured by IHEP to challenge the 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. In order to deal with the RF breakdown problem, the dual side-wall coupling irises model was used. To further improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output were taken into account. The RF modulation studies on an S-band SLED are presented in this paper. Furthermore, a method is developed by using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can be a verification of the modulate theory. In addition, the experimental setup was constructed and the flat-top output is obtained in the low power tests.

  15. RF modulation studies on the S band pulse compressor

    E-Print Network [OSTI]

    G. Shu; F. Zhao; S. Pei; O. Xiao

    2015-05-28

    An S band SLED-type pulse compressor has been manufactured by IHEP to challenge the 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. In order to deal with the RF breakdown problem, the dual side-wall coupling irises model was used. To further improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output were taken into account. The RF modulation studies on an S-band SLED are presented in this paper. Furthermore, a method is developed by using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can be a verification of the modulate theory. In addition, the experimental setup was constructed and the flat-top output is obtained in the low power tests.

  16. RF Gun Photocathode Research at SLAC

    SciTech Connect (OSTI)

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  17. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect (OSTI)

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

    2014-01-29

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  18. Polymer Separators for High Power, High Efficiency Microbial Fuel Cells

    E-Print Network [OSTI]

    1 Polymer Separators for High Power, High Efficiency Microbial Fuel Cells Guang Chen, Bin) was dissolved in 23 g H2O at 90 °C to prepare ~8 wt% transparent viscous polymer solution. To this solution in the water-swollen membranes. MFC reactor construction Anodes were composed of ammonia-treated carbon brushes

  19. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at...

  20. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  1. USABC Energy Storage Testing - High Power and PHEV Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  2. Status of High Power Tests of Normal Conducting Short Standing...

    Office of Scientific and Technical Information (OSTI)

    Status of High Power Tests of Normal Conducting Short Standing Wave Structures Citation Details In-Document Search Title: Status of High Power Tests of Normal Conducting Short...

  3. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

  4. Numerical simulations of output pulse extraction from a high-power microwave compressor with a plasma switch

    SciTech Connect (OSTI)

    Shlapakovski, Anatoli; Beilin, Leonid; Bliokh, Yuri; Donskoy, Moshe; Krasik, Yakov E. [Physics Department, Technion, Haifa 32000 (Israel); Hadas, Yoav [Department of Applied Physics, Rafael, PO Box 2250, Haifa 31021 (Israel); Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-05-07

    Numerical simulations of the process of electromagnetic energy release from a high-power microwave pulse compressor comprising a gas-filled cavity and interference switch were carried out. A microwave plasma discharge in a rectangular waveguide H-plane tee was modeled with the use of the fully electromagnetic particle-in-cell code MAGIC. The gas ionization, plasma evolution, and interaction with RF fields accumulated within the compressor were simulated using different approaches provided by the MAGIC code: particle-in-cell approach accounting for electron-neutral collisions, gas conductivity model based on the concept of mobility, and hybrid modeling. The dependences of the microwave output pulse peak power and waveform on parameters that can be controlled in experiments, such as an external ionization rate, RF field amplitude, and background gas pressure, were investigated.

  5. Sandia National Laboratories: RF & Photonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms:Mode Stirred ChamberReuseQuantum SystemsRF

  6. The impact of substratesurfacepotential on the performance of RF power LDMOSFETson high-resistivitySO1

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    unit finger width. In this technology, f, = 18GHzand BVm >20 V. 60 55 & 50 w - 2 45 1M 40 35 30 I A -30

  7. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  8. Liquid Walls Innovative High Power Density Concepts

    E-Print Network [OSTI]

    California at Los Angeles, University of

    erosion as limiting factors -Results in smaller and lower cost components (chambLiquid Walls Innovative High Power Density Concepts (Based on the APEX Study) http for the Chamber Technology that can: 1. Improve the vision for an attractive fusion energy system 2. Lower

  9. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  10. New High Power Test Facility for VHF Power Amplifiers at LANSCE

    SciTech Connect (OSTI)

    Lyles, John T. [Los Alamos National Laboratory; Archuletta, Steve [retired LANL; Baca, David M. [Los Alamos National Laboratory; Bratton, Ray E. [Los Alamos National Laboratory; Brennan, Nicholas W. [Los Alamos National Laboratory; Davis, Jerry L. [Los Alamos National Laboratory; Lopez, Luis J. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Rodriguez, Manuelita B. [Los Alamos National Laboratory; Sandoval, Gilbert M. Jr. [Los Alamos National Laboratory; Steck, Andy I. [Los Alamos National Laboratory; Summers, Richard D. [Los Alamos National Laboratory; Vigil, Danny J. [Los Alamos National Laboratory

    2011-01-01

    A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

  11. MI high power operation and future plans

    SciTech Connect (OSTI)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  12. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    SciTech Connect (OSTI)

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  13. Recycler barrier RF buckets

    SciTech Connect (OSTI)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  14. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  16. Cryogenic vacuumm RF feedthrough device

    DOE Patents [OSTI]

    Wu, Genfa (Yorktown, VA); Phillips, Harry Lawrence (Hayes, VA)

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  17. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A. (Great Falls, VA); Bass, Gary K. (Mt. Airy, MD); Copsey, Jesse F. (Germantown, MD); Garber, Jr., William E. (Poolesville, MD); Kwong, Vincent H. (Vancouver, CA); Levin, Izrail (Silver Spring, MD); MacLennan, Donald A. (Gaithersburg, MD); Roy, Robert J. (Frederick, MD); Steiner, Paul E. (Olney, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  18. Compact Low-Voltage, High-Power, Multi-beam Klystron for ILC: Initial Test Results

    E-Print Network [OSTI]

    Teryaev, V E; Kazakov, S Yu; Hirshfield, J L; Ives, R L; Marsden, D; Collins, G; Karimov, R; Jensen, R

    2015-01-01

    Initial test results of an L-band multi-beam klystron with parameters relevant for ILC are presented. The chief distinction of this tube from MBKs already developed for ILC is its low operating voltage of 60 kV, a virtue that implies considerable technological simplifications in the accelerator complex. To demonstrate the concept underlying the tubes design, a six-beamlet quadrant (a 54 inch high one-quarter portion of the full 1.3 GHz tube) was built and recently underwent initial tests, with main goals of demonstrating rated gun perveance, rated gain, and at least one-quarter of the full 10-MW rated power. Our initial three-day conditioning campaign without RF drive (140 microsec pulses @ 60 Hz) was stopped at 53% of full rated duty because of time-limits at the test-site; no signs appeared that would seem to prevent achieving full duty operation (i.e., 1.6 msec pulses @ 10 Hz). The subsequent tests with 10-15 microsec RF pulses confirmed the rated gain, produced output powers of up to 2.86 MW at 60 kV with...

  19. LEDA - A HIGH-POWER TEST BED OF INNOVATION AND OPPORTUNITY

    SciTech Connect (OSTI)

    J. SCHNEIDER; R. SHEFFIELD

    2000-08-01

    The low-energy demonstration accelerator (LEDA) is an operational 6.7-MeV. 100-mA proton accelerator consisting of an injector, radio-frequency quadrupole (RFQ), and all associated integration equipment. In order to achieve this unprecedented level of performance (670-kW of beam power) from an RFQ, a number of design innovations were required. They will highlight a number of those more significant technical advances, including those in the proton injector, the RFQ configuration, the RF klystrons, the beam stop, and the challenges of beam measurements. In addition to identifying the importance of these innovations to LEDA performance, they will summarize the plans for further testing, and the possibilities for addition of more accelerating structures, including the planned use of very-low-beta super-conducting structures. LEDA's current and upgradable configuration is appropriate for several future high-power accelerators, including those for the transmutation of radioactive waste.

  20. Low power, scalable multichannel high voltage controller

    DOE Patents [OSTI]

    Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

    2006-03-14

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  1. Low power, scalable multichannel high voltage controller

    DOE Patents [OSTI]

    Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

    2008-03-25

    A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

  2. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chase, B.; Pasquinelli, R.; Cullerton, E.; Varghese, P.

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore »cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  3. Precision Vector Control of a Superconducting RF Cavity driven by an Injection Locked Magnetron

    E-Print Network [OSTI]

    Brian Chase; Ralph Pasquinelli; Ed Cullerton; Philip Varghese

    2014-11-21

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.

  4. Precision Vector Control of a Superconducting RF Cavity driven by an Injection Locked Magnetron

    E-Print Network [OSTI]

    Chase, Brian; Cullerton, Ed; Varghese, Philip

    2015-01-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.

  5. High power radio frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  6. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps An error occurred. Try|High-Powered Lasers

  7. Ion bombardment in RF photoguns

    SciTech Connect (OSTI)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  8. Computing High Accuracy Power Spectra with Pico

    E-Print Network [OSTI]

    William A. Fendt; Benjamin D. Wandelt

    2007-12-02

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be done using massively parallel computing resources, including distributed computing projects such as Cosmology@Home. On the homepage for Pico, located at http://cosmos.astro.uiuc.edu/pico, we provide new sets of regression coefficients and make the training code available for public use.

  9. Ambient-RF-Energy-Harvesting Sensor Node with Capacitor-Leakage-Aware Duty Cycle Control

    E-Print Network [OSTI]

    Tentzeris, Manos

    Ambient-RF-Energy-Harvesting Sensor Node with Capacitor-Leakage-Aware Duty Cycle Control Ryo (WSN) that are solely powered by ambient RF power. Different from all other energy harvesting WSN systems, RF powered systems present a new challenge for the energy management. A WSN node repeatedly

  10. The Six-Cavity Test - Demonstrated Acceleration of Beam with Multiple RF Cavities and a Single Klystron

    E-Print Network [OSTI]

    Steimel, J; Chase, B; Cullerton, E; Hanna, B M; Madrak, R L; Pasquinelli, R J; Prost, L R; Ristori, L; Scarpine, V E; Varghese, P; Webber, R C; Wildman, D

    2013-01-01

    The High Intensity Neutrino Source (HINS) Six-Cavity Test has demonstrated the use of high power RF vector modulators to control multiple RF cavities driven by a single high power klystron to accelerate a non-relativistic beam. Installation of 6 cavities in the existing HINS beamline has been completed and beam measurements have started. We present data showing the energy stability of the 7 mA proton beam accelerated through the six cavities from 2.5 MeV to 3.4 MeV.

  11. Matching network for RF plasma source

    DOE Patents [OSTI]

    Pickard, Daniel S. (Palo Alto, CA); Leung, Ka-Ngo (Hercules, CA)

    2007-11-20

    A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

  12. Multi-band high efficiency power amplifier

    E-Print Network [OSTI]

    Besprozvanny, Randy-Alexander Randolph

    2011-01-01

    power levels associated with the design objective. There are two switchingPower Gain and PAE CHAPTER 8 Multi-Band Shunt Switching Networks The previous design

  13. Rf Feedback free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1981-01-01

    A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

  14. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Energy Savers [EERE]

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  15. A low power high power supply rejection ratio bandgap reference for portable applications

    E-Print Network [OSTI]

    Sundar, Siddharth

    2008-01-01

    A multistage bandgap circuit with very high power supply rejection ratio was designed and simulated. The key features of this bandgap include multiple power modes, low power consumption and a novel resistor trimming strategy. ...

  16. Abuse Testing of High Power Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

  17. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sørensen, Henrik Published in Citation for published version (APA): Sørensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sørensen

  18. FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW ?s-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  19. High power solid state laser modulator

    DOE Patents [OSTI]

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  20. Cooling at the quantum limit and RF refrigeration

    E-Print Network [OSTI]

    Fominov, Yakov

    Cooling at the quantum limit and RF refrigeration Jukka Pekola Low Temperature Laboratory, Helsinki (electromagnetic) heat transport Cooling at the quantum limit: experiments RF refrigeration in a single as a refrigerator Optimum cooling power is reached at V 2/e: Cooling power of a NIS junction: Temperature TN

  1. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, Dave

    1 A New Power Combining and Outphasing Modulation System for High- Efficiency Power Amplification David J. Perreault Massachusetts Institute of Technology Abstract---This paper describes a new power conventional outphasing systems utilize two power amplifiers, the system introduced here combines power from

  2. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, Dave

    A New Power Combining and Outphasing Modulation System for High- Efficiency Power Amplification David J. Perreault Massachusetts Institute of Technology Abstract---This paper describes a new power conventional outphasing systems utilize two power amplifiers, the system introduced here combines power from

  3. Fabrication of Niobium sheet for RF cavities 

    E-Print Network [OSTI]

    Balachandran, Shreyas

    2009-05-15

    This thesis investigated the microstructure and mechanical property of RRR( high purity) and RG (low purity) niobium (Nb) sheet material. RRR Nb is used in the fabrication RF cavities. Our method involves processing bulk ...

  4. Monolithic RF frontends for ubiquitous wireless connectivity

    E-Print Network [OSTI]

    Goswami, Sushmit

    2014-01-01

    The desire for ubiquitous connectivity is pushing radios towards highly-integrated, multi-standard and multi-band implementations. This thesis explores architectures for next-generation RF frontends, which form the interface ...

  5. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  6. Method and apparatus for improved high power impulse magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  7. Multi-band high efficiency power amplifier

    E-Print Network [OSTI]

    Besprozvanny, Randy-Alexander Randolph

    2011-01-01

    meter, Agilent E4440A spectrum analyzer, driver amplifier,the power meter and the spectrum analyzer for simultaneous

  8. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect (OSTI)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China) [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)] [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  9. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

    SciTech Connect (OSTI)

    Romanov, Gennady; Kashikhin, Vladimir; /Unlisted

    2010-09-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  10. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect (OSTI)

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  11. Efficient Broadband RF Energy Harvesting for Wireless Sensors Joseph A. Hagerty, Tian Zhao, Regan Zane and Zoya Popovic

    E-Print Network [OSTI]

    Efficient Broadband RF Energy Harvesting for Wireless Sensors Joseph A. Hagerty, Tian Zhao, Regan. · the last section discusses application examples of RF energy harvesting in wireless sensors. RF Power an approach to wireless power delivery and subsequent power management for low-power batteryless sensors

  12. High power densities from high-temperature material interactions

    SciTech Connect (OSTI)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  13. Aalborg Universitet Switching speed limitations of high power IGBT modules

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    of the total power loss. Therefore, by design, it is critical that switching losses are reduced to a minimumAalborg Universitet Switching speed limitations of high power IGBT modules Incau, Bogdan Ioan.aau.dk on: november 29, 2015 #12;Switching speed limitations of high power IGBT modules Bogdan Ioan Incau

  14. Nb-Pb superconducting RF gun

    SciTech Connect (OSTI)

    J. Sekutowicz; J. Iversen; G. Kreps; W.D. Moller; W. Singer; X. Singer; I. Ben-Zvi; A. Burrill; J. Smedley; T. Rao; M. Ferrario; P. Kneisel; J. Langner; P. Strzyzewski; R. Lefferts; A. Lipski; K. Szalowski; K. Ko; L. Xiao

    2006-04-14

    We report on the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead, as compared to other superconducting metals. The concept, mentioned in a previous paper, follows the attractive approach of all niobium superconducting RF-gun as it has been proposed by the BNL group. Measured values of quantum efficiency for lead at various photon energies, analysis of recombination time of photon-broken Cooper pairs for lead and niobium, and preliminary cold test results are discussed in this paper.

  15. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  16. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  17. Design of annular fuel for high power density BWRs

    E-Print Network [OSTI]

    Morra, Paolo

    2005-01-01

    Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

  18. Techniques for high-efficiency outphasing power amplifiers

    E-Print Network [OSTI]

    Godoy, Philip (Philip Andrew)

    2011-01-01

    A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for ...

  19. Boosting Deuteron Polarization in HD Targets: Experience of moving spins between H and D with RF methods during the E06-101 experiment at Jefferson Lab

    SciTech Connect (OSTI)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa; Deur, Alexandre; Dezern, Gary; Kageya, Tsuneo; Laine, Vivien; Lowry, Michael; Sandorfi, Andrew; Teachey, Robert; Wang, Haipeng; Whisnant, Charles

    2014-06-01

    Solid HDice targets are polarized by bringing the HD crystal to thermal equilibrium at low temperature and high magnetic field, typically 10-20 mK and 15 Tesla, at Jefferson Lab. In this regime, due to its smaller magnetic moment, the resulting polarization for D is always at least three times smaller than for H. The controlled amount of polarizing catalysts, o-H2 and p-D2, used in the process of reaching a frozen-spin state, further limit the maximum achievable D polarization. Nonetheless, H and D polarizations can be transferred from one to the other by connecting the H and D sub-states of the HD system with RF. In a large target, the RF power needed for such transitions is effectively limited by non-uniformities in the RF field. High efficiency transfers can require substantial RF power levels, and a tuned-RF circuit is needed to prevent large temperature excursions of the holding cryostat. In this paper, we compare the advantages and limitations of two different RF transfer methods to increase D polarization, Forbidden Adiabatic and Saturated Forbidden RF Transitions. The experience with the HD targets used during the recently completed E06-101 experiment in Hall-B of Jefferson Lab is discussed.

  20. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect (OSTI)

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  1. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01

    of stacked-FET millimeter-wave power amplifiers,” IEEECMOS Millimeter-Wave Power Amplifiers .dual-path, millimeter-wave power amplifier with 20 dBm

  2. HIGH-EFFICIENCY POWER AMPLIFIERS FOR LINEAR TRANSMITTERS

    E-Print Network [OSTI]

    Popovic, Zoya

    HIGH-EFFICIENCY POWER AMPLIFIERS FOR LINEAR TRANSMITTERS by N´ESTOR DAVID L´OPEZ B.S., University;This thesis entitled: High-Efficiency Power Amplifiers for Linear Transmitters written by N´estor David in the above mentioned discipline #12;L´opez, N´estor David (Ph.D., Electrical Engineering) High-Efficiency

  3. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    1 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Member frequency (VHF) applications. Index Terms--Magnetic materials, resonant inductor, very high frequency (VHF capable of efficient operation at very high switching frequencies (e.g., 10 ­ 100 MHz). Power electronics

  4. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han An Li Grace High Frequency Power Applications Yehui Han, Grace Cheung, An Li, Charles R. Sullivan and David J useful for design of magnetic components for very high frequency applications. I. INTRODUCTION

  5. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    4270 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Grace. The results of this paper are thus useful for design of magnetic components for very high frequency of efficient operation at very high switching frequencies (e.g., 10-100 MHz). Power electronics operating

  6. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    E-Print Network [OSTI]

    McHenry, Michael E.

    and facilitate two-way power conversion.7 Flexible alternating current (AC) Transmission Systems (FACTS) and High Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from highSoft Magnetic Materials in High-Frequency, High-Power Conversion Applications ALEX M. LEARY,1

  7. A new power combining and outphasing modulation system for high-efficiency power amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  8. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    E-Print Network [OSTI]

    Perreault, David J.

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced ...

  9. Laser Seeding Yields High-Power Coherent Terahertz Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in...

  10. High?Penetration PV with Advanced Power Conditioning Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Virginia Polytechnic Institute and State University (VT) is evaluating the impacts of high photovoltaic (PV) penetration and methods to manage any impacts with improved power conditioning equipment.

  11. High power terahertz generation using 1550 nm plasmonic photomixers...

    Office of Scientific and Technical Information (OSTI)

    through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The...

  12. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01

    carbon nanotubes in 1 ml of DMF) on two 12 mm × 12 mm nickelnanotubes as electrodes. An [7, 15] obtained high power density with polished nickel

  13. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance

    E-Print Network [OSTI]

    2004-01-01

    TRAVELING-WAVE PHOTODETECTORS WITH HIGH POWER–BANDWIDTH ANDTraveling-wave photodetectors for high-power, largeTRAVELING-WAVE PHOTODETECTORS WITH HIGH POWER–BANDWIDTH AND

  14. Idetic: A High-level Synthesis Approach for Enabling Long Computations on Transiently-powered ASICs

    E-Print Network [OSTI]

    RF power through an RFID-reader and stores the energy in a 3.3µF capacitor. For storage in computations by storing the current state of the process and retrieving it later when energy becomes available Engineering, Rice University, Houston, Texas {azalia,ebrahim,farinaz}@rice.edu Abstract--We develop Idetic

  15. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    SciTech Connect (OSTI)

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab

    2012-05-14

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  16. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technologies Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE...

  17. Shielded RF Lattice Chris Rogers,

    E-Print Network [OSTI]

    McDonald, Kirk

    Shielded RF Lattice Chris Rogers, Accelerator Science and Technology Centre (ASTeC), Rutherford Appleton Laboratory #12;Shielded RF Status Shielded RF Lattice was developed until ~ April 2010 April make the same decision for RDR Time to dust the design off #12;Shielded RF - Reminder Increase cell

  18. Realization and modeling of rf superconducting quantum interference device metamaterials

    E-Print Network [OSTI]

    M. Trepanier; Daimeng Zhang; Oleg Mukhanov; Steven M. Anlage

    2013-10-28

    We have prepared meta-atoms based on radio frequency superconducting quantum interference devices (RF SQUIDs) and examined their tunability with dc magnetic field, rf current, and temperature. RF SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. We find excellent agreement between the data and a model which regards the Josephson junction as the resistively and capacitively-shunted junction. A magnetic field tunability of 80 THz/Gauss at 12 GHz is observed, a total tunability of 56$%$ is achieved, and a unique electromagnetically-induced transparency feature at intermediate excitation powers is demonstrated for the first time. An RF SQUID metamaterial is shown to have qualitatively the same behavior as a single RF SQUID with regards to DC flux and temperature tuning.

  19. Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

    Broader source: Energy.gov [DOE]

    Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

  20. High power all-metal spin torque oscillator using full Heusler Co{sub 2}(Fe,Mn)Si

    SciTech Connect (OSTI)

    Seki, Takeshi Sakuraba, Yuya; Ueda, Masaki; Okura, Ryo; Takanashi, Koki; Arai, Hiroko; Imamura, Hiroshi

    2014-09-01

    We showed the high rf power (P{sub out}) emission from an all-metal spin torque oscillator (STO) with a Co{sub 2}Fe{sub 0.4}Mn{sub 0.6}Si (CFMS)/Ag/CFMS giant magnetoresistance (GMR) stack, which was attributable to the large GMR effect thanks to the highly spin-polarized CFMS. The oscillation spectra were measured by varying the magnetic field direction, and the perpendicular magnetic field was effective to increase P{sub out} and the Q factor. We simultaneously achieved a high output efficiency of 0.013%, a high Q of 1124, and large frequency tunability. CFMS-based all-metal STO is promising for overcoming the difficulties that conventional STOs are confronted with.

  1. High power W-band klystrons

    SciTech Connect (OSTI)

    Caryotakis, George; Scheitrum, Glenn; Jongewaard, Erik; Vlieks, Arnold; Fowkes, Randy [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States); Li, Jeff [University of California Davis, Davis, California 95616 (United States)

    1999-05-01

    The development of W-band klystrons is discussed. Modeling of the klystron performance predicts 100 kW output power from a single klystron. The permanent magnet focusing and small size of the circuit permit combination of multiple klystrons in a module. A six-klystron module in a single vacuum envelope is expected to produce 500 kW peak power and up to 5 kW average power. The critical issues in the W-band klystron development are the electron beam transport and the fabrication of the klystron circuit. Two microfabrication techniques, EDM and LIGA, are being evaluated to produce the W-band circuit. {copyright} {ital 1999 American Institute of Physics.}

  2. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  3. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  4. High Plains Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermica JumpPower Inc Jump to:

  5. High Power Hg Target Conceptual Design Review

    E-Print Network [OSTI]

    McDonald, Kirk

    Monitor $12000Total $5500 LabView control system (software & hardware) $500 Control box (power supplies in Solidworks $4800AL Base Support Secondary Containment Primary Containment Sump Subsystem $13000Total $5700SS U. S. DEPARTMENT OF ENERGY Conceptual Design Review 7-8 Feb 05 Outline · Procured systems - Syringe

  6. 1.3 GHz superconducting RF cavity program at Fermilab

    SciTech Connect (OSTI)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  7. High Power Targetry Workshop May 3rd , 2011

    E-Print Network [OSTI]

    McDonald, Kirk

    High Power Targetry Workshop May 3rd , 2011 W.Mittig MSU-NSCL The FRIB High Power Production Target science to society." , Slide 2W.Mittig, HPTW 3rd May 2011 #12;Scientific Aims of FRIB What is the Nature Symmetries Applications to Societal Needs W.Mittig, HPTW 3rd May 2011 , Slide 3 #12;DOE signs Cooperative

  8. New Concepts For High Power ICRF Antennas

    SciTech Connect (OSTI)

    Bosia, G. [Department of Physics University of Turin (Italy)

    2011-12-23

    This paper presents new concepts for Ion Cyclotron Heating antennas based on cascaded sequences of tuned radiating structures. It is shown that, in large arrays, such as the ones proposed for fusion reactors applications, these schemes offer, in principle, a number of desirable features, such as operation at power density significantly higher than currently adopted systems, at equal maximum voltage and array geometry, simple mechanical layout, suitable for water cooling, a compact impedance tuning system, passive decoupling of the array elements, single ended or balanced feed from two power sources. The antenna layout also allows the remote, real time measurement of the complex impedance of the radiating elements and the detection, location, and measurement of the complex admittance of arcs occurring anywhere in the structure, as discussed in [1].

  9. HOM Calculations of New RF Cavities for Super B-Factory

    SciTech Connect (OSTI)

    Novokhatski, A.

    2004-11-01

    High average HOM power generated by beams in a vacuum chamber of electron-positron colliders can limit achievement of high currents. It is of great concern for future super B-factories of very high luminosity, obtained from high beam current and short bunch length. We can minimize the HOM power by choosing the right RF cavity shape. Here we present results of computer spectrum analyses of different kind of cavities, which are already used or can be used in B-factories.

  10. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    E-Print Network [OSTI]

    Baptiste, Kenneth

    2009-01-01

    RF power for 750 kV Peak wall power density Stored energyimpedance, to minimize the wall power density, to reduce theresulting modest power load on the walls is compatible with

  11. Thin liquid lithium targets for high power density

    E-Print Network [OSTI]

    McDonald, Kirk

    High charge state High velocity flow ~60 m/s High heat capacity of Li Absorbs power deposited pressure > 6 MPa (for > ~150 m/s Li jet) #12;10 PV601 PV 602 HV 603 Vacuum Chamber Pressure Vessel 1 in. tubing 1/2 in. tubing Deflector Nozzle Viewport ToVacuum Pump To High Pressure Gas Supply Viewport

  12. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This Return to

  13. High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*

    E-Print Network [OSTI]

    Boyer, Edmond

    High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble (G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal

  14. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2007-01-09

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  15. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  16. Modular high voltage power supply for chemical analysis

    DOE Patents [OSTI]

    Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

    2010-05-04

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  17. High power and high energy electrodes using carbon nanotubes

    DOE Patents [OSTI]

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  18. Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser 

    E-Print Network [OSTI]

    Hinson, Brett Darren

    1998-01-01

    peak power. The linear cavity laser produced pulses with repetition rates as high as 128 MHz and a peak power of 6 mW. The ring cavity laser produced pulses with repetition rates as high as 1 GHz and a peak power of 36 mW....

  19. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power OF HIGH POWER NUCLEAR ELECTRIC POWER AND PROPULSION SYSTEMS by Daniel B. White Jr. Submitted for the degree of Doctor of Philosophy in Aeronautics and Astronautics ABSTRACT High power nuclear electric

  20. Rf2a and rf2b transcription factors

    DOE Patents [OSTI]

    Beachy, Roger N. (St. Louis, MO); Petruccelli, Silvana (La Plata, AR); Dai, Shunhong (St. Louis, MO)

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  1. Booster Synchrotron RF System Upgrade for SPEAR3

    SciTech Connect (OSTI)

    Park, Sanghyun; Corbett, Jeff; /SLAC

    2012-07-06

    Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.

  2. MATERIAL IRRADIATION DAMAGE STUDIES FOR HIGH POWER ACCELERATORS*

    E-Print Network [OSTI]

    McDonald, Kirk

    MATERIAL IRRADIATION DAMAGE STUDIES FOR HIGH POWER ACCELERATORS* N. Simos# , H. Kirk, L. Trung, H under severe shock and high irradiation exposure. The limitations of solid materials to function as high performance targets and in particular the effects of irradiation on key material properties are assessed

  3. Nonlinear Electrical Simulation of High-Power Synchronous Generator System

    E-Print Network [OSTI]

    Wu, Thomas

    power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite for motor simulation [I]. Fardoun simulated permanent-magnet machine drive system using SPlCE [2]. NatarajanNonlinear Electrical Simulation of High-Power Synchronous Generator System Jie Chen and Thomas Wu

  4. High Performance Circuits for Power Management and Millimeter Wave Applications 

    E-Print Network [OSTI]

    Amer, Ahmed 1979-

    2012-01-23

    to achieve the required goals in terms of small silicon area and power consumption while at the same time achieve high performance. Four key building blocks in power management and a switchable harmonic mixer with pre-amplifier and poly-phase generator as a...

  5. Opportunities and Challenges in Very High Frequency Power Conversion

    E-Print Network [OSTI]

    Perreault, Dave

    in switching frequency directly reduce the energy- storage requirements of power converters, improving achiev transition times. In this paper, we will focus on designs compatible with zero-voltage switching and resonant methods. We present an overview of the design of power electronics at extreme high frequencies

  6. Investigation of RF-enhanced plasma potentials on Alcator C-Mod

    E-Print Network [OSTI]

    Cziegler, I.

    Radio frequency (RF) sheath rectification is a leading mechanism suspected of causing anomalously high erosion of plasma facing materials in RF-heated plasmas on Alcator C-Mod. An extensive experimental survey of the plasma ...

  7. Power conversion architecture for grid interface at high switching frequency

    E-Print Network [OSTI]

    Lim, Seungbum

    This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

  8. High power laser downhole cutting tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  9. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  10. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  11. X-Band RF Gun Development

    SciTech Connect (OSTI)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

    2012-06-22

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  12. Static reactive power compensators for high-voltage power systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A study conducted to summarize the role of static reactive power compensators for high voltage power system applications is described. This information should be useful to the utility system planning engineer in applying static var systems (SVS) to high voltage as (HVAC) systems. The static var system is defined as a form of reactive power compensator. The general need for reactive power compensation in HVAC systems is discussed, and the static var system is compared to other devices utilized to provide reactive power compensation. Examples are presented of applying SVS for specific functions, such as the prevention of voltage collapse. The operating principles of commercially available SVS's are discussed in detail. The perormance and active power loss characteristics of SVS types are compared.

  13. High Speed Peltier Calorimeter for the Calibration of High Bandwidth Power Measurement Equipment

    E-Print Network [OSTI]

    Frost, Damien F

    2015-01-01

    Accurate power measurements of electronic components operating at high frequencies are vital in determining where power losses occur in a system such as a power converter. Such power measurements must be carried out with equipment that can accurately measure real power at high frequency. We present the design of a high speed calorimeter to address this requirement, capable of reaching a steady state in less than 10 minutes. The system uses Peltier thermoelectric coolers to remove heat generated in a load resistance, and was calibrated against known real power measurements using an artificial neural network. A dead zone controller was used to achieve stable power measurements. The calibration was validated and shown to have an absolute accuracy of +/-8 mW (95% confidence interval) for measurements of real power from 0.1 to 5 W.

  14. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  15. ILC RF System R and D

    SciTech Connect (OSTI)

    Adolphsen, Chris; /SLAC

    2012-07-03

    The Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system proposed for the ILC linacs. Current activities include the long-term evaluation of a 120 kV Marx Modulator driving a 10 MW Multi-Beam Klystron, design of a second-generation Marx Modulator, testing of a sheet-beam gun and beam transport system for a klystron, construction of an rf distribution system with remotely-adjustable power tapoffs, and development of a system to combine the power from many klystrons in low-loss circular waveguide where it would be tapped-off periodically to power groups of cavities. This paper surveys progress during the past few years.

  16. RF test bench automation Description

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

  17. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGH PERFORMANCE and1Highand

  18. RF Design of the LCLS Gun

    SciTech Connect (OSTI)

    Limborg-Deprey, C

    2010-12-13

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

  19. Technology requirements for high-power Lithium Lorentz Force accelerators

    SciTech Connect (OSTI)

    Polk, J.; Frisbee, R.; Krauthamer, S.; Tikhonov, V.; Semenikhin, S.; Kim, V.

    1997-01-01

    Lithium Lorentz Force Accelerators (LFA{close_quote}s) are capable of processing very high power levels and are therefore applicable to a wide range of challenging missions. An analysis of a reusable orbit transfer vehicle with a solar or nuclear electric power source was performed to assess the applicability of high-power LFA{close_quote}s to this mission and to define engine performance and lifetime goals to help guide the technology development program. For this class of missions, the emphasis must be on achieving high efficiency at an Isp of 4000{endash}5000 s at power levels of 200{endash}250 kWe. The engines must demonstrate very reliable operation for a service life of about 3000 hours. These goals appear to be achievable with engine technologies currently under development. {copyright} {ital 1997 American Institute of Physics.}

  20. 50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL

    SciTech Connect (OSTI)

    Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

    2011-03-11

    In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

  1. Investigation of Microscopic Materials Limitations of Superconducting RF Cavities

    SciTech Connect (OSTI)

    Anlage, Steven

    2014-07-23

    The high-field performance of SRF cavities is often limited by breakdown events below the intrinsic limiting surface fields of Nb, and there is abundant evidence that these breakdown events are localized in space inside the cavity. Also, there is a lack of detailed understanding of the causal links between surface treatments and ultimate RF performance at low temperatures. An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect ‘RF materials science’ of Nb. We propose two specific microscopic approaches to addressing these issues. First is a spatially-resolved local microwave-microscope probe that operates at SRF frequencies and temperatures to discover the microscopic origins of breakdown, and produce quantitative measurements of RF critical fields of coatings and films. Second, RF Laser Scanning Microscopy (LSM) has allowed visualization of RF current flow and sources of nonlinear RF response in superconducting devices with micro-meter spatial resolution. The LSM will be used in conjunction with surface preparation and characterization techniques to create definitive links between physical and chemical processing steps and ultimate cryogenic microwave performance. We propose to develop RF laser scanning microscopy of small-sample Nb pieces to establish surface-processing / RF performance relations through measurement of RF current distributions on micron-length scales and low temperatures.

  2. Abstract--This paper presents an approach and associated circuitry for harvesting near maximum output from low power

    E-Print Network [OSTI]

    . Experimental results are presented for harvesting energy from miniature RF and wind power sources operating (PPT) and are commonly used in high power photovoltaic and wind power systems [4-5]. Existing that either inherently or by design achieve maximum output power over a wide power range when loaded

  3. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    SciTech Connect (OSTI)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.; Caughman, J. B.; Green, D. L.; Harris, J. H.; Hillis, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Martin, E. H. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); North Carolina State University, Raleigh, North Carolina 27607 (United States); Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, S.; Pegourié, B.; Jacquot, J.; Lotte, Ph.; Colledani, G.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Shannon, S. C. [North Carolina State University, Raleigh, North Carolina 27607 (United States)

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>?1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  4. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    SciTech Connect (OSTI)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C; Colas, L.; Goniche, M.; Hillairet, J.; Panayotis, Stephanie; Jacquot, Jonathan; Lotte, Ph.; Colledani, G.; Biewer, Theodore M; Caughman, J. B. O.; Ekedahl, A.; Green, David L; Harris, Jeffrey H; Hillis, Donald Lee; Shannon, Prof. Steven; Litaudon, X

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  5. BN/Graphene/BN Transistors for RF Applications

    E-Print Network [OSTI]

    Taychatanapat, Thiti

    In this letter, we demonstrate the first BN/graphene/BN field-effect transistor for RF applications. This device structure can preserve the high mobility and the high carrier velocity of graphene, even when it is sandwiched ...

  6. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  7. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  8. 2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES

    E-Print Network [OSTI]

    McDonald, Kirk

    2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES FOR HIGH-INTENSITY PROTON BEAM/fracture strength · resilience to irradiation damage · Other than that, we are not asking for much!!!! And another based on non-irradiated material properties may show that it is possible to achieve 2 or even 4 MW

  9. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  10. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  11. Generation of high-purity higher-order Laguerre-Gauss beams at high laser power

    E-Print Network [OSTI]

    L. Carbone; C. Bogan; P. Fulda; A. Freise; B. Willke

    2013-03-14

    We have investigated the generation of highly pure higher-order Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime that will be used by 2nd generation gravitational wave interferometers such as Advanced LIGO. We report on the generation of a helical type LG33 mode with a purity of order 97% at a power of 83W, the highest power ever reported in literature for a higher-order LG mode.

  12. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - Ã?Â?165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  13. Low Cost RF MEMS Switches Fabricated on Microwave Laminate Printed Circuit Boards

    E-Print Network [OSTI]

    De Flaviis, Franco

    1 Low Cost RF MEMS Switches Fabricated on Microwave Laminate Printed Circuit Boards Hung-Pin Chang process for directly constructing RF MEMS capacitive switches has been developed on microwave laminate among components. Index Terms--RF MEMS switches, compressive molding planarization, high density

  14. The desire to achieve both high power density and high power conversion efficiency leads to several required features of a first wall and blanket concept. Achieving high

    E-Print Network [OSTI]

    California at Los Angeles, University of

    required features of a first wall and blanket concept. Achieving high power density means that the coolant wall and blanket design, tritium breeding, activation and waste, power conversion, first wall thermo First wall heat flux 2 MW/m2 Neutron wall load 10 MW/m2 Tritium Breeding Ratio (local 2D) 1.37 Power

  15. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  16. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect (OSTI)

    Yakovlev, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  17. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  18. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning 

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01

    simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high...

  19. The new RF sources for accelerators

    SciTech Connect (OSTI)

    Ives, Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David; Collins, George; Jackson, R. H.; Bui, Thuc; Kimura, Takuji; Eisen, Edward [Calabazas Creek Research, Inc., 690 Port Drive, San Mateo, CA, 94404, (650) 312-9575 (United States); Communications and Power Industries, LLC., 811 Hansen Way, Palo Alto, CA94304 (United States)

    2012-12-21

    Several new RF sources are being developed for accelerator and collider applications. Assembly is nearing completion of a multiple beam inductive output tube at 352 MHz. An annular beam klystron is being developed to produce 10 MW pulses at 1.3 GHz. The annular beam approach provides significant cost reduction over similar multiple beam devices. Fabrication is underway on a 10 kW, periodic permanent magnet klystron at 2.815 GHz. Permanent magnets eliminate the solenoid and associated power supplies and cooling requirements to reduce operational cost. Investigations are beginning on a novel approach for driving accelerator cavities using pulse shaping to increase coupling efficiency and dramatically reduce RF power requirements.

  20. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect (OSTI)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  1. High Speed, Low Power Current Comparators with Hysteresis

    E-Print Network [OSTI]

    Chasta, Neeraj K

    2012-01-01

    This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis), where comparator gives high accuracy (less than 50nA) and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  2. DOE planning workshop on rf theory and computations

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The purpose of the two-day workshop-meeting was to review the status of rf heating in magnetic fusion plasmas and to determine the outstanding problems in this area. The term rf heating was understood to encompass not only bulk plasma heating by externally applied electromagnetic power but also current generation in toroidal plasmas and generation of thermal barriers in tandem mirror plasmas.

  3. Progress on a cryogenically cooled RF gun polarized electron source

    SciTech Connect (OSTI)

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  4. Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program

    SciTech Connect (OSTI)

    Dudenhoefer, J.E.

    1994-09-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

  5. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect (OSTI)

    Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  6. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  7. High power light emitting diode based setup for photobleaching fluorescent impurities

    E-Print Network [OSTI]

    Kaufman, Laura

    High power light emitting diode based setup for photobleaching fluorescent impurities Tobias K be photobleached before final sample preparation. The instrument consists of high power light emitting diodes

  8. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  9. High Power Metal-Contact and Capacitive Switches with Stress Resilient Designs /

    E-Print Network [OSTI]

    Zareie, Hosein

    2013-01-01

    design was optimized to achieve high power handling under hot switchingswitching conditions. Chapter 4 presents the design, simulation, fabrication and measurement of the high power

  10. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect (OSTI)

    Covrig, S. D.

    2013-11-07

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 ?A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 ?A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  11. TESLA-FEL Report 2005-06 DIGITAL LOW LEVEL RF CONTROL SYSTEM FOR THE DESY TTF

    E-Print Network [OSTI]

    TESLA-FEL Report 2005-06 DIGITAL LOW LEVEL RF CONTROL SYSTEM FOR THE DESY TTF VUV-FEL LINAC Valeri Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility

  12. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  13. The High Average Power Laser Program 15th HAPL meeting

    E-Print Network [OSTI]

    , 2006 #12;2 The HAPL team is developing the science, technology and architecture needed for a laser1 The High Average Power Laser Program 15th HAPL meeting Aug 8 & 9, 2006 General Atomics Scientific Inst 16. Optiswitch Technology 17. ESLI Electricity Generator Electricity Generator Reaction

  14. Transmutation and energy-production with high power accelerators

    SciTech Connect (OSTI)

    Lawrence, G.P.

    1995-07-01

    Accelerator-driven transmutation offers attractive new solutions to complex nuclear problems. This paper outlines the basics of the technology, summarizes the key application areas, and discusses designs of and performance issues for the high-power proton accelerators that are required.

  15. Power Conversion Architecture for Grid Interface at High Switching Frequency

    E-Print Network [OSTI]

    Perreault, Dave

    voltage from the voltage of energy buffer capacitor. The boost converter is often selected for PFC circuit output powers). Instead of a boost converter, one alternative for the PFC circuit is a buck converter is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz

  16. Cooling System for the MERIT High-Power Target Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    Cooling System for the MERIT High-Power Target Experiment Haug F., Pereira H., Silva P., Pezzetti M cryogenic cooling system of novel design permits the transfer of nitrogen by the sole means of differential a free mercury jet inside a normal conducting pulsed 15 T capture solenoid magnet cooled with liquid

  17. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  18. POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    · Transportation of energy from production areas to consumption areas Substitute Natural Gas (methane) Myriam DeP · Use of existing natural gas network · Mid or long term storage · Transportation · Production. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis

  19. Texas Tech Effort Overview Collaborative Research on Novel High Power

    E-Print Network [OSTI]

    Anlage, Steven

    .S. citizens #12;3 Texas Tech University New Mexico AR Louisiana 150 Undergraduate Programs 100 MS Degree1 Texas Tech Effort Overview Collaborative Research on Novel High Power Sources for and Physics of Ionospheric Modification Outline: · Overview, Texas Tech Research · MURI Personnel · Summarized MURI Efforts

  20. High power target design and operation considerations for kaon production

    E-Print Network [OSTI]

    McDonald, Kirk

    High power target design and operation considerations for kaon production Philip Pile Collider · LESBIII kaon production target/issues 24/19/2013 #12;PROTON BEAM FY96 FY97 FY98/99 FY2000 FY2001 FY2002 1012 per second during spill · Production Angle: 0 degrees · Particle Flux (per 1013, 22 Ge

  1. High-Power Density Target Design and Analyses for Accelerator

    E-Print Network [OSTI]

    McDonald, Kirk

    capacity limits applicability ­ Water · Low boiling point must account for twophase flow · CorrosionHigh-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Intensity Proton Accelerators Fermi National Accelerator Laboratory October 20, 2009 #12;Outline Purpose

  2. Lithium Mass Flow Control for High Power Lorentz Force Accelerators

    E-Print Network [OSTI]

    Lithium Mass Flow Control for High Power Lorentz Force Accelerators Andrea D. Kodys1 , Gregory Laboratory, Pasadena, CA 91109 (609).258.5220, choueiri@princeton.edu Abstract. A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators

  3. Device for wavefront correction in an ultra high power laser

    DOE Patents [OSTI]

    Ault, Earl R. (Livermore, CA); Comaskey, Brian J. (Walnut Creek, CA); Kuklo, Thomas C. (Oakdale, CA)

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  4. Commissioning of the First Klystron-Based X-Band Power Source at CERN

    E-Print Network [OSTI]

    Kovermann, J; Curt, S; Doebert, S; Naon, M; McMonagle, G; Paju, E; Rey, S; Riddone, G; Schirm, K; Syratchev, I; Timeo, L; Wuensch, W; Hamdi, A; Peauger, FF; Eichner, J; Haase, A; Sprehn, D

    2012-01-01

    A new klystron based X-band rf power source operating at 11.994 GHz has been installed and started to be commissioned at CERN in collaboration with CEA Saclay and SLAC for CLIC accelerating structure tests. The system comprises a solid state high voltage modulator, an XL5 klystron developed by SLAC, a cavity based SLED type pulse compressor, the necessary low level rf system including rf diagnostics and interlocks and the surrounding vacuum, cooling and controls infrastructure. The system is designed to produce up to 50 MW rf pulses of 1500 ns pulse width and 50 Hz repetition rate. After pulse compression, up to 100 MW of rf power at 250 ns pulse width will be available in the structure test bunker. This paper describes in more detail this setup and the process of commissioning which is necessary to arrive at the design performance.

  5. Ion source with external RF antenna

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  6. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  7. LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

    SciTech Connect (OSTI)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; ,

    2010-09-14

    Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.

  8. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  9. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    2x/3Mn2/3-x/3]O2 for Lithium-Ion Batteries. Electrochemicalfor advanced lithium-ion batteries. Journal of Powerfor high-power lithium-ion batteries. Electrochimica Acta,

  10. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  11. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  12. Power/energy use cases for high performance computing.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven [National Renewable Energy Laboratory] [National Renewable Energy Laboratory; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  13. Current and Future High Power Operation of Fermilab Main Injector

    SciTech Connect (OSTI)

    Kourbanis, I.; Adamson, P.; Brown, B.; Capista, D.; Chou, W.; Morris, D.; Seyia, K.; Wu, G.; Yang, M.J.; /Fermilab

    2009-04-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing the MI beam power at 120 GeV to 400KW. The current high power MI operation will be described along with the plans to increase the power to 700KW for NOvA and to 2.1 MW for project X.

  14. Langevin power curve analysis for numerical WEC models with new insights on high frequency power performance

    E-Print Network [OSTI]

    Mücke, Tanja A; Milan, Patrick; Peinke, Joachim

    2015-01-01

    Based on the Langevin equation it has been proposed to obtain power curves for wind turbines from high frequency data of wind speed measurements u(t) and power output P (t). The two parts of the Langevin approach, power curve and drift field, give a comprehensive description of the conversion dynamic over the whole operating range of the wind turbine. The method deals with high frequent data instead of 10 min means. It is therefore possible to gain a reliable power curve already from a small amount of data per wind speed. Furthermore, the method is able to visualize multiple fixed points, which is e.g. characteristic for the transition from partial to full load or in case the conversion process deviates from the standard procedures. In order to gain a deeper knowledge it is essential that the method works not only for measured data but also for numerical wind turbine models and synthetic wind fields. Here, we characterize the dynamics of a detailed numerical wind turbine model and calculate the Langevin power...

  15. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  16. Upgrading EMMA to Use Low-frequency RF Cavities

    SciTech Connect (OSTI)

    Ohmori, C.; Berg, J.

    2011-04-30

    EMMA is an experiment to study beam dynamics in fixed field alternating gradient accelerators (FFAGs). It accelerates the beam in about 10 turns using 1.3 GHz cavities in a mode like that used for muon accelerators. Many applications of FFAGs prefer to have slower acceleration, typically thousands of turns. To do so in EMMA would require the RF system to be replaced with a low-frequency, high-gradient system. This paper describes the motivation for studying slow acceleration in EMMA and the required parameters for an RF system to do that. It then describes the technology needed for the RF system.

  17. Optimization Studies for ISOL Type High-Powered Targets

    SciTech Connect (OSTI)

    Remec, Igor; Ronningen, Reginald Martin

    2013-09-24

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  18. Development of high temperature superconductors for electric power applications

    SciTech Connect (OSTI)

    Schiff, N. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    The Nobel Prize-winning discovery in 1986 of a new family of superconductors that exhibited the property of no resistance at temperatures more than ten times greater than the traditional low temperature superconductors (LTS) currently used in MRI and high field magnets, made it possible to foresee a new era for the production, transmission and distribution of electrical power. Smaller, more efficient motors, generators, power cables, transformers, inductors, and superconducting magnetic energy storage (SMES) for power quality were applications immediately envisioned for these high temperature superconductors (HTS), promising enhanced capabilities and lower costs. Work also began on new product concepts, such as more effective fault current limiters for both transmission and distribution systems that could protect expensive hardware and avoid the cost of upgrading circuit breakers as system capacity is increased. The interest of industry and utilities has been increased by successful demonstrations of small-scale prototypes. Recent demonstrations include a one meter conductor for an underground transmission cable produced by American Superconductor which carried over 4,200 amps, a 5 hp synchronous motor produced by Reliance Electric Company, magnet systems which generated over 2 Tesla at temperatures over 20 Kelvin (K) by both American Superconductor Corporation (ASC) and Sumitomo Electric Industries. The Department of Energy, under the Superconductivity Partnership Initiative Program (SPI), recently funded four application development projects: a 100 hp HTS motor demonstration, design of a generator rotor, a fault current limiter for distribution systems, and a 30 meter HTS power transmission cable. This paper will review the progress in application development of HTS products. The specific benefits and costs associated with this technology in power applications will be examined.

  19. An Efficient RF Source for Jlab

    SciTech Connect (OSTI)

    Neubauer, M.; Dudas, A.; Rimmer, Robert A.; Wang, Haipeng

    2013-12-01

    We propose the development of a highly reliable high efficiency RF source for JLAB with a lower lifetime cost operating at 80% efficiency with system operating costs of about 0.7M$/year for the 6 GeV machine. The design of the RF source will be based upon two injection locked magnetrons in a novel combining architecture for amplitude modulation and a cross field amplifier (CFA) as an output tube for the 12 GeV upgrade. A cost analysis including efficiency and reliability will be performed to determine the optimum system architecture. Several different system architectures will be designed and evaluated for a dual injection locked magnetron source using novel combining techniques and possibly a CFA as the output tube. A paper design for the 1497 MHz magnetron system will be completed. The optimum system architecture with all relevant specifications will be completed so that a prototype can be built.

  20. Pulsed power hydrodynamics : a new application of high magnetic fields.

    SciTech Connect (OSTI)

    Reinovsky, R. E. (Robert E.); Anderson, W. E. (Wallace E.); Atchison, W. L. (Walter L.); Faehl, R. J. (Rickey J.); Keinigs, R. K. (Rhonald K.); Lindemuth, I. R.; Scudder, D. W. (David W.); Shlachter, Jack S.; Taylor, Antoinette J.,

    2002-01-01

    Pulsed Power Hydrodynamics is a new application of high magnetic fields recently developed to explore advanced hydrodynamics, instabilities, fluid turbulences, and material properties in a highly precise, controllable environment at the extremes of pressure and material velocity. The Atlas facility at Los Alamos is the world's first and only laboratory pulsed power system designed specifically to explore this relatively new family of megagauss magnetic field applications. Constructed in 2000 and commissioned in August 2001, Atlas is a 24-MJ high-performance capacitor bank delivering up to 30 MA with a current risetime of 5-6 {micro}sec. The high-precision, cylindrical, imploding liner is the tool most frequently used to convert electrical energy into the hydrodynamic (particle kinetic) energy needed to drive the experiments. For typical liner parameters including initial radius of 5 cm, the peak current of 30 MA delivered by Atlas results in magnetic fields just over 1 MG outside the liner prior to implosion. During the 5 to 10-{micro}sec implosion, the field outside the liner rises to several MG in typical situations. At these fields the rear surface of the liner is melted and it is subject to a variety of complex behaviors including: diffusion dominated andor melt wave field penetration and heating, magneto Raleigh-Taylor sausage mode behavior at the liner/field interface, and azimuthal asymmetry due to perturbations in current drive. The first Atlas liner implosion experiments were conducted in September 2000 and 10-15 experiments are planned in the: first year of operation. Immediate applications of the new pulsed power hydrodynamics techniques include material property topics including: exploration of material strength at high rates of strain, material failure including fracture and spall, and interfacial dynamics at high relative velocities and high interfacial pressures. A variety of complex hydrodynamic geometries will be explored and experiments will be designed to explore uristable perturbation growth and transition to turbulence. This paper will provide an overview of the range of problems to which pulsed power hydrodynamics can be applied and the issues associated with these techniques. Other papers at this Conference will present specifics of individual experiments and elaborate on the liner physics issues.

  1. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  2. Discharge Physics of High Power Impulse Magnetron Sputtering

    SciTech Connect (OSTI)

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  3. Micropower RF material proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01

    A level detector or proximity detector for materials capable of sensing through plastic container walls or encapsulating materials is of the sensor. Thus, it can be used in corrosive environments, as well as in a wide variety of applications. An antenna has a characteristic impedance which depends on the materials in proximity to the antenna. An RF oscillator, which includes the antenna and is based on a single transistor in a Colpitt's configuration, produces an oscillating signal. A detector is coupled to the oscillator which signals changes in the oscillating signal caused by changes in the materials in proximity to the antenna. The oscillator is turned on and off at a pulse repetition frequency with a low duty cycle to conserve power. The antenna consists of a straight monopole about one-quarter wavelength long at the nominal frequency of the oscillator. The antenna may be horizontally disposed on a container and very accurately detects the fill level within the container as the material inside the container reaches the level of the antenna.

  4. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01

    magnetic ?eld (green). 6e-08 power line density depositionred), CH 4 (green) and H 2 O + (blue) ions. 6e-08 power linepower line density distribution on the photocathode for H 2 (red), CH 4 (green) and

  5. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect (OSTI)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  6. High Performance Computing - Power Application Programming Interface Specification.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  7. MgB{sub 2} for Application to RF Cavities for Accelerators

    SciTech Connect (OSTI)

    Tajima, T.; Canabal, A.; Zhao, Y.; Romanenko, A.; Moeckly, B.H.; Nantista, C.D.; Tantawi, S.; Phillips, L.; Iwashita, Y.; Campisi, I.E.; /Oak Ridge

    2007-10-11

    Magnesium diboride (MgB{sub 2}) has a transition temperature (T{sub c}) of {approx}40 K, i.e., about 4 times as high as that of niobium (Nb).We have been evaluating MgB{sub 2} as a candidate material for radio-frequency (RF) cavities for future particle accelerators. Studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb at 4 K. A power dependence test using a 6 GHz TE011 mode cavity has shown little power dependence up to {approx}12 mT (120 Oe), limited by available power, compared to other high-Tc materials such as YBCO. A recent study showed, however, that the power dependence of Rs is dependent on the coating method. A film made with on-axis pulsed laser deposition (PLD) has showed rapid increase in Rs compared to the film deposited by reactive evaporation method. This paper shows these results as well as future plans.

  8. Safety approaches for high power modular laser operation

    SciTech Connect (OSTI)

    Handren, R.T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  9. High power and high repetition rate pulse generation using self injection-locking in Fabry-Perot Laser diode

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    , but the output power is not very high. High repetition pulse generation based on nonlinear propagation of a dual1 High power and high repetition rate pulse generation using self injection-locking in Fabry-doped fiber ring lasers (ED-FRL) [2-3] are attractive methods to generate high speed pulse trains

  10. High-power radio-frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  11. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect (OSTI)

    Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  12. High-power pulse trains excited by modulated continuous waves

    E-Print Network [OSTI]

    Wang, Yan; Li, Lu; Malomed, Boris A

    2015-01-01

    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

  13. High Power Superconducting Continuous Wave Linacs for Protons and

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High Energy Physics AdvisoryScienceHeavy-Ions| U.S.

  14. Transverse flowing liquid Kerr cell for high average power laser Q-switching and for direct modulation of high power laser beams.

    DOE Patents [OSTI]

    Comaskey, Brian J.

    2004-12-07

    A fluid flow concept is applied in an optical apparatus to define a high gain stand-off, fast electro-optical q-switch which is highly impervious to high average power optical loads.

  15. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  16. Transforming Power Grid Operations via High Performance Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Nieplocha, Jarek

    2008-07-31

    Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve today’s grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

  17. New AC-DC Power Factor Correction Architecture Suitable for High Frequency Operation

    E-Print Network [OSTI]

    Lim, Seungbum

    This paper presents a novel ac-dc power factor correction (PFC) power conversion architecture for single-phase grid interface. The proposed architecture has significant advantages for achieving high efficiency, good power ...

  18. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

    E-Print Network [OSTI]

    2003-01-01

    PG06 Temp. (°C) Cycles Cell Power Fade NA NA Cell ASI @ EODCHARACTERIZATION OF HIGH-POWER LITHIUM-ION CELLS-PERFORMANCEof capacity and power fade in the cells, suggested in Fig.

  19. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    SciTech Connect (OSTI)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujrat (India); Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J. [Institute for Plasma Research, Bhat Gandhinagar, Gujrat (India); Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-09-26

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  20. Computer Study of Isotope Production in High Power Accelerators

    E-Print Network [OSTI]

    K. A. Van Riper; S. G. Mashnik; W. B. Wilson

    1999-01-25

    Methods for radionuclide production calculation in a high power proton accelerator have been developed and applied to study production of 22 isotopes by high-energy protons and neutrons. These methods are readily applicable to accelerator, and reactor, environments other than the particular model we considered and to the production of other radioactive and stable isotopes. We have also developed methods for evaluating cross sections from a wide variety of sources into a single cross section set and have produced an evaluated library covering about a third of all natural elements. These methods also are applicable to an expanded set of reactions. A 684 page detailed report on this study, with 37 tables and 264 color figures is available on the Web at http://t2.lanl.gov/publications/publications.html, or, if not accessible, in hard copy from the authors.

  1. Very low pressure high power impulse triggered magnetron sputtering

    DOE Patents [OSTI]

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  2. Unbalanced field RF electron gun

    DOE Patents [OSTI]

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  3. Intelligent Radio Frequency (RF) Monitoring 

    E-Print Network [OSTI]

    Kimbrough, B.

    2010-01-01

    ? Regulatory fines Location 8 ?Expect many enjoyable experiences!? David M. Armstrong Continuous RF Monitoring RELIEF VALVE MONITORING The solution?? 9 ?Expect many enjoyable experiences!? David M. Armstrong Continuous RF Monitoring TEMPERATURE...?Armstrong? WiHART?Device Non?Armstrong? WiHART?Device Non?Armstrong? WiHART?Device Open Mesh Wireless Structure STEAM TRAP MONITORING RELIEF VALVE MONITORING TEMPERATURE MONITORING GATEWAY 14 ?Expect many enjoyable experiences!? David M. Armstrong...

  4. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  5. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  6. High frequency AC power converter for low voltage circuits

    E-Print Network [OSTI]

    Salazar, Nathaniel Jay Tobias

    2012-01-01

    This thesis presents a novel AC power delivery architecture that is suitable for VHF frequency (50-100MHz) polyphase AC/DC power conversion in low voltage integrated circuits. A complete AC power delivery architecture was ...

  7. Dynamic Power Management of High Performance Network on Chip 

    E-Print Network [OSTI]

    Mandal, Suman Kalyan

    2012-02-14

    . The addition of intelligent networking on the chip adds to the chip’s power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction...

  8. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  9. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 7, JULY 2012 2277 Low-Power Wireless Power Delivery

    E-Print Network [OSTI]

    Popovic, Zoya

    of incident power levels are RF identifications (RFIDs) and power beaming. In RFIDs, an interrogating RF wave transmits a plane wave incident on a rectenna element or array (RF power re- ceiver). Following the potential for maintenance-free operation. This paper focuses on a methodology for designing low-power

  10. High-Energy, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A...

  11. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  12. High-efficiency power supplies for home computers and servers Google Inc. ~ September 2006

    E-Print Network [OSTI]

    Cortes, Corinna

    ________________________________________________________________________ High-efficiency power supplies for home computers and servers Google Inc. ~ September 2006 p. 1 High-efficiency power supplies queries, so energy conservation and efficiency are important to us. For several years we've been

  13. Development of RF CMOS receiver front-ends for ultrawideband 

    E-Print Network [OSTI]

    Guan, Xin

    2009-05-15

    .5dB and a noise figure of 3.3-4.5dB from 3-9.5GHz, while only consuming 9mW power. Based on the distributed amplifier and resistive shunt-feedback amplifier designs, two UWB RF front-ends are developed. One is a distributed LNA-Mixer. Unlike...

  14. Sifting Through the Airwaves: Efficient and Scalable Multiband RF Harvesting

    E-Print Network [OSTI]

    Washington at Seattle, University of

    option. Compared to solar power, ambient RF has the advantage of being available at night starved of its energy source the device must cease to operate, limiting the application space mostly wideband harvesting can capture energy across a large swath of spectrum, it typically results in very low

  15. RF sputtered piezoelectric zinc oxide thin film for transducer applications

    E-Print Network [OSTI]

    Tang, William C

    parameters that could influence the quality of the resulting films include RF power, the ratio of argon depen- dency of the c-axis zinc oxide growth in radio-frequency sputtering system. Different deposition on the piezoelectric and crystalline qualities of the ZnO thin films. Experimental results showed that the multilayer

  16. Performance limits of RF power CMOS

    E-Print Network [OSTI]

    Gogineni, Usha, 1975-

    2011-01-01

    Wireless and mobile communication systems have become ubiquitous in our daily life. The need for higher bandwidth and thus higher speed and data rates in wireless communications has prompted the exploration of millimeter-wave ...

  17. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  18. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  19. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  20. Improved manufacturing techniques for RF and laser hardening of missile domes. Phase I. Technical report

    SciTech Connect (OSTI)

    Pawlewicz, W.T.; Mann, I.B.; Martin, P.M.; Hays, D.D.; Graybeal, A.G.

    1982-07-01

    This report summarizes key results and accomplishements during the first year of a Manufacturing Methods and Technology project to adapt an existing Pacific Northwest Laboratory (PNL) optical coating capability developed for high-power fusion-laser applications to the case of rf and laser hardening of plastic missile domes used by the US Army (MICOM). The primary objective of the first year's work was to demonstrate rf hardening of Hellfire and Copperhead 1.06-micron missile domes by use of transparent conductive Indium Tin Oxide (ITO) coatings. The project thus involved adaptation of a coating material and process developed for flat glass components used in fusion lasers to the case of hemispherical or conical heat-sensitive plastic domes used on laser-guided missiles. Specific ITO coating property goals were an electrical sheet resistance of 10 Ohms/square, a coated-dome transmission of 80% or more at 1.06 micron wavelength (compared to 90% for a bare dome), and good adhesion. The sheet resistance goal of 10 Ohms/square was expected to result in an rf attenuation of 30 dB at the frequencies of importance.

  1. Instruction Scheduling for Low Power Dissipation in High Performance Microprocessors

    E-Print Network [OSTI]

    Conte, Thomas M.

    Corporation Shrewsbury, Massachusetts reilly@rock.enet.dec.com Abstract Power dissipation is rapidly becoming

  2. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  3. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  4. High power continuous-wave titanium:sapphire laser

    DOE Patents [OSTI]

    Erbert, Gaylen V. (Livermore, CA); Bass, Isaac L. (Castro Valley, CA); Hackel, Richard P. (Livermore, CA); Jenkins, Sherman L. (Livermore, CA); Kanz, Vernon K. (Livermore, CA); Paisner, Jeffrey A. (Danville, CA)

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  5. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  6. Control system for high power laser drilling workover and completion unit

    DOE Patents [OSTI]

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  7. Aalborg Universitet Two phase interleaved buck converter for driving high power LEDs

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    Aalborg Universitet Two phase interleaved buck converter for driving high power LEDs Beczkowski. (2011). Two phase interleaved buck converter for driving high power LEDs. In Proceedings of the 14th #12;Two phase interleaved buck converter for driving high power LEDs Szymon Bczkowski, Stig Munk

  8. Thermal, Power, and Co-location Aware Resource Allocation in Heterogeneous High Performance Computing Systems

    E-Print Network [OSTI]

    Maciejewski, Anthony A. "Tony"

    --The rapid increase in power consumption of high performance computing (HPC) systems has led to an increase interference I. INTRODUCTION The power consumption of high-performance comput- ing (HPC) systems and dataThermal, Power, and Co-location Aware Resource Allocation in Heterogeneous High Performance

  9. High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1)

    E-Print Network [OSTI]

    Glebov, Leon

    High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1) , Vadim Smirnov(1,2) , George is a photo-thermo-refractive (PTR) glass, and used for high-power laser beam control. Exceptionally narrow combining (SBC) is considered as a promising way for high power laser systems design in numerous

  10. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect (OSTI)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  11. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2015-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  12. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    J. Ashenfelter; B. Balantekin; C. X. Baldenegro; H. R. Band; G. Barclay; C. D. Bass; D. Berish; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. Dean; G. Deichert; M. J. Dolinski; J. Dolph; D. A. Dwyer; S. Fan; J. K. Gaison; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; D. E. Jaffe; S. Kettell; T. J. Langford; B. R. Littlejohn; D. Martinez; R. D. McKeown; S. Morrell; P. E. Mueller; H. P. Mumm; J. Napolitano; D. Norcini; D. Pushin; E. Romero; R. Rosero; L. Saldana; B. S. Seilhan; R. Sharma; N. T. Stemen; P. T. Surukuchi; S. J. Thompson; R. L. Varner; W. Wang; S. M. Watson; B. White; C. White; J. Wilhelmi; C. Williams; T. Wise; H. Yao; M. Yeh; Y. -R. Yen; C. Zhang; X. Zhang

    2015-06-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  13. Background Radiation Measurements at High Power Research Reactors

    E-Print Network [OSTI]

    J. Ashenfelter; B. Balantekin; C. X. Baldenegro; H. R. Band; G. Barclay; C. D. Bass; D. Berish; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. Dean; G. Deichert; M. J. Dolinski; J. Dolph; D. A. Dwyer; S. Fan; J. K. Gaison; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. Green; K. Han; S. Hans; K. M. Heeger; B. Heffron; D. E. Jaffe; S. Kettell; T. J. Langford; B. R. Littlejohn; D. Martinez; R. D. McKeown; S. Morrell; P. E. Mueller; H. P. Mumm; J. Napolitano; D. Norcini; D. Pushin; E. Romero; R. Rosero; L. Saldana; B. S. Seilhan; R. Sharma; N. T. Stemen; P. T. Surukuchi; S. J. Thompson; R. L. Varner; W. Wang; S. M. Watson; B. White; C. White; J. Wilhelmi; C. Williams; T. Wise; H. Yao; M. Yeh; Y. -R. Yen; C. Zhang; X. Zhang

    2015-11-11

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  14. Zr/oxidized diamond interface for high power Schottky diodes

    SciTech Connect (OSTI)

    Traoré, A., E-mail: aboulaye.traore@neel.cnrs.fr; Muret, P.; Fiori, A.; Eon, D.; Gheeraert, E. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Pernot, J., E-mail: julien.pernot@neel.cnrs.fr [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris (France)

    2014-02-03

    High forward current density of 10{sup 3} A/cm{sup 2} (at 6 V) and a breakdown field larger than 7.7 MV/cm for diamond diodes with a pseudo-vertical architecture, are demonstrated. The power figure of merit is above 244 MW/cm{sup 2} and the relative standard deviation of the reverse current density over 83 diodes is 10% with a mean value of 10{sup ?9} A/cm{sup 2}. These results are obtained with zirconium as Schottky contacts on the oxygenated (100) oriented surface of a stack comprising an optimized lightly boron doped diamond layer on a heavily boron doped one, epitaxially grown on a Ib substrate. The origin of such performances are discussed.

  15. High Power Metal-Contact and Capacitive Switches with Stress Resilient Designs /

    E-Print Network [OSTI]

    Zareie, Hosein

    2013-01-01

    Cycles,” Journal of Microelectromechanical Systems, vol. 22,performance,” Journal of Microelectromechanical Sys- tems,Scale Packaged RF Microelectromechanical Switches,” IEEE

  16. Phase modulation in RF tag

    DOE Patents [OSTI]

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  17. Solid State Power Amplifier for 805 MegaHertz at the Los Alamos Neutron Science Center

    SciTech Connect (OSTI)

    Davis, J.L.; Lyles, J.T.M.

    1998-10-19

    Particle accelerators for protons, electrons, and other ion species often use high-power vacuum tubes for RF amplification, due to the high RF power requirements to accelerate these particles with high beam currents. The final power amplifier stages driving large accelerators are unable to be converted to solid-state devices with the present technology. In some instances, radiation levels preclude the use of transistors near beamlines. Work is being done worldwide to replace the RF power stages under about ten kilowatts CW with transistor amplifiers, due to the lower maintenance costs and obsolescence of power tubes in these ranges. This is especially practical where the stages drive fifty Ohm impedance and are not located in high radiation zones. The authors are doing this at the Los Alamos Neutron Science Center (LANSCE) proton linear accelerator (linac) in New Mexico. They replaced a physically-large air-cooled UHF power amplifier using a tetrode electron tube with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each module uses eight push-pull bipolar power transistor pairs operated in class AB. Four pallets can easily provide up to 2,800 watts of continuous RF at 805 MHz. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after over 10,000 hours of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  18. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOE Patents [OSTI]

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  19. High power linear pulsed beam annealer. [Patent application

    DOE Patents [OSTI]

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  20. Metal Hydrides for High-Temperature Power Generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore »during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  1. Klystron equalization for RF feedback

    SciTech Connect (OSTI)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R&D effort here at SLAC.

  2. Klystron equalization for RF feedback

    SciTech Connect (OSTI)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R D effort here at SLAC.

  3. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device design projects to scale up the current Ocean Power Technology PowerBuoy from 150kW to 500kW.

  4. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  5. High energy, high average power solid state green or UV laser

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  6. FUTURE POWER GRID INITIATIVE Real-time High-Performance

    E-Print Network [OSTI]

    #12;» System will support time-critical power grid applications (PMU data rate: every 30ms) » Flexible

  7. High-power optical-fiber transport network

    SciTech Connect (OSTI)

    Cohen, S.J; Paris, R.D.

    1994-12-31

    In the U-AVLIS Program, organic dye laser chains generate the high-power, tunable laser light required by the uranium photoionization process. Up to fifteen chains of large-bore copper vapor lasers (CVLs) serve as the excitation source for these dye laser chains. Due to physical constraints and other considerations, the copper and dye laser systems are physically separated within the U-AVLIS Program`s Laser Demonstration Facility (LDF). An optical network is therefore required that serves as the conduit to efficiently transport the multi-kilowatt CVL beams to the dye lasers chains. Approximately ten years ago, the program began investigating the use of large-core optical-fiber cables as an alternative means of transporting CVL light. At that time, it was decided to separate the portion of the discrete delivery network that transported laser light to the dye master oscillators (DMOs) of the dye laser chains and convert that to an optical-fiber delivery approach. This first step in using optical fibers to transport CVL light to the low-power `front end` of the system was very successful and to date, several hundred thousand hours of routine, fiber-pumped DMO operation have been recorded. A key advantage in using optical fibers to deliver pump light to the DMOs is that the alignment of the optical fiber to the laser cavity is fixed, eliminating the need to make adjustments after the initial setup. Based on the experience gained pumping the DMOs with light delivered by optical fibers, nearly four years ago the more challenging task of converting the entire discrete copper laser delivery system to an optical-fiber-based network was begun.

  8. Negative ion source with external RF antenna

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  9. Space reactor/Stirling cycle systems for high power Lunar applications

    SciTech Connect (OSTI)

    Schmitz, P.D.; Mason, L.S.

    1994-09-01

    NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

  10. 2004 URSI Meeting, 5-8 January 2004, at the University of Colorado, Boulder, Colorado, USA. Polyimide Planarization for RF-MEMS Switch on PCB

    E-Print Network [OSTI]

    De Flaviis, Franco

    Polyimide Planarization for RF-MEMS Switch on PCB Bahram Ghodsian, C. Jung, B. Cetiner and F. De Flaviis it maintains the high RF-performance of switches. The fabrication process uses polyimide to planerize

  11. Solid state power amplifier as 805 MHz master source for the LANSCE coupled-cavity linac

    SciTech Connect (OSTI)

    Lyles, J.; Davis, J.

    1998-12-31

    From 100 to 800 MeV, the Los Alamos Neutron Science Center (LANSCE) proton linac receives RF power from forty-four 1.25 MW klystrons at 805 Megahertz (MHz). A single master RF source provides a continuous high level phase reference signal which drives the klystrons along the 731 meter-long linac through a coaxial transmission line. A single point failure of this system can deenergize the entire coupled-cavity linac (CCL) RF plant. The authors replaced a physically large air-cooled tetrode amplifier with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each 600 Watt pallet utilizes eight push-pull bipolar power transistor pairs operated in class AB. Four of these can easily provide the 2000 watt reference carrier from the stable master RF source. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after two years of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit.

  12. Design ad Modeling of a 17 GHz Photcxxthode RF Gun C. L. Lin, S. C. Chen, J. S. U'urtele, H. Temkin, 13. Danly *

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Design ad Modeling of a 17 GHz Photcxxthode RF Gun C. L. Lin, S. C. Chen, J. S. U'urtele, H. Temkin of a high-frequencv(l7GHz), high accel- erating gradirnt(250hlv/rrl) photocathode RF gun is stud- ied in conventional DC guns followed by RF bunchers have reached their intrin- sic limitations and do not meet

  13. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect (OSTI)

    Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Matt [APEI, Inc.; Lamichhane, Ranjan [APEI, Inc.; Shepherd, Paul [APEI, Inc.; Glover, Michael [APEI, Inc.

    2014-01-01

    This paper presents a high-temperature capable intelligent power module that contains SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter (Fig. 1) to determine the performance of the module in a system level application. The converter was operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The peak efficiency was found to be 97.5% at 2.9 kW.

  14. Public Opinions of Building Additional High-Voltage Electric Power Lines

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Public Opinions of Building Additional High-Voltage Electric Power Lines A Report to the National-Voltage Electric Power Lines: A Report to the National Science Foundation and the Electric Power Research Center to build new power lines. Residents living in counties with planned routes for new transmission lines

  15. PowerPerformance Modeling and Tradeoff Analysis for a High End Microprocessor

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Power­Performance Modeling and Tradeoff Analysis for a High End Microprocessor David Brooks@us.ibm.com Abstract We describe a new power­performance modeling toolkit, developed to aid in the evaluation and defini­ tion of future power­efficient, PowerPC TM processors. The base performance models in use

  16. Inductive Characteristics of Power Distribution Grids in High Speed Integrated Circuits

    E-Print Network [OSTI]

    Friedman, Eby G.

    Inductive Characteristics of Power Distribution Grids in High Speed Integrated Circuits Andrey V characteristics of several types of gridded power distribution networks are described in this paper interconnect. In power distribution grids with alternating power and ground lines, the inductance is shown

  17. Note on RF Photo-Cathode Gun

    E-Print Network [OSTI]

    Kim, Kwang-Je

    2010-01-01

    Emittances in Laser-Driven RF Guns", Proc. 1988 Linear Acc.Palmer, "Preliminary Study of Gun Emittance Correction", BNLLaser-Driven RF Electron Guns", Nuc1. ln stt. Meth. , A275,

  18. Online Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

    E-Print Network [OSTI]

    Freeh, Vincent

    and component density of emerging su- percomputers pose a hard requirement for power-aware sys- tem design PowerEdge 6650 with Intel Xeon HT processors. The high- lighted area indicates opportunitiesOnline Strategies for High-Performance Power-Aware Thread Execution on Emerging Multiprocessors

  19. Self-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems

    E-Print Network [OSTI]

    Zhong, Lin

    of a system in the lab using high quality external power measurements. Such methods are not only laborSelf-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems Mian Dong, low power, mobile systems 1. Introduction An energy model estimates the energy consumption by a mobile

  20. Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations

    E-Print Network [OSTI]

    Nyathi, Jabulani

    Bulk CMOS Device Optimization for High-Speed and Ultra-Low Power Operations Brent Bero and Jabulani- Interest in subthreshold design has increased due to the emergence of systems that require ultra-low power creating a clear divide between designing for high speed and ultra-low power. It might be beneficial

  1. TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Nuclear Power Companies are Counting on Consumers and Taxpayers to Bear the Risks of ReactorTheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, CalPIRG Education Fund March 2009 The High Cost of Nuclear Power Why America Should Choose a Clean

  2. Narrowing of high power diode laser arrays using reflection feedback from an etalon

    E-Print Network [OSTI]

    Romalis, Mike

    Narrowing of high power diode laser arrays using reflection feedback from an etalon M. V. Romalisa for publication 27 June 2000 The spectrum of a high power multielement laser array is narrowed using reflection of the laser array is reduced by a factor of 2 with only 6% power loss. This reduction in FWHM is useful

  3. High power CW Tm:YLF laser with a holographic output Alex Dergachev, Peter F. Moulton

    E-Print Network [OSTI]

    Glebov, Leon

    High power CW Tm:YLF laser with a holographic output coupler Alex Dergachev, Peter F. Moulton Q with output power exceeding 30 W. 2003 Optical Society of America OCIS codes: (140.3580) Lasers, solid yet reported of a high power Tm-doped bulk laser operated with a bulk holographic Bragg grating

  4. Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters

    SciTech Connect (OSTI)

    2012-02-27

    Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

  5. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    SciTech Connect (OSTI)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.; Mishagin, V.V.; Sorokin, A.V.; Stupishin, N.V

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.

  6. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect (OSTI)

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 ?s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  7. Method and apparatus for delivering high power laser energy over long distances

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  8. BROADBAND LOW ACTUATIONVOLTAGE RF'MEM SWITCHES

    E-Print Network [OSTI]

    Shen, Shyh-Chiang

    (RF) Microelectromechanical (MEM) switches have been thought of as one of the most attractive devicesBROADBAND LOW ACTUATIONVOLTAGE RF'MEM SWITCHES Shyh-ChiangShen,David Caruth, and Milton Feng of Illinois at Urbana-Champaign,IL61801-2355 ABSTRACT- We demonstrate a sub-lovolts RF MEM switch built

  9. Proposal for an RF roadmap towards Ultimate Intensity in the LHC

    E-Print Network [OSTI]

    Baudrenghien, P

    2012-01-01

    The LHC currently operates with 1380 bunches at 50 ns spacing and 1.4 1011 p per bunch (0.35A DC). In this paper the RF operation with ultimate bunch intensity (1.7 1011 p per bunch) and 25 ns spacing (2808 bunches per beam) summing up to 0.86A DC is presented. With the higher beam current, the demanded klystron power will be increased and the longitudinal stability margin reduced. One must also consider the impact of a klystron trip (voltage and power transients in the three turns latency before the beam is actually dumped). In this work a scheme is proposed that can deal with ultimate bunch intensity. Only a minor upgrade of the Low Level RF is necessary: the field set point will be modulated according to the phase shift produced by the transient beam loading, thus minimizing the RF power while keeping the strong feedback for stability and reduction of the RF noise.

  10. Proposal of an Arc Detection Technique Based on RF Measurements for the ITER ICRF Antenna

    SciTech Connect (OSTI)

    Huygen, S.; Dumortier, P.; Durodie, F.; Messiaen, A.; Vervier, M.; Vrancken, M.

    2011-12-23

    RF arc detection is a key operational and safety issue for the ICRF system on ITER. Indeed the high voltages inside the antenna put it at risk of arcing, which could cause substantial damage. This paper describes the various possibilities explored by circuit simulation and the strategy now considered to protect the ITER ICRF antenna from RF arcs.

  11. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  12. High Power Superconducting Continuous Wave Linacs for Protons...

    Office of Science (SC) Website

    Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

  13. Soft-Switching High-Frequency AC-Link Universal Power Converters with Galvanic Isolation 

    E-Print Network [OSTI]

    Amirabadi, Mahshid

    2013-08-07

    be used in a variety of applications, including photovoltaic power generation, wind power generation, and electric vehicles. In these converters the link current and voltage are both alternating and their frequency can be high, which leads...

  14. Advanced high-speed flywheel energy storage systems for pulsed power application 

    E-Print Network [OSTI]

    Talebi Rafsanjan, Salman

    2009-05-15

    Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power...

  15. Lossless Multiway Power Combining and Outphasing for High-Frequency Resonant Inverters

    E-Print Network [OSTI]

    Roslaniec, Lukasz

    A lossless multi-way power combining and outphasing system have recently been proposed for high-frequency inverters and power amplifiers that offers major performance advantages over traditional approaches. This paper ...

  16. High Power Millimeter-Wave Signal Generation in Advanced SiGe and CMOS Process

    E-Print Network [OSTI]

    Lin, Hsin-Chang

    2015-01-01

    1.1 Millimeter-Wave Applications . . . 1.2 PowerTechniques . . . 1.3 Millimeter-Wave Signal Generation 1.4High-Power Millimeter-Wave Frequency Multipliers in Advance

  17. Ti-Sapphire Tunable Laser. Verdi G-Series Family High-Power

    E-Print Network [OSTI]

    Wolberg, George

    -Sapphire Tunable Laser. Verdi G-Series Family High-Power Optically Pumped supply ­ to enable a laser platform that is easily scalable in power Semiconductor Laser ( OPSL) The Verdi G-Series is a revolutionary

  18. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  19. THE CONTROL OF A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT REGULATION

    E-Print Network [OSTI]

    Lietzke, A.F.

    2010-01-01

    A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENTA HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT

  20. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    SciTech Connect (OSTI)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  1. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond 2002 We have conducted experiments exploring pulsed laser deposition of thin films using the high average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination

  2. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  3. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    E-Print Network [OSTI]

    Anders, Andre

    2013-01-01

    Workshop on RF Superconductivity, DESY, Hamburg, Germany,Gennaro, Physica C: Superconductivity 441 (2006) 130. [10]the Limits of RF Superconductivity, Padua, Italy, 2010. [12

  4. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma

    SciTech Connect (OSTI)

    Vodopyanov, A. V.; Golubev, S. V.; Khizhnyak, V. I.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.

    2008-02-15

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 {mu}s, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  5. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, T.D.

    1998-04-07

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

  6. An evolutionary fuel assembly design for high power density BWRs

    E-Print Network [OSTI]

    Karahan, Aydin

    2007-01-01

    An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

  7. High speed electrical power takeoff for oscillating water columns 

    E-Print Network [OSTI]

    Hodgins, Neil

    2010-01-01

    This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

  8. Opportunities and challenges in Very High Frequency power conversion

    E-Print Network [OSTI]

    Perreault, David J.

    This paper explores opportunities and challenges in power conversion in the VHF frequency range of 30-300 MHz. The scaling of magnetic component size with frequency is investigated, and it is shown that substantial ...

  9. The design of high power density annular fuel for LWRs

    E-Print Network [OSTI]

    Yuan, Yi, 1975-

    2004-01-01

    Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

  10. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    E-Print Network [OSTI]

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-01-01

    on samples from low power fade cells, whereas LiPF 6 -basedon samples from high power fade cells. The effect of samplecriteria based on power fade Cell disassembly was conducted

  11. EE 402 Microwave and RF Circuits Aqeel Ahmad Qureshi

    E-Print Network [OSTI]

    Saskatchewan, University of

    EE 402 Microwave and RF Circuits Aqeel Ahmad Qureshi aqeel.ahmad@usask.ca Objective: There is currently an explosion in wireless communications at microwave and millimeter-wave frequencies, for both-effective and highly integrated devices and circuits are required. An understanding of modern microwave theory

  12. Waveguide Side-Wall Coupling in RF Guns Leon C.-L. Lin, S. C. Chen, J. Gonichon, S. Trotz, and J. S. Wurtele

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Waveguide Side-Wall Coupling in RF Guns Leon C.-L. Lin, S. C. Chen, J. Gonichon, S. Trotz, and J. S side-wall coupling for RF guns is investigated both theoretically and experimentally. We model agreement with theory. I. INTRODUCTION Photocathode RF guns are promising high brightness elec- tron beam

  13. Power Electronic Topologies with High Density Power Conversion and Galvanic Isolation for Utility Interface 

    E-Print Network [OSTI]

    Krishnamoorthy, Harish Sarma

    2015-01-26

    the transformers, inductors and DC electrolytic capacitors. Instead of using a line frequency transformer to interface any power electronic system with the utility grid directly, it is possible to use a power converter to transform the line frequency AC into a...

  14. A Wireless Powered Implantable Bio-Sensor Tag System-on-Chip for Continuous Glucose Monitoring

    E-Print Network [OSTI]

    Mason, Andrew

    and a digital baseband (Fig. 1). The high frequency tag works passively and gain power from the RF energy of blood sugar level from the bio-sensor is detected and converted into digital data, and then the data of the reader. The high frequency band is selected since it is an industrial-scientific- medical (ISM) frequency

  15. The SPEAR3 RF System

    SciTech Connect (OSTI)

    McIntosh, P.

    2005-01-18

    SPEAR2 was upgraded in 2003, to a new 3rd Generation Light Source (3GLS)-SPEAR3, enabling users to take better advantage of almost 100x higher brightness and flux density over its predecessor. As part of the upgrade, the SPEAR2 RF system has been revamped from its original configuration of one 200 kW klystron feeding a single 358.5 MHz, 5-cell aluminum cavity; to a 1.2 MW klystron feeding four 476.3 MHz, HOM damped copper cavities. The system installation was completed in late November 2003 and the required accelerating voltage of 3.2 MV (800 kV/cavity) was very rapidly achieved soon after. This paper details the SPEAR3 RF system configuration and its new operating requirements, highlighting its installation and subsequent successful operation.

  16. B Factory RF System Design Issues

    E-Print Network [OSTI]

    Zisman, Michael S.

    2011-01-01

    of high- power (_1 MW) klystrons at 500 MHz has led ali Bit is necessm'y to have "extra" klystron power available forL(¢. __/ llJ. L___ t Klystron Ali dimensions nam In

  17. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect (OSTI)

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  18. OpticalSpectroscopy of Plasma in High Power MicrowavePulse ShorteningExperiments Driven

    E-Print Network [OSTI]

    typically limits the highest (-10 MW) microwave power pulselength to 100-200 ns. Potential explanations wave oscillator (BWO) will result in sinusoidal variations in both frequency and power outputs3P09 3P10 OpticalSpectroscopy of Plasma in High Power MicrowavePulse ShorteningExperiments Driven

  19. Hollow-waveguide delivery systems for high-power, industrial CO2 lasers

    E-Print Network [OSTI]

    Hollow-waveguide delivery systems for high-power, industrial CO2 lasers Ricky K. Nubling and James to deliver CO2 laser power for industrial laser applications. The transmission, bending loss, and output, beam delivery, industrial lasers, power delivery, CO2 lasers. r 1996 Optical Society of America 1

  20. Low Power Test-Compression for High Test-Quality and Low Test-Data Volume

    E-Print Network [OSTI]

    Low Power Test-Compression for High Test-Quality and Low Test-Data Volume Vasileios Tenentes,kabousia}@cs.uoi.gr Abstract--Test data decompressors targeting low power scan testing introduce significant amount. In addition, low power decompression needs additional control data which increase the overall volume of test