Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-Power Rf Load  

DOE Patents (OSTI)

A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

1998-09-01T23:59:59.000Z

2

Active high-power RF switch and pulse compression system  

DOE Patents (OSTI)

A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

1998-01-01T23:59:59.000Z

3

HIGH-POWER RF DISTRIBUTION SYSTEMFOR THE 8-PACK PROJECT  

SciTech Connect

The 8-Pack Project at SLAC is a prototype rf system whose goal is to demonstrate the high-power X-band technology developed in the NLC/GLC (Next/Global Linear Collider) program. In its first phase, it has reliably produced a 400 ns rf pulse of over 500 MW using a solidstate modulator, four 11.424 GHz klystrons and a dualmoded SLED-II pulse compressor. In Phase 2, the output power of the system has been delivered into the bunker of the NLCTA (Next Linear Collider Test Accelerator) and divided between several accelerator structures for beam acceleration. The authors describe here the design, cold-test measurements, and processing of this power distribution system. Due to the high power levels and the need for efficiency, overmoded waveguide and components are used. For power transport, the TE{sub 01} mode is used in 7.44 cm and 4.064 cm diameter circular waveguide. Only near the structures is standard WR90 rectangular waveguide employed. Components used to manipulate the rf power include transitional tapers, mode converters, overmoded bends, fractional directional couplers, and hybrids.

Nantista, C

2004-08-24T23:59:59.000Z

4

Development of fundamental power coupler for high-current superconducting RF cavity  

SciTech Connect

Brookhaven National Laboratory took a project of developing a 704 MHz five-cell superconducting RF cavity for high-current linacs, including Energy Recovery Linac (ERL) for planned electron-hadron collider eRHIC. The cavity will be fed by a high-power RF amplifier using a coaxial Fundamental Power Coupler (FPC), which delivers 20 kW of CW RF power to the cavity. The design of FPC is one of the important aspects as one has to take into account the heat losses dissipated on the surface of the conductor by RF fields along with that of the static heat load. Using a simple simulation model we show the temperature profile and the heat load dissipated along the coupler length. To minimize the heat load on FPC near the cavity end, a thermal intercept is required at an appropriate location on FPC. A 10 K intercept was chosen and its location optimized with our simulation code. The requirement on the helium gas flow rate for the effective heat removal from the thermal intercept is also discussed.

Jain P.; Belomestnykh, S.; Ben-Zvi, I.; Xu, W.

2012-05-20T23:59:59.000Z

5

High Power RF Tests on WR650 Pre-Stressed Planar Windows  

SciTech Connect

A new planar, ceramic window intended to be used with WR650 waveguide fundamental power couplers at 1300 MHz or 1500 MHz has been developed. It is based on the pre-stressed planar window concept tested in PEP II and LEDA. A test stand that made use of the 100kW CW 1500 MHz RF system in the JLAB FEL was commissioned and used to apply up to 80 kW traveling wave (TW)to the windows. Two different types of RF windows (brazed and diffusion bonded ceramics) with design specification of 50 kW CW in TW mode were successfully tested both as a gas barrier (intended to operate up to 2 psi) and as a vacuum barrier. The vacuum windows were able to maintain UHV quality vacuum and were successfully operated in the 10{sup -9} mbar range. An overview of the pre-stressed power windows, RF test stand, procedures and RF power testing results will be presented.

Stirbet, Mircea [JLAB; Davis, G. Kirk [JLAB; Elliott, Thomas S. [JLAB; King, Larry [JLAB; Powers, Thomas J. [JLAB; Rimmer, Robert A. [JLAB; Walker, Richard L. [JLAB

2009-11-01T23:59:59.000Z

6

Studies on the Matching Network of the High Power Radio Frequency Transmitter for the NBI RF Ion Source  

Science Journals Connector (OSTI)

A radio frequency (RF) driven ion source has been developed at ASIPP (Institute of Plasma Physics, CAS) for the neutral beam injector with a 1 MHz, 25 kW RF power supply system. The paper describes the studies pe...

Renxue Su; Zhimin Liu; Yahong Xie; Yuqian Chen; Yuming Gu…

2014-08-01T23:59:59.000Z

7

Wideband high efficiency CMOS envelope amplifiers for 4G LTE handset envelope tracking RF power amplifiers  

E-Print Network (OSTI)

addition, the small equivalent resistance of 8? of the RF PAor inefficient. The equivalent resistance of RF PA, R PA ,normalized equivalent load resistance (R PA ) representing

Hassan, Muhammad

2012-01-01T23:59:59.000Z

8

High Current Density, Long Life Cathodes for High Power RF Sources  

SciTech Connect

This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

2014-01-22T23:59:59.000Z

9

The Emergence of RF-Powered Computing  

Science Journals Connector (OSTI)

Extracting power "from thin air" has a quality of science fiction about it, yet technology trends make it likely that in the near future, small computers in urban areas will use ambient RF signals for both power and communication. The first Web extra ... Keywords: Backscatter,RF signals,Radio frequency,Computers,Telemetry,TV,Power distribution,Wireless communication,Ubiquitous computing,emerging technologies,wireless communication,ubiquitous computing

Shyamnath Gollakota, Matthew Reynolds, Joshua Smith, David Wetherall

2014-01-01T23:59:59.000Z

10

High voltage RF feedthrough bushing  

DOE Patents (OSTI)

Described is a multi-element, high voltage radio frequency bushing for trmitting RF energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

Grotz, Glenn F. (Huntington Station, NY)

1984-01-01T23:59:59.000Z

11

High Power Testing of a 17 GHz Photocathode RF Gun S.C. Chen, B.G. Danly, J. Gonichon, C.L. Lin, R.J. Temkin, S.R. Trotz, J.S. Wurtele,  

E-Print Network (OSTI)

High Power Testing of a 17 GHz Photocathode RF Gun S.C. Chen, B.G. Danly, J. Gonichon, C.L. Lin, R photocathode gun. The 11 2 cell, -mode, copper cavity was tested with 5-10 MW, 100 ns, 17.145 GHz pulses from without breakdown, a compact system, and high brightness. While existing RF guns operate from 144 M Hz

Wurtele, Jonathan

12

Microsoft PowerPoint - rf_5year_review  

NLE Websites -- All DOE Office Websites (Extended Search)

RF Research Program RF Research Program DOE Review of C-Mod Five-Year Proposal May 13-14, 2003 MIT PSFC Presented by Steve J.Wukitch Outline: 1. Overview of the RF Program 2. Five-year plan Overview of the RF Program AT: validate steady state operation with target parameters β N = 3, I non = 100%, I BS ~ 70%, H 89 ~ 2.5, for t pulse > t L/R . BPX: demonstrate the viability of high performance plasmas, B T = 8T, I p = 2 MA, P = 6 MW, H 89 ≥ 2, Z eff < 1.5. B T = 5.4T, I p = 1.4 MA, P = 6 MW, H 89 = 2 (ITER demo) Exclusively use RF power for auxiliary heating and current drive. variable variable fixed Phase 2 x 4 Strap 4 Strap 2 x 2 Strap Antenna 4 MW 40-80 MHz J-port 2 x 4 MW 2 x 2 MW Power 40-80 MHz ~ 80 MHz Frequency E & J-port D & E-port 2005-2008 2002-2005 4.6 GHz 4.6 GHz Frequency 16 x 250 kW

13

Evaluation of the TE12 mode in circular waveguide for low-loss, high-power rf transmission  

Science Journals Connector (OSTI)

The use of TE12 in circular waveguide with smooth walls was suggested for low-loss transport of rf signals in multimoded systems [S. G. Tantawi et al., in Advanced Accelerator Concepts: Eighth Workshop, edited by Wes Lawson, AIP Conf. Proc. No. 472 (AIP, New York, 1999), pp. 967–974]. Such systems use the same waveguide to transport different signals over different modes. In this report we detail a series of experiments designed to measure the characteristics of this mode. We also describe the different techniques used to generate it and receive it. The experiments were done at X band around a frequency of 11.424 GHz, the frequency of choice for future linear colliders at X band [The NLC Design Group, Report No. LBNL-PUB-5424, SLAC Report No. 474, Report No. UCRL-ID 124161, 1996; The JLC Design Group, KEK-REPORT-97-1, 1997]. The transportation medium is 55 m of highly overmoded circular waveguide. The design of the joining flanges is also presented.

Sami G. Tantawi, C. D. Nantista, G. B. Bowden, K. S. Fant, N. M. Kroll, A. E. Vlieks, Y.-H. Chin, H. Hayano, V. F. Vogel, and J. Nielson

2000-08-03T23:59:59.000Z

14

Tore Supra LH transmitter upgrade, a new RF driver for the power spectrum  

SciTech Connect

New real time tools have been developed for testing new 700kW/3.7GHz/CW klystrons and for the operations on very long plasma shots. After the commissioning of the 18 series tubes on the high power test bed facility, the installation of the first 8 klystrons in the Tore Supra transmitter and the adjustment tests on load, this upgrade work has been materialized during the last 2010 campaign by a successful operation on the Full Active Multijunction (FAM) C3 antenna, with new performances: 3.5MW/40s on plasma. The RF output power control in amplitude and phase has been improved for a better control of the wave spectrum launched into the plasma. The new klystrons have no modulating anode and the high cathode voltage must be adjusted with the RF input power in order to optimize the RF output power with a minimization of the thermal power losses in the collector. A new phase correction, depending on the 3 RF output power ranges used, has been introduced. The improvements made in 2009 and 2010 on the generic phase loop and the procedures used during the real time tests of the RF transfer functions in amplitude and phase are detailed below. All RF measurements systems, RF safety systems and the RF calibration procedures have been revised in order to have the best consistency, reproducibility and with a measurement error against the calorimetry measurement lower than 10%.

Berger-By, G.; Achard, J.; Armitano, A.; Bouquey, F.; Corbel, E.; Delpech, L.; Ekedahl, A.; Lombard, G.; Magne, R.; Mollard, P.; Pagano, M.; Prou, M.; Samaille, F.; Volpe, D.; Volpe, R. [CEA IRFM, F-13108 Saint-Paul-Lez-Durance (France)

2011-12-23T23:59:59.000Z

15

RF breakdown effects in microwave power amplifiers  

E-Print Network (OSTI)

Electrical stresses in the transistors of high-efficiency switching power amplifiers can lead to hot-electron-induced "breakdown" in these devices. This thesis explores issues related to breakdown in the Transcom TC2571 ...

Arumilli, Gautham Venkat

2007-01-01T23:59:59.000Z

16

Deeply-scaled GaN high electron mobility transistors for RF applications  

E-Print Network (OSTI)

Due to the unique combination of large critical breakdown field and high electron velocity, GaN-based high electron mobility transistors (HEMTs) have great potential for next generation high power RF amplifiers. The ...

Lee, Dong Seup

2014-01-01T23:59:59.000Z

17

RF power amplifier linearity compensation for MRI systems  

E-Print Network (OSTI)

In this thesis, a polar-feedback linearization system for use with MRI RF power amplifiers was designed and simulated. The design here presented is intended to replace Analogic's (located in Peabody, Massachusetts) ...

Torres Chico, Gabriel

2010-01-01T23:59:59.000Z

18

RF power potential of 45 nm CMOS technology  

E-Print Network (OSTI)

This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

Putnam, Christopher

19

Extremely high frequency RF effects on electronics.  

SciTech Connect

The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

2012-01-01T23:59:59.000Z

20

New architecture for RF power amplifier linearization  

E-Print Network (OSTI)

Power amplifier linearization has become an important part of the transmitter system as 3G and developing 4G communication standards require higher linearity than ever before. The thesis proposes two power amplifier ...

Boo, Hyun H

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RF Power Upgrade for CEBAF at Jefferson Laboratory  

SciTech Connect

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

22

Wi-fi backscatter: internet connectivity for RF-powered devices  

Science Journals Connector (OSTI)

RF-powered computers are small devices that compute and communicate using only the power that they harvest from RF signals. While existing technologies have harvested power from ambient RF sources (e.g., TV broadcasts), they require a dedicated gateway ... Keywords: backscatter, energy harvesting, internet of things, wireless

Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, David Wetherall

2014-08-01T23:59:59.000Z

23

Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun  

E-Print Network (OSTI)

High Average Current RF Photo-Gun J. Qiang Lawrence Berkeleyradio-frequency (RF) photo-gun using a particle-in-cell/ion motion inside the gun so that the ion power deposition

Qiang, J.

2010-01-01T23:59:59.000Z

24

Study of high pressure gas filled RF cavities for muon collider  

E-Print Network (OSTI)

Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

Yonehara, Katsuya

2015-01-01T23:59:59.000Z

25

Design of a new VHF RF power amplifier system for LANSCE  

SciTech Connect

A major upgrade is replacing much of the 40 year-old proton drift tube linac RF system with new components at the Los Alamos Neutron Science Center (LANSCE). When installed, the new system will reduce the total number of electron power tubes from twenty-four to eight in the RF powerplant. A new 200 MHz high power cavity amplifier has being developed at LANSCE. This 3.2 MW final power amplifier (FPA) uses a Thales TH628 Diacrode{reg_sign}, a state-of-the-art tetrode that eliminates the large anode modulator of the triode-based FPA that has been in use for four decades. Drive power for the FPA is provided by a new tetrode intermediate power amplifier (and a solid-state driver stage). The new system has sufficient duty-factor capability to allow LANSCE to return to 1 MW beam operation. Prototype RF power amplifiers have been designed, fabricated, and assembled, and are being tested. High voltage DC power became available through innovative re-engineering of an installed system. Details of the electrical and mechanical design of the FPA and ancillary systems are discussed.

Lyles, John T M [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

26

rf power system for thrust measurements of a helicon plasma source  

SciTech Connect

A rf power system has been developed, which allows the use of rf plasma devices in an electric propulsion test facility without excessive noise pollution in thruster diagnostics. Of particular importance are thrust stand measurements, which were previously impossible due to noise. Three major changes were made to the rf power system: first, the cable connection was changed from a balanced transmission line to an unbalanced coaxial line. Second, the rf power cabinet was placed remotely in order to reduce vibration-induced noise in the thrust stand. Finally, a relationship between transmission line length and rf was developed, which allows good transmission of rf power from the matching network to the helicon antenna. The modified system was tested on a thrust measurement stand and showed that rf power has no statistically significant contribution to the thrust stand measurement.

Kieckhafer, Alexander W.; Walker, Mitchell L. R. [Department of Aerospace Engineering, High-Power Electric Propulsion Laboratory, College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2010-07-15T23:59:59.000Z

27

rf  

NLE Websites -- All DOE Office Websites (Extended Search)

RF RF It's what makes the protons go 'round. The latest in a series explaining particle physics in everyday language. Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

28

Analytical Model for RF Power Performance of Deeply Scaled CMOS Devices  

E-Print Network (OSTI)

predictions from the model with measured load-pull data on 45 nm CMOS devices. II. MODEL DESCRIPTION The power by the load resistor. Fig. 1: Circuit diagram of a reduced conduction angle RF power amplifier. Fig. 2Analytical Model for RF Power Performance of Deeply Scaled CMOS Devices Usha Gogineni1 , Jesús del

del Alamo, Jesús A.

29

High power  

Science Journals Connector (OSTI)

... 1970s technomanic projects such as nuclear power stations were still in vogue. Environmentalists argued that solar power seemed a far safer, cheaper and reassuringly low-tech power source. The technomaniacs ... tech power source. The technomaniacs, fearing that they were losingthis argument, sought to hijack solar power themselves. They proposed an enormously expensive and complicated ...

David Jones

1994-03-03T23:59:59.000Z

30

Plasma Switch for High-Power Active Pulse Compressor  

SciTech Connect

Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

2013-11-04T23:59:59.000Z

31

RF/optical shared aperture for high availability wideband communication RF/FSO links  

SciTech Connect

An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

2014-04-29T23:59:59.000Z

32

Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration  

SciTech Connect

High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

Larsen, R

2009-10-17T23:59:59.000Z

33

Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr1, I. Bohnet1, J.-P. Carneiro2, K. Floettmann2, J. H. Han1, M. v. Hartrott3,  

E-Print Network (OSTI)

Behavior of the TTF2 RF Gun with long pulses and high repetition rates J. Baehr1, I. Bohnet1, J the behavior of the TTF2 RF gun with long RF pulses (up to 900 µs), high peak power (up to 3 MW) and high Zeuthen from January to March 2003, where the RF gun has been tested prior to its installation at DESY

34

Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities  

SciTech Connect

The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; /Fermilab; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

2012-05-01T23:59:59.000Z

35

High-voltage R-F feedthrough bushing  

DOE Patents (OSTI)

Described is a multi-element, high voltage radio frequency bushing for transmitting rf energy to an antenna located in a vacuum container. The bushing includes a center conductor of complex geometrical shape, an outer coaxial shield conductor, and a thin-walled hollow truncated cone insulator disposed between central and outer conductors. The shape of the center conductor, which includes a reverse curvature portion formed of a radially inwardly directed shoulder and a convex portion, controls the uniformity of the axial surface gradient on the insulator cone. The outer shield has a first substantially cylindrical portion and a second radially inwardly extending truncated cone portion.

Grotz, G.F.

1982-09-03T23:59:59.000Z

36

Plasma sweeper to control the coupling of RF power to a magnetically confined plasma  

DOE Patents (OSTI)

A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, Robert W. (Princeton, NJ); Glanz, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

37

Development of a bellows chamber with a comb-type RF shield for high-current accelerators  

Science Journals Connector (OSTI)

An all-metal bellows chamber with a comb-type Radio Frequency (RF) shield for a high-current accelerator was developed and tested at the KEK B-factory (KEKB). The comb-type RF shield has no thin fingers but has nested comb teeth instead at an inner surface. The comb-type RF-shield has a higher thermal strength structurally compared to the conventional finger-type one. Leakage of the TE mode like HOM through the RF shield is almost suppressed. Two test models of bellows chambers installed in the 3.5 GeV positron ring of KEKB showed good properties up to a stored beam current of 1.5 A. The temperature rise of the corrugation was about 7°C and the temperature rise was about 16 of that of the bellows chamber with a conventional finger-type RF shield located under the same condition. The temperature rise of the comb teeth was about 22°C, while that of fingers of the finger-type RF shield was estimated to be about 105°C for the equivalent HOM power. No vacuum arcing was detected during beam operation.

Y. Suetsugu; M. Shirai; K. Shibata; K. Murata; M. Kaneko; K. Sakamoto; K. Sugisaki; M. Kawahara

2004-01-01T23:59:59.000Z

38

High tunability barium strontium titanate thin films for rf circuit applications  

E-Print Network (OSTI)

High tunability barium strontium titanate thin films for rf circuit applications N. K. Pervez,a) P) Large variations in the permittivity of rf magnetron sputtered thin-film barium strontium titanate have/cm. © 2004 American Institute of Physics. [DOI: 10.1063/1.1818724] Barium strontium titanate (BST) is a solid

York, Robert A.

39

High Power Operation of the JLab IR FEL Driver Accelerator  

SciTech Connect

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

2007-08-01T23:59:59.000Z

40

Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun  

E-Print Network (OSTI)

High Average Current RF Photo-Gun J. Qiang Lawrence Berkeleycurrent radio-frequency (RF) photo-gun using a particle-in-of high average current RF photo-guns have been proposed or

Qiang, J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radio-frequency powered glow discharge device and method with high voltage interface  

DOE Patents (OSTI)

A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

1994-06-28T23:59:59.000Z

42

High Power Cryogenic Targets  

SciTech Connect

The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

Gregory Smith

2011-08-01T23:59:59.000Z

43

High power connection system  

DOE Patents (OSTI)

A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

2000-01-01T23:59:59.000Z

44

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron  

E-Print Network (OSTI)

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron Abstract-- Barium strontium titanate is a solid solution perovskite with a field-dependent permittivity.7 MV/cm. I. INTRODUCTION In recent years there has been much interest in thin-film barium strontium

York, Robert A.

45

Plasma Edge Cooling during rf Heating  

Science Journals Connector (OSTI)

A new approach to prevent the influx of high-Z impurities into the core of a tokamak discharge by using rf power to modify the edge plasma temperature profile is discussed. This concept is based on spectroscopic measurements on PLT (Princeton Large Torus) during ohmic heating and ATC (Adiabatic Toroidal Compressor) during rf heating.

S. Suckewer and R. J. Hawryluk

1978-06-19T23:59:59.000Z

46

High performance RF and baseband building blocks for wireless receivers  

E-Print Network (OSTI)

Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Edgar Sánchez-Sinencio Committee Members, Jose Silva-Martinez Laszlo Bela..., M.S., Tehran University Chair of Advisory Committee: Dr. Edgar Sánchez-Sinencio Because of the unique architecture of wireless receivers, a designer must understand both the high frequency aspects as well as the low-frequency analog...

Bahmani, Faramarz

2007-09-17T23:59:59.000Z

47

Uppsala High Power Test Stand for ESS Spoke Cavities  

E-Print Network (OSTI)

The European Spallation Source (ESS) is one of the world’s most powerful neutron source. The ESS linac will accelerate 50mA pulse current of protons to 2.5GeV in 2.86 ms long pulses at a repetition rate of 14 Hz. It produces a beam with 5MW average power and 125MW peak power. ESS Spoke Linac consist of 28 superconducting spoke cavities, which will be developed by IPN Orsay, France. These Spoke Cavities will be tested at low power at IPN Orsay and high power testing will be performed in a high power test stand at Uppsala University. The test stand consists of tetrode based RF amplifier chain (352MHz, 350 kW) power and related RF distribution. Outputs of two tetrodes shall be combined with the hybrid coupler to produce 350 kW power. Preamplifier for a tetrode shall be solid state amplifier. As the spoke cavities are superconducting, the test stand also includes horizontal cryostat, Helium liquefier, test bunker etc. The paper describes features of the test stand in details.

Yogi, RA; Dancila, D; Gajewski, K; Hermansson, L; Noor, M; Wedberg, R; Santiago-Kern, R; Ekelöf, T; Lofnes, T; Ziemann, V; Goryashko, V; Ruber, R

2013-01-01T23:59:59.000Z

48

Direct coupling of pulsed radio frequency and pulsed high power in novel pulsed power system for plasma immersion ion implantation  

SciTech Connect

A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.

Gong Chunzhi; Tian Xiubo; Yang Shiqin [State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin (China); Fu, Ricky K. Y.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2008-04-15T23:59:59.000Z

49

Design of RF Feed System for Standing-Wave Accelerator Structures  

SciTech Connect

We are investigating a standing wave structure with an rf feed to each individual cell. This approach minimizes rf power flow and electromagnetic energy absorbed by an rf breakdown. The objective of this work is a robust high-gradient (above 100 MV/m) X-band accelerator structure.

Neilson, Jeffrey; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

2010-11-04T23:59:59.000Z

50

The Linac4 DTL Prototype: Low and High Power Measurements  

E-Print Network (OSTI)

The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

De Michele, G; Marques-Balula, J; Ramberger, S

2012-01-01T23:59:59.000Z

51

High power test of a 57-MHz CW RFQ.  

SciTech Connect

High power heavy-ion drivers require a CW low-frequency RFQ for initial acceleration. The low frequency specifications required for heavy-ion acceleration typically result in large dimensions of the structure. By appropriate choice of the resonant structure for the Rare Isotope Accelerator (RIA) driver RFQ we have achieved moderate transverse dimensions of the cavity and high quality accelerating-focusing fields required for simultaneous acceleration of multiple-charge-state ion beams. In our application the RFQ must provide stable operation over a wide range of RF power levels to allow acceleration of masses from protons up to uranium. To demonstrate the technology and high-power operation we have built an engineering prototype of one-segment of the 57-MHz RFQ structure. The RFQ is designed as a 100% OFE copper structure and fabricated with a two-step furnace brazing process. The errors in the tip-to-tip distances of the vanes average less than 50 microns. The RF measurements show excellent electrical properties of the resonator with a measured intrinsic Q equal to 94% of the simulated value. In this paper we report final results of high-power tests.

Ostroumov, P. N.; Barcikowski, A.; Clifft, B.; Rusthoven, B.; Sharma, S.; Sharamentov, S. I.; Toter, W. F.; Rathke, J. W.; Vinogradov, N. E.; Schrage, D. L.; Advanced Energy Systems; Northern Illinois Univ.; TechSource

2006-01-01T23:59:59.000Z

52

CMOS RF down-conversion mixer design for low-power wireless communications  

E-Print Network (OSTI)

and the digital building blocks on a single chip. Indeed, both the full integration and the low-voltage design, 1 building blocks This paper aims to study the design of an integrated single-balanced mixer in CMOS 0.18 !m for the design of RF integrated circuits. Indeed, in recent years the huge efforts, provided

Paris-Sud XI, Université de

53

An RF-only ion-funnel for extraction from high-pressure gases  

E-Print Network (OSTI)

An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into vacuum ($10^{-6}$ mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting $^{136}$Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to the simulations. This demonstration of extraction of ions with mass comparable to that of the gas generating the high-pressure into vacuum has applications to Ba tagging from a Xe-gas time-projection chamber (TPC) for double beta decay as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m$>40$ u) carrier gas.

Thomas Brunner; Daniel Fudenberg; Victor Varentsov; Amanda Sabourov; Giorgio Gratta; Jens Dilling; Ralph DeVoe; David Sinclair; William Fairbank Jr.; Joshua B Albert; David J Auty; Phil S Barbeau; Douglas Beck; Cesar Benitez-Medina; Martin Breidenbach; Guofu F Cao; Christopher Chambers; Bruce Cleveland; Matthew Coon; Adam Craycraft; Timothy Daniels; Sean J Daugherty; Tamar Didberidze; Michelle J Dolinski; Matthew Dunford; Lorenzo Fabris; Jacques Farine; Wolfhart Feldmeier; Peter Fierlinger; Razvan Gornea; Kevin Graham; Mike Heffner; Mitchell Hughes; Michael Jewell; Xiaoshan S Jiang; Tessa N Johnson; Sereres Johnston; Alexander Karelin; Lisa J Kaufman; Ryan Killick; Thomas Koffas; Scott Kravitz; Reiner Kruecken; Alexey Kuchenkov; Krishna S Kumar; Douglas S Leonard; Francois Leonard; Caio Licciardi; Yi-Hsuan H Lin; Jiajie Ling; Ryan MacLellan; Michael G Marino; Brian Mong; David Moore; Allen Odian; Igor Ostrovskiy; Christian Ouellet; Andreas Piepke; Andrea Pocar; Fabrice Retiere; Peter C Rowson; Maria P Rozo; Alexis Schubert; Erica Smith; Victor Stekhanov; Michal Tarka; Tamer Tolba; Delia Tosi; Karl Twelker; Jean-Luc L Vuilleumier; Josiah Walton; Timothy Walton; Manuel Weber; Liangjian J Wen; Ubi Wichoski; Liang Yang; Yung-Ruey Yen

2014-12-03T23:59:59.000Z

54

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

55

Simulation and characterization of Cylindrical RF cavity with output section coupling for 250 kW CW C-band klystron  

Science Journals Connector (OSTI)

The klystron is a microwave tube capable to produce very high power that find wide use in communication, radar, material processing, particle accelerators and thermonuclear fusion reactors. The RF section has an important role in deciding the RF performance ...

O. S. Lamba; Meenu Kaushik; L. M. Joshi; Rakesh Meena; Debasish Pal; Vishnu Jindal; Priyanka Jangir; Vijay Singh; Sunit Kumar; Depender Kant

2011-02-01T23:59:59.000Z

56

High deposition rate preparation of amorphous silicon solar cells by rf glow discharge decomposition of disilane  

SciTech Connect

The optical and electrical properties of hydrogenated amorphous silicon films produced by rf glow discharge decomposition of disilane diluted in helium (Si/sub 2/H/sub 6//He = 1/9) have been studied while systematically varying the film deposition rate. The properties and composition of the films were monitored by measuring the optical band gap, IR vibrational spectrum, dark conductivity, and the photoconductivity as a function of the deposition rate. The photoluminescence of the high deposition rate films gave a peak at 1.33 eV. These films, whose properties are rather similar to those of the conventional a-Si:H films prepared from monosilane, have been used to fabricate nip-type a-Si:H solar cells. At a deposition rate of 11 A/sec, a conversion efficiency of 6.86% was obtained. This high efficiency shows that disilane is applicable for mass production fabrication of a-Si:H solar cells.

Kenne, J.; Ohashi, Y.; Matsushita, T.; Konagai, M.; Takahashi, K.

1984-01-15T23:59:59.000Z

57

Low power RF CMOS phase-shifting dual modulus (16/17) prescaler  

E-Print Network (OSTI)

speed dual modulus prescalers consume a considerable portion of the power budget of the transceiver. The Conventional Synchronous Prescaler %3/4 MF G2 Vo D Q FF1 Q' D Q FF2 D Q FF3 Q' D Q FF4 Q' CII& CII& CII& CII& Vin MC Figure 4... ratio of 16. When MC is low, the synchronous circuit divides by 3 or 4 depending on whether MF is low or high respectively. The feedback from the ripple counter is set up such that MF is low only when FF3 and FF4 are in the state 11. For the other 3...

Duggal, Abhishek

2000-01-01T23:59:59.000Z

58

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

59

RF-Powered Variable Duty Cycle Wireless Sensor Daniel Costinett, Erez Falkenstein, Regan Zane, Zoya Popovic  

E-Print Network (OSTI)

is monitored, and the duty cycle for wireless data transmission adaptively adjusted through use of a low-power with optimizing the interface between the power reception device, and typical low-power sensor loads to achieve presents an optimal DC load to the energy storage device, which provides power to the microcontroller

Popovic, Zoya

60

Cold Test Measurements on the GTF Prototype RF Gun  

SciTech Connect

The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. Based on longitudinal phase space measurements showing a correlated energy spread the gun was removed and re-characterized in 2002. The low power RF measurements performed on the gun are described below. Perturbative bead measurements were performed to determine the field ratio in the two-cell gun, and network analyzer measurements were made to characterize the mode structure. A second probe was installed to monitor the RF field in the first cell, and a diagnostic was developed to monitor the high-power field ratio. Calibration of the RF probes, a model for analyzing RF measurements, and Superfish simulations of bead and RF measurements are described.

Gierman, S.M.

2010-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High power gas laser amplifier  

DOE Patents (OSTI)

A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

Leland, Wallace T. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

62

High power l-band fast phase shifter  

SciTech Connect

Following successful testing of a concept prototype of a waveguide-based high power phase shifter, a design of a fast, high power device has been developed. The shifter uses two magnetically biased blocks of Yttrium Iron Garnet (YIG) positioned along the side walls of a rectangular waveguide. The cross-section of the waveguide is chosen to suppress unwanted RF modes that could otherwise compromise performance of the phase shifter. Static bias field in the YIG blocks is created by employing permanent magnets. Low inductance coils in the same magnetic circuit excite fast component of the bias field. Design of the device ensures effective heat extraction from the YIG blocks and penetration of the fast magnetic field inside the waveguide with minimum delay. This paper summarizes main steps in this development and gives brief description of the system.

Terechkine, I.; Khabiboulline, T.; Solyak, N.; /Fermilab

2008-10-01T23:59:59.000Z

63

High voltage DC power supply  

DOE Patents (OSTI)

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19T23:59:59.000Z

64

High voltage DC power supply  

DOE Patents (OSTI)

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

Droege, Thomas F. (Batavia, IL)

1989-01-01T23:59:59.000Z

65

High power couplers for Project X  

SciTech Connect

Project X, a multi-megawatt proton source under development at Fermi National Accelerator Laboratory. The key element of the project is a superconducting (SC) 3GV continuous wave (CW) proton linac. The linac includes 5 types of SC accelerating cavities of two frequencies.(325 and 650MHz) The cavities consume up to 30 kW average RF power and need proper main couplers. Requirements and approach to the coupler design are discussed in the report. New cost effective schemes are described. Results of electrodynamics and thermal simulations are presented.

Kazakov, S.; Champion, M.S.; Yakovlev, V.P.; Kramp, M.; Pronitchev, O.; Orlov, Y.; /Fermilab

2011-03-01T23:59:59.000Z

66

Open-Loop Digital Predistortion Using Cartesian Feedback for Adaptive RF Power Amplifier Linearization  

E-Print Network (OSTI)

leverage analog Cartesian feedback (CFB) to train a Cartesian look-up table, reducing DSP and power the CFB system does not continuously operate, we overcome the bandwidth limitation traditionally is that it is not robust to variations in process, supply voltage, temperature, and aging effects. Cartesian feedback (CFB

Dawson, Joel

67

High Gradient Acceleration in a 17 GHz Photocathode RF Gun* S. C. Chen, J. Gonichon, 1;. C-L. Lin, R. J. Temkin, S. Trotz, B. G. Danly, and J. S. Wurtele  

E-Print Network (OSTI)

High Gradient Acceleration in a 17 GHz Photocathode RF Gun* S. C. Chen, J. Gonichon, 1;. C-L. Lin.icle acceleration at high mi- ccowave (RF) frequencies are under study at hIIT. The 17 GHz photocathode RF gun has, efforts have been made recent,ly t,o creat,e novel electron beam sources.[l] While existing RF guns

Wurtele, Jonathan

68

A Family of L-band SRF Cavities for High Power Proton Driver Applications  

SciTech Connect

Recent global interest in high duty factor or CW superconducting linacs with high average beam power highlights the need for robust and reliable SRF structures capable of delivering high average RF power to the beam with moderate HOM damping, low interception of halo and good efficiency. Potential applications include proton or H- drivers for spallation neutron sources, neutrino physics, waste transmutation, subcritical reactors, and high-intensity high-energy physics experiments. We describe a family of SRF cavities with a range of Betas capable of transporting beam currents in excess of 10 mA CW with large irises for minimal interception of halo and HOM and power couplers capable of supporting high average power operation. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and strong HOM damping to ensure stable beam operation,

Robert Rimmer, Frank Marhauser

2009-05-01T23:59:59.000Z

69

Photocathode emission studies: Dark current and Schottky-enabled photo-electrons in a high-field RF gun  

SciTech Connect

We report on dark current and Schottky-enabled photoemission from a copper photocathode surface. Field-emitted dark current is a major gradient-limiting factor in RF cavities. Field emission is generally attributed to geometrical projections on the bulk surface whose field enhancement factor ({beta}) and the emitting area (A{sub e}) can be extracted from the Fowler-Nordheim (FN) plot. Measurements were made at Tsinghua S-band RF gun facility in two separate experiments. Using the traditional FN formula for RF fields we discovered that field enhancement factor ({beta}) alone cannot explain the full data set. Instead, we found that a low work function at some sites is required. In addition, surface analysis of the cathode after the experiment shows that geometric {beta} indicated would be < 10. Thus we conclude that low work function sites with a small {beta} are responsible for dark current emission and subsequent breakdown in high-gradient structures. The origin of these sites is unclear but could be due to defects or impurities.

Chen, H.; Du, Y.; Gai, W.; Grudiev, A.; Hua, J.; Huang, W.; Power, J.; Wisniewski, E. E.; Wuensch, W.; Tang, C.; Yan, L.; You, Y. [Dept. of Eng. Phys., Tsinghua U. (China); ANL/HEP, Argonne, IL (United States); CERN, Geneva (Switzerland); Dept. of Eng. Phys., Tsinghua U. (China); ANL/HEP, Argonne, IL (United States); ANL/HEP, Argonne, IL (United States) and IIT Chicago, IL (United States); CERN, Geneva (Switzerland); Dept. of Eng. Phys., Tsinghua U. (China)

2012-12-21T23:59:59.000Z

70

Mechanical Analysis of the 400 MHz RF-Dipole Crabbing Cavity Prototype for LHC High Luminosity Upgrade  

SciTech Connect

The proposed LHC high luminosity upgrade requires two crabbing systems in increasing the peak luminosity, operating both vertically and horizontally at two interaction points of IP1 and IP5. The required system has tight dimensional constraints and needs to achieve higher operational gradients. A proof-of-principle 400 MHz crabbing cavity design has been successfully tested and has proven to be an ideal candidate for the crabbing system. The cylindrical proof-of-principle rf-dipole design has been adapted in to a square shaped design to further meet the dimensional requirements. The new rf-dipole design has been optimized in meeting the requirements in rf-properties, higher order mode damping, and multipole components. A crabbing system in a cryomodule is expected to be tested on the SPS beam line prior to the test at LHC. The new prototype is required to achieve the mechanical and thermal specifications of the SPS test followed by the test at LHC. This paper discusses the detailed mechanical and thermal analysis in minimizing Lorentz force detuning and sensitivity to liquid He pressure fluctuations.

De Silva, Subashini U. [ODU; Park, HyeKyoung [ODU, JLAB; Delayen, Jean R. [ODU, JLAB; Li, Z. [SLAC

2013-12-01T23:59:59.000Z

71

Development of an RF Conditioning System for Charged-Particle Accelerators  

SciTech Connect

Charged-particle accelerators use various vacuum windows on their accelerating radio-frequency (RF) cavities to throughput very high RF power. Before being placed on the cavities, the windows should be cleaned, baked, and fully RF conditioned to prevent a poor vacuum from outgassing, as well as other forms of contamination. An example is the coaxial fundamental power coupler (FPC) with an annular alumina ceramic window for each of the 81 superconducting RF cavities in the Spallation Neutron Source (SNS) linear accelerator. The FPCs needed to be tested up to 650-kW peak in a traveling wave and 2.6 MW with standing wave peaks in 1.3 and 60 pulses/s at 805 MHz. In this paper, an Experimental-Physics-and-Industrial-Control-System-based RF conditioning system for the SNS RF test facility is presented. This paper summarizes the hardware and software design strategies, provides the results obtained, and describes the future research scope.

Kang, Yoon W [ORNL; Howlader, Mostofa [ORNL; Shajedul Hasan, Dr. S. M. [Virginia Polytechnic Institute and State University (Virginia Tech)

2008-01-01T23:59:59.000Z

72

Compression effects in inductively coupled, high-power radio-frequency discharges for negative hydrogen ion production  

Science Journals Connector (OSTI)

In the paper we present a simplified model description of inductively coupled plasmadischarges operating at a rather high radio-frequency (rf) power. In this case the induced high plasma currents can cause periodic compressions over a substantial radial distance. Such conditions are obviously given in rf driven 1 MHz/150 kW plasma sources developed at the Institute for Plasma Physics Garching for negative (hydrogen) ion production in future neutral beam injection (NBI) systems for nuclear fusion research such as the 1 MeV/50 MW NBI system for the International Thermonuclear Experimental Reactor [T. Inoue R. Hemsworth V. Kulygin and Y. Okumura Fusion Eng. Design 55 291 (2001)]. The given model describes quite well the compression and other features of the discharge. The results include the Ohmic power input (i.e. electron heating) the resulting density build-up and—as a new feature—periodical plasma compressions leading to a direct energy input also into the plasma ions. The model also explains the strange effect of small argon admixtures which improve the negative ion yield in rf sources by a factor of up to 2–3 (but which have no effect in conventional dc arc sources). With the calculated dependencies from external parameters (e.g. rf-power and frequency gas pressure ion mass or the specific geometry) the modeling may help for the further optimization of the rf source.

Rolf Wilhelm

2003-01-01T23:59:59.000Z

73

Generation of high intensity rf pulses in the ionosphere by means of in situ compression  

SciTech Connect

We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

1993-04-01T23:59:59.000Z

74

Nanostructured Thermoelectric Materials and High Efficiency Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

75

Spectroscopy of Rf257  

Science Journals Connector (OSTI)

The isotope Rf257 was produced in the fusion-evaporation reaction Pb208(Ti50,n)Rf257. Reaction products were separated and identified by mass. Delayed spectroscopy of Rf257 and its decay products was performed. A partial decay scheme with configuration assignments is proposed based on ? hindrance factors. The excitation energy of the 1/2+[620] configuration in No253 is proposed. The energy of this 1/2+ state in a series of N=151 isotones increases with nuclear charge, reflecting an increase in the N=152 gap. This gap is deduced to grow substantially from 850 to 1400 keV between Z=94 and 102. An isomeric state in Rf257, with a half-life of 160-31+42??s, was discovered by detecting internal conversion electrons followed by ? decay. It is interpreted as a three-quasiparticle high-K isomer. A second group of internal conversion electrons, with a half-life of 4.1-1.3+2.4 s, followed by ? decay, was also observed. These events might originate from the decay of excited states in Lr257, populated by electron-capture decay of Rf257. Fission of Rf257 was unambiguously detected, with a branching ratio of bRfSF=0.02±0.01.

J. Qian; A. Heinz; T. L. Khoo; R. V. F. Janssens; D. Peterson; D. Seweryniak; I. Ahmad; M. Asai; B. B. Back; M. P. Carpenter; A. B. Garnsworthy; J. P. Greene; A. A. Hecht; C. L. Jiang; F. G. Kondev; T. Lauritsen; C. J. Lister; A. Robinson; G. Savard; R. Scott; R. Vondrasek; X. Wang; R. Winkler; S. Zhu

2009-06-22T23:59:59.000Z

76

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

77

High power laser perforating tools and systems  

DOE Patents (OSTI)

ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

2014-04-22T23:59:59.000Z

78

Modulation instability in high power laser amplifiers  

E-Print Network (OSTI)

. Widmayer, R. K. White, S. T. Yang, and B. M. VanWonterghem, "National Ignition Facility laser performanceModulation instability in high power laser amplifiers Alexander M. Rubenchik,1,* Sergey K. Turitsyn in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI

Turitsyn, Sergei K.

79

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

80

Multi-band high efficiency power amplifier  

E-Print Network (OSTI)

components, bias networks and micro-strip to RF transistorSmall Signal (Micro-strip Tuning) The input matching network

Besprozvanny, Randy-Alexander Randolph

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams  

E-Print Network (OSTI)

We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

2007-10-15T23:59:59.000Z

82

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

83

RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES  

SciTech Connect

Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.

Johnson, Rolland

2014-09-21T23:59:59.000Z

84

Development of bellows and gate valves with a comb-type rf shield for high-current accelerators: Four-year beam test at KEK B-Factory  

SciTech Connect

Since a comb-type rf shield was proposed in 2003 as a rf shield for future high-intensity accelerators, various types of bellow chambers and gate valves with this rf shield have been installed in the KEK B-Factory rings in series and tested with beams. Through beam tests to check the performance, a structural simplification has been tried in parallel. The temperatures of the bellow corrugations decreased by a factor of 3-6 compared to those with a conventional finger-type rf shield in most cases. The temperatures of the body of the gate valves also decreased by a factor of 2-5. These results demonstrated the availability of the comb-type rf shield. Although a discharge was observed in one simplified model, the latest model has shown no problem up to a stored beam current of 1.8 A (1.3 mA/bunch, 6 mm bunch length). Experiences with the comb-type rf shield in these four-year beam tests are reviewed here.

Suetsugu, Yusuke; Kanazawa, Ken-ichi; Shibata, Kyo; Shirai, Mitsuru; Bondar, Aleksander E.; Kuzminykh, Victor S.; Gorbovsky, Aleksander I.; Sonderegger, Kurt; Morii, Minoru; Kawada, Kakuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Budker Institute of Nuclear Physics (BINP), Novosibirsk 630090 (Russian Federation); VAT Vakuumventile AG, Haag CH-9469 (Switzerland); VAT SKK Vacuum Ltd., Yokohama, Kanagawa 240-0023 (Japan)

2007-04-15T23:59:59.000Z

85

Integrated Circuit Blocks for High Performance Baseband and RF Analog-to-Digital Converters  

E-Print Network (OSTI)

) with different specifications. A promising solution is adopting a power and area efficient reconfigurable ADC with tunable bandwidth and dynamic range. The advantage of the reconfigurable ADC over customized ADCs is that its power consumption can be scaled...

Chen, Hongbo

2012-02-14T23:59:59.000Z

86

HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.  

SciTech Connect

Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

2005-08-21T23:59:59.000Z

87

High Energy Density Science with High Peak Power Light Sources  

Science Journals Connector (OSTI)

High energy density (HED) science is a growing sub-field of plasma and condensed matter physics. I will examine how recent technological developments in high peak power, petawatt-class...

Ditmire, Todd

88

A compact transport and charge model for GaN-based high electron mobility transistors for RF applications  

E-Print Network (OSTI)

Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) are rapidly emerging as front-runners in high-power mm-wave circuit applications. For circuit design with current devices and to allow sensible future ...

Radhakrishna, Ujwal

2013-01-01T23:59:59.000Z

89

High-Power Laser Beam Cladding  

Science Journals Connector (OSTI)

This paper reports major advances in the understanding, refinement and application of high-power laser beam cladding. The most important relationships between essential laser process variables and clad characteri...

G. J. Bruck

1987-02-01T23:59:59.000Z

90

Electronic power conditioning for dynamic power conversion in high-power space systems  

E-Print Network (OSTI)

require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

Hansen, James Michael

1991-01-01T23:59:59.000Z

91

HOM Coupler Optimisation for the Superconducting RF Cavities in ESS  

E-Print Network (OSTI)

The European Spallation Source (ESS) will be the world’s most powerful next generation neutron source. It consists of a linear accelerator, target, and instruments for neutron experiments. The linac is designed to accelerate protons to a ?nal energy of 2.5 GeV, with an average design beam power of 5 MW, for collision with a target used to produce a high neutron ?ux. A section of the linac will contain Superconducting RF (SCRF) cavities designed at 704 MHz. Beam induced HOMs in these cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are installed to provide suf?cient damping. Previous studies have shown that these couplers are susceptible to multipacting, a resonant process which can absorb RF power and lead to heating effects. This paper will show how a coupler suffering from multipacting has been redesigned to limit this effect. Optimisation of the RF damping is also discussed.

Ainsworth, R; Calaga, R

2012-01-01T23:59:59.000Z

92

ISG8-RF Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

RF Sources - (WG3) RF Sources - (WG3) Orange Rm Yong Ho Chin, Christopher Nantista, and Sami G. Tantawi Parallel Sessions: Working Groups: WG1: Parameters, Design, Instrumentation and Tuning WG2: Damping Rings and ATF WG3: RF Sources WG4:Structures WG5: Ground Motion; Site Requirements and Investigations Monday Morning 9:00-10:30 Plenary Coffee Break 11:00-12:00 Planning Session. Monday Afternoon 13:30-15:30 High Gradient Issues (Joint with working group 4) Coffee Break 16:00-16:30 The 8-Pack Project -- D. Atkinson 16:30-17:30 High Gradient Issues and Discussions Continued. Tuesday Morning 9:30-10:30 Klystrons 9:30-10:00 Status of PPM Klystron Development for JLC -- Y. H. Chin 10:00-10:30 Design of 150MW Multi-Beam Klystron -- S. Matsumoto Coffee Break 11:00-11:30 Klystron Development at SLAC -- G. Caryotakis

93

Optical power splitter for splitting high power light  

DOE Patents (OSTI)

An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

English, R.E. Jr.; Christensen, J.J.

1995-04-18T23:59:59.000Z

94

High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.  

SciTech Connect

Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch train with a bunch spacing of 769ps and bunch charges of 50nC each, 90.4MW and 8.68MW of extracted power levels are expected to be reached at 20.8GHz and 35.1GHz, respectively. In order to improve efficiency in HOM power extraction, a novel technique has been proposed to suppress unintended modes.

Gao, F.; High Energy Physics; Illinois Inst. of Tech

2009-07-24T23:59:59.000Z

95

500 MW X-Band RF System of a 0.25 GeV Electron LINAC for Advanced Compton Scattering Source Application  

SciTech Connect

A Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering light source is being developed at LLNL in collaboration with the SLAC National Accelerator Laboratory. The electron beam for the Compton scattering interaction will be generated by a X-band RF gun and a X-band LINAC at the frequency of 11.424 GHz. High power RF in excess of 500 MW is needed to accelerate the electrons to energy of 250 MeV or greater for the interaction. Two high power klystron amplifiers, each capable of generating 50 MW, 1.5 msec pulses, will be the main high power RF sources for the system. These klystrons will be powered by state of the art solid-state high voltage modulators. A RF pulse compressor, similar to the SLED II pulse compressor, will compress the klystron output pulse with a power gain factor of five. For compactness consideration, we are looking at a folded waveguide setup. This will give us 500 MW at output of the compressor. The compressed pulse will then be distributed to the RF gun and to six traveling wave accelerator sections. Phase and amplitude control are located at the RF gun input and additional control points along the LINAC to allow for parameter control during operation. This high power RF system is being designed and constructed. In this paper, we will present the design, layout, and status of this RF system.

Chu, Tak Sum; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Marsh, Roark; /LLNL, Livermore; Siders, Craig; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

2012-07-03T23:59:59.000Z

96

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

97

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

98

High Average Power, High Energy Short Pulse Fiber Laser System  

SciTech Connect

Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

Messerly, M J

2007-11-13T23:59:59.000Z

99

High Flux Isotope Reactor power upgrade status  

SciTech Connect

A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

Rothrock, R.B.; Hale, R.E. [Oak Ridge National Lab., TN (United States); Cheverton, R.D. [Delta-21 Resources Inc., Oak Ridge, TN (United States)

1997-03-01T23:59:59.000Z

100

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 4, APRIL 2010 981 Power Management of Wideband Code Division  

E-Print Network (OSTI)

of the RFPA for various RF transmit power levels. For example, for data transmission (high load), a WCDMA RFPA (RFPA) is the most power- consuming component in wireless handsets [1], [2]. With increased data rates affected by the RF load impedance and the supply voltage [5], [6]. An RFPA power management architecture

Popovic, Zoya

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microwave power thin film resistors for high frequency and high power load applications  

Science Journals Connector (OSTI)

The authors report a power-dividing-based microwave power thin film resistor (MPTFR) that exhibits high operating frequency and high power load. The MPTFR is comprised of substrate ground electrodes two TaN resistive films power dividing circuit and signal input port. The experimental results show that the voltage standing wave ratio of the MPTFR is lower than 1.6 in the band of 3.4–7.4 GHz and 8.2–9.8 GHz. The power load of the MPTFR is 200 W. The experimental data are in good agreement with the electromagnetic simulations.

H. C. Jiang; X. Si; W. L. Zhang; C. J. Wang; B. Peng; Y. R. Li

2010-01-01T23:59:59.000Z

102

The NASA CSTI High Capacity Power Program  

SciTech Connect

The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems - Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability and 7 to 10 years lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operation as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed.

Winter, J.M.

1994-09-01T23:59:59.000Z

103

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at...

104

Modeling Combustion Control for High Power Diesel Mode Switching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching P-20 Motivation * High power LTC-diesel mode operation * Transient...

105

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

106

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

107

Measuring Tiny Waves with High Power Particle Beams | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Tiny Waves with High Power Particle Beams American Fusion News Category: U.S. Universities Link: Measuring Tiny Waves with High Power Particle Beams...

108

A Cooled Deformable Bimorph Mirror for a High Power Laser  

Science Journals Connector (OSTI)

Adaptive optics (AO) has been applied in various fields including astronomy, ophthalmology and high power laser systems. An adaptive optics system for a high power laser is not...

Lee, Jun-Ho; Lee, Young-Cheol; Kang, Eung-Cheol

2006-01-01T23:59:59.000Z

109

High-power, high-intensity laser propagation and interactions  

SciTech Connect

This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2014-05-15T23:59:59.000Z

110

Laser Fusion Energy The High Average Power  

E-Print Network (OSTI)

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

111

CHALLENGES FACING HIGH POWER PROTON ACCELERATORS  

SciTech Connect

This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

Plum, Michael A [ORNL

2013-01-01T23:59:59.000Z

112

Experimental evaluation of 350 MHz RF accelerator windows for the low energy demonstration accelerator  

SciTech Connect

Radio frequency (RF) windows are historically a point where failure occurs in input power couplers for accelerators. To obtain a reliable, high-power, 350 MHz RF window for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium program, RF windows prototypes from different vendors were tested. Experiments were performed to evaluate the RF windows by the vendors to select a window for the LEDA project. The Communications and Power, Inc. (CPI) windows were conditioned to 445 kW in roughly 15 hours. At 445 kW a window failed, and the cause of the failure will be presented. The English Electronic Valve, Inc. (EEV) windows were conditioned to 944 kW in 26 hours and then tested at 944 kW for 4 hours with no indication of problems.

Cummings, K.; Rees, D.; Roybal, W. [and others

1997-09-01T23:59:59.000Z

113

Normal Conducting CW RF Gun Design for High Performance Electron Beams  

SciTech Connect

High repetition rate (>1 MHz), high charge (1 nC), low emittance (1 micron) electron beams are an important enabling technology for next generation light sources. Advanced Energy Systems has begun the development of an advanced, continuous-wave, normal-conducting radio frequency electron gun. This gun is designed to minimize thermal stress, allowing fabrication in copper, while providing low emittance electron beams. Beam dynamics performance will be presented along with thermal and stress analysis of the gun cavity design.

Bluem, Hans; Schultheiss, Tom; Young, L.M.; Rimmer, Robert

2008-07-01T23:59:59.000Z

114

New High Power Test Facility for VHF Power Amplifiers at LANSCE  

SciTech Connect

A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

Lyles, John T. [Los Alamos National Laboratory; Archuletta, Steve [retired LANL; Baca, David M. [Los Alamos National Laboratory; Bratton, Ray E. [Los Alamos National Laboratory; Brennan, Nicholas W. [Los Alamos National Laboratory; Davis, Jerry L. [Los Alamos National Laboratory; Lopez, Luis J. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Rodriguez, Manuelita B. [Los Alamos National Laboratory; Sandoval, Gilbert M. Jr. [Los Alamos National Laboratory; Steck, Andy I. [Los Alamos National Laboratory; Summers, Richard D. [Los Alamos National Laboratory; Vigil, Danny J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

115

High power water load for microwave and millimeter-wave radio frequency sources  

DOE Patents (OSTI)

A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

1999-01-01T23:59:59.000Z

116

Feedthrough terminal for high-power cell  

DOE Patents (OSTI)

A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

Kaun, T.D.

1982-05-28T23:59:59.000Z

117

Pressurized H_{2} rf Cavities in Ionizing Beams and Magnetic Fields  

SciTech Connect

A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10?18 to 10?16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

Chung, M.; et al.

2013-10-01T23:59:59.000Z

118

Arc Detection and Interlock Module for the PEP II Low Level RF System  

SciTech Connect

A new arc detection and interlock generating module for the SLAC PEP-II low-level RF VXI-based system has been developed. The system is required to turn off the RF drive and high voltage power supply in the event of arcing in the cavity windows, klystron window, or circulator. Infrared photodiodes receive arc signals through radiation resistant optical fibers. Gain and bandwidth are selectable for each channel to allow tailoring response. The module also responds to interlock requests from other modules in the VXI system and communicates with the programmable logic controller (PLC) responsible for much of the low-level RF system's interlock functionality.

Tighe, R.; /SLAC

2011-08-31T23:59:59.000Z

119

RF Heating and Current Drive in Magnetically Confined Plasma: a Historical Perspective  

SciTech Connect

The history of high power RF waves injected into magnetically confined plasma for the purposes of heating to fusion relevant temperatures spans nearly five decades. The road to success demanded the development of the theory of wave propagation in high temperature plasma in complex magnetic field geometries, development of antenna structures and transmission lines capable of handling high RF powers, and the development of high power RF (microwave) sources. In the early days, progress was hindered by the lack of good confinement of energetic particles formed by high power RF wave-plasma interactions. For example, in the ion cyclotron resonance frequency regime (ICRF) ions with energies in the multi-100keV, or even MeV range may be formed due to the presence of efficient 'minority species' absorption. Electrons with similar energies can be formed upon the injection of RF waves in the electron cyclotron resonance (ECRH) or lower hybrid range of frequencies (LHRF) because of quasi-linear Landau (cyclotron) interactions between waves and particles. In this paper a summary of four decades of historical evolution of wave heating and current drive results will be given.

Porkolab, Miklos [Massachusetts Institute of Technology, Plasma Science and Fusion Center and Department of Physics, NW 16-288, 167 Albany Street, Cambridge, MA 02139 (United States)

2007-09-28T23:59:59.000Z

120

The JLab high power ERL light source  

SciTech Connect

A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made concerning the physics performance, design optimization, and operational limitations of such a first generation high power ERL light source.

G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

2005-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University  

SciTech Connect

Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

2014-01-29T23:59:59.000Z

122

High power radio frequency attenuation device  

DOE Patents (OSTI)

A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

1984-01-01T23:59:59.000Z

123

High-power-density spot cooling using bulk thermoelectrics  

E-Print Network (OSTI)

3D electrothermal model, the cooling power densities of themax , and increasing the cooling power densities 2–24 times.the advantages of high cooling power densities and is less

Zhang, Y; Shakouri, A; Zeng, G H

2004-01-01T23:59:59.000Z

124

Digitally Controlled High Availability Power Supply  

SciTech Connect

This paper will report on the test results of a prototype 1320 watt power module for a high availability power supply. The module will allow parallel operation for N+1 redundancy with hot swap capability. The two quadrant output of each module allows pairs of modules to provide a 4 quadrant (bipolar) operation. Each module employs a novel 4 FET buck regulator arranged in a bridge configuration. Each side of the bridge alternately conducts through a small saturable ferrite that limits the reverse current in the FET body diode during turn off. This allows hard switching of the FETs with low switching losses. The module is designed with over-rated components to provide high reliability and better then 97% efficiency at full load. The modules use a Microchip DSP for control, monitoring, and fault detection. The switching FETS are driven by PWM modules in the DSP at 60 KHz. A Dual CAN bus interface provides for low cost redundant control paths. The DSP will also provide current sharing between modules, synchronized switching, and soft start up for hot swapping. The input and output of each module have low resistance FETs to allow hot swapping and isolation of faulted units.

MacNair, David; /SLAC

2009-05-07T23:59:59.000Z

125

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning  

E-Print Network (OSTI)

In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

Song, Yu Jin

2005-11-01T23:59:59.000Z

126

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble wind power using a kite-based system, and the proposed structures *Corresponding author Mariam.AHMED@g2

Boyer, Edmond

127

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

develop the high energy high power cathode materials for LIBNew Cathode Material for Batteries of High- Energy Density.High Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

128

High-Temperature Solar Selective Coating Development for Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

129

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers (EERE)

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

130

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

131

Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun  

SciTech Connect

The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

McGuire, Gary; Martin, Allen; Noonan, John

2010-10-30T23:59:59.000Z

132

Abuse Testing of High Power Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

133

Advanced cathode material for high power applications.  

SciTech Connect

In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF{sub 6}/spinel cells indicated a very significant degradation of capacity with cycling at 55 C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C{sub 2}O{sub 4}){sub 2} ('LiBoB'). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 C and better abuse tolerance, as well as excellent power. A second system based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} layered material was also investigated and its performance was compared to commercial LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}. Cells based on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} showed lower power fade and better thermal safety than the LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li{sub 1.1}Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}) exhibited excellent power performance that exceeded the FreedomCAR requirements.

Amine, K.; Belharouak, I.; Kang, S. H.; Liu, J.; Vissers, D.; Henriksen, G.; Chemical Engineering

2005-01-01T23:59:59.000Z

134

Production of 1-m size uniform plasma by modified magnetron-typed RF discharge with a subsidiary electrode for resonance  

Science Journals Connector (OSTI)

A large-diameter uniform plasma of 1 m in size is produced using a modified magnetron-typed (MMT) RF plasma source at the frequency of 13.56 MHz. The construction and operation of the MMT RF plasma source are very simple and we can place two substrates simultaneously. To achieve an efficient production of high density plasma, a parallel resonance circuit is connected to one of the substrates which acts as a subsidiary RF electrode controlling the plasma parameters. In the case of the resonance the plasma density increases to approximately three times as much as that in case of non-resonance. The plasma density reaches?1×1011/cm3 in Ar at 1 mtorr when the RF input power is 2.8 kW. The MMT RF plasma source provides a plasma with uniformity within several percent over 1 m in diameter in front of the substrate in the low gas pressure regime.

Yuji Urano; Yunlong Li; Keiichi Kanno; Satoru Iizuka; Noriyoshi Sato

1998-01-01T23:59:59.000Z

135

High power linear pulsed beam annealer  

DOE Patents (OSTI)

A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

1983-01-01T23:59:59.000Z

136

FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR  

SciTech Connect

Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW ?s-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

2013-12-18T23:59:59.000Z

137

Leveraging the LEDA high voltage power supply systems for the LANSCE refurbishment project  

SciTech Connect

The LANSCE Refurbishment Project (LANSCE-R) will revitalize the LANSCE accelerator infrastructure. Much of the equipment has been in use for over 39 years and is approaching the end of its design lifetime. As obsolescence issues make like-for-like replacements increasingly more expensive, modern systems with lower costs become a reasonable alternative. As part of the LANSCE-R project, four of the seven HV power supplies for the 805 MHz RF klystrons will be replaced. The present and future requirements for these power supplies influence the selection of replacement options. Details of the HV power supply replacement requirements and the different replacement options will be discussed. One option is to use four 95 kV, 21 A DC power supplies originally installed nearby as part of the Low Energy Demonstration Accelerator (LEDA) project. Significant material and labor cost savings can be achieved by leaving these supplies installed where they are and building a HV transport system to bring high voltage power from the existing LEDA facility to the LANSCE facility. The different replacement options will be compared based on material and labor costs as offset by long-term energy savings.

Bradley Iii, Joseph Thomas [Los Alamos National Laboratory; Rees, Daniel E [Los Alamos National Laboratory; Roybal, William T [Los Alamos National Laboratory; Young, Karen A [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

138

Characteristics of Hydrogen Negative Ion Source with FET based RF System  

SciTech Connect

Characteristics of radio frequency (RF) plasma production were investigated using a FET inverter power supply as a RF generator. High density hydrogen plasma was obtained using an external coil wound a cylindrical ceramic tube (driver region) with RF frequency of lower than 0.5 MHz. When an axial magnetic field around 10 mT was applied to the driver region, an electron density increased drastically and attained to over 10{sup 19} m{sup -3} in the driver region. Effect of the axial magnetic field in driver and expansion region was examined. Lower gas pressure operation below 0.5 Pa was possible with higher RF frequency. H{sup -} density in the expansion region was measured by using laser photo-detachment system. It decreased as the axial magnetic field applied, which was caused by the increase of energetic electron from the driver.

Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N. [Graduate School of Engineering, Tohoku University, Aoba-yama, Sendai, 980-8579 (Japan); Tsumori, K.; Takeiri, Y. [National Institute for Fusion Science, Oroshi-cho, Toki, 509-5292 (Japan)

2011-09-26T23:59:59.000Z

139

PRODUCTION OF LARGE VOLUME CYLINDRICAL RF PLASMA USING CIRCULAR MAGNETIC LINE CUSP FIELD  

Science Journals Connector (OSTI)

A large volume cylindrical rf (radio frequency) plasma source using a circular magnetic line cusp field has been developed for various large scale plasma processings. In this type of plasma source, a capacitively coupled 13.56 \\{MHz\\} rf plasma is produced in a circular magnetic line cusp field. Two versions of the plasma source have been constructed and tasted. The first version has a pair of peripheral rf electrodes placed outside the ionization chamber and is suitable for preparing a large volume uniform plasma. This plasma source can attain uniformity within 107 cm?3 over a 30 cm diameter region. The other which is provided with parallel doughnut plate electrodes forming part of the chamber wall serves as a high current plasma source, where the electron density is proportional to the rf power and equal to 7 × 109 cm?3 for 500 W.

K. YAMAUCHI; M. SHIBAGAKI; A. KONO; K. TAKAHASHI; T. SHEBUYA; E. YABE; K. TAKAYAMA

1993-01-01T23:59:59.000Z

140

Low temperature grown polycrystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films on amorphous SiO{sub 2} substrates by rf magnetron sputtering  

SciTech Connect

The La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films have been prepared on amorphous SiO{sub 2} substrates by a rf magnetron sputtering technique under various oxygen flow rates and rf powers at a relatively low substrate temperature of 350 deg. C. The effects of oxygen flow rate and rf power on their physical properties were systematically investigated. X-ray diffraction results show that the growth orientation and crystallinity of the films were affected by rf power and oxygen flow rate. The electrical resistivity of the films was reduced with increasing oxygen flow rate and rf power due to enhanced {l_brace}100{r_brace} growth plane orientation and enlarged grain size of the films. In addition, a relatively high temperature coefficient of resistance value of -2.4% was obtained in the present investigation even with low deposition temperature.

Choi, Sun Gyu; Sivasankar Reddy, A.; Park, Hyung-Ho; Yang, Woo Seok; Ryu, Hojun; Yu, Byoung-Gon [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea, Republic of); Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS  

E-Print Network (OSTI)

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO2 METHANATION NOVEMBER 19th 2013 IRES. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis Gas-to-heat Gas-to-mobility Gas-to-power Excess Production = Consumption Distribution and storing

Paris-Sud XI, Université de

142

Cryogenic vacuumm RF feedthrough device  

DOE Patents (OSTI)

A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

Wu, Genfa (Yorktown, VA); Phillips, Harry Lawrence (Hayes, VA)

2008-12-30T23:59:59.000Z

143

Research on Control System of High Power DFIG Wind Power System  

Science Journals Connector (OSTI)

Compared with constant speed constant frequency wind turbine, variable speed constant frequency wind turbine has many advantages: higher efficiency of wind energy converting to electric power, absorbing gust energy, smoothly cutting into the network ... Keywords: wind power, DFIG, high power, LQR, variable speed constant frequency, constant power control

Li Jianlin; Xu Honghua

2008-12-01T23:59:59.000Z

144

A Parametric Study of Electron Extraction from a Low Frequency Inductively Coupled RF-Plasma Source  

E-Print Network (OSTI)

: The electron extraction from a low-frequency (2 MHz) inductively-coupled rf-plasma cathode is characterizedA Parametric Study of Electron Extraction from a Low Frequency Inductively Coupled RF-Plasma Source and rf-plasma source, rf-power and xenon gas flow. The results demonstrate that the electron supply from

145

The effects of electrode cleaning and conditioning on the performance of high-energy, pulsed-power devices  

SciTech Connect

High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur (> 1e7--3e7 V/m). Examples include magnetically-insulated-transmission-lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated desorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly in pulse length and energy, by the formation and expansion of plasmas formed primarily from electrode contaminants. In-situ conditioning techniques to modify and eliminate the contaminants through multiple high-voltage pulses, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

Cuneo, M.E.

1998-09-01T23:59:59.000Z

146

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

as cathode materials for Li-ion battery. Physica B-CondensedHigh Energy High Power Li-ion Battery Cathode Materials AHigh Energy High Power Li-ion Battery Cathode Materials A

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

147

2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES  

E-Print Network (OSTI)

2nd High-Power Targetry Workshop MATERIAL IRRADIATION STUDIES FOR HIGH-INTENSITY PROTON BEAM thing: 4 MW on what spot size? #12;2nd High-Power Targetry Workshop Is there hope? Several "smart" materials or new composites may be able to meet some of the desired requirements: - new graphite grades

McDonald, Kirk

148

Investigation of the delay time distribution of high power microwave surface flashover  

SciTech Connect

Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

Foster, J.; Krompholz, H.; Neuber, A. [Department of Electrical and Computer Engineering, Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, Texas 79409-3102 (United States)

2011-01-15T23:59:59.000Z

149

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in...

150

High power fiber delivery for laser ignition applications  

Science Journals Connector (OSTI)

The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit...

Yalin, Azer P

2013-01-01T23:59:59.000Z

151

Design and Control of High Power Density Motor Drive.  

E-Print Network (OSTI)

??This dissertation aims at developing techniques to achieve high power density in motor drives under the performance requirements for transportation system. Four main factors influencing… (more)

Jiang, Dong

2011-01-01T23:59:59.000Z

152

High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system  

SciTech Connect

High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Doane, J.; Olstad, R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Henderson, M. [ITER Organization, CS90 046, 13067 St. Paul lez Durance Cedex (France)

2011-06-15T23:59:59.000Z

153

Princeton Power Systems (TRL 5 6 Component)- Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

Princeton Power Systems (TRL 5 6 Component) - Marine High-Voltage Power Conditioning and Transmission System with Integrated Energy Storage

154

SPL RF Coupler Cooling Efficiency  

E-Print Network (OSTI)

Energy saving is an important challenge in accelerator design. In this framework, reduction of heat loads in a cryomodule is of fundamental importance due to the small thermodynamic efficiency of cooling at low temperatures. In particular, care must be taken during the design of its critical components (e.g. RF couplers, coldwarm transitions). In this framework, the main RF coupler of the Superconducting Proton Linac (SPL) cryomodule at CERN will not only be used for RF powering but also as the main mechanical support of the superconducting cavities. These two functions have to be accomplished while ensuring the lowest heat in-leak to the helium bath at 2 K. In the SPL design, the RF coupler outer conductor is composed of two walls and cooled by forced convection with helium gas at 4.5 K. Analytical, semi-analytical and numerical analyses are presented in order to defend the choice of gas cooling. Temperature profiles and thermal performance have been evaluated for different operating conditions; a sensitivit...

Bonomi, R; Montesinos, E; Parma, V; Vande Craen, A

2014-01-01T23:59:59.000Z

155

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1996-01-01T23:59:59.000Z

156

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

Shimer, D.W.; Lange, A.C.

1996-10-15T23:59:59.000Z

157

Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation  

SciTech Connect

Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

Corre, Y. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Lipa, M. [CEA IRFM, St. Paul-lez-Durance, France] [CEA IRFM, St. Paul-lez-Durance, France; Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain] [Fusion for Energy (F4E), Barcelona, Spain; Basiuk, V. [CEA IRFM, St. Paul-lez-Durance, France] [CEA IRFM, St. Paul-lez-Durance, France; Colas, L. [French Atomic Energy Commission (CEA)] [French Atomic Energy Commission (CEA); Courtois, X. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Dumont, R. J. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance] [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Ekedahl, A. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM)] [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Gardarein, J. L. [University of Aix, Marseille, France] [University of Aix, Marseille, France; Klepper, C Christopher [ORNL] [ORNL; Martin, V. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM)] [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Moncada, V. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Portafaix, C. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Rigollet, F. [University of Aix, Marseille, France] [University of Aix, Marseille, France; Tawizgant, R. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Travere, J. M. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France; Valliez, K. [CEA, St. Paul Les Durance, France] [CEA, St. Paul Les Durance, France

2011-01-01T23:59:59.000Z

158

High power semiconductor laser diode arrays  

Science Journals Connector (OSTI)

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes single?facet cw output in exces of 5 Watts has been demonstrated and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi?cw (150 usec pulse) output in excesss of 11 Watts and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Peter S. Cross

1986-01-01T23:59:59.000Z

159

High power semiconductor laser diode arrays  

SciTech Connect

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes, single-facet, cw output in exces of 5 Watts has been demonstrated, and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi-cw (150 usec pulse) output in excesss of 11 Watts, and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Cross, P.S.

1986-08-15T23:59:59.000Z

160

570 2008 IEEE International Solid-State Circuits Conference ISSCC 2008 / SESSION 31 / RF & mm-WAVE POWER AMPLIFIERS / 31.7  

E-Print Network (OSTI)

570 · 2008 IEEE International Solid-State Circuits Conference ISSCC 2008 / SESSION 31 / RF & mm supply voltages that is very useful for a low-battery-voltage solution. However, it is not compatible with the higher voltages presented by the Li-ion batteries which under charging situations can present supply

Hajimiri, Ali

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rf Feedback free electron laser  

DOE Patents (OSTI)

A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

162

PSI experience with High Power Target Design  

E-Print Network (OSTI)

% Power deposition: 30 / 20 kW/mA #12;Drive motor & permanent-magnet clutch Record of the drive torque for the rotation DC-motorPermanent-magnet clutchBall bearing vacuum air pressure #12;design of graphite wheel-E design p-beam Drive shaft BALL BEARINGS *) Silicon nitride balls Rings and cage silver coated Lifetime 2

McDonald, Kirk

163

High Power Lasers... Another approach to  

E-Print Network (OSTI)

as an integrated system Simultaneously addressing the science and engineering Direct Drive Pellet Designs Computer and technologies together, using the end goal of a practical power source as a guide Lasers DPPSL (LLNL) KrF (NRL) Target Fabrication Target Injection Chamber/Materials Final Optics Target Design (+NRL & LLE ) #12

164

Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications  

E-Print Network (OSTI)

Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from high

McHenry, Michael E.

165

Highly oriented polycrystalline Cu{sub 2}O film formation using RF magnetron sputtering deposition for solar cells  

SciTech Connect

Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu{sub 2}O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu{sub 2}O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm{sup 2}V{sup ?1}s{sup ?1} by the annealing at 600°C for 30s. Since this value was smaller than 47 cm{sup 2}V{sup ?1}s{sup ?1} of the film deposited under thermal equilibrium state using pulsed laser deposition at 600°C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu{sub 2}O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

Noda, S.; Shima, H.; Akinaga, H. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Central 2, Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

2014-02-20T23:59:59.000Z

166

Properties of Fr-like Th3+ from rf spectroscopy of high-L Th2+ Rydberg ions  

Science Journals Connector (OSTI)

Relative positions of twenty n=28 Rydberg levels of Th2+ with L=9, 10, 11, and 12 were determined with sub-MHz precision using the rf-RESIS (resonant excitation Stark ionization spectroscopy) technique. The pattern of binding energies was analyzed with the effective potential model, modified to account for significant nonadiabatic effects. The analysis yielded measurements of several properties of the Fr-like Th3+ core ion, including the quadrupole moment, Q=0.5931(14) a.u.; hexadecapole moment, ? = ?0.69(28) a.u.; g factor, gJ=1.24(48); scalar and tensor dipole polarizabilities, ?D,0=15.224(33) a.u. and ?D,2 = ?5.30(11) a.u.; scalar quadrupole polarizability, ?Q,0=60(15) a.u.; and the reduced dipole and octupole matrix elements connecting the ground 5f 2F5/2 level with the low-lying 6d 2D3/2 level, |?2F5/2||M[1]||2D3/2?|=1.436(2) a.u. and |?2F5/2||M[3]||2D3/2?|=3.3(1.1) a.u. The measured properties are compared with theoretical predictions.

Julie A. Keele; Chris S. Smith; S. R. Lundeen; C. W. Fehrenbach

2013-08-05T23:59:59.000Z

167

New Concepts For High Power ICRF Antennas  

SciTech Connect

This paper presents new concepts for Ion Cyclotron Heating antennas based on cascaded sequences of tuned radiating structures. It is shown that, in large arrays, such as the ones proposed for fusion reactors applications, these schemes offer, in principle, a number of desirable features, such as operation at power density significantly higher than currently adopted systems, at equal maximum voltage and array geometry, simple mechanical layout, suitable for water cooling, a compact impedance tuning system, passive decoupling of the array elements, single ended or balanced feed from two power sources. The antenna layout also allows the remote, real time measurement of the complex impedance of the radiating elements and the detection, location, and measurement of the complex admittance of arcs occurring anywhere in the structure, as discussed in [1].

Bosia, G. [Department of Physics University of Turin (Italy)

2011-12-23T23:59:59.000Z

168

High-Powered Lasers for Clean Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

extremely high temperatures and pressures. The controlled release of fusion, or thermonuclear energy, in the laboratory remains an alluring goal due to its potential as a...

169

Frequency-feedback tuning for single-cell cavity under rf heating  

SciTech Connect

A tuning system is described that is being used to match the source frequency of a high-power klystron on the resonant frequency of the prototype single-cell cavity for the 7-GeV Advance Photon Source (APS) storage ring. Typically a water-cooled piston tuner is required to adjust the reactive component of the cavity`s impedance to minimize reflected power back to the RF drive source. As the cavity watts expand due to RF heating, the resonant frequency decreases. Adjusting the source frequency to follow the cavity resonant frequency is a convenient method used to condition the cavity (for vacuum) at high power levels, in this case, 1 MV gap voltage at 100 kW power level. The tuning system consists of two coupling ports, a phase detector, a digitizing I/O system, and a DC coupled FM-modulated RF source. Proportional Integral Derivative (PID) loop parameters for the Experimental Physics and Industrial Control System (EPICS) software are calculated, and data is presented showing the damped response to peturbations on the loop. The timing system presented here does not need water-cooling, has no moving parts to wear out, and has an inherently faster response time. Its one limitation is the digitizing sampling rate. The only limitation in tuning range is the bandwidth of the RF source.

Stepp, J.D.; Bridges, J.F.

1993-08-01T23:59:59.000Z

170

Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field  

SciTech Connect

In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

2012-05-01T23:59:59.000Z

171

Modular high voltage power supply for chemical analysis  

DOE Patents (OSTI)

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2010-05-04T23:59:59.000Z

172

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network (OSTI)

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy

Simunic, Tajana

173

High frequency capacitively coupled RF plasma discharge effects on the order/disorder structure of PAN-based carbon fiber  

Science Journals Connector (OSTI)

High-resolution confocal Raman microscopy was used to investigate the effects of nitrogen plasma on unsized high strength (HS) PAN- ... . The fibers were treated by a high frequency (40.68 MHz) capacitively coupl...

Ümmugül E. Güngör; Sinan Bilikmen…

2014-05-01T23:59:59.000Z

174

Laser Cooled High-Power Fiber Amplifier  

E-Print Network (OSTI)

A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence of a small deviation in the value of the amplified signal on the temperature of the fiber with the fixed distribution of the Tm3+ions in the fiber cladding is investigated.

Nemova, Galina

2009-01-01T23:59:59.000Z

175

OPERATIONAL ASPECTS OF HIGH POWER ENERGY RECOVERY LINACS  

SciTech Connect

We have been operating a high-power energy-recovery linac (ERL) at Jefferson Lab for several years. In the process we have learned quite a bit about both technical and physics limitations in high power ERLs. Several groups are now considering new ERLs that greatly increase either the energy, the current or both. We will present some of our findings on what to consider when designing, building, and operating a high power ERL. Our remarks for this paper are limited to lattice design and setup, magnets, vacuum chamber design, diagnostics, and beam stability.

Stephen Benson; David Douglas; Pavel Evtushenko; Kevin Jordan; George Neil; Paul Powers

2006-08-21T23:59:59.000Z

176

TRANSFORMATIONAL LEADERSHIP AND ALTRUISM: ROLE OF POWER DISTANCE IN A HIGH POWER DISTANCE CULTURE  

E-Print Network (OSTI)

Using a sample of 105 manager-subordinate dyads from a high power distance culture, the effects of power distance and transformational leadership on follower altruism were studied. Findings show a significant positive relationship between power distance and transformational leadership and between transformational leadership and follower altruism. The dimensions on which cultures differ have been identified earlier (Hofstede, 1980). The objective of this study is to look at the effect of a dimension on other variables, in a culture that is high on that dimension. Our contention is that in cultures that score high on the power distance dimension of Hofstede (1980) model, if managers maintain a high power distance between themselves and their followers, their transformational leadership would be enhanced, and transformational leadership in turn will enhance altruistic behavior of followers. Merely knowing the dimensions on which cultures differ is not enough. That knowledge has to be used to predict how an alignment with that dimension would affect other variables.

Ankush Punj; Venkat R. Krishnan

177

Angle Instability Detection in Power Systems with High Wind Penetration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Angle Instability Detection in Power Angle Instability Detection in Power Systems with High Wind Penetration Using PMUs YC Zhang National Renewable Energy Laboratory Yingchen.zhang@nrel.gov 27/28 June 2013 Washington, DC DOE/OE Transmission Reliability Program Angle Instability Detection in Power Systems with High Wind Penetration Using Synchrophasor Measurements  Project Objective * Utilize synchrophasor measurements to estimate the equivalent inertia of a power source such as synchronous generators or wind turbine generators * Develop angle instability detection method for a system with high wind penetration using the synchrophasor measurements 2 3 Background Submitted to IEEE Journal of Emerging and Selected Topics in Power Electronics * In case of angular instability, some machines will have

178

GaN High Power Devices  

SciTech Connect

A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

2000-07-17T23:59:59.000Z

179

Booster Subharmonic RF Capture Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Booster Subharmonic RF Capture Design 1 Booster Subharmonic RF Capture Design Nicholas S. Sereno, 7102002 1.0 Motivation and Requirements Successful operation of the APS storage...

180

Lamp for generating high power ultraviolet radiation  

DOE Patents (OSTI)

The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

High-power LED Technology and Solid State Lighting  

Science Journals Connector (OSTI)

The rapid adoption of LEDs in general illumination is fueled by high-power phosphor-conversion and direct color blue and red LED technology. Over the last several years...

Goetz, Werner

183

Power conversion architecture for grid interface at high switching frequency  

E-Print Network (OSTI)

This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

Lim, Seungbum

184

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

185

The Quest for Ultimate Broadband High Power Microwaves  

E-Print Network (OSTI)

Paper describes High Power Microwave research of combining GW peak power to achieve MV/m and GV/m radiated fields in 1 to 500 GHz band. To achieve such fields multiple independently triggered broadband GW sources, supplying power to multiple spatially distributed broadband radiators/antennas are used. Single TW array is used as an ultimate microwave weapon in 1 to 5 GHz range while multiple TW arrays provide GV/m radiating field at plasma frequencies in 300 GHz range leading to fusion power.

Podgorski, Andrew S

2014-01-01T23:59:59.000Z

186

High power laser workover and completion tools and systems  

DOE Patents (OSTI)

Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

2014-10-28T23:59:59.000Z

187

Apparatus for advancing a wellbore using high power laser energy  

DOE Patents (OSTI)

Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-09-02T23:59:59.000Z

188

High power terahertz generation using 1550?nm plasmonic photomixers  

SciTech Connect

We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

Berry, Christopher W. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hashemi, Mohammad R.; Jarrahi, Mona [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095 (United States); Preu, Sascha [Department of Electrical Engineering and Information Technology, Technical University Darmstadt, D-64283 Darmstadt (Germany); Lu, Hong; Gossard, Arthur C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

2014-07-07T23:59:59.000Z

189

Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques  

E-Print Network (OSTI)

. gm,CS and Vov,bias scaling at RCG = 200, RCS = 200/n, and ? = 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 35 NF vs. AV,CS at ? = 43 and Vov,bias Vov,CG = 1. . . . . . . . . . . . . . . . . . 59 36 Balun...-LNA. . . . . . . . . . . . . . . . . . . . 64 39 Simulated S11 and S21. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 40 Simulated power gain (S21) and voltage gain (AV ) of Balun-LNA core. 65 41 Simulated NF and NF of balun-LNA core versus frequency. . . . . . 66 42 Simulated IIP...

Kim, Ju Sung

2012-02-14T23:59:59.000Z

190

High average power scaleable thin-disk laser  

DOE Patents (OSTI)

Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

2002-01-01T23:59:59.000Z

191

Using a Balun Transformer Combiner for High Power Microwave Experiments  

SciTech Connect

A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 10 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Omega balance loads. With this new design, standard 50 Omega dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Omega-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Omega to 75 Omega. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway.

Kaufman, Michael C [ORNL; Pesavento, Philip V [ORNL

2011-01-01T23:59:59.000Z

192

High-Capacity Hybrid Active Power Filter for the Power Substation  

Science Journals Connector (OSTI)

Non-linear loads, such as diode, thyristor converters and arc furnaces are typical sources of harmonic currents. A capacitor clamped voltage source inverter for high-capacity hybrid active power filter (HHAPF)...

Fen Gong; Xiangyang Xia; Shiwu Luo…

2012-01-01T23:59:59.000Z

193

Rf capacitively-coupled electrodeless light source  

DOE Patents (OSTI)

An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA); Fugitt, Jock A. (Livingston, TX)

2000-01-01T23:59:59.000Z

194

RF heating systems evolution for the WEST project  

SciTech Connect

Tore Supra is dedicated to long pulse operation at high power, with a record in injected energy of 1 GJ (2.8 MW × 380 s) and an achieved capability of 12 MW injected power delivered by 3 RF systems: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH). The new WEST project (W [tungsten] Environment in Steady-state Tokamak) aims at fitting Tore Supra with an actively cooled tungsten coated wall and a bulk tungsten divertor. This new device will offer to ITER a test bed for validating the relevant technologies for actively cooled metallic components, with D-shaped H-mode plasmas. For WEST operation, different scenarii able to reproduce ITER relevant conditions in terms of steady state heat loads have been identified, ranging from a high RF power scenario (15 MW, 30 s) to a high fluence scenario (10 MW, 1000 s). This paper will focus on the evolution of the RF systems required for WEST. For the ICRH system, the main issues are its ELM resilience and its CW compatibility, three new actively cooled antennas are being designed, with the aim of reducing their sensitivity to the load variations induced by ELMs. The LH system has been recently upgraded with new klystrons and the PAM antenna, the possible reshaping of the antenna mouths is presently studied for matching with the magnetic field line in the WEST configuration. For the ECRH system, the device for the poloidal movement of the mirrors of the antenna is being changed for higher accuracy and speed.

Magne, R.; Achard, J.; Armitano, A.; Argouarch, A.; Berger-By, G.; Bernard, J. M.; Bouquey, F.; Charabot, N.; Colas, L.; Corbel, E.; Delpech, L.; Ekedahl, A.; Goniche, M.; Guilhem, D.; Hillairet, J.; Jacquot, J.; Joffrin, E.; Litaudon, X.; Lombard, G.; Mollard, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); and others

2014-02-12T23:59:59.000Z

195

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

Shimer, D.W.; Lange, A.C.

1997-03-11T23:59:59.000Z

196

E-beam high voltage switching power supply  

DOE Patents (OSTI)

A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1997-01-01T23:59:59.000Z

197

RLOPF (risk-limiting optimal power flow) for systems with high penetration of wind power  

Science Journals Connector (OSTI)

Abstract In this paper, we formulate a RLOPF (risk-limiting optimal power flow) problem for systems with high penetration of wind power to address the issue of possibly violating the security constraints in power systems due to the volatility of wind power generations. To cope with the computational complexity of the proposed RLOPF problem, we propose a computationally efficient RLOPF algorithm assisted by the off-line constructed probability distribution models for bus voltage magnitudes and transmission line real power flows. We apply the proposed RLOPF algorithm to the RLOPF problems on a 26-bus power system for two cases of significantly different re-dispatching percentage share for non-renewable power generations to compensate the volatility of wind power generations. The test results reveal that the performance of all solutions obtained by the proposed RLOPF algorithm of various step-sizes in both cases meet the required probability 0.95 on satisfying the security constraints in the presence of variable wind power generations, and the CPU time consumption are mostly within 1 s. We also test the performance of conventional OPF (optimal power flow) solution on both cases, and the resulted probability are all smaller than 0.783. These test results demonstrate the merit and the computational efficiency of the proposed RLOPF algorithm.

Shin-Yeu Lin; Ai-Chih Lin

2014-01-01T23:59:59.000Z

198

Improving Switching Performance of Power MOSFETs Used in High Rep-Rate, Short Pulse, High-Power Pulsers  

SciTech Connect

As their switching and power handling characteristics improve, solid-state devices are finding new applications in pulsed power. This is particularly true of applications that require fast trains of short duration pulses. High voltage (600-1200V) MOSFETs are especially well suited for use in these systems, as they can switch at significant peak power levels and are easily gated on and off very quickly. MOSFET operation at the shortest pulse durations is not constrained by the intrinsic capabilities of the MOSFET, but rather by the capabilities of the gate drive circuit and the system physical layout. This project sought to improve MOSFET operation in a pulsed power context by addressing these issues. The primary goal of this project is to improve the switching performance of power MOSFETs for use in high rep-rate, short pulse, high-power applications by improving the design of the gate drive circuits and the circuit layouts used in these systems. This requires evaluation of new commercial gate drive circuits and upgrading the designs of LLNL-developed circuits. In addition, these circuits must be tested with the fastest available high-voltage power MOSFETs.

Cook, E G

2006-09-19T23:59:59.000Z

199

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

200

High-Power Directional Emission from Microlasers with Chaotic Resonators  

E-Print Network (OSTI)

High-power and highly directional semiconductor cylinder-lasers based on an optical resonator with deformed cross section are reported. In the favorable directions of the far-field, a power increase of up to three orders of magnitude over the conventional circularly symmetric lasers was obtained. A "bow-tie"-shaped resonance is responsible for the improved performance of the lasers in the higher range of deformations, in contrast to "whispering-gallery"-type modes of circular and weakly deformed lasers. This resonator design, although demonstrated here in midinfrared quantum-cascade lasers, should be applicable to any laser based on semiconductors or other high-refractive index materials.

Claire Gmachl; Federico Capasso; E. E. Narimanov; Jens U. Noeckel; A. Douglas Stone; Jerome Faist; Deborah L. Sivco; Alfred Y. Cho

1998-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

202

Control of plasma uniformity in a capacitive discharge using two very high frequency power sources  

SciTech Connect

Very high frequency (VHF) capacitively coupled plasma (CCP) discharges are being employed for dielectric etching due to VHF's various benefits including low plasma potential, high electron density, and controllable dissociation. If the plasma is generated using multiple VHF sources, one can expect that the interaction between the sources can be important in determining the plasma characteristics. The effects of VHF mixing on plasma characteristics, especially its spatial profile, are investigated using both computational modeling and diagnostic experiments. The two-dimensional plasma model includes the full set of Maxwell equations in their potential formulation. The plasma simulation results show that electron density peaks at the center of the chamber at 180 MHz due to the standing electromagnetic wave. Electrostatic effects at the electrode edges tend to get stronger at lower VHFs such as 60 MHz. When the two rf sources are used simultaneously and power at 60 MHz is gradually increased, the ion flux becomes uniform and then transitions to peak at electrode edge. These results are corroborated by Langmuir probe measurements of ion saturation current. VHF mixing is therefore an effective method for dynamically controlling plasma uniformity. The plasma is stronger and more confined when the 60 MHz source is connected to the smaller bottom electrode compared to the top electrode.

Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik; Collins, Ken [Applied Materials, Inc., 974 E. Arques Ave., M/S 81517, Sunnyvale, California 94085 (United States)

2009-08-01T23:59:59.000Z

203

RF Interconnection and Switching  

Science Journals Connector (OSTI)

The components that connect, interface, transfer, and filter RF energy within a given system—or between systems—are critical elements in the operation of vacuum tube devices. Such hardware, usually passive, de...

Jerry C. Whitaker

1994-01-01T23:59:59.000Z

204

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

205

RF-driven advanced modes of ITER operation  

SciTech Connect

The impact of the Radio Frequency heating and current drive systems on the ITER advanced scenarios is analyzed by means of the CRONOS suite of codes for integrated tokamak modelling. As a first step, the code is applied to analyze a high power advanced scenario discharge of JET in order to validate both the heating and current drive modules and the overall simulation procedure. Then, ITER advanced scenarios, based on Radio Frequency systems, are studied on the basis of previous results. These simulations show that both hybrid and steady-state scenarios could be possible within the ITER specifications, using RF heating and current drive only.

Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Giruzzi, G.; Hawkes, N.; Imbeaux, F.; Litaudon, X.; Mailloux, J.; Peysson, Y.; Schneider, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Brix, M. [UKAEA/Euratom Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

2009-11-26T23:59:59.000Z

206

Frequency and amplitude control for an experimental linac rf drive  

E-Print Network (OSTI)

, India Chair of Advisory Committee: Dr. S. P. Bhattacharyya, The Texas Accelerator Center (TAC) experimental linear accelerator uses a radio- frequency quadrupole (RFQ) to accelerate a 10 mA beam of H ions to 500 keV. It is to be used as an injector... to form a high-energy input beam for large circular accelerators. The pulsed beam will require 100 kW peak rf power at 473 MHz. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, the frequency of the source...

Atre, Mahesh Purushottam

1992-01-01T23:59:59.000Z

207

System studies of rf current drive for MST  

SciTech Connect

Two rf schemes are being studied on the MST reversed field pinch for their potential in current profile control experiments. MHD modeling has shown that a substantial externally-driven off axis parallel current can improve stability of the dominant core tearing modes. A radially localized axisymmetric population of fast electrons has been observed by SXR emission during LH injection (100kW at 800MHz), and is consistent with CQL3D modeling which predicts a small driven current. Computational work suggests that doubling the input power will statistically improve the LH-induced SXR signal to background ratio, and that about 2MW of injected power (an order of magnitude increase) will drive enough current for stabilization of tearing modes. Additionally, a 1 MW 5.5 GHz electron Bernstein wave (EBW) experiment is under construction, which utilizes a very simple and compact antenna compatible with the demands of the RFP. EBW allows access to electron cyclotron heating and current drive in the overdense plasma. Coupling of the external electromagnetic wave to the EBW has been demonstrated, and initial tests at {approx}100kW power have produced a small, localized xray flux consistent with rf heating and high diffusivity of fast electrons. Computational work is currently underway to answer the very important questions of how much power is required, and what level of electron diffusivity is tolerable, to generate a consequential amount of EBW current.

Anderson, J. K.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Hendries, E. R.; Seltzman, A. H.; Thomas, M. A. [Department of Physics, University of Wisconsin, Madison, WI (United States); Diem, S. [Oak Ridge National Laboratory, Oak Ridge TN (United States); Harvey, R. W. [CompX, Del Mar, CA (United States); Kaufman, M. C. [Department of Physics, University of Wisconsin, Madison, WI (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2011-12-23T23:59:59.000Z

208

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

209

Thermal and Power Challenges in High Performance Computing Systems  

Science Journals Connector (OSTI)

This paper provides an overview of the thermal and power challenges in emerging high performance computing platforms. The advent of new sophisticated applications in highly diverse areas such as health, education, finance, entertainment, etc. is driving the platform and device requirements for future systems. The key ingredients of future platforms are vertically integrated (3D) die-stacked devices which provide the required performance characteristics with the associated form factor advantages. Two of the major challenges to the design of through silicon via (TSV) based 3D stacked technologies are (i) effective thermal management and (ii) efficient power delivery mechanisms. Some of the key challenges that are articulated in this paper include hot-spot superposition and intensification in a 3D stack, design/optimization of thermal through silicon vias (TTSVs), non-uniform power loading of multi-die stacks, efficient on-chip power delivery, minimization of electrical hotspots etc.

Venkat Natarajan; Anand Deshpande; Sudarshan Solanki; Arun Chandrasekhar

2009-01-01T23:59:59.000Z

210

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

211

Elimination of Radio-Frequency Noise by Identifying and Diverting Large RF Ground Currents  

SciTech Connect

The problem of electromagnetic interference in scientific instruments is compounded for high-power plasma experiments by the large currents and voltages as well as by the broad bandwidths of the instruments. Ground loops are known to allow stray magnetic fields to drive large ground currents that can induce spurious signals and damage electronics. Furthermore, even when a ground loop is broken, capacitive coupling can still permit the flow of radio-frequency current, resulting in high-frequency spurious signals that can overwhelm the desired signal. We present the effects of RF ground loops on the output of vacuum photodiodes used in the Caltech Solar Loop Experiment and demonstrate the elimination of the spurious signals by diverting the ground currents away from the most vulnerable point of the signal line. Techniques for identifying the RF ground loops are also discussed. These techniques should be valuable in many high-power systems where interference from spurious coupling is an issue.

Perkins, R. J.; Bellan, P. M. [Applied Physics, California Institute of Technology (United States)

2011-12-23T23:59:59.000Z

212

Economic evaluation of demand response in power systems with high wind power penetration  

Science Journals Connector (OSTI)

The penetration of wind power generation is expected to increase in power systems dramatically. The unpredictable nature of the wind generation poses an obstacle to high penetration of wind energy in the electric power systems. Demand response (DR) may be considered as an efficient approach to cope with the energy unbalances caused by the wind power intermittency. Fair mechanism for pricing of the DR may increase the demand-side participation which consequently facilitates wind power integration in the power systems. This paper focuses on the economic evaluation of the DR according to its potential for mitigating the wind power forecast error in the power system operation. Demand increase similar to the demand curtailment is considered as a DR resource and evaluated in this paper. For this purpose first an insight is provided into the power system operation under the high wind power penetration with the aim of extracting the DR benefits. Based on the DR benefits a mathematical model is developed to find the maximum monetary incentive for the DR that the system operator is willing to pay to the DR providers. In the proposed model DR's potential in reducing the cost of supplying load as well as its capability in reducing the cost of system reserve start up and shut down of units load shedding and wind power spillage are considered. The results of the proposed evaluation method provide valuable information for both the system operator and demand response providers. The proposed method is implemented on an example and a realistic case study and discussions on results are presented.

2014-01-01T23:59:59.000Z

213

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

214

High Energy Density Sate, Material and Device with High Power Lasers  

Science Journals Connector (OSTI)

High energy density states with photon pressures of more than Tera bar and thermal pressure of more than Mega bar, is now available with high power lasers. Here I present creation of...

Kodama, R

215

Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser  

E-Print Network (OSTI)

This thesis presents the results obtained from crographics. generation of high repetition rate, high peak power output pulses using an erbium-doped fiber amplifier (EDFA). Two configurations were employed. The first setup used a linear cavity...

Hinson, Brett Darren

2012-06-07T23:59:59.000Z

216

On the scaling of rf and dc self-bias voltages with pressure in electronegative capacitively coupled plasmas  

SciTech Connect

Higher gas densities and lower diffusion losses at higher operating pressures typically lead to increased charged species densities (and hence flux) for a constant power deposition in capacitively coupled plasmas (CCP). As a result, one would expect that the bias radio-frequency (rf) voltage required to deposit a given power in a CCP reactor decreases with increasing operating pressure. These observations may not hold true in multiple frequency CCPs, commonly used for dielectric etching in microelectronics fabrication, due to nonlinear interactions between the rf sources. Wafer-based measurements of the rf and self-generated direct current (dc) bias voltages in a dual-frequency capacitively coupled electronegative plasma were made, which indicate that the rf and dc voltages vary nonmonotonically with pressure. These experimental results are presented in this paper and a computational plasma model is used to explain the experimental observations for varying 60 MHz and 13 MHz powers in the Ar/CF{sub 4}/CHF{sub 3} plasma over a pressure range of 25 to 400 mTorr. The authors found that while the ion density increases with pressure, the increase is most dominant near the electrode with the high frequency source (60 MHz). The rf and dc bias voltages are ultimately influenced by both charged species density magnitudes and spatial profiles.

Agarwal, Ankur; Dorf, Leonid; Rauf, Shahid; Collins, Ken [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States)

2012-03-15T23:59:59.000Z

217

Air Cooling for High Temperature Power Electronics (Presentation)  

SciTech Connect

Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

Waye, S.; Musselman, M.; King, C.

2014-09-01T23:59:59.000Z

218

Exploring Total Power Saving from High Temperature of Server Operations  

E-Print Network (OSTI)

Air Temperature Total system power (%) Cooling power (%)Total system power (%) Cooling power (%) JunctionTo simulate the cooling power consumption at different

Lai, Liangzhen; Chang, Chia-Hao; Gupta, Puneet

2014-01-01T23:59:59.000Z

219

High-Power Electrochemical Storage Devices and Plug-in Hybrid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV) 3 CPI-LG Chem Mixed Mn-Oxide Cathodes (High Power) 4 JCS (Johnson Controls - Saft) Mixed Metal-Oxide Cathodes (High Power) 5 EnerDel Li-Titanate Anodes (High Power) PHEV...

220

Photonic microwave generation with high-power photodiodes  

E-Print Network (OSTI)

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields  

SciTech Connect

An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

Klepper, C Christopher [ORNL; Martin, Elijah H [ORNL; Isler, Ralph C [ORNL; Colas, L. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Goniche, M. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Hillairet, J. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Panayotis, Stephanie [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Jacquot, Jonathan [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Lotte, Ph. [French Atomic Energy Commission (CEA), Cadarache, St. Paul lez Durance; Colledani, G. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Biewer, Theodore M [ORNL; Caughman, J. B. O. [Oak Ridge National Laboratory (ORNL); Ekedahl, A. [French Atomic Energy Commission (CEA), Institute for Magnetic Fusion Research (IRFM); Green, David L [ORNL; Harris, Jeffrey H [ORNL; Hillis, Donald Lee [ORNL; Shannon, Prof. Steven [North Carolina State University; Litaudon, X [French Atomic Energy Commission (CEA)

2014-01-01T23:59:59.000Z

222

RF Sputtering for preparing substantially pure amorphous silicon monohydride  

DOE Patents (OSTI)

A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

Jeffrey, Frank R. (Ames, IA); Shanks, Howard R. (Ames, IA)

1982-10-12T23:59:59.000Z

223

The Role of Electrode Contamination and the Effects of Cleaning and Conditioning on the Performance of High-Energy, Pulsed-Power Devices  

SciTech Connect

High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur. Examples include magnetically-insulated-transmission lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated resorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly impulse length and energy, by the formation and expansion of neutral and plasma layers formed, primarily from electrode contaminants. In-situ conditioning tech&ques to modify and eliminate the contaminants through multiple high-voltage pukes, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

Cuneo, M.E.

1998-11-10T23:59:59.000Z

224

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source  

E-Print Network (OSTI)

Project of Rotating Carbon High-Power Neutron Target. Research of Graphite Properties for Production of High Intensity Neutron Source

Gubin, K V; Bak, P A; Kot, N K; Logatchev, P V

2001-01-01T23:59:59.000Z

225

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

226

Designing high power targets with computational fluid dynamics (CFD)  

SciTech Connect

High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 ?A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 ?A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)

2013-11-07T23:59:59.000Z

227

An adaptive crystal bender for high power synchrotron radiation beams  

SciTech Connect

Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described.

Berman, L.E.; Hastings, J.B.

1992-01-01T23:59:59.000Z

228

An adaptive crystal bender for high power synchrotron radiation beams  

SciTech Connect

Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described.

Berman, L.E.; Hastings, J.B.

1992-10-01T23:59:59.000Z

229

Living and Working Safely Around High-Voltage Power Lines.  

SciTech Connect

High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

United States. Bonneville Power Administration.

2001-06-01T23:59:59.000Z

230

High Resolution PV Power Modeling for Distribution Circuit Analysis  

SciTech Connect

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

231

Booster Synchrotron RF System Upgrade for SPEAR3  

SciTech Connect

Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RF systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.

Park, Sanghyun; /SLAC; Corbett, Jeff; /SLAC

2012-07-06T23:59:59.000Z

232

E-Print Network 3.0 - aps linac rf Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the gradient... - cient use of the linacs and the RF power, at the cost ... Source: Berg, J. Scott - Department of Physics, Brookhaven National Laboratory Collection: Physics 4...

233

Coal-fired high performance power generating system. Final report  

SciTech Connect

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

234

Electron beam diagnostic for profiling high power beams  

DOE Patents (OSTI)

A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

2008-03-25T23:59:59.000Z

235

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

236

Diversion assumptions for high-powered research reactors  

SciTech Connect

This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

Binford, F.T.

1984-01-01T23:59:59.000Z

237

Fast neutron thermionic-converters for high-power space nuclear power systems. [Na; K  

SciTech Connect

The results of tests with a thermionic reactor-converter utilizing fast neutrons and a high temperature cooling system are described. The reactor can be useful for a wide range of applications with a specific mass of about 20 kg/kW and power level of 2500 kW. (AIP)

Pupko, V.Y.; Vizgalov, A.V.; Raskach, F.P.; Shestjorkin, A.G.; Almambetov, A.K. (Obninsk, Kaluga region, USSR (SU)); Bystrov, P.I.; Yuditsky, V.D.; Sobolev, Y.A.; Sinyavsky, V.V.; Bakanov, Y.A.; Lipovy, N.M. (SIA Energiya'', Kaliningrad, Moscow (USSR)); Gryaznov, G.M.; Serbin, V.I.; Trykhanov, Y.L. (SIA Krasnaya Zvezda'', Moscow (USSR))

1991-01-05T23:59:59.000Z

238

ILC RF System R and D  

SciTech Connect

The Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system proposed for the ILC linacs. Current activities include the long-term evaluation of a 120 kV Marx Modulator driving a 10 MW Multi-Beam Klystron, design of a second-generation Marx Modulator, testing of a sheet-beam gun and beam transport system for a klystron, construction of an rf distribution system with remotely-adjustable power tapoffs, and development of a system to combine the power from many klystrons in low-loss circular waveguide where it would be tapped-off periodically to power groups of cavities. This paper surveys progress during the past few years.

Adolphsen, Chris; /SLAC

2012-07-03T23:59:59.000Z

239

Vision 21 applications of high performance power systems (HIPPS)  

SciTech Connect

The DOE/FETC-sponsored High Performance Power Systems (HIPPS) program headed by United Technologies Research Center has defined an indirectly-fired, coal-based combined-cycle power system design that achieves over 47% efficiency (HHV) using current power system technology. Additionally, advanced technology HIPPS using Humid Air Turbine (HAT) cycle gas turbines have been projected to have efficiencies approaching 55% (HHV). The HIPPS uses a High Temperature Advanced Furnace (HITAF) to preheat combustion turbine air to 925 C--1,150 C in a radiator section located in the furnace slagging zone and in a convection section located in the downstream portion. Additional heat for the turbine, if required in the cycle, is added by special low-NOx gas-fired combustors. A HITAF design has been successfully tested at the desired temperatures at the Energy and Environmental Research Center, Grand Forks, ND. The HIPPS concept with its advanced metallic air heater is a valuable technology candidate for Vision 21, the DOE's evolving plan to utilize coal and other fossil fuels in energy complexes producing power, chemicals, process heat and other byproducts. The HIPPS could be combined with other high efficiency components such as high temperature fuel cells, e.g., the solid oxide fuel cell (SOFC), resulting in hybrid power systems having overall electrical efficiencies greater than 60% (HHV) with significant energy input from coal or other solid fuel. These power plants would have near zero emissions with projected power costs below current coal-fired systems. Emissions of CO{sub 2}, an important greenhouse gas, will be drastically reduced by the higher efficiencies of HIPPS-based cycles. A very important early introduction application could result from the fact that HIPPS can be an attractive repowering technology. This would allow Vision 21 based technology to be applied to those plants that seek to continue using coal and other alternative solid fuels to capture the economic benefits of their low energy costs. Here, HIPPS adds high efficiency; increased capacity; load following and dispatching flexibility; as well as important environmental benefits to sites having existing fuel and transmission infrastructure.

Robson, F.L.; Ruby, J.D.; Seery, D.J.

2000-07-01T23:59:59.000Z

240

50 MW X-BAND RF SYSTEM FOR A PHOTOINJECTOR TEST STATION AT LLNL  

SciTech Connect

In support of X-band photoinjector development efforts at LLNL, a 50 MW test station is being constructed to investigate structure and photocathode optimization for future upgrades. A SLAC XL-4 klystron capable of generating 50 MW, 1.5 microsecond pulses will be the high power RF source for the system. Timing of the laser pulse on the photocathode with the applied RF field places very stringent requirements on phase jitter and drift. To achieve these requirements, the klystron will be powered by a state of the art, solid-state, high voltage modulator. The 50 MW will be divided between the photoinjector and a traveling wave accelerator section. A high power phase shifter is located between the photoinjector and accelerator section to adjust the phasing of the electron bunches with respect to the accelerating field. A variable attenuator is included on the input of the photoinjector. The distribution system including the various x-band components is being designed and constructed. In this paper, we will present the design, layout, and status of the RF system.

Marsh, R A; Anderson, S G; Barty, C J; Beer, G K; Cross, R R; Ebbers, C A; Gibson, D J; Hartemann, F V; Houck, T L; Adolphsen, C; Candel, A; Chu, T S; Jongewaard, E N; Li, Z; Raubenheimer, T; Tantawi, S G; Vlieks, A; Wang, F; Wang, J W; Zhou, F; Deis, G A

2011-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An overview of the Low Energy Demonstration Accelerator (LEDA) project RF (radio frequency) systems  

SciTech Connect

Successful operation of the Accelerator Production of Tritium (APT) plant will require that accelerator downtime be kept to an absolute minimum. Over 230 separate 1 MW RF systems are expected to be used in the APT plant, making the efficiency and reliability of these systems two of the most critical factors in plant operation. The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for APT. The design of the RF systems used in LEDA has been driven by the need for high efficiency and extremely high system reliability. The authors present details of the high voltage power supply and transmitter systems as well as detailed descriptions of the waveguide layout between the klystrons and the accelerating cavities. The first stage of LEDA operations will use four 1.2 MW klystrons to test the RFQ and supply power to one test stand. The RFQ will serve as a power combiner for multiple RF systems. They present some of the unique challenges expected in the use of this concept.

Bradley, J. III; Cummings, K.; Lynch, M.; Rees, D.; Roybal, W.; Tallerico, P. [Los Alamos National Lab., NM (United States); Toole, L. [Savannah River Site, SC (United States)

1997-05-12T23:59:59.000Z

242

Can RF help CMOS processors?  

E-Print Network (OSTI)

FOR C OMMUNICATIONS Can RF Help CMOS Processors? Eran SocherRF communication can help increase the wired communicationaluminum and low-K dielectrics help reduce wire delay but do

Socher, Eran; Chang, Mau-Chung Frank

2007-01-01T23:59:59.000Z

243

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network (OSTI)

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

244

SLAC Next-Generation High Availability Power Supply  

SciTech Connect

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

245

High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary...  

NLE Websites -- All DOE Office Websites (Extended Search)

small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m?m50% > 3,000,000. Higher spatial resolution...

246

RF Design of the LCLS Gun  

SciTech Connect

Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell, and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.

Limborg-Deprey, C

2010-12-13T23:59:59.000Z

247

Room-temperature high radio-frequency source power effects on silicon nitride films deposited by using a plasma-enhanced chemical vapor deposition  

Science Journals Connector (OSTI)

Silicon nitride films were deposited at room temperature using a plasma-enhanced chemical vapor deposition system. In this study, the effects of radio frequency (RF) source power ranging from 200 W to ... charact...

Byungwhan Kim; Suyeon Kim

2008-10-01T23:59:59.000Z

248

X-Band RF Gun Development  

SciTech Connect

In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; /SLAC; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

2012-06-22T23:59:59.000Z

249

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

250

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in electron storage rings when femtosecond lasers are used to carve out ultrafast x-ray pulses by femtoslicing (see "Tailored Terahertz Pulses from a Laser-Modulated Electron Beam"). In their most recent work, the researchers reported the first observation of seeding an instability of the electron beam by the laser, and they presented a physical model that shows how this occurs under the proper conditions. Such a mechanism makes it possible to control the instability onset and to exploit its gain for the generation of pulses of terahertz CSR of unprecedented power. Terahertz radiation with a wavelength from about 1 cm to about 100 microns between the microwave and the infrared would provide access to a large number of fundamental phenomena. To mention only some of them: excited electrons orbit, small molecules rotate, proteins vibrate, superconducting energy gaps resonate, and gaseous and solid-state plasmas oscillate at terahertz frequencies. But generating terahertz radiation is ordinarily a challenging task for any kind of source, including storage-ring-based synchrotron light sources. The new findings by the ALS group could represent a significant step toward satisfying the need for powerful terahertz sources.

251

BEAM-BASED ALIGNMENT OF TTF RF-GUN USING V-CODE* W. Beinhauer, R. Cee, W. Koch, M. Krassilnikov  

E-Print Network (OSTI)

BEAM-BASED ALIGNMENT OF TTF RF-GUN USING V-CODE* W. Beinhauer, R. Cee, W. Koch, M. Krassilnikov , A), located after the RF- gun cavity, showed non-zero readings. Moreover the readings depended on RF-power, RF-phase and primary and secondary solenoid currents. This effect could be ex- plained by misalignments of the gun

252

Understanding High-Power Fiber-Optic Laser Beam Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Power Fiber-Optic Laser Beam Delivery High-Power Fiber-Optic Laser Beam Delivery The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W- 31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Boyd V. Hunter and Keng H. Leong Argonne National Laboratory Technology Development Division Laser Applications Laboratory 9700 South Cass Avenue, Building 207 Argonne, Illinois 60439 Carl B. Miller, James F. Golden, Robert D. Glesias and Patrick J. Laverty U. S. Laser Corporation 825 Windham Court North P. O. Box 609 Wyckoff, New Jersey 07481 March 25, 1996 Manuscript to be submitted to Journal of Laser Applications

253

High average power magnetic modulator for metal vapor lasers  

DOE Patents (OSTI)

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

254

Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF2  

Science Journals Connector (OSTI)

We present a high-power diode-pumped Yb:CaF2 laser operating at cryogenic temperature (77K). A laser output power of 97W at 1034nm was extracted for a pump power of 245W....

Ricaud, S; Papadopoulos, D N; Camy, P; Doualan, J L; Moncorgé, R; Courjaud, A; Mottay, E; Georges, P; Druon, F

2010-01-01T23:59:59.000Z

255

BN/Graphene/BN Transistors for RF Applications  

E-Print Network (OSTI)

In this letter, we demonstrate the first BN/graphene/BN field-effect transistor for RF applications. This device structure can preserve the high mobility and the high carrier velocity of graphene, even when it is sandwiched ...

Taychatanapat, Thiti

256

High power density AEM combustion for TPV applications  

Science Journals Connector (OSTI)

Various emitter designs and compositions are investigated to improve the performance and reduce the cost of thermophotovoltaic (TPV) devices. In order to maximize the overall system efficiency of combustion-powered TPV devices it is desirable to design an emitter system that will provide a high and uniform volumetric heat release producing a high intensity and uniform in-band photons flux thus enabling reduced size and weight of TPV generators. Quantum Group Inc. (QGI) has developed a high power density radiant burner/emitter technology which we have called Advanced Emissive Matrix (AEM). The AEM system is applicable to broad-band and narrow-band TPV approaches. Several AEM combustors-both broad-band and narrow-band-have been built tested and have consistently demonstrated extremely high power density (up to 30 W/cm3). Radiant emissions greater than 27 W/cm2 were measured from an AEM combustor fired with natural gas at 15% excess air. This level of radiant heat flux enables the utilization of concentrator-type PV cells which is a method of reducing cost size and weight of TPV devices. Additionally it was found that the AEM structure could be engineered to provide a desired radiant emission profile. The influence of the primary combustion parameters on emitter performance will also be presented. Therefore integration of the narrow-band emitter materials into an AEM combustor results in the delivery of high intensity selective and uniform photons to the PV cell face that improves TPV device performance.

Aleksandr S. Kushch; Steven M. Skinner

1999-01-01T23:59:59.000Z

257

The new RF sources for accelerators  

SciTech Connect

Several new RF sources are being developed for accelerator and collider applications. Assembly is nearing completion of a multiple beam inductive output tube at 352 MHz. An annular beam klystron is being developed to produce 10 MW pulses at 1.3 GHz. The annular beam approach provides significant cost reduction over similar multiple beam devices. Fabrication is underway on a 10 kW, periodic permanent magnet klystron at 2.815 GHz. Permanent magnets eliminate the solenoid and associated power supplies and cooling requirements to reduce operational cost. Investigations are beginning on a novel approach for driving accelerator cavities using pulse shaping to increase coupling efficiency and dramatically reduce RF power requirements.

Ives, Lawrence; Read, Michael; Ferguson, Patrick; Marsden, David; Collins, George; Jackson, R. H.; Bui, Thuc; Kimura, Takuji; Eisen, Edward [Calabazas Creek Research, Inc., 690 Port Drive, San Mateo, CA, 94404, (650) 312-9575 (United States); Communications and Power Industries, LLC., 811 Hansen Way, Palo Alto, CA94304 (United States)

2012-12-21T23:59:59.000Z

258

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

Geothermal 2.5 Wind 0.22 Solar 0.02 Coal 110 Natural Gas 107 Residential 50 Vehicle 39 Freight 40 Air 129.30am Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine electric drive Plug in Hybrid Electric Vehicle (P-HEVs), long range electric vehi cle (EV) and sm art grid

Levi, Anthony F. J.

259

E-Print Network 3.0 - atr high-power mixed-oxide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

75 A. R&D on a 50-kW, High-Efficiency, High-Power-Density, CO-Tolerant PEM Fuel Cell Stack System... of its high power density, quick start-up capability, and...

260

Wire fixturing in high wire-number z pinches critical for high radiation power and reproducibility  

SciTech Connect

The quality of high wire-number z-pinch implosions on Z using a dynamic hohlraum (DH) configuration [Sanford, et al., Phys. Plasmas 9, 3573 (2002)] is significantly affected by the method of holding the wires. The three arrangements discussed here have led to differences in radial and axial x-ray powers of factors of 1.6{+-}0.2 and 1.5{+-}0.2, respectively. An increase in power is accompanied by reductions in rise time and pulse width, and improvements in shot-to-shot reproducibility. Higher powers are produced by fixtures that enable the wires to be maintained taut, which also produce superior current contacts at the electrodes (and in particular at the cathode) prior to implosion. The increased axial power, and decreased variation in power and pulse shape, correlate with decreased wire-plasma material observed at the axial radiation exit holes of the DH.

Sanford, T.W.L.; Mock, R.C.; Seamen, J.F.; Lopez, M.R.; Watt, R.G.; Idzorek, G.C.; Peterson, D.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2005-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Safety assessment for the rf Test Facility  

SciTech Connect

The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF.

Nagy, A.; Beane, F. (eds.)

1984-08-01T23:59:59.000Z

262

High Performance Computing - Power Application Programming Interface Specification.  

SciTech Connect

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

2014-08-01T23:59:59.000Z

263

Applications of high-temperature superconductors in power technology  

Science Journals Connector (OSTI)

Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20?K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

John R Hull

2003-01-01T23:59:59.000Z

264

Ambient-RF-Energy-Harvesting Sensor Node with Capacitor-Leakage-Aware Duty Cycle Control  

E-Print Network (OSTI)

systems, RF powered systems present a new challenge for the energy management. A WSN node repeatedly in the capacitor. Therefore, we implemented an adaptive duty cycle control scheme that is optimized for RF energy but is not affected by weather and so it is more stable than solar and wind power. Almost all energy management

Tentzeris, Manos

265

Permanent-magnet helicon sources and arrays: A new type of rf plasma  

SciTech Connect

Helicon discharges are known for their ability to produce high densities of partially ionized plasma, their efficiency arising from an unusual mechanism of rf coupling. However, the requirement of a dc magnetic field has prevented their wide acceptance in industry. The use of permanent magnets greatly simplifies helicon sources, and arrays of small sources extend the use of helicons to the processing of large substrates. An eight-tube array was designed and constructed, and its density uniformity measured in a 53x165 cm{sup 2} chamber. Three innovations involved (a) the remote field of ring magnets, (b) a low-field density peak, and (c) rf power distribution. High-density plasmas uniform over large areas requires compatibility in all three areas.

Chen, Francis F.; Torreblanca, Humberto [University of California, Los Angeles, California 90095-1594 (United States)

2009-05-15T23:59:59.000Z

266

Safety approaches for high power modular laser operation  

SciTech Connect

Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest has been the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program has progressed to the point where a plant-scale facility to demonstrate commercial feasibility has been built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a >90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities ({approximately}3000 gal) of ethanol dye solutions. The Laboratory`s safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

Handren, R.T.

1993-03-01T23:59:59.000Z

267

High-power pulse modulator with ignitron discharger  

SciTech Connect

The high-power pulse modulator described here is used to produce spatial gaseous discharges and has an improved, controllable charging circuit, which permits a type ITR-4 ignitron discharger to be employed in a frequency mode as the basic commutator. The modulator is utilized in two modes: at a pulse repetition frequency of 50 Hz pulses are formed that have a duration of 25 usec and energies up to 3.5 kJ and at a frequency of 200 Hz, the pulses have a duration of -2 usec and energies up to 600 J. In all conditions the modulator operated stably with a wide range of load changes.

Anisimova, T.E.; Akkuratov, E.V.; Artemov, V.A.; Gromovenko, V.M.; Kalinin, V.P.; Nikonov, V.P.

1985-10-01T23:59:59.000Z

268

High-power radio-frequency attenuation device  

DOE Patents (OSTI)

A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

Kerns, Q.A.; Miller, H.W.

1981-12-30T23:59:59.000Z

269

Electromagnetic design of the RF cavity beam position monitor for the LCLS.  

SciTech Connect

A high-resolution X-band cavity BPM has been developed for the LCLS. A dipole mode cavity and a monopole mode reference cavity have been designed in order to achieve micron-level accuracy of the beam position. The rf properties of the BPM as well as beam interaction with the cavities will be discussed including output power and tuning. In addition, methods will be presented for improving the isolation of the output ports to differentiate between horizontal/vertical beam motion and to reject extraneous modes from affecting the output signal. The predicted simulation results will be compared to data collected from low-power experimental tests.

Waldschmidt, G.; Lill, B.; Morrison, L.

2008-01-01T23:59:59.000Z

270

Efficient power spectrum estimation for high resolution CMB maps  

SciTech Connect

Estimation of the angular power spectrum of the cosmic microwave background on a small patch of sky is usually plagued by serious spectral leakage, especially when the map has a hard edge. Even on a full-sky map, point source masks can alias power from large scales to small scales producing excess variance at high multipoles. We describe a new fast, simple, and local method for estimation of power spectra on small patches of the sky that minimizes spectral leakage and reduces the variance of the spectral estimate. For example, when compared with the standard uniform sampling approach on a 8 deg. x 8 deg. patch of the sky with 2% area masked due to point sources, our estimator halves the error bars at l=2000 and achieves a more than fourfold reduction in error bars at l=3500. Thus, a properly analyzed experiment will have error bars at l=3500 equivalent to those of an experiment analyzed with the now standard technique with {approx}16-25 times the integration time.

Das, Sudeep; Hajian, Amir; Spergel, David N. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2009-04-15T23:59:59.000Z

271

Hydrogen-filled RF Cavities for Muon Beam Cooling  

SciTech Connect

Ionization cooling requires low-Z energy absorbers immersed in a strong magnetic field and high-gradient, large-aperture RF cavities to be able to cool a muon beam as quickly as the short muon lifetime requires. RF cavities that operate in vacuum are vulnerable to dark-current- generated breakdown, which is exacerbated by strong magnetic fields, and they require extra safety windows that degrade cooling, to separate RF regions from hydrogen energy absorbers. RF cavities pressurized with dense hydrogen gas will be developed that use the same gas volume to provide the energy absorber and the RF acceleration needed for ionization cooling. The breakdown suppression by the dense gas will allow the cavities to operate in strong magnetic fields. Measurements of the operation of such a cavity will be made as functions of external magnetic field and charged particle beam intensity and compared with models to understand the characteristics of this technology and to develop mitigating strategies if necessary.

CHARLES, Ankenbrandt

2009-04-17T23:59:59.000Z

272

A low?frequency high?power magnetic drive transducer  

Science Journals Connector (OSTI)

Ralph Woollett's contributions to the art and science of sonartransducer design were as a researcher teacher author and reviewer. Of these roles perhaps the most important the one that became his legacy was that of teacher: All of his colleagues were in a sense his pupils. His careful and thorough approach to transducer design problems inspired us to try to meet his high standards and we still miss his insight advice encouragement and criticism. This talk will review Ralph's influence on underwater electroacoustics present some anecdotes about his life and work and examine the circumstances of his death. Finally it will show how Ralph's ideas and design philosophy have affected some of the author's present research specifically the design of a low?frequency high?power magnetic drive transducer having low distortion.

William J. Marshall

1990-01-01T23:59:59.000Z

273

High efficiency electric power generation: The environmental role  

Science Journals Connector (OSTI)

Electric power generation system development is reviewed with special attention to plant efficiency. It is generally understood that efficiency improvement that is consistent with high plant reliability and low cost of electricity is economically beneficial, but its effect upon reduction of all plant emissions without installation of additional environmental equipment, is less well appreciated. As CO2 emission control is gaining increasing acceptance, efficiency improvement, as the only practical tool capable of reducing CO2 emission from fossil fuel plant in the short term, has become a key concept for the choice of technology for new plant and upgrades of existing plant. Efficiency is also important for longer-term solutions of reducing CO2 emission by carbon capture and sequestration (CCS); it is essential for the underlying plants to be highly efficient so as to mitigate the energy penalty of CCS technology application. Power generating options, including coal-fired Rankine cycle steam plants with advanced steam parameters, natural gas-fired gas turbine-steam, and coal gasification combined cycle plants are discussed and compared for their efficiency, cost and operational availability. Special attention is paid to the timeline of the various technologies for their development, demonstration and commercial availability for deployment.

János M. Beér

2007-01-01T23:59:59.000Z

274

High voltage power supply with modular series resonant inverters  

DOE Patents (OSTI)

A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

1995-01-01T23:59:59.000Z

275

High voltage power supply with modular series resonant inverters  

DOE Patents (OSTI)

A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

Dreifuerst, G.R.; Merritt, B.T.

1995-07-18T23:59:59.000Z

276

Gas Phase Diagnosis of Disilane/Hydrogen RF Glow Discharge Plasma and Its Application to High Rate Growth of High Quality Amorphous Silicon  

Science Journals Connector (OSTI)

Gas phase diagnosis of disilane/hydrogen plasma was carried out using mass spectrometry. At high growth rate (20 Å/s) conditions using pure disilane as a source gas, the partial pressure of disilane molecules measured by mass spectrometry was more than one order of magnitude higher than in the case when mono-silane was used as a source gas. The stability of amorphous silicon films prepared from disilane was improved by the hydrogen dilution technique, although the disilane partial pressure in this condition was much higher than in the case when mono-silane was used as a source gas for device quality films. The relation between the gas phase species and the stability of the resulting films is studied. It was found that increase in disilane related signal intensity do not decrease film stability directly.

Wataru Futako; Tomoko Takagi; Tomonori Nishimoto; Michio Kondo; Isamu Shimizu; Akihisa Matsuda

1999-01-01T23:59:59.000Z

277

Studies of RF Noise Induced Bunch Lengthening at the LHC  

SciTech Connect

Radio Frequency (RF) noise induced bunch lengthening can strongly affect the Large Hadron Collider (LHC) performance through luminosity reduction, particle loss, and other effects. This work presents measurements from the LHC that better quantify the relationship between the RF noise and longitudinal emittance blowup and identify the performance limiting RF components. The experiments presented in this paper confirmed the predicted effects on the LHC bunch length growth. Dedicated measurements were conducted in the LHC to gain insight in the effect of RF noise to the longitudinal beam diffusion. It was evident that the growth rate of the bunch length is strongly related to the accelerating voltage phase noise power spectral density around f{sub s} + kf{sub rev}, as predicted in [4]. The noise threshold for 2.5 ps/hr growth was estimated to -101 dBc/Hz (SSB flat noise spectral density from f{sub s} to the edge of the closed loop bandwidth). A 9 dB margin is achieved with the current RF configuration and the BPL on. With this formalism it is now possible to estimate the effect of different operational and technical RF configurations on the LHC beam diffusion. This formalism could also be useful for the design of future RF systems and the budgeting of the allowed noise.

Mastorides, T.; Rivetta, C.; Fox, J.D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /SLAC /CERN

2011-08-17T23:59:59.000Z

278

A Solar Power System for High Altitude Airships.  

E-Print Network (OSTI)

??This research is intended to produce a power system suitable for an aerostat operating at 67,500 ft and powered only by solar energy. A battery… (more)

Mei, Qiang

2011-01-01T23:59:59.000Z

279

High Power, High Voltage FETs in Linear Applications: A User's Perspective  

SciTech Connect

The specifications of the current crop of highpower, high-voltage field-effect transistors (FETs) can lure a designer into employing them in high-voltage DC equipment. Devices with extremely low on-resistance and very high power ratings are available from several manufacturers. However, our experience shows that high-voltage, linear operation of these devices at near-continuous duty can present difficult reliability challenges at stress levels well-below their published specifications. This paper chronicles the design evolution of a 600 volt, 8 ampere shunt regulator for use with megawatt-class radio transmitters, and presents a final design that has met its reliability criteria.

N. Greenough, E. Fredd, S. DePasquale

2009-09-21T23:59:59.000Z

280

RF current sensor  

DOE Patents (OSTI)

An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

Moore, James A. (Powell, TN); Sparks, Dennis O. (Maryville, TN)

1998-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RF Cavity Characterization with VORPAL  

SciTech Connect

When designing a radio frequency (RF) accelerating cavity structure various figures of merit are considered before coming to a final cavity design. These figures of merit include specific field and geometry based quantities such as the ratio of the shunt impedance to the quality factor (R/Q) or the normalized peak fields in the cavity. Other important measures of cavity performance include the peak surface fields as well as possible multipacting resonances in the cavity. High fidelity simulations of these structures can provide a good estimate of these important quantities before any cavity prototypes are built. We will present VORPAL simulations of a simple pillbox structure where these quantities can be calculated analytically and compare them to the results from the VORPAL simulations. We will then use VORPAL to calculate these figures of merit and potential multipacting resonances for two cavity designs under development at Jefferson National Lab for Project X.

C. Nieter, C. Roark, P. Stoltz, C.D. Zhou, F. Marhauser

2011-03-01T23:59:59.000Z

282

Digital Photonic Production: High Power ultrashort Lasers, Laser Additive Manufacturing and Laser Micro/ Nano Fabrication  

Science Journals Connector (OSTI)

The high power optical technologies enter a new era: The age of DIGITAL PHOTONIC PRODUCTION. Very recently new lasers in new time- and wavelength domains with high average powers have...

Poprawe, Reinhart; Gillner, Arnold; Hoffmann, Dieter; Kelbassa, Ingomar; Loosen, Peter; Wissenbach, Konrad

283

Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...  

Office of Environmental Management (EM)

130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint -...

284

Generation of high energy and good beam quality pulses with a master oscillator power amplifier  

Science Journals Connector (OSTI)

A high efficiency and high peak power laser system with short-pulse and good beam quality has been demonstrated by using a master oscillator power amplifier with two-pass...

Li, Zhigang; Xiong, Z; Moore, Nicholas; Tao, Chen; Lim, G C; Huang, Weiling; Huang, Dexiu

2004-01-01T23:59:59.000Z

285

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. HIGH-ACCURACY LASER POWER AND ENERGY METER CALIBRATION SYSTEM . . . . . . . . 2 2.1 Calibration

286

High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)  

SciTech Connect

This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

Waye, S.

2014-06-01T23:59:59.000Z

287

Investigation of a Single Stage Four-Valve Pulse Tube Refrigerator for High Cooling Power  

Science Journals Connector (OSTI)

We discuss the optimization of a pulse tube refrigerator for high cooling power. Our approach is to increase the system...

T. Schmauder; A. Waldauf; M. Thürk; R. Wagner; P. Seidel

2002-01-01T23:59:59.000Z

288

High-power multi-stage Rankine cycles  

SciTech Connect

This paper presents an analysis of the multi-stage Rankine cycle aiming at optimizing the power output from low-temperature heat sources such as geothermal or waste heat. A design methodology based on finite-time thermodynamics and the maximum power concept is used in which the shape and the power output of the maximum power cycle are identified and utilized to compare and evaluate different Rankine cycle configurations. The maximum power cycle provides the upper-limit power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger characteristics. It also provides a useful tool for studying power cycles and forms the basis for making design improvements.

Ibrahim, O.M. [Univ. of Rhode Island, Kingston, RI (United States). Mechanical Engineering Dept.; Klein, S.A. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.

1995-09-01T23:59:59.000Z

289

Breaking the ice: de-icing power transmission lines with high-frequency, high-voltage excitation  

E-Print Network (OSTI)

Breaking the ice: de-icing power transmission lines with high-frequency, high-voltage excitation of this work in other works must be obtained from the IEEE. #12;CING OF POWER TRANSMISSION lines during winter that applies 33-kV, 100-kHz power. TheoverallsystemisillustratedinFigure1.Itcouldbede- ployed in two different

290

Development of the RF plasma source at atmospheric pressure  

Science Journals Connector (OSTI)

A radio frequency (RF) plasma source operates by feeding helium or argon gas through two coaxial electrodes driven by a 13.56 \\{MHz\\} RF source. In order to prevent an arc discharge, a dielectric material is loaded outside the center electrode. A stable, arc-free discharge is produced at a flow rate of 1.5 l/min of helium gas. The temperature of the gas flame varies from 100 to 150 °C depending on the RF power. The breakdown voltage also changes when the flow rate varies. The plasma generation in a hot chamber is much more efficient than that in a cold chamber. The plasma characteristics are diagnosed by using optical emission spectroscopy. One of the applications of the RF plasma source is the printed circuit board (PCB) cleaning process, needed for environmental protection. The PCB cleaning device forms an asymmetric biaxial reactor.

Jung G. Kang; Hyoung S. Kim; Sung W. Ahn; Han S. Uhm

2003-01-01T23:59:59.000Z

291

Cryogenic System for a High Temperature Superconducting Power Transmission Cable  

SciTech Connect

High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

1999-07-12T23:59:59.000Z

292

High power continuous-wave titanium:sapphire laser  

DOE Patents (OSTI)

A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

1993-09-21T23:59:59.000Z

293

High-Temperature High-Power Packaging Techniques for HEV Traction Applications  

SciTech Connect

A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

Barlow, F.D.; Elshabini, A.

2006-11-30T23:59:59.000Z

294

Non-fusion applications of RF and microwave technology  

SciTech Connect

The processing of materials using rf and/or microwave power is a broad area that has grown significantly in the past few years. The authors have applied rf and microwave technology in the areas of ceramic sintering, plasma processing, and waste processing. The sintering of ceramics in the frequency range of 50 MHz-28 GHz has lead to unique material characteristics compared to materials that have been sintered conventionally. It has been demonstrated that sintering can be achieved in a variety of materials, including alumina, zirconia, silicon carbide, and boron carbide. In the area of plasma processing, progress has been made in the development and understanding of high density plasma sources, including inductively coupled plasma (ICP) sources. The effects of processing conditions on the ion energy distribution at the substrate surface (a critical processing issue) have been determined for a variety of process gases. The relationship between modeling and experiment is being established. Microwave technology has also been applied to the treatment of radioactive and chemical waste. The application of microwaves to the removal of contaminated concrete has been demonstrated. Details of these programs and other potential application areas are discussed.

Caughman, J.B.O.; Baity, F.W.; Bigelow, T.S.; Gardner, W.L.; Hoffman, D.J.; Forrester, S.C.; White, T.L.

1995-12-01T23:59:59.000Z

295

Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas  

Science Journals Connector (OSTI)

A laser initiation and radio frequency (rf) sustainment technique has been developed and improved from our previous work to create and sustain large-volume high-pressure air and nitrogen plasmas. This technique utilizes a laser-initiated 15 mTorr partial pressure tetrakis (dimethylamino) ethylene seed plasma with a 75 Torr background gas pressure to achieve high-pressure air/nitrogen plasma breakdown and reduce the rf power requirement needed to sustain the plasma. Upon the laser plasma initiation the chamber pressure is raised to 760 Torr in 0.5 s through a pulsed gas valve and the end of the chamber is subsequently opened to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using this technique large-volume ( 1000 ? cm 3 ) high electron density (on the order of 10 11 – 12 ? cm ? 3 ) 760 Torr air and nitrogen plasmas have been created while rf power reflection is minimized during the entire plasma pulse utilizing a dynamic matching method. This plasma can project far away from the antenna region (30 cm) and the rf power budget is 5 ? W / cm 3 . Temporal evolution of the plasma electron density and total electron-neutral collision frequency during the pulsed plasma is diagnosed using millimeter waveinterferometry. Optical emission spectroscopy(OES) aided by SPECAIR a special OES simulation program for air-constituent plasmas is used to analyze the radiating species and thermodynamic characteristics of the plasma. Rotational and vibrational temperatures of 4400 – 4600 ± 100 ? K are obtained from the emission spectra from the N 2 ( 2 + ) and N 2 + ( 1 ? ) transitions by matching the experimental spectrum results with the SPECAIR simulation results. Based on the relation between the electron collision frequency and the neutral density utilizing millimeter waveinterferometry the electron temperature of the 760 Torr nitrogen plasma is found to be 8700 ± 100 ? K ( 0.75 ± 0.1 ? eV ) . Therefore the plasma deviates significantly from local thermal equilibrium.

Siqi Luo; C. Mark Denning; John E. Scharer

2008-01-01T23:59:59.000Z

296

Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas  

SciTech Connect

A laser initiation and radio frequency (rf) sustainment technique has been developed and improved from our previous work to create and sustain large-volume, high-pressure air and nitrogen plasmas. This technique utilizes a laser-initiated, 15 mTorr partial pressure tetrakis (dimethylamino) ethylene seed plasma with a 75 Torr background gas pressure to achieve high-pressure air/nitrogen plasma breakdown and reduce the rf power requirement needed to sustain the plasma. Upon the laser plasma initiation, the chamber pressure is raised to 760 Torr in 0.5 s through a pulsed gas valve, and the end of the chamber is subsequently opened to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using this technique, large-volume (1000 cm{sup 3}), high electron density (on the order of 10{sup 11-12} cm{sup -3}), 760 Torr air and nitrogen plasmas have been created while rf power reflection is minimized during the entire plasma pulse utilizing a dynamic matching method. This plasma can project far away from the antenna region (30 cm), and the rf power budget is 5 W/cm{sup 3}. Temporal evolution of the plasma electron density and total electron-neutral collision frequency during the pulsed plasma is diagnosed using millimeter wave interferometry. Optical emission spectroscopy (OES) aided by SPECAIR, a special OES simulation program for air-constituent plasmas, is used to analyze the radiating species and thermodynamic characteristics of the plasma. Rotational and vibrational temperatures of 4400-4600{+-}100 K are obtained from the emission spectra from the N{sub 2}(2+) and N{sub 2}{sup +}(1-) transitions by matching the experimental spectrum results with the SPECAIR simulation results. Based on the relation between the electron collision frequency and the neutral density, utilizing millimeter wave interferometry, the electron temperature of the 760 Torr nitrogen plasma is found to be 8700{+-}100 K (0.75{+-}0.1 eV). Therefore, the plasma deviates significantly from local thermal equilibrium.

Luo Siqi; Denning, C. Mark; Scharer, John E. [Electrical and Computer Engineering, University of Wisconsin--Madison, Madison, Wisconsin 53705 (United States)

2008-07-01T23:59:59.000Z

297

Hefei Guoxuan High tech Power Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guoxuan High tech Power Energy Co Ltd Guoxuan High tech Power Energy Co Ltd Jump to: navigation, search Name Hefei Guoxuan High-tech Power Energy Co, Ltd Place China Sector Solar Product Anhui Province - based researcher and manufacturer focused on cathode material production for lithium batteries, production of the batteries themselves and of products such as solar powered lights and e-bikes. References Hefei Guoxuan High-tech Power Energy Co, Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hefei Guoxuan High-tech Power Energy Co, Ltd is a company located in China . References ↑ "Hefei Guoxuan High-tech Power Energy Co, Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hefei_Guoxuan_High_tech_Power_Energy_Co_Ltd&oldid=346428

298

Cutting and drilling studies using high power visible lasers  

SciTech Connect

High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 {mu}m) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel.

Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

1993-05-27T23:59:59.000Z

299

Sandia National Laboratories` high power electromagnetic impulse sources  

SciTech Connect

Three impulse sources have been developed to cover a wide range of peak power, bandwidth and center frequency requirements. Each of the sources can operate in single shot, rep-rate, or burst modes. These devices are of rugged construction and are suitable for field use. This paper will describe the specifications and principals of operation for each source. The sources to be described are: SNIPER (Sub-Nanosecond ImPulsE Radiator), a coaxial Blumlein pulser with an in-line (series) peaking switch; EMBL (EnantioMorphic BLurfflein), a bipolar parallel plate Blumlein with a crowbar type (parallel) peaking switch; and the LCO (L-C Oscillator) a spark-switched L-C oscillator with damped sinusoidal output. SNIPER and EMBL are ultra-wideband (UWB) sources which produce a very fast high voltage transition. When differentiated by the antenna, an impulse whose width corresponds to the transition time is radiated. The LCO operates with a center frequency up to 800 MHz and up to 100 MHz bandwidth. Because the LCO output is relatively narrow band, high gain antennas may be employed to produce very high radiated field strengths.

Rinehart, L.F.; Buttram, M.T.; Denison, G.J.; Lundstrom, J.M.; Crowe, W.R.; Aurand, J.F.; Patterson, P.E.

1994-10-01T23:59:59.000Z

300

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Application of High Powered Lasers to Perforated Completions  

NLE Websites -- All DOE Office Websites (Extended Search)

Congress on Applications of Laser & Electro-Optics Congress on Applications of Laser & Electro-Optics October 13 - 16, 2003, Jacksonville, Florida Application of High Powered Lasers to Perforated Completions Zhiyue Xu, Claude B. Reed and Keng H. Leong Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 R. A. Parker Parker Geoscience Consulting, LLC, 6346 Secrest Street, Arvada, CO 80403 R. M. Graves, Petroleum Engineering Department, Colorado School of Mines, Golden, CO 80401 ABSTRACT As part of the process of drilling an oil or gas well, a steel production casing is often inserted to the bottom of the well and sealed with cement against the productive formation. Openings must be made through the steel casing wall and cement and into the rock formation to allow formation fluid to enter the well. Conventionally, a perforator is

302

Self-consistent electrodynamics of large-area high-frequency capacitive plasma discharge  

SciTech Connect

Capacitively coupled plasmas (CCPs) generated using high frequency (3-30 MHz) and very high frequency (30-300 MHz) radio-frequency (rf) sources are used for many plasma processing applications including thin film etching and deposition. When chamber dimensions become commensurate with the effective rf wavelength in the plasma, electromagnetic wave effects impose a significant influence on plasma behavior. Because the effective rf wavelength in plasma depends upon both rf and plasma process conditions (e.g., rf power and gas pressure), a self-consistent model including both the rf power delivery system and the plasma discharge is highly desirable to capture a more complete physical picture of the plasma behavior. A three-dimensional model for self-consistently studying both electrodynamic and plasma dynamic behavior of large-area (Gen 10, >8 m{sup 2}) CCP is described in this paper. This model includes Maxwell's equations and transport equations for charged and neutral species, which are coupled and solved in the time domain. The complete rf plasma discharge chamber including the rf power delivery subsystem, rf feed, electrodes, and the plasma domain is modeled as an integrated system. Based on this full-wave solution model, important limitations for processing uniformity imposed by electromagnetic wave propagation effects in a large-area CCP (3.05x2.85 m{sup 2} electrode size) are studied. The behavior of H{sub 2} plasmas in such a reactor is examined from 13.56 to 200 MHz. It is shown that various rectangular harmonics of electromagnetic fields can be excited in a large-area rectangular reactor as the rf or power is increased. The rectangular harmonics can create not only center-high plasma distribution but also high plasma density at the corners and along the edges of the reactor.

Chen Zhigang; Rauf, Shahid; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

2010-10-15T23:59:59.000Z

303

Upgrading EMMA to Use Low-frequency RF Cavities  

SciTech Connect

EMMA is an experiment to study beam dynamics in fixed field alternating gradient accelerators (FFAGs). It accelerates the beam in about 10 turns using 1.3 GHz cavities in a mode like that used for muon accelerators. Many applications of FFAGs prefer to have slower acceleration, typically thousands of turns. To do so in EMMA would require the RF system to be replaced with a low-frequency, high-gradient system. This paper describes the motivation for studying slow acceleration in EMMA and the required parameters for an RF system to do that. It then describes the technology needed for the RF system.

Ohmori, C.; Berg, J.

2011-04-30T23:59:59.000Z

304

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

305

High-power TSP bits. [Thermally Stable Polycrystalline diamond  

SciTech Connect

This paper reviews a three-year R D project to develop advanced thermally stable polycrystalline diamond (TSP) bits that can operate at power levels 5 to 10 times greater than those typically delivered by rotary rigs. These bits are designed to operate on advanced drilling motors that drill 3 to 6 times faster than rotary rigs. TSP bit design parameters that were varied during these tests include cutter size, shape, density, and orientation. Drilling tests conducted in limestone, sandstone, marble, and granite blocks showed that these optimized bits drilled many of these rocks at 500 to 1,000 ft/hr (150 to 300 m/h), compared to 50 to 100 ft/hr (15 to 30 m/h) for roller bits. These tests demonstrated that TSP bits are capable of operating at the high speeds and high torques delivered by advanced drilling motors now being developed. These advanced bits and motors are designed for use in slim-hole and horizontal drilling applications.

Cohen, J.H.; Maurer, W.C. (Maurer Engineering Inc., Houston, TX (United States)); Westcott, P.A. (Gas Research Inst., Chicago, IL (United States))

1994-03-01T23:59:59.000Z

306

High power KrF laser development at Los Alamos  

SciTech Connect

The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

1988-01-01T23:59:59.000Z

307

High power linear pulsed beam annealer. [Patent application  

DOE Patents (OSTI)

A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

Strathman, M.D.; Sadana, D.K.; True, R.B.

1980-11-26T23:59:59.000Z

308

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - Hardware in the Loop (HIL) techniques - power electronics - combustion - controls -...

309

Rf beam control for the AGS Booster  

SciTech Connect

RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

Brennan, J.M.

1994-09-26T23:59:59.000Z

310

Space reactor/Stirling cycle systems for high power Lunar applications  

SciTech Connect

NASA`s Space Exploration Initiative (SEI) has proposed the use of high power nuclear power systems on the lunar surface as a necessary alternative to solar power. Because of the long lunar night ({approximately} 14 earth days) solar powered systems with the requisite energy storage in the form of regenerative fuel cells or batteries becomes prohibitively heavy at high power levels ({approximately} 100 kWe). At these high power levels nuclear power systems become an enabling technology for variety of missions. One way of producing power on the lunar surface is with an SP-100 class reactor coupled with Stirling power converters. In this study, analysis and characterization of the SP-100 class reactor coupled with Free Piston Stirling Power Conversion (FPSPC) system will be performed. Comparison of results with previous studies of other systems, particularly Brayton and Thermionic, are made.

Schmitz, P.D. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Mason, L.S. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

311

Public Opinions of Building Additional High-Voltage Electric Power Lines  

E-Print Network (OSTI)

to build new power lines. Residents living in counties with planned routes for new transmission linesPublic Opinions of Building Additional High-Voltage Electric Power Lines A Report to the National-Voltage Electric Power Lines: A Report to the National Science Foundation and the Electric Power Research Center

Tesfatsion, Leigh

312

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

313

Radio frequency (RF) heated supersonic flow laboratory  

SciTech Connect

A unique supersonic flow apparatus which employs an inductively-coupled, radio frequency (RF) torch to supply high enthalpy source gas to the nozzle inlet is described. The main features of this system are the plasma tube, a cooled nozzle assembly, and a combustion/expansion chamber with a heat exchanger. A description of these components with current test data is presented. In addition, a discussion of anticipated experiments utilizing this system is included.

Wantuck, P.; Watanabe, H.

1990-01-01T23:59:59.000Z

314

Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level  

Science Journals Connector (OSTI)

Abstract High wind power penetration in power system leads to a significant challenge in balancing power production and consumption due to the intermittence of wind. Introducing energy storage system in wind energy system can help offset the negative effects, and make the wind power controllable. However, the power spectrum density of wind power outputs shows that the fluctuations of wind energy include various components with different frequencies and amplitudes. This implies that the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. In this paper, we proposed a preliminary scheme for capacity allocation of hybrid energy storage system for power system peak shaving by using spectral analysis method. The unbalance power generated from load dispatch plan and wind power outputs is decomposed into four components, which are outer-day, intra-day, short-term and very short-term components, by using Discrete Fourier Transform (DFT) and spectral decomposition method. The capacity allocation can be quantified according to the information in these components. The simulation results show that the power rating and energy rating of hybrid energy storage system in partial smoothing mode decrease significantly in comparison with those in fully smoothing mode.

Pan Zhao; Jiangfeng Wang; Yiping Dai

2015-01-01T23:59:59.000Z

315

The GridPACK™ toolkit for developing power grid simulations on high performance computing platforms  

Science Journals Connector (OSTI)

This paper describes the GridPACK™ framework, which is designed to help power grid engineers develop modeling software capable of running on high performance computers. The framework contains modules for setting up distributed power grid networks, ... Keywords: electric power grid, high performance computing, software frameworks

Bruce Palmer; William Perkins; Kevin Glass; Yousu Chen; Shuangshuang Jin; David Callahan

2013-11-01T23:59:59.000Z

316

Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs  

Science Journals Connector (OSTI)

A novel porous micro heat sink system is presented for thermal management of high power LEDs, which has high heat transport capability. The operational principle and heat transfer characteristics of porous micro heat sink are analyzed. Numerical model ... Keywords: Heat dissipation, High heat flux, High power LEDs, Porous media, Porous micro heat sink

Z. M. Wan; J. Liu; K. L. Su; X. H. Hu; S. S. M

2011-05-01T23:59:59.000Z

317

Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas  

E-Print Network (OSTI)

Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas Siqi Luo to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using of atmospheric-pressure air plasmas The kinetics of reactions and transitions in atmospheric- pressure air

Scharer, John E.

318

Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS  

E-Print Network (OSTI)

A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity to the measurement of CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal theta23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of neutrino and 3 years of anti-neutrino (7nu+3nubar) run-plan performs the best and one expects a 4sigma sensitivity to CP violation for 59% of true values of deltaCP. The projected reach for the 200 km baseline with 7nu+3nubar run-plan is somewhat worse with 4sigma sensitivity for 51% of true values of deltaCP. On the other hand, for the discovery of a...

Agarwalla, Sanjib Kumar; Prakash, Suprabh

2014-01-01T23:59:59.000Z

319

Plasma potential mapping of high power impulse magnetron sputtering discharges  

SciTech Connect

Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 ?s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

2011-12-20T23:59:59.000Z

320

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enthusiasm for UK wave power survives high costs  

Science Journals Connector (OSTI)

... drive a turbine. But other proposals include on site conversion to hydrogen, on site desalination or direct use of the mechanical power to make heat.

Joe Schwartz

1978-11-30T23:59:59.000Z

322

Planar Optical Waveguide Coupler Transformers for High-Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capture and Transport of Concentrated Solar Thermal Energy for Power Generation Low-Cost Light Weigh Thin Film Solar Concentrators Low-Cost Light Weigh Thin Film Solar...

323

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

324

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation  

Science Journals Connector (OSTI)

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation ... These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solns., such as thermolytic salts. ... saline brines because of the higher power d. ...

Jun Gao; Wei Guo; Dan Feng; Huanting Wang; Dongyuan Zhao; Lei Jiang

2014-08-19T23:59:59.000Z

325

Sapphire-conductive end-cooling of high power cryogenic Yb:YAG laser  

Science Journals Connector (OSTI)

We have demonstrated a high-power laser oscillator with end-cooling using a sapphire-sandwiched Yb:YAG disk at near liquid nitrogen temperature. An output power of 74 W with...

Tokita, Shigeki; Kawanaka, Junji; Izawa, Yasukazu; Fujita, Masayuki; Kawashima, Toshiyuki

326

Heating by Optical Absorption and Cooling of High Power Laser Mirrors  

Science Journals Connector (OSTI)

In high power laser system, laser mirror is the core and the most sensitive optical component, which influences the increase of laser power and the quality of laser. Absorption of light at mirrors causes wavef...

Ci-Ming Zhou; Zu-Hai Cheng; Yu-Feng Peng

2003-12-01T23:59:59.000Z

327

Sapphire-Conductive End-Cooling of High Power Cryogenic Yb:YAG Laser  

Science Journals Connector (OSTI)

We have demonstrated a high-power laser oscillator with end-cooling using a sapphire-sandwiched Yb:YAG disk at liquid nitrogen temperature. An output power of 74 W with...

Tokita, Shigeki; Fujita, Masayuki; Kawanaka, Junji; Kawashima, Toshiyuki; Izawa, Yasukazu

328

Soft-Switching High-Frequency AC-Link Universal Power Converters with Galvanic Isolation  

E-Print Network (OSTI)

be used in a variety of applications, including photovoltaic power generation, wind power generation, and electric vehicles. In these converters the link current and voltage are both alternating and their frequency can be high, which leads...

Amirabadi, Mahshid

2013-08-07T23:59:59.000Z

329

A high-pass detunable quadrature birdcage coil at high-field  

E-Print Network (OSTI)

by uniform RF energy. At high-field (4.7T) when the power is fed to the coil at a single port the coil unable to produce a homogenous B1 field. However when power is fed at multiple ports the performance of the coil improves. In this paper a study is carried...

Kampani, Vishal Virendra

2008-10-10T23:59:59.000Z

330

RF Micro Devices Inc RFMD | Open Energy Information  

Open Energy Info (EERE)

RF Micro Devices Inc RFMD RF Micro Devices Inc RFMD Jump to: navigation, search Name RF Micro Devices, Inc. (RFMD) Place Greensboro, North Carolina Zip 27409-9421 Product RF Micro Devices, Inc. is a global leader in the design and manufacture of high-performance semiconductor components. Coordinates 44.576059°, -72.294016° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.576059,"lon":-72.294016,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

EXPERIMENTAL STUDIES OF RF BREAKDOWNS IN THE COUPLER OF THE TTF RF GUN  

E-Print Network (OSTI)

EXPERIMENTAL STUDIES OF RF BREAKDOWNS IN THE COUPLER OF THE TTF RF GUN J.-P. Carneiro , S I, the RF gun of the TESLA Test Facility (TTF) has been operated with long RF pulses (up to 0.9 ms Fermilab has developed and delivered to DESY two RF guns for the operation of phase 1 of the TESLA Test

332

Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS  

E-Print Network (OSTI)

A high-power neutrino superbeam experiment at the ESS facility has been proposed such that the source-detector distance falls at the second oscillation maximum, giving very good sensitivity towards establishing CP violation. In this work, we explore the comparative physics reach of the experiment in terms of leptonic CP-violation, precision on atmospheric parameters, non-maximal theta23, and its octant for a variety of choices for the baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and study its impact on the physics goals of the experiment. We find that for the determination of CP violation, 540 km baseline with 7 years of neutrino and 3 years of anti-neutrino (7nu+3nubar) run-plan performs the best and one expects a 5sigma sensitivity to CP violation for 48% of true values of deltaCP. The projected reach for the 200 km baseline with 7nu+3nubar run-plan is somewhat worse with 5sigma sensitivity for 34% of true values of deltaCP. On the other hand, for the discovery of a non-maximal theta23 and its octant, the 200 km baseline option with 7nu+3nubar run-plan performs significantly better than the other baselines. A 5sigma determination of a non-maximal theta23 can be made if the true value of sin^2theta23 lesssim 0.45 or sin^2theta23 gtrsim 0.57. The octant of theta23 could be resolved at 5sigma if the true value of sin^2theta23 lesssim 0.43 or gtrsim 0.59, irrespective of deltaCP.

Sanjib Kumar Agarwalla; Sandhya Choubey; Suprabh Prakash

2015-01-04T23:59:59.000Z

333

Thermal Strategies for High Efficiency Thermoelectric Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

334

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY  

E-Print Network (OSTI)

COLLISIONLESS ELECTRON HEATING IN RF GAS DISCHARGES: I. QUASILINEAR THEORY Yu.M. Aliev1 , I an interest in mechanisms of electron heating and power deposition in the plasma main- tained by radio parameters. Due to the large value of the mean free path (MFP) the main mechanism of electron heating turns

Kaganovich, Igor

335

Wide-Range Bolometer with RF Readout TES  

E-Print Network (OSTI)

To improve both scalability and noise-filtering capability of a Transition-Edge Sensor (TES), a new concept of a thin-film detector is suggested, which is based on embedding a microbridge TES into a high-Q planar GHz range resonator weakly coupled to a 50 Ohm-readout transmission line. Such a TES element is designed as a hot-electron microbolometer coupled to a THz range antenna and as a load of the resonator at the same time. A weak THz signal coupled to the antenna heats the microbridge TES, thus reducing the quality factor of the resonator and leading to a power increment in the readout line. The power-to-power conversion gain, an essential figure of merit, is estimated to be above 10. To demonstrate the basic concept, we fabricated and tested a few submicron sized devices from Nb thin films for operation temperature about 5 K. The dc and rf characterization of the new device is made at a resonator frequency about 5.8 GHz. A low-noise HEMT amplifier is used in our TES experiments without the need for a SQU...

Shitov, S V; Kuzmin, A A; Merker, M; Arndt, M; Wuensch, S H; Ilin, K S; Erhan, E; Ustinov, A; Siegel, M

2014-01-01T23:59:59.000Z

336

High speed electrical power takeoff for oscillating water columns   

E-Print Network (OSTI)

This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator ...

Hodgins, Neil

2010-01-01T23:59:59.000Z

337

High Power Cooled Mini-DIL Pump Lasers  

Science Journals Connector (OSTI)

The miniature dual-inline (mini-DIL) pump laser becomes more attractive for compact optical amplifiers designs due to the advantage of smaller footprint, lower power consumption and...

Liang, Bo; Zayer, Nadhum; Chen, Bob; He, Dylan; Pliska, Tomas

338

ANUEADflM-31 Electric Power High-Voltage Transmission Lines:  

Office of Scientific and Technical Information (OSTI)

formulated fluid that is kept under high pressure. This fluid helps to dissipate the power loss heat generated by the conductors. The construction costs in 1991 dollars for...

339

Atmospheric propagation simulations and Boeing's high average power free electron laser ; .  

E-Print Network (OSTI)

??The development of a high average power FEL for military applications, whether shipboard or not, represents a significant advancement in technology over present weapons systems… (more)

Ramos, Luis.

1995-01-01T23:59:59.000Z

340

HIGH-POWER MILLIMETREWAVE TRANSMISSION SYSTEMS AND COMPONENTS FOR ELECTRON CYCLOTRON HEATING OF FUSION PLASMAS  

Science Journals Connector (OSTI)

At the Institute for Plasma Research at the University of Stuttgart, high-power millimetre wave transmission systems for electron cyclotron heating (ECRH) and current drive (ECCD)...

W. Kasparek; G. Dammertz; V. Erckmann…

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High efficiency resonant dc/dc converter for solar power applications .  

E-Print Network (OSTI)

??This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage… (more)

Inam, Wardah

2013-01-01T23:59:59.000Z

342

High-efficiency solar dynamic space power generation system  

SciTech Connect

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

343

Inductive current startup in large tokamaks with expanding minor radius and rf assist  

SciTech Connect

Auxiliary rf heating of electrons before and during the current-rise phase of a large tokamak, such as the Fusion Engineering Device (R = 4.8 m, a = 1.3 m, sigma = 1.6, B/sub T/ = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx. 90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/ m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to approx. 100 V without rf assist). During the subsequent plasma expansion and current ramp phase, a combination of rf heating (up to 5 MW) and current profile control leads to a substantial savings in volt-seconds by: (1) minimizing the resistive flux consumption; and (2) maintaining the internal flux at or near the flat profile limit.

Borowski, S.K.

1984-02-01T23:59:59.000Z

344

Geomagnetically induced currents in the Uruguayan high-voltage power grid  

Science Journals Connector (OSTI)

......currents in the Uruguayan high-voltage power grid R. Caraballo 1 2 L. Sanchez Bettucci...simple topology of the Uruguayan power grid provides some advantages in the calculation...transformers at the South African power grid during the Halloween storm in 2003......

R. Caraballo; L. Sánchez Bettucci; G. Tancredi

2013-01-01T23:59:59.000Z

345

Current spread and overheating of high power laser bars B. Laikhtmana)  

E-Print Network (OSTI)

-power lasers, the width of the stripe is much larger than the cladding thick- ness, and the substrate thicknessCurrent spread and overheating of high power laser bars B. Laikhtmana) Power Photonic, 214 Old 11794 Received 27 May 2003; accepted 12 January 2004 The heating of a semiconductor laser bar imbedded

346

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

SciTech Connect

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

347

RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride  

DOE Patents (OSTI)

A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

Jeffery, F.R.; Shanks, H.R.

1980-08-26T23:59:59.000Z

348

A Service Oriented Architecture for Exploring High Performance Distributed Power Models  

SciTech Connect

Power grids are increasingly incorporating high quality, high throughput sensor devices inside power distribution networks. These devices are driving an unprecedented increase in the volume and rate of available information. The real-time requirements for handling this data are beyond the capacity of conventional power models running in central utilities. Hence, we are exploring distributed power models deployed at the regional scale. The connection of these models for a larger geographic region is supported by a distributed system architecture. This architecture is built in a service oriented style, whereby distributed power models running on high performance clusters are exposed as services. Each service is semantically annotated and therefore can be discovered through a service catalog and composed into workflows. The overall architecture has been implemented as an integrated workflow environment useful for power researchers to explore newly developed distributed power models.

Liu, Yan; Chase, Jared M.; Gorton, Ian

2012-11-12T23:59:59.000Z

349

The relationship between induction case depth and load power for high frequency, high load power and short heating time  

Science Journals Connector (OSTI)

The relationship between induction case depth and load power is derived. Excellent agreement is obtained between ... calculated from the derived equation and the experimental data obtained for a constant heating ...

W. T. Shieh

1972-06-01T23:59:59.000Z

350

A computer program for HVDC converter station RF noise calculations  

SciTech Connect

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

351

California Geothermal Power Plant to Help Meet High Lithium Demand  

Energy.gov (U.S. Department of Energy (DOE))

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

352

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

353

LLCC-PWM Inverter for Driving High-Power Piezoelectric Actuators  

E-Print Network (OSTI)

LLCC-PWM Inverter for Driving High-Power Piezoelectric Actuators Rongyuan Li, Norbert Fröhleke LLCC-PWM inverter is presented for driving ultrasonic high power piezoelectric actuators. The proposed system of a pulse- width modulated inverter and LLCC-type filter is designed in a way to reduce the total

Paderborn, Universität

354

Modeling of dimmable High Power LED illumination distribution using ANFIS on the isolated area  

Science Journals Connector (OSTI)

High power light emitting diodes (HP-LEDs) are more suitable for energy saving applications and have becoming replacing traditional fluorescent and incandescent bulbs for its energy efficient. Therefore, HP-LED lighting has been regarded in the next-generation ... Keywords: ANFIS, High Power LED, Illumination distribution

?smail Kiyak; Vedat Topuz; Bülent Oral

2011-09-01T23:59:59.000Z

355

A Thrust Stand for High-power Steady-state Plasma Thrusters L.D. Cassady,  

E-Print Network (OSTI)

of an inverted-pendulum thrust stand to measure thrust for high-power steady- state plasma thrusters is presentedA Thrust Stand for High-power Steady-state Plasma Thrusters L.D. Cassady, A.D. Kodys, and E Department Princeton University, Princeton, New Jersey 08544 (Dated: July 18, 2002) The operation

Choueiri, Edgar

356

Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters  

E-Print Network (OSTI)

Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters A and Aerospace Engineering Department Princeton University, Princeton, New Jersey 08544 AIAA-2003-4842§ July 22, 2003 Abstract Thermal effects on direct measurements of the thrust produced by steady-state, high-power

Choueiri, Edgar

357

Simulation Model of Common-Mode Chokes for High-Power Applications  

E-Print Network (OSTI)

Simulation Model of Common-Mode Chokes for High-Power Applications A. Muetze C. R. Sullivan Found;Simulation Model of Common-Mode Chokes for High-Power Applications Charles R. Sullivan Annette Muetze Thayer simulation models for nanocrystalline cores, and compare the results to experimental measurements. We also

358

A LOW-DISTORTION CLASS-AB AUDIO AMPLIFIER WITH HIGH POWER EFFICIENCY  

E-Print Network (OSTI)

A LOW-DISTORTION CLASS-AB AUDIO AMPLIFIER WITH HIGH POWER EFFICIENCY BY CHAITANYA MOHAN, B of Sciences, Engineering Specialization in: Electrical Engineering New Mexico State University Las Cruces, New Mexico March 2011 #12;"A Low-Distortion Class-AB Audio Amplifier with High Power Efficiency," a the- sis

Furth, Paul

359

High power density test of PXIE MEBT absorber prototype  

E-Print Network (OSTI)

One of the goals of the PXIE program at Fermilab is to demonstrate the capability to form an arbitrary bunch pattern from an initially CW 162.5 MHz H- bunch train coming out of an RFQ. The bunch-by-bunch selection will take place in the 2.1 MeV Medium Energy Beam Transport (MEBT) by directing the undesired bunches onto an absorber that needs to withstand a beam power of up to 21 kW, focused onto a spot with a ~2 mm rms radius. Two prototypes of the absorber were manufactured from molybdenum alloy TZM and tested with a 28 keV DC electron beam up to the peak surface power density required for PXIE, 17W/mm2. Temperatures and flow parameters were measured and compared to analysis. This paper describes the absorber prototypes and key testing results.

Shemyakin, A

2015-01-01T23:59:59.000Z

360

High Power 938nm Cladding Pumped Fiber Laser  

SciTech Connect

We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

2002-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Lemon Cell Battery for High-Power Applications  

Science Journals Connector (OSTI)

The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. ... Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. ... Elementary / Middle School Science ...

Kenneth R. Muske; Christopher W. Nigh; Randy D. Weinstein

2007-04-01T23:59:59.000Z

362

A high-frequency reverse switch-on dynistor generator for high-power induction heating systems  

Science Journals Connector (OSTI)

A generator of high-frequency harmonic oscillations connected as a multicell serial inverter with recuperation diodes is described. Maximum power is 50 kW, operating frequency is 50 kHz, overall dimensions are...

I. V. Grekhov; A. K. Kozlov; S. V. Korotkov…

363

A Novel High-Power-Factor LED-Lamp Driver Based on a Single-Stage Power Conversion  

Science Journals Connector (OSTI)

This paper proposes a novel single-stage driver for supplying a T8-type light-emitting diode (LED) lamp with high power factor. The presented driver integrates a dual buck-boost converter with coupled inductors and a half-bridge series-resonant converter ... Keywords: converter, driver, light-emitting diode (LED)

Chun An Cheng, En Chih Chang, Ching Shien Tseng, Tsung Yuan Chung

2014-06-01T23:59:59.000Z

364

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers (EERE)

brines in California. Batteries from Brine California: Geothermal Plant to Help Meet High Lithium Demand Mineral Recovery Creates Revenue Stream for Geothermal Energy Development...

365

Superconducting RF Linac Technology for ERL Light Sources  

SciTech Connect

Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity�������¢����������������s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

Chris Tennant

2005-08-01T23:59:59.000Z

366

High-Energy, Low-Frequency Risk to the North American Bulk Power System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Energy, Low-Frequency Risk to the North American Bulk Power High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop. The North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) partnered in July of 2009 on an effort to address High-Impact, Low-Frequency risks to the North American bulk power system. In August, NERC formed a steering committee made up of industry and risk experts to lead the development of an initial workshop on the subject, chaired by Scott Moore, VP Transmission System & Region Operations for American Electric Power, and Robert Stephan, Former Assistant Secretary for

367

Note on RF Photo-Cathode Gun  

E-Print Network (OSTI)

Emittances in Laser-Driven RF Guns", Proc. 1988 Linear Acc.Palmer, "Preliminary Study of Gun Emittance Correction", BNLLaser-Driven RF Electron Guns", Nuc1. ln stt. Meth. , A275,

Kim, Kwang-Je

2010-01-01T23:59:59.000Z

368

Simulation of synchrotron motion with rf noise  

SciTech Connect

The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

Leemann, B.T.; Forest, E.; Chattopadhyay, S.

1986-08-01T23:59:59.000Z

369

Design ad Modeling of a 17 GHz Photcxxthode RF Gun C. L. Lin, S. C. Chen, J. S. U'urtele, H. Temkin, 13. Danly *  

E-Print Network (OSTI)

Design ad Modeling of a 17 GHz Photcxxthode RF Gun C. L. Lin, S. C. Chen, J. S. U'urtele, H. Temkin of a high-frequencv(l7GHz), high accel- erating gradirnt(250hlv/rrl) photocathode RF gun is stud- ied in conventional DC guns followed by RF bunchers have reached their intrin- sic limitations and do not meet

Wurtele, Jonathan

370

Method and system for advancement of a borehole using a high power laser  

DOE Patents (OSTI)

There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

2014-09-09T23:59:59.000Z

371

Research and Development of High-Power and High-Energy Electrochemical Storage Devices  

SciTech Connect

The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applicatio

No, author

2014-04-30T23:59:59.000Z

372

Intelligent Radio Frequency (RF) Monitoring  

E-Print Network (OSTI)

? Intelligent Radio Frequency (RF) Monitoring ? 2009 Armstrong International, Inc. www.armstronginternational.com 2 ?Expect many enjoyable experiences!? David M. Armstrong Present Process Challenges ? Identifying a failure ? Procedure.... Armstrong Steam Trap Challenges ? Identifying a failure ? Manpower ? Location ? Magnitude of failure ? Energy loss ? Loss of heat transfer ? Justification for repair ? ?Speed of Implementation? ? Environmental concerns Manpower Location 4...

Kimbrough, B.

373

Efficient power coupling to waveguides in high index contrast systems  

E-Print Network (OSTI)

Future integrated optical circuits will hold, on a single chip, several optical components that communicate via high index contrast waveguides. Silicon nitride (SixNy) and silicon oxynitride (SixOyNz) waveguides with silicon ...

Nguyen, Victor T. (Victor Trinh)

2006-01-01T23:59:59.000Z

374

Circuits for high-performance low-power VLSI logic  

E-Print Network (OSTI)

The demands of future computing, as well as the challenges of nanometer-era VLSI design, require new digital logic techniques and styles that are simultaneously high performance, energy efficient, and robust to noise and ...

Ma, Albert

2006-01-01T23:59:59.000Z

375

High-Temperatuer Solar Selective Coating Development for Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized * Pyromark has a high solar...

376

Josephson device with a matched rf source  

SciTech Connect

Analog simulation of a resistance-shunted ac Josephson junction coupled to an rf source with matching impedance reveals (1) added structure in the device's V-I curve even when the source is quiescent and (2) rf-induced steps with peak amplitudes between those produced by voltage and current rf sources. Both results are consistent with experimental data.

Longacre, A. Jr.

1980-03-01T23:59:59.000Z

377

Ultra high performance connectors for power transmission applications  

DOE Patents (OSTI)

Disclosed are several examples of an apparatus for connecting the free ends of two electrical power transmission lines having conductor strands disposed around a central, reinforcing core. The examples include an inner sleeve having a body defining an inner bore passing through an axially-extending, central axis, an outer rim surface disposed radially outward from the central bore, and one or more axially-extending grooves penetrating the body at the outer rim surface. Also included is an outer splice having a tubular shaped body with a bore passing coaxially through the central axis, the bore defining an inner rim surface for accepting the inner sleeve. The inner bore of the inner sleeve accepts the reinforcement cores of the two conductors, and the grooves accept the conductor strands in an overlapping configuration so that a majority of the electrical current flows between the overlapped conductor strands when the conductors are transmitting electrical current.

Wang, Jy-An; Ren, Fei; Lee, Dominic F; Jiang, Hao

2014-03-04T23:59:59.000Z

378

Studies of TTF RF Photocathode Gun using acoustic sensors J. Nelson and M. Ross  

E-Print Network (OSTI)

1 Studies of TTF RF Photocathode Gun using acoustic sensors J. Nelson and M. Ross SLAC November 27 RF high voltage breakdown locations in the photocathode gun system. It is not known if the acoustic gun [4] to locate its breakdown events during operation with a pulse length of 300µs and a pulse

379

Proposal of an Arc Detection Technique Based on RF Measurements for the ITER ICRF Antenna  

SciTech Connect

RF arc detection is a key operational and safety issue for the ICRF system on ITER. Indeed the high voltages inside the antenna put it at risk of arcing, which could cause substantial damage. This paper describes the various possibilities explored by circuit simulation and the strategy now considered to protect the ITER ICRF antenna from RF arcs.

Huygen, S.; Dumortier, P.; Durodie, F.; Messiaen, A.; Vervier, M.; Vrancken, M. [LPP/ERM-KMS, Association EURATOM-Belgian State, Brussels (Belgium); Wooldridge, E. [EURATOM/CCFE Fusion Association, Culham Science Centre (United Kingdom)

2011-12-23T23:59:59.000Z

380

High power density self-cooled lithium-vanadium blanket.  

SciTech Connect

A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

Gohar, Y.; Majumdar, S.; Smith, D.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

SciTech Connect

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

382

RF heating needs and plans for ITER  

SciTech Connect

RF heating systems are required to deliver more than half of the total auxiliary power to operate ITER successfully through the different levels. To achieve this goal, systems in the range of ICRF, LHF and ECRF will be implemented for different tasks in different phases of operation. Power levels proposed to be used in different ranges will vary depending on the needs. Different mixes of power will depend on the physics needs of the experimental programmes. Lower Hybrid power of 20 MW at 5.0 GHz is not planned for the startup phase and therefore no procurement scheme exists at the present time. 20 MW will be delivered into the plasma at 40 to 55 MHz as well as at 170 GHz with the help of Ion Cyclotron Heating (ICH) and Electron Cyclotron Heating (ECH) systems respectively. All the heating systems will have the capability to operate in continuous mode. A dedicated ECH 3.0 MW system at 127.6 GHz will be used for plasma breakdown and start up.

Bora, Dhiraj; Beaumont, B.; Kobayashi, N.; Tanga, A. [ITER Organization, Joint Work Site, Cadarache (France); Goulding, R.; Swain, D. [Oak Ridge National Laboratory (United States); Jacquinot, J. [Cabinet of High Commissioner for Atomic Energy, CEA Gif-sur-Yvette (France)

2007-09-28T23:59:59.000Z

383

High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging  

SciTech Connect

Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 ?m spatial resolution (75 ?m primary ion spot size) with mass resolving power (m/?m50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/?m50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 ?m. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

2013-07-01T23:59:59.000Z

384

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity for the California desert and in other appro- priate regions worldwide. Current technology relies on steam Rankine

Ponce, V. Miguel

385

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power-  

E-Print Network (OSTI)

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power communications, multi-wire overhead lines, capacity, OFDM, coding. I. INTRODUCTION The increasing interest, and severe narrowband interference [1]. The channel characteristics of medium voltage overhead power-line

Kavehrad, Mohsen

386

High Power Impulse Magnetron Sputtering deposition of Pt inside fuel cell electrodes  

E-Print Network (OSTI)

1 High Power Impulse Magnetron Sputtering deposition of Pt inside fuel cell electrodes S Cuynet1 as a cathode of a proton exchange membrane fuel cell. An increase of 80 % at 0.65 V of the PEMFC power density) 272001" #12;2 Proton exchange membrane fuel cells (PEMFC) have the potential to provide

Paris-Sud XI, Université de

387

OPTICAL DIAGNOSTIC RESULTS FROM THE MERIT HIGH-POWER TARGET EXPERIMENT  

E-Print Network (OSTI)

to accept proton beams with multi-megawatt beam power. The core of this proposed target system consists, and the possible effect of that disruption on the mercury containment system. The MERIT experiment was designedOPTICAL DIAGNOSTIC RESULTS FROM THE MERIT HIGH-POWER TARGET EXPERIMENT H.G. Kirk , H. Park, T

McDonald, Kirk

388

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power Filter Applications  

E-Print Network (OSTI)

Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power voltage-source inverters connected in series (known as cascaded hybrid asymmetric multilevel inverter voltage application due to semiconductor constraint. In order to achieve higher power level, hybrid

Catholic University of Chile (Universidad Católica de Chile)

389

Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry  

SciTech Connect

New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

Wilcox, R.; Byrd, J. M.; Doolittle, L.; Huang, G.; Staples, J. W.

2010-01-02T23:59:59.000Z

390

High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

391

APS DPP Meeting, Quebec City Canada R V Budny 2327 October 2000 Comparison of RF-heated with  

E-Print Network (OSTI)

42 nd APS DPP Meeting, Quebec City Canada R V Budny 23­27 October 2000 JG00.293/1 Comparison of RF 2000 JG00.293/3 Conclusions Motivation ICRH ­ heated ELMy plasmas are suggested for reactor startup heated ELMy plasmas Heating power lower than desired (close to L-mode) VTor for RF in Co-Ip direction

Budny, Robert

392

SPECIFICATION FOR A RF SHIELDED ENCLOSURE 1. Scope -This specification covers the general requirements for the design, construction,  

E-Print Network (OSTI)

the following: a. Architecturally styled RF doors and windows. b. RF attenuating filters for power, telephone. Honeycomb grills for HVAC vents and floor drains. g. Conductive metallized fabric or copper foil on walls, and filter insertion loss should be tailored to meet the actual needs of the owner. Furthermore

Groppi, Christopher

393

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid  

E-Print Network (OSTI)

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Transient Stability" #12;1st International Workshop on High Performance Computing, Networking and Analytics (University of Vermont). "Developing a Dynamic Model of Cascading Failure for High Performance Computing using

394

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

395

Design Concepts for RF-DC Conversion in Particle Accelerator Systems  

E-Print Network (OSTI)

In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that have come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments of the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which have been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

Caspers, F; Grudiev, A; Sapotta, H

2010-01-01T23:59:59.000Z

396

Monolayer graphene dispersion and radiative cooling for high power LED  

Science Journals Connector (OSTI)

Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1?° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

Tun-Jen Hsiao; Tsehaye Eyassu; Kimberly Henderson; Taesam Kim; Chhiu-Tsu Lin

2013-01-01T23:59:59.000Z

397

Bright High Average Power Table-top Soft X-Ray Lasers  

SciTech Connect

We have demonstrated the generation of bright soft x-ray laser pulses with record-high average power from compact plasma amplifiers excited by ultrafast solid state lasers. These lasers have numerous applications in nanoscience and nanotechnology.

Rocca, Jorge [Colorado State University, Fort Collins; Reagan, Brendon [Colorado State University, Fort Collins; Wernsing, Keith [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Curtis, Alden [Colorado State University, Fort Collins; Nichols,, Anthony [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Alessi, David [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins; Berrill, Mark A [ORNL; Furch, Federico [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Patel, Dinesh [Colorado State University, Fort Collins; Marconi, Mario [Colorado State University, Fort Collins; Menoni, Carmen [Colorado State University, Fort Collins

2012-01-01T23:59:59.000Z

398

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

399

Cryogenic, high power, near diffraction limited, Yb:YAG slab laser  

Science Journals Connector (OSTI)

A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic...

Ganija, Miftar; Ottaway, David; Veitch, Peter; Munch, Jesper

2013-01-01T23:59:59.000Z

400

Electron-beam–deposited distributed polarization rotator for high-power laser applications  

Science Journals Connector (OSTI)

Electron-beam deposition of silica and alumina is used to fabricate distributed polarization rotators suitable for smoothing the intensity of large-aperture, high-peak-power lasers....

Oliver, J B; Kessler, T J; Smith, C; Taylor, B; Gruschow, V; Hettrick, J; Charles, B

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High-frequency transformer isolated power conditioning system for fuel cells to utility interface.  

E-Print Network (OSTI)

??This thesis presents interfacing of fuel cells to a single-phase utility line using a high-frequency transformer isolated power converter. This research contributes towards selecting a… (more)

Rathore, Akshay Kumar

2010-01-01T23:59:59.000Z

402

Statistical analysis and optimization of processing parameters in high-power direct diode laser cladding  

Science Journals Connector (OSTI)

High-power direct diode laser (HPDDL) offers a wide laser beam with a top-hat intensity distribution, ... making it an ideal tool for large-area cladding. In this study, a systemic study on the HPDDL cladding pro...

Shuang Liu; Radovan Kovacevic

2014-09-01T23:59:59.000Z

403

Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics  

SciTech Connect

This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

Bebic, J.

2008-02-01T23:59:59.000Z

404

3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers  

Science Journals Connector (OSTI)

A fully 3-dimensional finite element model has been developed that simulates the internal temperature distribution of short-length high-power fiber lasers. We have validated the...

Li, L; Li, H; Qiu, T; Temyanko, V L; Morrell, M M; Schülzgen, A; Mafi, A; Moloney, J V; Peyghambarian, N

2005-01-01T23:59:59.000Z

405

Design and Analysis on Face-Cooled Disk Faraday Rotator under High Average Power Lasers  

Science Journals Connector (OSTI)

A novel, scalable Faraday rotator has been designed for high-average-power lasers in a gas-cooled multi-disk scheme. The concept with a negligible thermal distortion and birefringence...

Yasuhara, Ryo; Yamanaka, Masanobu; Norimatsu, Takayoshi; Izawa, Yasukazu; Kawashima, Toshiyuki; Ikegawa, Tadashi; Matsumoto, Osamu; Sekine, Takashi; Kurita, Takashi; Kan, Hirofumi; Furukawa, Hiroyuki

406

Design and Analysis on Face-Cooled Disk Faraday Rotator for High Average Power Lasers  

Science Journals Connector (OSTI)

A novel, scalable Faraday rotator has been designed for high-average-power lasers in a gas-cooled multi-disk scheme. The concept with a negligible thermal distortion and birefringence...

Yasuhara, R; Yamanaka, M; Norimatsu, T; Izawa, Y; Kawashima, T; Ikegawa, T; Matsumoto, O; Sekine, T; Kurita, T; Kan, H; Furukawa, H

407

Cryogenic Intracavity Laser Cooling Using High Power Vertical External Cavity Surface Emitting Lasers (VECSELs)  

Science Journals Connector (OSTI)

A Yb:YLF crystal is laser cooled to 150 K from room temperature in an intracavity geometry using a high power InGaAs/GaAs MQW VECSEL operating at 1020 nm with <0.5 nm linewidth.

Ghasemkhani, Mohammadreza; Albrecht, Alexander R; Melgaard, Seth; Seletskiy, Denis V; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor

408

All-solid-state high-power conduction-cooled Nd:YLF rod laser  

Science Journals Connector (OSTI)

A high-average-power conduction-cooled diode-pumped Nd:YLF rod laser has been developed. A new conduction-cooled side-pumping scheme with a solid prismatic pump-light confinement...

Hirano, Y; Yanagisawa, T; Ueno, S; Tajime, T; Uchino, O; Nagai, T; Nagasawa, C

2000-01-01T23:59:59.000Z

409

High-Power Thermoelectrically-Cooled and Uncooled Mid-Wave Infrared Quantum Cascade Lasers  

Science Journals Connector (OSTI)

We present high performance thermoelectrically-cooled and uncooled mid-wave infrared (?=4.6 ?m) quantum cascade lasers with continuous-wave output power of 2.9 W and 1 W at room...

Maulini, Richard; Lyakh, Arkadiy; Tsekoun, Alexei; Pflugl, Christian; Diehl, Laurent; Capasso, Federico; Patel, Kumar

410

Ignition studies in support of the European High Power Laser Energy Research Facility project  

Science Journals Connector (OSTI)

The European High Power Laser Energy Research Facility (HiPER) project is ... of the fusion target mixing prior to thermonuclear ignition have been investigated using the 1D Lagrangian...Z ion species may inhibit...

J. Pasley

2010-11-01T23:59:59.000Z

411

A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools  

SciTech Connect

Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to today’s power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

Chen, Yousu; Huang, Zhenyu

2014-08-31T23:59:59.000Z

412

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-01-01T23:59:59.000Z

413

The Los Alamos VXI-based modular RF control system  

SciTech Connect

This paper describes the design and implementation of the Los Alamos modular RF control system, which provides high-performance feedback and/or feedforward control of RF accelerator cavities. This is a flexible, modular control system which has been realized in the industry-standard VXI cardmodular format. A wide spectrum of system functionality can be accommodated simply by incorporating only those modules and features required for a particular application. The fundamental principles of the design approach are discussed. Details of the VXI implementation are given, including the system architecture and interfaces, performance capabilities, and available features.

Jachim, S.P.; Ziomek, C.; Natter, E.F.; Regan, A.H.; Hill, J.; Eaton, L.; Gutscher, W.D.; Curtin, M.; Denney, P.; Hansberry, E.; Brooks, T.

1993-06-01T23:59:59.000Z

414

The MuCool Test Area and RF Program  

SciTech Connect

The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. This paper will give an overview of the program, which will include a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field which allows for a more detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

Bross, A D; Jansson, A; Moretti, A; Yonehara, K; Huang, D; Torun, Y; Li, D; Norem, J; Palmer, R B; Stratakis, D

2010-05-01T23:59:59.000Z

415

A 25 KV/10A PULSER FOR DRIVING A HIGH-POWER PIERCE ELECTRON GUN  

E-Print Network (OSTI)

A 25 KV/10A PULSER FOR DRIVING A HIGH-POWER PIERCE ELECTRON GUN J. J. Barroso, J. O. Rossi, H-tube pulser to drive a high-power electron gun. The tube includes a 2.0µF/100kV capacitor bank whose discharge is controlled by a tetrode tube connected to the gun cathode. Typical measured operating parameters are 3

416

Methods for enhancing the efficiency of creating a borehole using high power laser systems  

DOE Patents (OSTI)

Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

2014-06-24T23:59:59.000Z

417

A semi-analytic power balance model for low (L) to high (H) mode transition power threshold  

SciTech Connect

We present a semi-analytic model for low (L) to high (H) mode transition power threshold (P{sub th}). Two main assumptions are made in our study. First, high poloidal mode number drift resistive ballooning modes (high-m DRBM) are assumed to be the dominant turbulence driver in a narrow edge region near to last closed flux surface. Second, the pre-transition edge profile and turbulent diffusivity at the narrow edge region pertain to turbulent equipartition. An edge power balance relation is derived by calculating the dissipated power flux through both turbulent conduction and convection, and radiation in the edge region. P{sub th} is obtained by imposing the turbulence quench rule due to sheared E?×?B rotation. Evaluation of P{sub th} shows a good agreement with experimental results in existing machines. Increase of P{sub th} at low density (i.e., the existence of roll-over density in P{sub th} vs. density) is shown to originate from the longer scale length of the density profile than that of the temperature profile.

Singh, R., E-mail: rsingh129@yahoo.co.in [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Institute for Plasma Research, Bhat Gandhinagar 2382 428 (India); Jhang, Hogun [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kaw, P. K. [Institute for Plasma Research, Bhat Gandhinagar 2382 428 (India); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Center for Momentum Transport and Flow Organization, University of California, San Diego, California 92093 (United States); Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0424 (United States); Nordman, H. [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Bourdelle, C. [Euratom-CEA Association, CEA/DSM/DRFC, CEA Cadarache F-13108 Saint-Paul-Lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon Sur Verdon, A. 13115 Saint Paul Lez Durance (France)

2014-06-15T23:59:59.000Z

418

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

419

Comparison of Measured and Calculated Coupling between a Waveguide and an RF Cavity Using CST Microwave Studio  

SciTech Connect

Accurate predications of RF coupling between an RF cavity and ports attached to it have been an important study subject for years for RF coupler and higher order modes (HOM) damping design. We report recent progress and a method on the RF coupling simulations between waveguide ports and RF cavities using CST Microwave Studio in time domain (Transit Solver). Comparisons of the measured and calculated couplings are presented. The simulated couplings and frequencies agree within {approx} 10% and {approx} 0.1% with the measurements, respectively. We have simulated couplings with external Qs ranging from {approx} 100 to {approx} 100,000, and confirmed with measurements. The method should also work well for higher Qs, and can be easily applied in RF power coupler designs and HOM damping for normal-conducting and superconducting cavities.

J. Shi; H. Chen; S. Zheng; D. Li; R.A. Rimmer; H. Wang

2006-06-26T23:59:59.000Z

420

Operation of a planar-electrode ion trap array with adjustable RF electrodes  

E-Print Network (OSTI)

One path to scaling-up trapped atomic ions for large-scale quantum computing and simulation is to create a two-dimensional array of ion traps in close proximity to each other. A method to control the interactions between nearest neighboring ions is demonstrated and characterized here, using an adjustable radio-frequency (RF) electrode between trapping sites. A printed circuit board planar-electrode ion trap is demonstrated, trapping laser-cooled $^{40}$Ca$^+$ ions. RF shuttling and secular-frequency adjustment are shown as a function of the power applied to the addressed RF electrode. The trapped ion's heating rate is measured via a fluorescence recooling method.

Muir Kumph; Philip Holz; Kirsten Langer; Michael Niedermayr; Michael Brownnutt; Rainer Blatt

2014-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water  

E-Print Network (OSTI)

The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

2015-01-01T23:59:59.000Z

422

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

423

A HIGH-FIELD PULSED SOLENOID MAGNET FOR LIQUID METAL TARGET STUDIES  

E-Print Network (OSTI)

studies have been car- ried out for rotating-band targets, a tantalum/water target, and a liquid parameters for a pulsed solenoid, including the magnet cryogenic sys- tem and power supply, that can generate, the operation of rf cavities near high-power targets, and evaluation of target materials. Mercury Jet + Proton

McDonald, Kirk

424

A calculation of the temperature of contact surfaces in a high-power discharge of electric current of commercial frequency  

Science Journals Connector (OSTI)

Thermal processes occuring at the surface of disconnected electric contacts subjected to a high-power electric arc are considered.

I. L. Shleifman

1970-05-01T23:59:59.000Z

425

Low jitter RF distribution system  

DOE Patents (OSTI)

A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

2012-09-18T23:59:59.000Z

426

High power x-ray welding of metal-matrix composites  

DOE Patents (OSTI)

A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

Rosenberg, Richard A. (Naperville, IL); Goeppner, George A. (Orland Park, IL); Noonan, John R. (Naperville, IL); Farrell, William J. (Flossmoor, IL); Ma, Qing (Westmont, IL)

1999-01-01T23:59:59.000Z

427

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

428

State of the art of High Temperature Power Electronics Cyril Buttay, Dominique Planson, Bruno Allard, Dominique Bergogne,  

E-Print Network (OSTI)

automotive systems. Here, we list a few applications that all currently require power electronic systemsState of the art of High Temperature Power Electronics Cyril Buttay, Dominique Planson, Bruno.buttay@insa-lyon.fr www.ampere-lab.fr Keywords High-temperature, Silicon carbide, Power electronics Abstract High

Paris-Sud XI, Université de

429

Nice, Cte d'Azur, France, 27-29 September 2006 THERMAL MODELING OF HIGH POWER LED MODULES  

E-Print Network (OSTI)

Nice, Côte d'Azur, France, 27-29 September 2006 THERMAL MODELING OF HIGH POWER LED MODULES D a study of accuracy issues in thermal modeling of high power LED modules on system level. Both physical dynamics (CFD) model of a high power LED module model at a reference application condition, and to validate

Paris-Sud XI, Université de

430

High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium-doped PPKTP  

E-Print Network (OSTI)

for high power, continuous wave and polarized laser at 946 nm (fig1.c). We demonstrate a polarized laser. Laurell, "High-power, continous-wave, second harmonic generation at 532 nm in periodically poled KTiOPO4(b)(a) (c) High power single-crystal fiber CW 946 nm laser and blue generation based on Rubidium

Boyer, Edmond

431

A Stochastic Unit-Commitment Model to Estimate the Costs of Changing Power Plant Operation under High Amounts of Intermittent Wind Power  

E-Print Network (OSTI)

) a market for district heating and process heat. Time series for the wind power production rely on timeA Stochastic Unit-Commitment Model to Estimate the Costs of Changing Power Plant Operation under High Amounts of Intermittent Wind Power Integration Meibom, P.1 , Brand, H.2 , Barth, R.2 and Weber, C

432

COLLECTIVE EVIDENCE FOR INVERSE COMPTON EMISSION FROM EXTERNAL PHOTONS IN HIGH-POWER BLAZARS  

SciTech Connect

We present the first collective evidence that Fermi-detected jets of high kinetic power (L{sub kin}) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L{sub kin} > 10{sup 45.5} erg s{sup -1}) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self-Compton (SSC) emission. For the lowest power jets (L{sub kin} < 10{sup 43.5} erg s{sup -1}), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.

Meyer, Eileen T.; Fossati, Giovanni [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Georganopoulos, Markos [Department of Physics, Joint Center for Astrophysics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Lister, Matthew L. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

2012-06-10T23:59:59.000Z

433

Single electron beam rf feedback free electron laser  

DOE Patents (OSTI)

A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

Brau, C.A.; Stein, W.E.; Rockwood, S.D.

1981-02-11T23:59:59.000Z

434

Design and operating experience of a 40 MW, highly-stabilized power supply  

SciTech Connect

Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of <10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [Florida State Univ., Tallahassee, FL (United States). Nationa High Magnetic Field Laboratory; Bogdan, F.; Morris, G.C. [ABB Industrial Systems, New Berlin, WI (United States); Rumrill, R.S. [Alpha Scientific Electronics Inc., Hayward, CA (United States)

1995-07-01T23:59:59.000Z

435

Use of High?Power Combiners and Fast Directional Switches in ECRH Systems  

Science Journals Connector (OSTI)

The new generation of compact devices for the combination and the fast switching of high?power millimeter?wave beams [1] for Electron Cyclotron Heating (ECH) gives the possibility to switch the power (in tens of microseconds) between two lines (or two ECH launchers even modulating it between them) and combine two gyrotron sources (or in principle even more) in one single transmission line for doubling the transmitted power. This is useful in many respects in order to: 1) ?double the efficiency in modulated EC for neoclassical Tearing Modes (NTM) stabilization 2) avoid to switch?off gyrotrons in conventional (slow) switching 3) electronically control the power sharing between different applications (heating/current?drive or NTM stabilization) 4) upgrade the existing ECH systems to twice the power without adding complete transmission lines and launchers 5) test components at a power doubled with respect to the power capability of the available sources. This opens the way to the development of a more effective “active” real?time control of the ECRH power routing and generally to more flexible and powerful ECH systems. The development of different devices and the advantages for (and in view of) ITER are addressed.

A. Bruschi; W. Kasparek; V. Erckmann; M. Petelin; W. Bin; O. D’Arcangelo; L. Lubyako; V. Muzzini; B. Plaum

2009-01-01T23:59:59.000Z

436

Thermionic/AMTEC cascade converter concept for high-efficiency space power  

SciTech Connect

This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as high as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.

Hagan, T.H. van; Smith, J.N. Jr. [General Atomics, San Diego, CA (United States); Schuller, M. [PL/VTP, Kirtland AFB, NM (United States)

1996-12-31T23:59:59.000Z

437

POST-IRRADIATION PROPERTIES OF CANDIDATE MATERIALS FOR HIGH POWER TARGETS  

E-Print Network (OSTI)

POST-IRRADIATION PROPERTIES OF CANDIDATE MATERIALS FOR HIGH POWER TARGETS H. Kirk, N. Simos, P Diffusivity Resistivity Thermal Expansion (CTE) Integrated Effects Shock absorption Is Carbon CTE composite that may potentially minimize thermal shock and survive high intensity pulses. Graphite

McDonald, Kirk

438

Mats Lindroos, Cristina Oyon and Stevey OECD "A High Power Spallation Source in each Global Region"  

E-Print Network (OSTI)

ESS Mats Lindroos, Cristina Oyon and Stevey Peggs #12;ESS 2 #12;OECD "A High Power Spallation Source in each Global Region" SNS Oak Ridge J-PARC Tokai ESS in Lund #12;ESS: Site selection process · ESS high up on the ESFRI list Th ti biddi f th it (Bilb L d d· Three consortia bidding for the site

McDonald, Kirk

439

Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and  

E-Print Network (OSTI)

Power Limitation Control for a PMSG-Based Marine Current Turbine at High Tidal Speed and Strong Sea Abstract--This paper deals with the control strategies for a fixed-pitch marine current turbine (MCT) when the nominal MPPT tracking speed during high speed marine currents. In the speed control strategy, the turbine

Paris-Sud XI, Université de

440

High-Power InP-based Waveguide Photodiodes and Photodiode Arrays Heterogeneously Integrated on SOI  

E-Print Network (OSTI)

High-Power InP-based Waveguide Photodiodes and Photodiode Arrays Heterogeneously Integrated on SOI evanescently-coupled modified uni-traveling carrier photodiodes (MUTC PDs) on silicon-on-insulator (SOI on silicon is a promising approach to realize high-performance photodiodes on a silicon photonics platform

Bowers, John

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications  

E-Print Network (OSTI)

-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters and energy are primary concerns in modern high- performance computing system design. Operational costs power and energy consumption in high-performance systems, including each component's electrical

442

High-power Er:YAG laser for coherent laser radar  

Science Journals Connector (OSTI)

We report the development of a high-power Er:YAG laser with high pulse energy for coherent lidar wind sensing. The 1.645 um Er:YAG laser produced a Q-switched pulse energy of 16 mJ...

Stoneman, Robert C; Malm, Andrew I R

443

Generation of high peak power pulse using 2 stage erbium-doped fiber amplifier  

E-Print Network (OSTI)

-doped fiber. For the second stage, two 1480nm pump lasers were used to pump erbium-doped fiber in both forward and backward propagating direction. The signal laser was modulated to produce pulses with high repetition rate high peak power. The first stage...

Lee, Kyung-Woo

2012-06-07T23:59:59.000Z

444

Power-law Behavior of High Energy String Scatterings in Compact Spaces  

E-Print Network (OSTI)

We calculate high energy massive scattering amplitudes of closed bosonic string compactified on the torus. We obtain infinite linear relations among high energy scattering amplitudes. For some kinematic regimes, we discover that some linear relations break down and, simultaneously, the amplitudes enhance to power-law behavior due to the space-time T-duality symmetry in the compact direction. This result is consistent with the coexistence of the linear relations and the softer exponential fall-off behavior of high energy string scattering amplitudes as we pointed out prevously. It is also reminiscent of hard (power-law) string scatterings in warped spacetime proposed by Polchinski and Strassler.

Jen-Chi Lee; Yi Yang

2007-09-28T23:59:59.000Z

445

Electrical heating of soils using high efficiency electrode patterns and power phases  

DOE Patents (OSTI)

Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

Buettner, Harley M. (Livermore, CA)

1999-01-01T23:59:59.000Z

446

Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms  

E-Print Network (OSTI)

We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

2014-12-02T23:59:59.000Z

447

Excitation frequency effects on atmospheric-pressure helium RF microplasmas: plasma density, electron energy and plasma impedance  

Science Journals Connector (OSTI)

...The effects of the driving RF frequency on the properties of low temperature atmospheric pressure helium microplasmas are discussed in light...?...m microdischarge driven at constant input power with a 10 MHz–...

K. McKay; F. Iza; M. G. Kong

2010-12-01T23:59:59.000Z

448

TPV Power Generation System Using a High Temperature Metal Radiant Burner  

Science Journals Connector (OSTI)

Interest has grown in micro?combined heat and power (micro?CHP). Thermophotovoltaic (TPV) generation of electricity in fuel?fired furnaces is one of the micro?CHP technologies that are attracting technical attention. Previous investigations have shown that a radiant burner that can efficiently convert fuel chemical energy into radiation energy is crucial to realize a practical TPV power system. In this work we developed a TPV power generation system using a gas?fired metal radiant burner. The burner consists of a high temperature alloy emitter which could have an increased emissivity at short wavelengths and low emissivity at long wavelengths. The metal emitter is capable of bearing high temperatures of interest to fuel?fired TPV power conversion. GaSb TPV cells were tested in the combustion?driven radiant source. Electric output characteristics of the TPV cells were investigated at various operating conditions. The electric power output of the TPV cells was demonstrated to be promising. At an emitter temperature of 1185°C an electric power density of 0.476 W/cm2 was generated by the GaSb cells. It is shown that the metal emitter is attractive and could be applied to practical fuel?fired TPV power systems.

K. Qiu; A. C. S. Hayden; E. Entchev

2007-01-01T23:59:59.000Z

449

Development of an L-Band RF Electron Gun for SASE in the Infrared Region  

SciTech Connect

We conduct research on Self-Amplified Spontaneous Emission (SASE) in the infrared region using the 40 MeV, 1.3 GHz L-band linac of Osaka University. The linac equipped with a thermionic electron gun can accelerate a high-intensity single-bunch beam though its normalized emittance is high. In order to advance the research on SASE, we have begun development of an RF gun for the L-band linac in collaboration with KEK. We will report conceptual design of the RF gun and present the status of development of another RF gun for STF at KEK.

Kashiwagi, Shigeru; Kato, Ryukou; Isoyama, Goro [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayano, Hitoshi; Urakawa, Junji [Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-02-03T23:59:59.000Z

450

RF Systems in a Neutrino Factory  

SciTech Connect

Based on existing sources, I compile parameters for the RF systems for a neutrino factory which accelerates to 10 GeV.

Berg J. S.

2012-09-07T23:59:59.000Z

451

RF Micro Devices | Open Energy Information  

Open Energy Info (EERE)

for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2009 RF Micro Devices is a company located in Greensboro, NC....

452

High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of  

Office of Science (SC) Website

High-Power Electrodes for Lithium-Ion High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement For novel 3-D anodes made of sheets of carbon (graphene) and silicon nanoparticles, transport studies found much shorter lithium diffusion paths throughout the electrode and fast lithiation/delithiation of the nanoparticles. Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and charges/discharges more rapidly while maintaining mechanical stability. Research Details Electrochemical studies: 83% of theoretical capacity (3200 mAh g-1)

453

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

454

FY2001 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH-POWER HIGH-POWER ENERGY STORAGE 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Ave., S.W. Washington, DC 20585-0121 FY 2001 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy

455

A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit  

SciTech Connect

By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx} 10{sup 8} A/cm{sup 2}), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 10{sup 7} Watt/cm{sup 2}. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm{sup 2} or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

Wilson, Perry B.; /SLAC

2007-03-06T23:59:59.000Z

456

High energy electron fluxes in dc-augmented capacitively coupled plasmas I. Fundamental characteristics  

SciTech Connect

Power deposition from electrons in capacitively coupled plasmas (CCPs) has components from stochastic heating, Joule heating, and from the acceleration of secondary electrons through sheaths produced by ion, electron, or photon bombardment of electrodes. The sheath accelerated electrons can produce high energy beams which, in addition to producing excitation and ionization in the gas can penetrate through the plasma and be incident on the opposite electrode. In the use of CCPs for microelectronics fabrication, there may be an advantage to having these high energy electrons interact with the wafer. To control the energy and increase the flux of the high energy electrons, a dc bias can be externally imposed on the electrode opposite the wafer, thereby producing a dc-augmented CCP (dc-CCP). In this paper, the characteristics of dc-CCPs will be discussed using results from a computational study. We found that for a given rf bias power, beams of high energy electrons having a narrow angular spread (<1 deg. ) can be produced incident on the wafer. The maximum energy in the high energy electron flux scales as {epsilon}{sub max}=-V{sub dc}+V{sub rf}+V{sub rf0}, for a voltage on the dc electrode of V{sub dc}, rf voltage of V{sub rf}, and dc bias on the rf electrode of V{sub rf0}. The dc current from the biased electrode must return to ground through surfaces other than the rf electrode and so seeks out a ground plane, typically the side walls. If the side wall is coated with a poorly conducting polymer, the surface will charge to drive the dc current through.

Wang Mingmei [Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50010 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

2010-01-15T23:59:59.000Z

457

Note: Efficient generation of optical sidebands at GHz with a high-power tapered amplifier  

SciTech Connect

Two methods using a laser-diode tapered amplifier to produce high-power, high-efficiency optical frequency sidebands over a wide tunable frequency range are studied and compared. For a total output of 500 mW at 811 nm, 20% of the power can be placed in each of the first-order sidebands. Functionality and characterization are presented within the sideband frequency region of 0.8–2.3 GHz, and it is shown that both methods can be applied beyond this frequency range. These methods provide a versatile and effective tool for atomic physics experiments.

Zappala, J. C.; Lu, Z.-T. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (United States); Bailey, K.; O’Connor, T. P.; Jiang, W., E-mail: wjiang@phy.anl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2014-04-15T23:59:59.000Z

458

Plasma processing of large curved surfaces for superconducting rf cavity modification  

SciTech Connect

Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.

Upadhyay, J.; Im, Do; Popovi??, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vuskovic, L

2014-12-01T23:59:59.000Z

459

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 HINS R&D: a possible Project X Front End Frequency 325 MHz Total length ~ 55 m SSR1 (β=0.22) SSR2 (β=0.4) RT -CHSR MEBT RFQ IS W (MeV) 2.5 0.050 60 30 10 Beam Line Elements: 19 Conventional RT Cavities 29 SC Spoke Cavities and 3 Cryomodules 42 SC Focusing Solenoids RF Power Elements: one 325 MHz Klystron/Modulator one 400 kW RFQ FVM 19 ~20 kW FVM/Fast Tuning for RT Section 29 ~20-120 kW FVM/Fast Tuning for SC Section Power Supplies, quench protection, beam diagnostic,.. Fermilab 2 * HINS R&D Phase: Proof of innovative approach to high intensity beam acceleration ! - 2007-2011/12 R&D period - Prove, Develop & Bui ld Front-End in Meson Bldg. at 325 MHz (0-60 MeV) since much of the technical complexity is in the FE Mechanical/RF Systems * Demonstrate for the first time

460

System efficiency analysis for high power solid state radio frequency transmitter  

SciTech Connect

This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8?MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.

Jain, Akhilesh, E-mail: ajain@rrcat.gov.in; Sharma, D. K.; Gupta, A. K.; Lad, M. R.; Hannurkar, P. R. [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Pathak, S. K. [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)] [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)

2014-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "high power rf" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion  

SciTech Connect

In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

El-Genk, Mohamed S.; Tournier, Jean-Michel P. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, The University of New Mexico, Albuquerque, NM (United States)

2002-07-01T23:59:59.000Z

462

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

463

Development of internal-antenna-driven large-area RF plasma sources using multiple low-inductance antenna units  

Science Journals Connector (OSTI)

Large-area and high-density radio frequency (RF) plasmas at 13.56 \\{MHz\\} have been produced by inductive coupling of internal-type low-inductance antenna units. The present study has been carried out to develop the basic discharge techniques which can be applied to production of meter-scale large-area and/or large-volume plasma sources with high density for a variety of plasma processes. The plasma source could be operated stably to attain plasma density as high as 1×1012 cm?3 at argon pressures of approximately 1 Pa. It has been demonstrated that high plasma density can be obtained efficiently using the low-inductance internal antenna configuration with effectively suppressed electrostatic coupling. Discharge experiments in a meter-scale chamber demonstrated uniform plasma production with densities as high as 6×1011 cm?3 at an argon pressure of 1.3 Pa and a RF power of 4 kW.

Y. Setsuhara; T. Shoji; A. Ebe; S. Baba; N. Yamamoto; K. Takahashi; K. Ono; S. Miyake

2003-01-01T23:59:59.000Z

464

Effects of variable renewable power on a country-scale electricity system: High penetration of hydro power plants and wind farms in electricity generation  

Science Journals Connector (OSTI)

The present article analyses the effects caused by variable power. The analysis concerns a country-scale electricity system with a relatively high penetration of seasonally variable hydro power plants and wind farms in the total electricity generation in 2030. For this purpose, the Latvian electricity system was chosen as an appropriate case study, as around half of its electricity is already generated from hydro power and numerous wind farm installations are planned for 2030. Results indicate that in such systems high renewable power variations occur between seasons causing a high probability of power deficit in the winter and power surplus in the spring. Based on the results, the wind farms' influence on the power deficit and surplus occurrences are discussed in detail. Wind farm generation decreases the probability of the electricity system being in power deficit, but increases the probability of the system being in power surplus. In the latter situation, the maximum value of power surplus increases since it is enhanced by the wind farm generation. Probability equations to express these changes are provided.

Arturs Purvins; Ioulia T. Papaioannou; Irina Oleinikova; Evangelos Tzimas

2012-01-01T23:59:59.000Z

465

Note on RF Photo-Cathode Gun  

E-Print Network (OSTI)

E.R. Gray and P.M. Giles, "Photo-cathodes in AcceleratorProceedings Note on RF Photo-Cathode Gun K. -J. Kim August106 LBL-29538 Note on RF Photo-Cathode G un Kwang-Je Kim

Kim, Kwang-Je

2010-01-01T23:59:59.000Z

466

RF SYSTEM FOR THE SNS ACCUMULATOR RING.  

SciTech Connect

During accumulation the RF beam current in the spallation neutron source ring rises from 0 to 50 amperes. A clean, 250 nanosecond gap is needed for the extraction kicker risetime. Large momentum spread and small peak current are needed to prevent instabilities and stopband related losses. A robust RF system meeting these requirements has been designed.

BLASKIEWICZ, M.; BRENNAN, J.M.; BRODOWSKI, J.; DELONG, J.; METH, M.; SMITH, K.; ZALTSMAN, A.

2001-06-18T23:59:59.000Z

467

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

468

Use of the LEDA Facility as an ADS High-Power Accelerator Test Bed  

SciTech Connect

The Low-Energy Demonstration Accelerator (LEDA) was built to generate high-current proton beams. Its successful full-power operation and testing in 1999-2001 confirmed the feasibility of a high-power linear accelerator (linac) front end, the most technically challenging portion of such a machine. The 6.7-MeV accelerator operates reliably at 95-mA CW beam current with few interruptions orjaults, and qualiJes as one of the most powerful accelerators in the world. LEDA is now available to address the needs of other programs. LEDA can be upgraded in a staged fashion to allow for full-power accelerator demonstrations. The proposed post-h!FQ accelerator structures are 350-MHz superconducting spoke cavities developed for the AAA /APT program. The superconducting portion of the accelerator is designed for a IOO-mA proton beam current. Superconducting cavities were chosen because of the signijkant thermal issues with room-temperature structures, the larger superconducting cavity apertures, and the lower operating costs ('because of improved electrical efficiency) of a superconducting accelerator. Since high reliability is a major issue for an ADS system, the superconducting design architecture alIows operation through faults due to the failure of single magnets or superconducting cavities. The presently installed power capacity of 13 MVA of input ACpower is capable of supporting a 40-MeVproton beam at 100 mA. (The input power is easily expandable to 25 MVA, allowing up to 100-MeV operation). Operation at 40-MeV would provide a complete demonstration of all of the critical accelerator sub-systems ofa full-power ADS system.

Garnett, R. W. (Robert W.); Sheffield, R. L. (Richard L.)

2003-01-01T23:59:59.000Z

469

Thermal evaluation and performance of high-power Lithium-ion cells  

SciTech Connect

Under the sponsorship of the US Advanced Battery Consortium (USABC) and the Partnership for a New Generation of Vehicles (PNGV), Saft has developed high-power lithium-ion (Li-Ion) batteries for hybrid electric vehicles (HEVs). These high-power Li-Ion batteries are being evaluated for the US Department of Energy's (DOE) Hybrid Vehicle Propulsion Program. As part of this program, the National Renewable Energy Laboratory (NREL) characterized the thermal performance of the Saft (6-Ah) Li-Ion cells. The characterization included (1) obtaining thermal images of cells under a specified cycle, (2) measuring heat generation from the cells at various temperatures and under various charge/discharge profiles, and (3) determining the cells' capabilities for following a simulated power profile (driving cycle) at various initial states of charge and temperatures.

Keyser, M.; Pesaran, A.; Oweis, S.; Chagnon, G.; Ashtiani, C.

2000-01-25T23:59:59.000Z

470

R&D ERL: Low level RF  

SciTech Connect

A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

Smith, K.

2010-01-15T23:59:59.000Z

471

Gain media edge treatment to suppress amplified spontaneous emission in a high power laser  

DOE Patents (OSTI)

A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

Hackel, Lloyd A. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Fochs, Scott N. (Livermore, CA); Rotter, Mark D. (San Ramon, CA); Letts, Stephan A. (San Ramon, CA)

2008-12-09T23:59:59.000Z

472

Algorithm-Based Low-Power and High-Performance Multimedia Signal Processing  

E-Print Network (OSTI)

-power and high-performance signal-processing systems. The proposed multirate design methodology is systematic and to show that the multirate approach is an effective and systematic design methodology to achieve low design, motion estimation, multirate processing, parallel architectures, Reed­Solomon codes, video coding

Hung, Shih-Hao

473

Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams  

E-Print Network (OSTI)

and are suspended in a vacuum vessel : the heat losses are only due to the thermal radiation. The resulting2243 Analytical models of transient thermoelastic deformations of mirrors heated by high power cw substrat. La distribution de température engendrée dans le substrat produit des déformations

Boyer, Edmond

474

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

475

HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS.  

E-Print Network (OSTI)

HIGH-LEVEL MULTI-STEP INVERTER OPTIMIZATION, USING A MINIMUM NUMBER OF POWER TRANSISTORS. Juan 56-41-246-999 e-mail lmoran@renoir.die.udec.cl ABSTRACT Multilevel inverters with a large number-5]. Multi-level inverters can operate not only with PWM techniques but also with amplitude modulation (AM

Catholic University of Chile (Universidad Católica de Chile)

476

A Mesochronous Pipeline Scheme for High Performance Low Power Digital Systems  

E-Print Network (OSTI)

A Mesochronous Pipeline Scheme for High Performance Low Power Digital Systems Suryanarayana B University Pullman, WA 99164-2752 Email: {statapud, jdelgado}geecs.wsu.edu Abstract- A mesochronous pipeline mesochronous pipeline over conventional pipeline architecture. in size (longer wires with increased parasitic

Delgado-Frias, José G.