National Library of Energy BETA

Sample records for high performance window

  1. High Performance Window Attachments

    Broader source: Energy.gov (indexed) [DOE]

    Statement: * A wide range of residential window attachments are available, but they ... to model wide range of window coverings * Performed window coverings ...

  2. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  3. Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments.

  4. Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Broader source: Energy.gov [DOE]

    Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

  5. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  6. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a home’s windows has the potential to significantly improve the home’s overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  7. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    SciTech Connect (OSTI)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian; Arasteh P.E., Dariush; Uvslokk, Sivert; Talev, Goce; Petter Jelle Ph.D., Bjorn

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulations according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.

  8. A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu

    2014-08-31

    Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to today’s power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

  9. High Power Coax Window

    SciTech Connect (OSTI)

    Neubauer, M. L.; Dudas, A.; Sah, R.; Elliott, T. S.; Rimmer, R. A.; Stirbet, M. S.

    2010-05-23

    A su­per­con­duct­ing RF (SRF) power cou­pler ca­pa­ble of han­dling 500 kW CW RF power is re­quired for pre­sent and fu­ture stor­age rings and linacs. There are over 35 cou­pler de­signs for SRF cav­i­ties rang­ing in fre­quen­cy from 325 to 1500 MHz. Cou­pler win­dows vary from cylin­ders to cones to disks, and RF power cou­plers are lim­it­ed by the abil­i­ty of ce­ram­ic win­dows to with­stand the stress­es due to heat­ing and me­chan­i­cal flex­ure. We pro­pose a novel ro­bust co-ax­i­al SRF cou­pler de­sign which uses com­pressed win­dow tech­nol­o­gy. This tech­nol­o­gy will allow the use of high­ly ther­mal­ly con­duc­tive ma­te­ri­als for cryo­genic win­dows. Using com­pressed win­dow tech­niques on disk co-ax­i­al win­dows will make sig­nif­i­cant im­prove­ments in the power han­dling of SRF cou­plers. We pre­sent the bench test re­sults of two win­dow as­sem­blies back to back, as well as in­di­vid­u­al win­dow VSWR in EIA3.125 coax. A vac­u­um test as­sem­bly was made and the win­dows baked out at 155C. The pro­cess­es used to build win­dows is scal­able to larg­er di­am­e­ter coax and to high­er power lev­els.

  10. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  11. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  12. Energy Performance Ratings for Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Energy performance ratings make it easier to shop for energy-efficient windows, doors, and skylights.

  13. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  14. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  15. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  16. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  17. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  18. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  19. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  20. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  1. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  2. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  3. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  4. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  5. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  6. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These windows target significant reductions in residential heating as well as cooling energy. Contacts DOE Technology Manager: Karma Sawyer Performer: Steve Selkowitz, Lawrence ...

  7. High-power testing of PEP-II RF cavity windows

    SciTech Connect (OSTI)

    Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1996-06-01

    We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

  8. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  9. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  10. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern

    2010-03-15

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  11. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  12. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  13. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  14. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect (OSTI)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  15. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  16. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect (OSTI)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  17. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-WenÂź triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly

  18. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  19. New Rating System for Enhancing Window Energy Performance

    Broader source: Energy.gov [DOE]

    Window attachments, such as awnings, shutters, drapes, and solar shades, are often used for cosmetic purposes and to help control the amount of light entering a room. However, many Americans aren't aware that identifying energy conserving window strategies are cost effective in homes and commercial buildings. The Window Covering Manufacturers Association (WCMA) will cost-share Energy Department funding to help consumers realize potential energy savings from window attachments through the creation of a comprehensive energy ratings and certification program.

  20. Electrochromic window with high reflectivity modulation

    DOE Patents [OSTI]

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  1. EERE Success Story-Performance Validation of Low-e Storm Windows...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of Low-e Storm Windows Paves Way for Market Acceptance EERE Success Story-Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance September 30, ...

  2. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning ...

  3. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  4. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOE’s Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  5. High Performance Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (2.09 MB) More Documents & Publications Fenestration Software Tools Advanced Facades, Daylighting, and Complex Fenestration Systems OpenStudio - 2013 Peer Review

  6. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  7. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  8. High-power RF window and coupler development for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported.

  9. NREL Solves Residential Window Air Conditioner Performance Limitations (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Comprehensive performance tests lead to enhanced modeling capability and affordable methods to increase energy efficiency.

  10. High-Efficiency Window Air Conditioners- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

  11. New High-Efficiency Window Prototype Result of DOE Partnership...

    Office of Environmental Management (EM)

    December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a next-generation residential and commercial window prototype. When widely ...

  12. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  13. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  14. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  15. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  16. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling ...

  17. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid the multipactor phenomenon on cylinder windows is discussed.

  18. High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC INL Logo Home High-Performance Computing INL's high-performance computing center provides general use scientific computing capabilities to support the lab's efforts in advanced...

  19. High-power RF window design for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N. |; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered.

  20. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Choose high-performance windows that have at least two panes of glass and a low-e coating. Choose a low U-factor for better insulation in colder climates; the U-factor is the...

  1. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  2. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect (OSTI)

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  3. High performance systems

    SciTech Connect (OSTI)

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  4. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  5. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  6. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  7. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while

  8. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  9. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

  10. Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance

    Broader source: Energy.gov [DOE]

    One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity (low-e) storm windows. A low-e coating or glazing is a thin layer deposited directly on the surface of one...

  11. Windows Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: Window Covering Manufacturing Association - New York, NY Core Research ... National Laboratory (LBNL) - Berkeley, CA Core Research Support for BTO WindowsEnvelope ...

  12. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  13. Database of Low-e Storm Window Energy Performance across U.S. Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2014-09-04

    This is an update of a report that describes process, assumptions, and modeling results produced Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone.

  14. High Performance Buildings Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  15. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  16. High Performance Commercial Fenestration Framing Systems

    SciTech Connect (OSTI)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  17. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance

    SciTech Connect (OSTI)

    Lemmon, John P.; Polikarpov, Evgueni; Bennett, Wendy D.; Kovarik, Libor

    2012-05-25

    We report on CdS/CdTe photovoltaic devices that contain a thin Ta₂O₅ film deposited onto the CdS window layer by sputtering. We show that for thicknesses below 5 nm, Ta₂O₅ films between CdS and CdTe positively affect the solar cell performance, improving JSC, VOC, and the cell power conversion efficiency despite the insulating nature of the interlayer material. Using the Ta₂O₅ interlayer, a VOC gain of over 100 mV was demonstrated compared to a CdTe/CdS baseline. Application of a 1nm Ta₂O₅ interlayer enabled the fabrication of CdTe solar cells with extremely thin (less than 30 nm) CdS window layers. The efficiency of these cells exceeded that of a base line cell with 95 nm of CdS.

  18. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds

    SciTech Connect (OSTI)

    Chang Chao; Liu Guozhi; Tang Chuanxiang; Chen Changhua; Fang Jinyong

    2011-05-15

    Dielectric window breakdown is a serious challenge in high-power microwave (HPM) transmission and radiation. Breakdown at the vacuum/dielectric interface is triggered by multipactor and finally realized by plasma avalanche in the ambient desorbed or evaporated gas layer above the dielectric. Methods of improving breakdown thresholds are key challenges in HPM systems. First, the main theoretical and experimental progress is reviewed. Next, the mechanisms of multipactor suppression for periodic rectangular and triangular surface profiles by dynamic analysis and particle-in-cell simulations are surveyed. Improved HPM breakdown thresholds are demonstrated by proof-of-principle and multigigawatt experiments. The current theories and experiments of using dc magnetic field to resonantly accelerate electrons to suppress multipactor are also synthesized. These methods of periodic profiles and magnetic field may solve the key issues of HPM vacuum dielectric breakdown.

  19. High-brightness water-window electron-impact liquid-jet microfocus source

    SciTech Connect (OSTI)

    Skoglund, P.; Lundstroem, U.; Vogt, U.; Hertz, H. M.

    2010-02-22

    We demonstrate stable high-brightness operation of an electron-impact water-jet-anode soft x-ray source. A 30 kV, 7.8 W electron beam is focused onto a 20 mum diameter jet resulting in water-window oxygen line emission at 525 eV/2.36 nm with a brightness of 3.0x10{sup 9} ph/(sxmum{sup 2}xsrxline). Monte Carlo-based modeling shows good quantitative agreement with the experiments. The source has potential to increase the x-ray power and brightness by another 1-2 orders of magnitude and fluid-dynamical jet instabilities is determined to be the most important limiting factor. The source properties make it an attractive alternative for table-top x-ray microscopy.

  20. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    SciTech Connect (OSTI)

    Guggenmos, Alexander; RadĂŒnz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; Kleineberg, Ulf

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assisted interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.

  1. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guggenmos, Alexander; RadĂŒnz, Stefan; Rauhut, Roman; Hofstetter, Michael; Venkatesan, Sriram; Wochnik, Angela; Gullikson, Eric M.; Fischer, Stefan; Nickel, Bert; Scheu, Christina; et al

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  2. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  3. High Performance Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Energy Management Reduce energy use and meet your business objectives By applying continuous improvement practices similar to Lean and Six Sigma, the BPA Energy Smart...

  4. Introduction to High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to High Performance Computing Introduction to High Performance Computing June 10, 2013 Photo on 7 30 12 at 7.10 AM Downloads Download File Gerber-HPC-2.pdf...

  5. Rarefaction windows in a high-power impulse magnetron sputtering plasma

    SciTech Connect (OSTI)

    Palmucci, Maria; Britun, Nikolay; Konstantinidis, Stephanos; Snyders, Rony; Materia Nova Research Center, Parc Initialis, B-7000 Mons

    2013-09-21

    The velocity distribution function of the sputtered particles in the direction parallel to the planar magnetron cathode is studied by spatially- and time-resolved laser-induced fluorescence spectroscopy in a short-duration (20 ?s) high-power impulse magnetron sputtering discharge. The experimental evidence for the neutral and ionized sputtered particles to have a constant (saturated) velocity at the end of the plasma on-time is demonstrated. The velocity component parallel to the target surface reaches the values of about 5 km/s for Ti atoms and ions, which is higher that the values typically measured in the direct current sputtering discharges before. The results point out on the presence of a strong gas rarefaction significantly reducing the sputtered particles energy dissipation during a certain time interval at the end of the plasma pulse, referred to as “rarefaction window” in this work. The obtained results agree with and essentially clarify the dynamics of HiPIMS discharge studied during the plasma off-time previously in the work: N. Britun, Appl. Phys. Lett. 99, 131504 (2011)

  6. Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ™ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

  7. EERE Success Story—Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  8. Window Attachments

    Energy Savers [EERE]

    ... shades Surface applied film Cellular shade Window quilt Seasonal film kit Louvered blinds Roller shades Solar screens Cellular shades Surface applied films Exterior attachments ...

  9. Window Types

    Broader source: Energy.gov [DOE]

    By combining an energy-efficient frame choice with glazing materials for your climate, you can customize your home's windows and reduce your energy bills.

  10. Connecting HPC and High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC and High Performance Networks for Scientists and Researchers SC15 Austin, Texas November 18, 2015 1 Agenda 2 * Welcome and introductions * BoF Goals * Overview of National Research & Education Networks at work Globally * Discuss needs, challenges for leveraging HPC and high-performance networks * HPC/HTC pre-SC15 ESnet/GEANT/Internet2 survey results overview * Next steps discussion * Closing and Thank You BoF: Connecting HPC and High Performance Networks for Scientists and Researchers

  11. Software and High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software and High Performance Computing Software and High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email Software Computational physics, computer science, applied mathematics, statistics and the

  12. CAVE WINDOW

    DOE Patents [OSTI]

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  13. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles 2011 DOE ...

  14. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to ...

  15. Presentation: High Performance Computing Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    A briefing to the Secretary's Energy Advisory Board on High Performance Computing Applications delivered by Frederick H. Streitz, Lawrence Livermore National Laboratory.

  16. High Performance Home Cost Performance Trade-Offs: Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders - ...

  17. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  18. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  19. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  20. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2011 - September 30, 2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air

  1. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    SciTech Connect (OSTI)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa

    2014-07-28

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2} + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O{sub 2}/(O{sub 2} + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  2. EERE Success Story—Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance

    Broader source: Energy.gov [DOE]

    One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity (low-e) storm windows. A low-e coating or glazing is a thin layer deposited directly on the surface of one...

  3. EERE Success Story—Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQℱ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

  4. High Performance and Sustainable Buildings Guidance | Department...

    Office of Environmental Management (EM)

    High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance (192.76 KB) More ...

  5. High Performance Sustainable Building Design RM | Department...

    Office of Environmental Management (EM)

    High Performance Sustainable Building Design RM High Performance Sustainable Building Design RM The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a ...

  6. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  7. Vacuum-barrier window for wide-bandwidth high-power microwave transmission

    DOE Patents [OSTI]

    Caplan, M.; Shang, C.C.

    1996-08-20

    A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric. 4 figs.

  8. Vacuum-barrier window for wide-bandwidth high-power microwave transmission

    DOE Patents [OSTI]

    Caplan, Malcolm; Shang, Clifford C.

    1996-01-01

    A vacuum output window comprises a planar dielectric material with identical systems of parallel ridges and valleys formed in opposite surfaces. The valleys in each surface neck together along parallel lines in the bulk of the dielectric. Liquid-coolant conduits are disposed linearly along such lines of necking and have water or even liquid nitrogen pumped through to remove heat. The dielectric material can be alumina, or its crystalline form, sapphire. The electric-field of a broadband incident megawatt millimeter-wave radio frequency energy is oriented perpendicular to the system of ridges and valleys. The ridges, about one wavelength tall and with a period of about one wavelength, focus the incident energy through in ribbons that squeeze between the liquid-coolant conduits without significant losses over very broad bands of the radio spectrum. In an alternative embodiment, the liquid-coolant conduits are encased in metal within the bulk of the dielectric.

  9. Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Berland, bberland@itnes.com ITN Energy Systems Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: October 1, 2013 Planned end date: September 30, 2014 Key Milestones 1.Low-e Film: 90% T,vis & R,ir (100 cm 2 ) (Q2) 2.Low-e Film: 90% T,vis & R,ir (2m long, %T,%R variation < 2% cross web) (Q3) 3.Demonstrate Low-e/EC Film (Q3) Budget:

  10. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  11. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  12. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  13. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  14. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  15. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  16. High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

  17. A very thin havar film vacuum window for heavy ions to perform radiobiology studies at the BNL Tandem

    SciTech Connect (OSTI)

    Thieberger, P.; Abendroth, H.; Alessi, J.; Cannizzo, L.; Carlson, C.; Gustavsson, A.; Minty, M.; Snydstrup, L.

    2011-03-28

    Heavy ion beams from the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Beam energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4-inch diameter Havar film window that will satisfy these requirements. Films as thin as 80 microinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.

  18. Building America Webinar: High Performance Enclosure Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    how window attachments and coverings, such as storm windows and cellular shades, can be a cost-effective means of reducing energy use in residential buildings. This webinar ...

  19. Highly Insulating Windows for Improved Energy Efficiency and Reliability in Fenestration Applications

    SciTech Connect (OSTI)

    Stark, David

    2010-11-30

    EverSealed Windows, Inc. (ESW) agreed in early 2006, prior to the contract award, to add three additional deliverables to the Project (new Milestones 30, 31 and 32), and have the results of these three deliverables form the basis of the go/no-go decision for proceeding from BP1 to BP2. ESW completed all three milestones and the DOE agreed in November 2006 to continue the Project. ESW subsequently initiated work on BP2 and its two milestones. These were to (1) Assemble and test glass-to-metal bonded coupons to test the strength of ESW's glass-to-metal bonds (ESW's Test Vehicle 1 or TV1), and (2) to assemble and test the hermeticity of glass and metal packages (ESW's Test Vehicle 2 or TV2). ESW completed both milestones of BP2 in late 2010, demonstrating that its bonds were both strong enough and hermetic enough that vacuum insulating glass units could be assembled and survive a 40+ year service life in any climate in North America. Based on the accomplishments in BP-1, the DOE held a go/no-go meeting in Washington, DC in mid-November 2006 and moved the Project into Budget Period 2 (BP-2). During this go/no-go meeting, the DOE expressed a concern that ESW did not have a back-up plan or process should ESW be unable to make its diffusion bonding process more than adequate for the necessary bond strength and hermeticity of the seal. ESW suggested and volunteered to investigate using a glass frit (i.e., solder glass) as a back-up to its diffusion bonding of glass to oxidized metal.

  20. High Performance Sustainable Building Design RM

    Office of Environmental Management (EM)

    High Performance Sustainable Building Design Review Module March 2010 CD-0 O High 0 This ... Director HPSBD High Performance Sustainable Building Design IESNA Illuminating ...

  1. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  2. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building ... - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated ...

  3. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The ...

  4. Turning windows into solar generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar generators Turning windows into solar generators A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light and converts the energy into emitted light of different colors. CREDIT: Courtesy of UbiQD

  5. Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX

    SciTech Connect (OSTI)

    Gerhardt, S P; Diallo, A; Gates, D; LeBlanc, B P; Menard, J E; Mueller, D; Sabbagh, S A; Soukhanovskii, V; Tritz, K

    2012-09-27

    This paper discusses disruption rates, disruption causes, and disruptivity statistics in the high- ?N National Spherical Torus Experiment (NSTX) [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While the overall disruption rate is rather high, configurations with high ?N , moderate q*, strong boundary shaping, sufficient rotation, and broad pressure and current profiles are found to have the lowest disruptivity; active n=1 control further reduces the disruptivity. The disruptivity increases rapidly for q*<2.7, which is substantially above the ideal MHD current limit. In quiescent conditions, qmin >1.25 is generally acceptable for avoiding the onset of core rotating n=1 kink/tearing modes; when EPM and ELM disturbances are present, the required qmin for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n=1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fueling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored energy disruptions are those that occur at high current when a plasma current rampdown is initiated incorrectly.

  6. Single and repetitive short-pulse high-power microwave window breakdown

    SciTech Connect (OSTI)

    Chang, C.; Tang, C. X.; Shao, H.; Chen, C. H.; Huang, W. H.

    2010-05-15

    The mechanisms of high-power microwave breakdown for single and repetitive short pulses are analyzed. By calculation, multipactor saturation with electron density much higher than the critical plasma density is found not to result in microwave cutoff. It is local high pressure about Torr class that rapid plasma avalanche and final breakdown are realized in a 10-20 ns short pulse. It is found by calculation that the power deposited by saturated multipactor and the rf loss of protrusions are sufficient to induce vaporizing surface material and enhancing the ambient pressure in a single short pulse. For repetitive pulses, the accumulation of heat and plasma may respectively carbonize the surface material and lower the repetitive breakdown threshold.

  7. Micro-polarimeter for high performance liquid chromatography

    DOE Patents [OSTI]

    Yeung, Edward E.; Steenhoek, Larry E.; Woodruff, Steven D.; Kuo, Jeng-Chung

    1985-01-01

    A micro-polarimeter interfaced with a system for high performance liquid chromatography, for quantitatively analyzing micro and trace amounts of optically active organic molecules, particularly carbohydrates. A flow cell with a narrow bore is connected to a high performance liquid chromatography system. Thin, low birefringence cell windows cover opposite ends of the bore. A focused and polarized laser beam is directed along the longitudinal axis of the bore as an eluent containing the organic molecules is pumped through the cell. The beam is modulated by air gap Faraday rotators for phase sensitive detection to enhance the signal to noise ratio. An analyzer records the beams's direction of polarization after it passes through the cell. Calibration of the liquid chromatography system allows determination of the quantity of organic molecules present from a determination of the degree to which the polarized beam is rotated when it passes through the eluent.

  8. BERKELEY LAB WINDOW

    SciTech Connect (OSTI)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  9. BERKELEY LAB WINDOW

    Energy Science and Technology Software Center (OSTI)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of

  10. Effect of surface produced secondary electrons on the sheath structure induced by high-power microwave window breakdown

    SciTech Connect (OSTI)

    Cheng Guoxin; Liu Lie

    2011-03-15

    Dielectric window breakdown, whose mechanism is not thoroughly understood, is a major factor of limiting the transmission and radiation of high-power microwave on the order of 1 GW. In this paper, a one-dimensional fluid-like sheath model is developed to investigate the sheath structures formed at different gas pressures. The dominant processes during the surface flashover are isolated by this model. In vacuum, electron multipactor is self-sustained by secondary electron emission, a positive space-charge potential is formed on the dielectric surface. With increasing gas pressure, electron-neutral ionization prevails against secondary electron emission. The multipactor effect is suppressed by the shielding of plasma electrons. This leads to the sheath potential changing gradually from a positive space-charge potential to a negative space-charge potential. For argon gas pressure lower than 14 Torr, the sheath is space charge limited. A potential minimum could be formed in front of the dielectric which traps secondary electrons emitted from the wall. With the higher argon gas pressure, the number density of ions becomes comparable to that of electrons, all surface produced electrons are accelerated toward the presheath region. Therefore, the normal sheath is formed and the resulting surface flashover on the dielectric surface becomes rf-driven volumetric breakdown.

  11. High Performance Factory Built Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Factory Built Housing 2015 Building Technologies Office Peer Review Jordan Dentz, jdentz@levypartnership.com ARIES The Levy Partnership, Inc. Project Summary ...

  12. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  14. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    versus mini-splits being used in high performance (high R value enclosurelow air leakage) houses, often configured as a simplified distribution system (one heat source per floor). ...

  15. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  16. High Performance Binderless Electrodes for Rechargeable Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Binderless Electrodes for Rechargeable Lithium Batteries National ... Electrode for fast-charging Lithium Ion Batteries, Accelerating Innovation Webinar ...

  17. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  18. Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat

    Broader source: Energy.gov (indexed) [DOE]

    Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles | Department of Energy 70_shakouri_2011_p.pdf (856.16 KB) More Documents & Publications High Performance Zintl Phase TE Materials with Embedded Particles High performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles

  19. Dynamic Windows

    Broader source: Energy.gov [DOE]

    Lead Performer: National Renewable Energy Laboratory - Golden, CO Partners: -- Sage Electrochromics - Faribault, MN -- e-Chromic Technologies, Inc. - Boulder, CO -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo Park, CA -- University of Denver - Denver, CO

  20. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    SciTech Connect (OSTI)

    Moy, Derek; Manivannan, A.; Narayanan, S. R.

    2014-11-04

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). We present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. As a result, we expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.

  1. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    SciTech Connect (OSTI)

    Moy, Derek [Univ. of Southern California, Los Angeles, CA (United States). Loker Hydrocarbon Research Institute.; Manivannan, A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Narayanan, S. R. [Univ. of Southern California, Los Angeles, CA (United States). Loker Hydrocarbon Research Institute.

    2014-11-01

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). We present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. We expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.

  2. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moy, Derek; Manivannan, A.; Narayanan, S. R.

    2014-11-04

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). Wemore » present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. As a result, we expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.« less

  3. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows Storm Windows An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of ...

  4. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  5. High Temperature Fuel Cell Performance High Temperature Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers | Department of Energy Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers Presentation

  6. Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Efficient windows, doors, and skylights can reduce energy bills and improve the comfort of your home.

  7. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  8. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  9. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  10. High Performance Valve Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy The High-Performance Green Building Partnership Consortia are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to high-performance green buildings. Groups that met specific qualifications outlined in the Energy Independence and Security Act of 2007 applied to be recognized as Consortia members through a Federal Register Notice. DOE recognized the following groups: Collaborative for High Performance Schools The

  11. High Performance Computing Student Career Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC » Students High Performance Computing Student Career Resources Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Us Student Liaison Josephine Kilde (505) 667-5086 Email High Performance Computing Capabilities The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class Supercomputing Centers. Our

  12. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts ...

  13. High performance carbon nanocomposites for ultracapacitors

    DOE Patents [OSTI]

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  14. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Enclosure Strategies, Part II, on August 13, 2014. BAwebinarbscbaker81314.pdf (1.03 MB) More Documents & Publications Cladding Attachment Over Thick ...

  15. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies: Part II, New Construction - August 13, 2014 - Introduction This presentation is the Introduction to the Building America webinar, High Performance Enclosure Strategies...

  16. Functionalized High Performance Polymer Membranes for Separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized High Performance Polymer Membranes for Separation of Carbon Dioxide and Methane Previous Next List Natalia Blinova and Frantisek Svec, J. Mater. Chem. A, 2, 600-604...

  17. SciTech Connect: "high performance computing"

    Office of Scientific and Technical Information (OSTI)

    Advanced Search Term Search Semantic Search Advanced Search All Fields: "high performance computing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  18. High Performance Sustainable Building - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements...

  19. Building America Webinar: High Performance Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May 21, 2014, focused on specific Building America projects that ...

  20. Method of making a high performance ultracapacitor

    DOE Patents [OSTI]

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  1. A multiple deep attenuation frequency window for harmonic analysis in power systems

    SciTech Connect (OSTI)

    Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)

    1994-04-01

    A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.

  2. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  3. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  4. High Performance Computing for Manufacturing Parternship | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, US DOE Partner on HPC4Mfg projects to deliver new capabilities in 3D Printing and higher jet engine efficiency Click to email this to a friend (Opens in new window) Share on ...

  5. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC...

  6. Using High Performance Libraries and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Libraries and Tools Using High Performance Libraries and Tools Memkind Library on Edison The memkind library is a user extensible heap manager built on top of jemalloc which enables control of memory characteristics and a partitioning of the heap between kinds of memory (including user defined kinds of memory). This library can be used to simulate the benefit of the high bandwidth memory that will be available on KNL system on the dual socket Edison compute nodes (the two

  7. high-performance | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Sorbents for Carbon Dioxide Capture from Air Project No.: DE-FE0002438 NETL has partnered with the Georgia Institute of Technology to perform a combined experimental and modeling study of air capture of CO2 using low-cost, high-capacity sorbents (a material used to absorb liquid or gas) including, but not limited to, mesoporous (material containing pores with diameters between 2 and 50 nanometers) or solids functionalized with hyperbranched amino-polymers (highly branched,

  8. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  9. Residential Windows and Window Coverings: A Detailed View of...

    Broader source: Energy.gov (indexed) [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households. residentialwindowscoverings.pdf ...

  10. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  11. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: ‱ Decision-making about sustainable urban development occurs in networks. ‱ The concept of ‘decision windows’ was further elaborated. ‱ Decision windows help understand how environmental interests enter decision-making. ‱ Decision windows can, to some extent, be influenced.

  12. Energy Savings from Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of window combinations with window attachments in typical residential buildings and in varied ... The most common and widely used types of attachments are window coverings ...

  13. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center in the ESIF and talks about some of the capabilities and unique features of the center.

  14. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center being built in the ESIF and talks about some of the capabilities and unique features of the center.

  15. Durham County- High-Performance Building Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and...

  16. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  17. OCIO Technology Summit: High Performance Computing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Last week, the Office of the Chief Information Officer sponsored a Technology Summit on High Performance Computing (HPC), hosted by the Chief Technology Officer.  This was the eleventh in a series...

  18. High Performance Green Building Partnership Consortia | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The High-Performance Green Building Partnership Consortia are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to ...

  19. Introduction to High Performance Computing Using GPUs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC Using GPUs Introduction to High Performance Computing Using GPUs July 11, 2013 NERSC, NVIDIA, and The Portland Group presented a one-day workshop "Introduction to High Performance Computing Using GPUs" on July 11, 2013 in Room 250 of Sutardja Dai Hall on the University of California, Berkeley, campus. Registration was free and open to all NERSC users; Berkeley Lab Researchers; UC students, faculty, and staff; and users of the Oak Ridge Leadership Computing Facility. This workshop

  20. Collaboration to advance high-performance computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration to advance high-performance computing Collaboration to advance high-performance computing LANL and EMC will enhance, design, build, test, and deploy new cutting-edge technologies to meet some of the most difficult information technology challenges. December 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  1. Energy Department Announces Six Projects to Develop Energy-Saving Windows, Roofs, and Heating and Cooling Equipment

    Broader source: Energy.gov [DOE]

    The Energy Department announces a $9 million investment in leading-edge building envelope technologies, including high-efficiency, high-performance windows, roofs and heating and cooling equipment.

  2. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect (OSTI)

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  3. High Performance Dielectrics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Dielectrics Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (342 KB) Technology Marketing Summary Current dielectric materials are limited and unable to meet all operating, temperature, response frequency, size, and reliability requirements needed for uncooled high-reliability electronics. To address this problem, scientists at Sandia have developed a method for producing dielectric materials using engineered

  4. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  5. Performance characteristics of recently developed high-performance heat pipes

    SciTech Connect (OSTI)

    Schlitt, R.

    1995-01-01

    For future space projects such as Earth orbiting platforms, space stations, but also Moon or Mars bases, the need to manage waste heat up to 100 kW has been identified. For this purpose large heat pipe radiators have been proposed with heat pipe lengths of 15 m and heat transport capabilities up to 4 kW. It is demonstrated that conventional axially grooved heat pipes can be improved to provide 1 kWm heat transport capability. Higher heat loads can be handled only by high-composite wick designs with large liquid cross sections and circumferential grooves in the evaporator. With these high-performance heat pipes, heat transfer coefficients of about 200 kW/m{sup 2}K and transport capabilities of 2 kW over 15 m can be reached. Configurations with liquid fillets and axially tapered liquid channels are proposed to improve the ability of the highly composite wick to prime.

  6. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    JÀger, Timo Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Tiwari, Ayodhya N.; Döbeli, Max

    2015-05-28

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Hydrogen doping of In{sub 2}O{sub 3} thin films is achieved by injection of H{sub 2}O water vapor or H{sub 2} gas during the sputter process. As-deposited amorphous In{sub 2}O{sub 3}:H films exhibit a high electron mobility of ∌50 cm{sup 2}/Vs at room temperature. A bulk hydrogen concentration of ∌4 at. % was measured for both optimized H{sub 2}O and H{sub 2}-processed films, although the H{sub 2}O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (V{sub OC}) of ∌20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H{sub 2}O case or slightly decrease for H{sub 2}. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H{sub 2}O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  7. Building America Roadmap to High Performance Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down

  8. Database of Low-E Storm Window Energy Performance across U.S. Climate Zones (Task ET-WIN-PNNL-FY13-01_5.3)

    SciTech Connect (OSTI)

    Cort, Katherine A.; Culp, Thomas D.

    2013-09-01

    This report describes process, assumptions, and modeling results produced in support of the Emerging Technologies Low-e Storm Windows Task 5.3: Create a Database of U.S. Climate-Based Analysis for Low-E Storm Windows. The scope of the overall effort is to develop a database of energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by cliamte zone. Both sets of calculation results will be made publicly available through the Building America Solution Center.

  9. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC

  10. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  11. Debugging a high performance computing program

    DOE Patents [OSTI]

    Gooding, Thomas M.

    2014-08-19

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  12. Debugging a high performance computing program

    DOE Patents [OSTI]

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  13. High Performance Builder Spotlight: Imagine Homes

    SciTech Connect (OSTI)

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  14. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  15. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  16. A Tale of Three Windows: Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We live in Colorado, and that means cold winters with hot summers -- so the type of window we choose makes a difference in performance. Energy Savers gives great advice for window ...

  17. High Performance Building Facade Solutions PIER Final Project Report

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  18. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  19. High voltage electric substation performance in earthquakes

    SciTech Connect (OSTI)

    Eidinger, J.; Ostrom, D.; Matsuda, E.

    1995-12-31

    This paper examines the performance of several types of high voltage substation equipment in past earthquakes. Damage data is provided in chart form. This data is then developed into a tool for estimating the performance of a substation subjected to an earthquake. First, suggests are made about the development of equipment class fragility curves that represent the expected earthquake performance of different voltages and types of equipment. Second, suggestions are made about how damage to individual pieces of equipment at a substation likely affects the post-earthquake performance of the substation as a whole. Finally, estimates are provided as to how quickly a substation, at various levels of damage, can be restored to operational service after the earthquake.

  20. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  1. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  2. Flat-plate solar collectors utilizing polymeric film for high performance and very low cost

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-01-01

    Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

  3. Plasma window characterization

    SciTech Connect (OSTI)

    Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C.

    2007-03-01

    Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

  4. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  5. Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lead Performer: ITN Energy Systems - Littleton, CO Partners: -- Electric Power Research Institute - Palo Alto, CA -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo Park, CA -- Lawrence Berkeley National Laboratory - Berkeley, CA

  6. Design and Development of High-Performance Polymer Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Development of High-Performance Polymer Fuel Cell Membranes Design and Development of High-Performance Polymer Fuel Cell Membranes A presentation to the High Temperature ...

  7. High Performance Leasing Strategies for State and Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Leasing Strategies for State and Local Governments High Performance Leasing Strategies for State and Local Governments Presentation for the SEE Action Series: High ...

  8. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  9. High Performance Walls in Hot-Dry Climates (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    High Performance Walls in Hot-Dry Climates Citation Details In-Document Search Title: High Performance Walls in Hot-Dry Climates High performance walls represent a high priority...

  10. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  11. WE-E-BRE-06: High-Dose Microbeam Radiation Induces Different Responses in Tumor Microenvironment Compared to Conventional Seamless Radiation in Window Chamber Tumor Models

    SciTech Connect (OSTI)

    Chang, S; Zhang, J; Hadsell, M; Fontanella, A; Schroeder, T; Palmer, G; Dewhirst, M; Boss, M; Berman, K

    2014-06-15

    Purpose: Microbeam radiation therapy and GRID therapy are different forms of Spatially-Fractioned Radiation Therapy (SFRT) that is fundamentally different from the conventional seamless and temporally fractionated radiation therapy. SFRT is characterized by a ultra-high dose (10s –100s Gy) dose single treatment with drastic inhomogeneity pattern of given spatial frequencies. Preclinical and limited clinical studies have shown that the SFRT treatments may offer significant improvements in reducing treatment toxicity, especially for those patients who have not benefited from the state-of-the-art radiation therapy approaches. This preliminary study aims to elucidate the underlying working mechanisms of SFRT, which currently remains poorly understood. Methods: A genetically engineered 4T1 murine mammary carcinoma cell line and nude mice skin fold window chamber were used. A nanotechnology-based 160kV x-ray irradiator delivered 50Gy (entrance dose) single treatments of microbeam or seamless radiation. Animals were in 3 groups: mock, seamless radiation, and 300ÎŒm microbeam radiation. The windows were imaged using a hyperspectral system to capture total hemoglobin/saturation, GFP fluorescence emission, RFP fluorescence emission, and vessel density at 9 time points up to 7 days post radiation. Results: We found unique physiologic changes in different tumor/normal tissue regions and differential effects between seamless and microbeam treatments. They include 1) compared to microbeam and mock radiation seamless radiation damaged more microvasculature in tumor-surrounding normal tissue, 2) a pronounced angiogenic effect was observed with vascular proliferation in the microbeam irradiated portion of the tumor days post treatment (no such effect observed in seamless and mock groups), and 3) a notable change in tumor vascular orientation was observed where vessels initially oriented parallel to the beam length were replaced by vessels running perpendicular to the irradiation

  12. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: October 1, 2011 Planned end date: September 30, 2015 Key Milestones: 1. Complete preliminary simulations to predict design point performance; March 31, 2012 2. Testing of Lab Breadboard; September 30 2013 3. Design production ready unit; March 31 2014 Budget:

  13. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie; Zhong, Yong; Zhang, Rui

    2014-09-15

    To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantly depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.

  14. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior SEPTEMBER 2013 Prepared for: Building Technologies Office Office of Energy ...

  15. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  16. High performance robotic traverse of desert terrain.

    SciTech Connect (OSTI)

    Whittaker, William

    2004-09-01

    This report presents tentative innovations to enable unmanned vehicle guidance for a class of off-road traverse at sustained speeds greater than 30 miles per hour. Analyses and field trials suggest that even greater navigation speeds might be achieved. The performance calls for innovation in mapping, perception, planning and inertial-referenced stabilization of components, hosted aboard capable locomotion. The innovations are motivated by the challenge of autonomous ground vehicle traverse of 250 miles of desert terrain in less than 10 hours, averaging 30 miles per hour. GPS coverage is assumed to be available with localized blackouts. Terrain and vegetation are assumed to be akin to that of the Mojave Desert. This terrain is interlaced with networks of unimproved roads and trails, which are a key to achieving the high performance mapping, planning and navigation that is presented here.

  17. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  18. Windows, Doors, & Skylights

    Broader source: Energy.gov [DOE]

    Windows, doors and skylights affect home aesthetics as well as energy use. Learn how to choose products that allow you to use natural light without raising your heating and cooling costs.

  19. High Performance Computing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing A visualization of a simulated collision event in the ATLAS detector. This simulation, containing a Z boson and five hadronic jets, is an example of an event that is too complex to be simulated in bulk using ordinary PC-based computing grids. A visualization of a simulated collision event in the ATLAS detector. This simulation, containing a Z boson and five hadronic jets, is an example of an event that is too complex to be simulated in bulk using ordinary PC-based

  20. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect (OSTI)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  1. High Performance Computing Richard F. BARRETT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of Co-design in High Performance Computing Richard F. BARRETT a,1 , Shekhar BORKAR b , Sudip S. DOSANJH c , Simon D. HAMMOND a , Michael A. HEROUX a , X. Sharon HU d , Justin LUITJENS e , Steven G. PARKER e , John SHALF c , and Li TANG d a Sandia National Laboratories, Albuquerque, NM, USA b Intel Corporation c Lawrence Berkeley National Laboratory, Berkeley, CA, USA d University of Notre Dame, South Bend, IN, USA e Nvidia, Inc., Santa Clara, CA, USA Abstract. Preparations for Exascale

  2. Climate Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Mirin, A A

    2007-02-05

    The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

  3. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STARÂź

  4. Storm Windows | Department of Energy

    Office of Environmental Management (EM)

    interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this...

  5. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Windows provide views, daylighting, ventilation, and heat from the sun in the winter. ... Install ENERGY STAR-qualified windows and use curtains and shade to give your air ...

  6. High-performance laboratories and cleanrooms

    SciTech Connect (OSTI)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  7. High-performance computing for airborne applications

    SciTech Connect (OSTI)

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  8. High-Performance Leasing for State and Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Describes the value of high-performance leasing and how states can lead by example by using high-performance leases in their facilities and encourage high-performance leasing in the private sector.

  9. Investigation of the Effect of I-ZnO Window Layer on the Device Performance of the Cd-Free CIGS Based Solar Cells: Preprint

    SciTech Connect (OSTI)

    Hasoon, F. S.; Al-Thani, H. A.; Li, X.; Kanevce, A.; Perkins, C.; Asher, S.

    2008-05-01

    This paper focuses on preparing Cd-free, CIGS-based solar cells with intrinsic high resistivity ZnO (I-ZnO) films deposited by metal-organic chemical vapor deposition (MOCVD) technique at different deposition substrate temperature and I-ZnO film thickness, and the effect of the prior treatment of CIGS films by ammonium hydroxide (NH4OH) diluted solution on the device performance.

  10. Materials Modeling for High-Performance Radiation Detectors ...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors ...

  11. Natural Refrigerant High-Performance Heat Pump for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigerant High-Performance Heat Pump for Commercial Applications Natural Refrigerant High-Performance Heat Pump for Commercial Applications Credit: S-RAM Credit: S-RAM Lead ...

  12. LBNL: High Performance Active Perimeter Building Systems - 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter ...

  13. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  14. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells ...

  15. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research ...

  16. Memorandum of American High-Performance Buildings Coalition DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This ...

  17. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  18. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  19. OSTIblog Articles in the High-performance computing Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Research, ASCR, climate change, earth systems modeling, High-performance computing, ... ORNL's National Center for Computational Sciences... Related Topics: High-performance ...

  20. Business Metrics for High-Performance Homes: A Colorado Springs...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Business Metrics for High-Performance Homes: A Colorado Springs Case Study Citation Details In-Document Search Title: Business Metrics for High-Performance Homes: ...

  1. New rocket propellant and motor design offer high-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested ...

  2. Federal Leadership in High Performance and Sustainable Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    and operation of High-Performance and Sustainable Buildings. Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (148.11 KB) ...

  3. Nuclear Forces and High-Performance Computing: The Perfect Match...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Forces and High-Performance Computing: The Perfect Match Citation Details In-Document Search Title: Nuclear Forces and High-Performance Computing: The Perfect ...

  4. Reduced Call-Backs with High Performance Production Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced Call-Backs with High Performance Production Builders - Building America Top Innovation Reduced Call-Backs with High Performance Production Builders - Building America Top ...

  5. Integrated Design: A High-Performance Solution for Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy ...

  6. Building America Roadmap to High Performance Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to High Performance Homes Building America Roadmap to High Performance Homes This presentation was delivered at the U.S. Department of Energy Building America Technical ...

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  8. Halide and Oxy-halide Eutectic Systems for High Performance High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat Transfer Fluids Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat ...

  9. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vapor–liquid–solid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 ”m) and low surface recombination velocities (S << 70 cm·s-1). Single-wire radial p–n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  10. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  11. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  12. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3)

  13. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft Ś 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tintź technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power

  14. Federal Leadership in High Performance and Sustainable Buildings Memorandum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Understanding | Department of Energy Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding With this Memorandum of Understanding (MOU), signatory agencies commit to federal leadership in the design, construction, and operation of High-Performance and Sustainable Buildings. Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding

  15. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  16. Final Report on Work Performed Under Agreement

    SciTech Connect (OSTI)

    2012-04-15

    Solutia Performance Films, utilizing funding from the U.S. Department of Energy's Buildings Technologies Program, completed research to develop, validate, and commercialize a range of cost-effective, low-emissivity energy-control retrofit window films with significantly improved emissivity over current technology. These films, sold under the EnerLogicÂź trade name, offer the energy-saving properties of modern low-e windows, with several advantages over replacement windows, such as: lower initial installation cost, a significantly lower product carbon footprint, and an ability to provide a much faster return on investment. EnerLogicÂź window films also offer significantly greater energy savings than previously available with window films with similar visible light transmissions. EnerLogicÂź window films offer these energy-saving advantages over other window films due to its ability to offer both summer cooling and winter heating savings. Unlike most window films, that produce savings only during the cooling season, EnerLogicÂź window film is an all-season, low-emissivity (low-e) film that produces both cooling and heating season savings. This paper will present technical information on the development hurdles as well as details regarding the following claims being made about EnerLogicÂź window film, which can be found at www.EnerLogicfilm.com: 1. Other window film technologies save energy. EnerLogicÂź window film's patent-pending coating delivers excellent energy efficiency in every season, so no other film can match its annual dollar or energy consumption savings. 2. EnerLogicÂź window film is a low-cost, high-return technology that compares favorably to other popular energy-saving measures both in terms of energy efficiency and cost savings. In fact, EnerLogicÂź window film typically outperforms most of the alternatives in terms of simple payback. 3. EnerLogicÂź window film provides unparalleled glass insulating capabilities for window film products. With its

  17. Text-Alternative Version of Building America Webinar: High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will discuss how window attachments and coverings, such as storm windows and cellular shades, can be a cost-effective means of reducing energy use in residential buildings. ...

  18. Beam Fields in an Integrated Cavity, Coupler and Window Configuration

    SciTech Connect (OSTI)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    In a multi-bunch high current storage ring, beam generated fields couple strongly into the RF cavity coupler structure when beam arrival times are in resonance with cavity fields. In this study the integrated effect of beam fields over several thousand RF periods is simulated for the complete cavity, coupler, window and waveguide system of the PEP-II B-factory storage ring collider. We show that the beam generated fields at frequencies corresponding to several bunch spacings for this case gives rise to high field strength near the ceramic window which could limit the performance of future high current storage rings such as PEP-X or Super B-factories.

  19. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions | Department of Energy Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions This presentation, Next Gen Advanced Framing for High Performance Homes -

  20. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and

  1. Building America Webinar: High Performance Enclosure Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    performance of the building enclosure, reduce the cost of energy-efficient construction, and simplify the construction process, all while accommodating higher levels of insulation. ...

  2. High Performance Computing for Manufacturing Parternship | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research GE, US DOE Partner on HPC4Mfg projects to deliver new capabilities in 3D Printing and higher jet engine efficiency Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, US DOE Partner on HPC4Mfg projects to deliver new capabilities in 3D Printing and higher jet engine efficiency NISKAYUNA, NY, February 17,

  3. High performance Zintl phase TE materials with embedded nanoparticles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Performance of zintl phase thermoelectric materials with embedded particles are evaluated shakouri.pdf (2.3 MB) More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High Performance Zintl Phase TE Materials with Embedded Particles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles

  4. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    2011-01-01

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  5. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  6. Computational Performance of Ultra-High-Resolution Capability...

    Office of Scientific and Technical Information (OSTI)

    Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model Citation Details In-Document Search Title: Computational Performance of ...

  7. Bill Carlson IDA Center for Computing Sciences Making High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Integration Establish correlation between database tables and data structures in memory. ... ctime(t->b)); t++; High Performance computing is in trouble Not because of performance ...

  8. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  9. High performance Zintl phase TE materials with embedded nanoparticles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Performance of zintl phase thermoelectric ...

  10. Toward a new metric for ranking high performance computing systems...

    Office of Scientific and Technical Information (OSTI)

    as a true measure of system performance for a growing collection of important science and engineering applications. In this paper we describe a new high performance conjugate...

  11. Project Profile: Development and Performance Evaluation of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of ...

  12. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Broader source: Energy.gov [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

  13. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor S.; Clavero, Cesar

    2013-12-01

    Current thermochromic windows modulate solar transmission primarily within the visible range, resulting in reduced space-conditioning energy use but also reduced daylight, thereby increasing lighting energy use compared to conventional static, near-infrared selective, low-emittance windows. To better understand the energy savings potential of improved thermochromic devices, a hypothetical near-infrared switching thermochromic glazing was defined based on guidelines provided by the material science community. EnergyPlus simulations were conducted on a prototypical large office building and a detailed analysis was performed showing the progression from switching characteristics to net window heat flow and perimeter zone loads and then to perimeter zone heating, ventilation, and air-conditioning (HVAC) and lighting energy use for a mixed hot/cold climate and a hot, humid climate in the US. When a relatively high daylight transmission is maintained when switched (Tsol = 0.10-0.50, Tvis = 0.30-0.60) and if coupled with a low-e inboard glazing layer (e = 0.04), the hypothetical thermochromic window with a low critical switching temperature range (14-20°C) achieved reductions in total site annual energy use of 14.0-21.1 kWh/m2-floor-yr or 12-14%2 for moderate- to large-area windows (WWR≄0.30) in Chicago and 9.8-18.6 kWh/m2-floor-yr or 10-17%3 for WWR≄0.45 in Houston compared to an unshaded spectrally-selective, low-e window (window E1) in south-, east-, and west-facing perimeter zones. If this hypothetical thermochromic window can be offered at costs that are competitive to conventional low-e windows and meet aesthetic requirements defined by the building industry and end users, then the technology is likely to be a viable energy-efficiency option for internal load dominated commercial buildings.

  14. Bedford Farmhouse High Performance Retrofit Prototype

    SciTech Connect (OSTI)

    2010-04-26

    In this case study, Building Science Corporation partnered with Habitat for Humanity of Greater Lowell on a retrofit of a mid-19th century farmhouse into affordable housing meeting Building America performance standards.

  15. High Performance Computing Facility Operational Assessment, CY...

    Office of Scientific and Technical Information (OSTI)

    At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational ...

  16. High Performance Electrolyzers for Hybrid Thermochemical Cycles

    SciTech Connect (OSTI)

    Dr. John W. Weidner

    2009-05-10

    Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

  17. High Performance and Sustainable Buildings Guidance

    Office of Environmental Management (EM)

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  18. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    If you have old windows in your home, replacing them with new, energy-efficient windows ... In general, plastics are most economical for people with small budgets or who live in ...

  19. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    LBNL’s has three facilities specifically dedicated to windows: the Optical Properties Laboratory, the Infrared Thermography Laboratory, and the Mobile Window Thermal Test Facility (MoWiTT). These...

  20. Guiding Market Introduction of High-Performance SSL Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Market Introduction of High-Performance SSL Products Guiding Market Introduction of High-Performance SSL Products 2014 DOE Solid-State Lighting Program Fact Sheet PDF icon...

  1. Seeking Information on Design and Construction of High-Performance...

    Energy Savers [EERE]

    Design and Construction of High-Performance Tenant Spaces Seeking Information on Design and Construction of High-Performance Tenant Spaces August 3, 2015 - 11:27am Addthis VIEW THE ...

  2. High Performance Home Building Guide for Habitat for Humanity Affiliates

    SciTech Connect (OSTI)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  3. New GATEWAY Report Monitors LED System Performance in a High...

    Broader source: Energy.gov (indexed) [DOE]

    the light. The Yuma site is an extreme environment: high ambient temperatures and direct ... Performance in a High-Temperature Environment DOE Publishes GATEWAY Report on ...

  4. ARIES: Building America, High Performance Factory Built Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: Jordan Dentz, Levy Partnership View the Presentation ARIES: Building America, High ...

  5. Metaproteomics: Harnessing the power of high performance mass...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Metaproteomics: Harnessing the power of high performance mass ... Citation Details In-Document Search Title: Metaproteomics: Harnessing the power of high ...

  6. Defining window-boundaries for genomic analyses using smoothing spline techniques

    SciTech Connect (OSTI)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.

  7. Defining window-boundaries for genomic analyses using smoothing spline techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less

  8. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    The Department of Energy funds these three test national lab test facilities to do window and building envelope research.

  9. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  10. ARIES: Building America, High Performance Factory Built Housing - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: Jordan Dentz, Levy Partnership View the Presentation ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review (3.34 MB) More Documents & Publications ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Integrated Design: A High-Performance Solution

  11. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and documents system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. Download the guide. (1.34 MB) More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance

  12. Energy Efficiency Opportunities in Federal High Performance Computing...

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for .........9 EEMs for HPC Data Centers ......

  13. A High-Performance PHEV Battery Pack | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es002_alamgir _2011_p.pdf (628.94 KB) More Documents & Publications A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV

  14. LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Performance Active Perimeter Building Systems - 2015 Peer Review LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review (2 MB) More Documents & Publications FLEXLAB Connected Buildings Interoperability Vision Webinar 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS

  15. NREL: Photovoltaics Research - High-Performance Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dual-axis tracking modules use small mirrors to focus sunlight on high-efficient multijunction cells... NREL is a national laboratory of the U.S. Department of Energy, Office of ...

  16. High Performance Colloidal Nanocrystals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed distribution circuits in the electrical grid. The High Penetration Solar Deployment projects are working with teams that include utility partners to model, test, and evaluate solutions to mitigate the impact of large amounts of PV-generated electricity on the reliability and stability of the

  17. Determining window solar heat gain coefficient

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van . Solar Calorimetry Lab.)

    1994-08-01

    The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

  18. High Performance Green LEDs by Homoepitaxial

    SciTech Connect (OSTI)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  19. High-Performance Computing at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Computing at Los Alamos announces milestone for key/ value middleware May 26, 2014 Billion inserts-per-second data milestone reached for supercomputing tool LOS ALAMOS, N.M., May 29, 2014-At Los Alamos, a supercomputer epicenter where "big data set" really means something, a data middleware project has achieved a milestone for specialized information organization and storage. The Multi-dimensional Hashed Indexed Middleware (MDHIM) project at Los Alamos National Laboratory

  20. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    1 Case Study, The Adam Joseph Lewis Center for Environmental Studies, Oberlin College, Oberlin, Ohio (Education) Building Design Floor Area: Floors: 2 Footprint: 3 Classrooms (1) 1 Conference Room 1 Adminstration Office Auditorium, 100 seats 6 Small Offices Atrium Wastewater Treatment Facility Shell Windows Material: Green Tint Triple Pane Argon Fill Insulating Glass Grey Tint Double Pane Argon Fill Insulating Glass Fenestration(square feet) Window Wall (2) window/wall l Atrium, Triple Pane (3)

  1. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Window treatments or coverings can reduce heat loss in the winter and heat gain in the ...

  2. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    by adding storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Links ENERGY STAR Residential Windows, Doors and Skylights Product Ratings - ...

  3. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 27, 2014 Research and Development Roadmap: Windows and Building Envelope November 26, 2013 Residential Windows and Window Coverings: A Detailed View of the Installed Base ...

  4. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    5 Case Study, The Thermal Test Facility, National Renewable Energy Laboratory, Golden, Colorado (Office/Laboratory) Building Design Floor Area: 10,000 SF Floors(1): 2 Aspect Ratio: 1.75 Offices Laboratories Conference Room Mechanical Level Shell Windows Material U-factor SHGC(2) Viewing Windows: Double Pane, Grey Tint, Low-e 0.42 0.44 Clerestory Windows: Double Pane, Clear, Low-e 0.45 0.65 Window Area(SF) North 38 South(3) 1,134 East 56 West 56 Wall/Roof Material Effective R-Value North Wall

  5. High-performance commercial building facades

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current

  6. High performance image processing of SPRINT

    SciTech Connect (OSTI)

    DeGroot, T.

    1994-11-15

    This talk will describe computed tomography (CT) reconstruction using filtered back-projection on SPRINT parallel computers. CT is a computationally intensive task, typically requiring several minutes to reconstruct a 512x512 image. SPRINT and other parallel computers can be applied to CT reconstruction to reduce computation time from minutes to seconds. SPRINT is a family of massively parallel computers developed at LLNL. SPRINT-2.5 is a 128-node multiprocessor whose performance can exceed twice that of a Cray-Y/MP. SPRINT-3 will be 10 times faster. Described will be the parallel algorithms for filtered back-projection and their execution on SPRINT parallel computers.

  7. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  8. Predicting window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.

    1995-07-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining window U-factors, there has been little work to date on using numerical methods to predict condensation potential. It is, perhaps, of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a preliminary step to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and inferior indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building materials, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products, as part of its mandate from the Department of Energy. A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing, to reduce the cost and time required for implementation and increase the flexibility of the rating method. This article outlines the necessary components in the application of numerical methods for evaluating condensation in fenestration products, and describes the status of the development of these methods. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products. Much of the technical discussion in this article can be found in ASHRAE Transactions.

  9. High Thermoelectric Performance in Copper Telluride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Ying; Zhang, Tiansong; Shi, Xun; Wei, Su-Huai; Chen, Lidong

    2015-06-21

    Recently, Cu 2-ÎŽ S and Cu 2-ÎŽ Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-ÎŽ Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu2Te, which has many stable and meta-stable phasesmore » as well as weaker ionic bonding between Cu and Te as compared with Cu2S and Cu2Se. In this study, high-density Cu2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-ÎŽ X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.« less

  10. High Thermoelectric Performance in Copper Telluride

    SciTech Connect (OSTI)

    He, Ying; Zhang, Tiansong; Shi, Xun; Wei, Su-Huai; Chen, Lidong

    2015-06-21

    Recently, Cu 2-ή S and Cu 2-ή Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-ή Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu2Te, which has many stable and meta-stable phases as well as weaker ionic bonding between Cu and Te as compared with Cu2S and Cu2Se. In this study, high-density Cu2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-ή X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.

  11. Memorandum of American High-Performance Buildings Coalition DOE Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 19, 2013 | Department of Energy Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through

  12. Thermal and Optical Properties of Low-E Storm Windows and Panels

    SciTech Connect (OSTI)

    Culp, Thomas D.; Widder, Sarah H.; Cort, Katherine A.

    2015-07-17

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  13. A high performance field-reversed configuration

    SciTech Connect (OSTI)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∌1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  14. Windows on the axion

    SciTech Connect (OSTI)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  15. High-Performance Energy Applications and Systems

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  16. Evaluation of control strategies for different smart window combinations using computer simulations

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne

    2010-01-15

    Several studies have shown that the use of switchable windows could lower the energy consumption of buildings. Since the main function of windows is to provide daylight and visual contact with the external world, high visible transmittance is needed. From an energy perspective it is always best to have the windows in their low-transparent state whenever there are cooling needs, but this is generally not preferable from a daylight and visual contact point of view. Therefore a control system, which can be based on user presence, is needed in connection with switchable windows. In this study the heating and cooling needs of the building, using different control mechanisms were evaluated. This was done for different locations and for different combinations of switchable windows, using electrochromic glazing in combination with either low-e or solar control glazing. Four control mechanisms were investigated; one that only optimizes the window to lower the need for heating and cooling, one that assumes that the office is in use during the daytime, one based on user presence and one limiting the perpendicular component of the incident solar irradiation to avoid glare and too strong daylight. The control mechanisms were compared using computer simulations. A simplified approach based on the balance temperature concept was used instead of performing complete building simulations. The results show that an occupancy-based control system is clearly beneficial and also that the best way to combine the panes in the switchable window differs depending on the balance temperature of the building and on the climate. It is also shown that it can be beneficial to have different window combinations for different orientations. (author)

  17. Research and Development Roadmap: Windows and Building Envelope

    Broader source: Energy.gov [DOE]

    Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  18. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  19. Reduced Call-Backs with High Performance Production Builders - Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation | Department of Energy Reduced Call-Backs with High Performance Production Builders - Building America Top Innovation Reduced Call-Backs with High Performance Production Builders - Building America Top Innovation Photo of a home with a fence. Engaging production builders to build high-performance homes is key to successfully transforming the market. For this Top Innovation, Building America has effectively addressed this challenge by demonstrating the compelling

  20. Development of Alternative and Durable High Performance Cathode Supporst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for PEM Fuel Cells | Department of Energy Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 3_pnnl.pdf (21.99 KB) More Documents & Publications Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Fuel Cell Kickoff Meeting Agenda 2015 Pathways

  1. NRC Leadership Expectations and Practices for Sustaining a High Performing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization | Department of Energy NRC Leadership Expectations and Practices for Sustaining a High Performing Organization NRC Leadership Expectations and Practices for Sustaining a High Performing Organization May 16, 2012 Presenter: William C. Ostendorff, NRC Commissioner Topics Covered: NRC Mission Safety Culture NRC Oversight NRC Inspection Program Technical Qualification Continuous Learning NRC Leadership Expectations and Practices for Sustaining a High Performing Organization (4.15

  2. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Lab High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research. June 17, 2014 The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "This machine

  3. Energy Efficiency Opportunities in Federal High Performance Computing Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers | Department of Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers. Download the case study. (1.05 MB) More Documents & Publications Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Innovative Energy

  4. Funding Opportunity: Building America High Performance Housing Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The Building Technologies Office (BTO) Residential Buildings Integration Program has announced the availability of $5.5 million for Funding Opportunity Announcement (FOA) DE-FOA-0001395, "Building America Industry Partnerships for High Performance Housing Innovation." DOE seeks to fund up

  5. High Performance Leasing Strategies for State and Local Governments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Performance Leasing Strategies for State and Local Governments High Performance Leasing Strategies for State and Local Governments Presentation for the SEE Action Series: High Performance Leasing Strategies for State and Local Governments webinar, presented on January 26, 2013 as part of the U.S. Department of Energy's Technical Assistance Program (TAP). Presentation (5.98 MB) Transcript (93 KB) More Documents & Publications

  6. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Los Alamos National Laboratory Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research September 2, 2014 New insights to changing the atomic structure of metals The Wolf computer system modernizes

  7. Text-Alternative Version of High Performance Space Conditioning Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part II | Department of Energy II Text-Alternative Version of High Performance Space Conditioning Systems: Part II High Performance Space Conditioning Systems: Part II November 18, 2014 William Zoeller, Stephen Winter Associates Dave Mallay, Home Innovation Research Labs Jordan Dentz, The Levy Partnership Francis Conlin, High Performance Building Solutions Hello everyone! I am Gail Werren with the National Renewable Energy Laboratory, and I'd like to welcome you to today's webinar hosted by

  8. High Performance Builder Spotlight: Green Coast Enterprises - New Orleans,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana | Department of Energy High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. green_coast_enterprises.pdf (3 MB) More Documents & Publications High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana

  9. High Performance Without Increased Cost: Urbane Homes, Louisville, KY -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy High Performance Without Increased Cost: Urbane Homes, Louisville, KY - Building America Top Innovation High Performance Without Increased Cost: Urbane Homes, Louisville, KY - Building America Top Innovation Photo of a Housing Award logo with a home. This Top Innovation highlights Building America field projects that demonstrated minimal or cost-neutral impacts for high-performance homes and that have significantly influenced the housing

  10. Building America Webinar: High-Performance Enclosure Strategies, Part I:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Roof Systems and Innovative Advanced Framing Strategies | Department of Energy High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies This webinar, held on February 12, 2015, focused on methods to design and build roof and wall systems for high performance homes that optimize energy and

  11. Building America Webinar: Ventilation Strategies for High Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Part I: Application-Specific Ventilation Guidelines | Department of Energy Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than

  12. Building America's Top Innovations Advance High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Building America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and

  13. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  14. The Gadonanotubes: Structural Origin of their High-Performance...

    Office of Scientific and Technical Information (OSTI)

    Title: The Gadonanotubes: Structural Origin of their High-Performance MRI Contrast Agent Behavior Authors: Ma, Qing ; Jebb, Meghan ; Tweedle, Michael F. ; Wilson, Lon J. 1 ; NWU) ...

  15. in High Performance Computing Computer System, Cluster, and Networking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iSSH v. Auditd: Intrusion Detection in High Performance Computing Computer System, Cluster, and Networking Summer Institute David Karns, New Mexico State University Katy Protin,...

  16. Exploration of multi-block polymer morphologies using high performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploration of multi-block polymer morphologies using high performance computing Modern material design increasingly relies on controlling small scale morphologies. Multi-block...

  17. Building America Webinar: High-Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Framing Strategies Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies This ...

  18. Building America Webinar: Ventilation Strategies for High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies Building America Webinar: Retrofit ...

  19. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

  20. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Title: Moderate Doping Leads to High Performance of SemiconductorInsulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, ...

  1. ESCC Evening Discussion: High Performance Data Transfer Eli Dart...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESCC Evening Discussion: High Performance Data Transfer Eli Dart, Network Engineer ESnet Network Engineering Group Summer ESCCJoint Techs Columbus, OH July 14, 2010 Lawrence ...

  2. A Comprehensive Look at High Performance Parallel I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comprehensive Look at High Performance Parallel I/O A Comprehensive Look at High Performance Parallel I/O Book Signing @ SC14! Nov. 18, 5 p.m. in Booth 1939 November 10, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov HighPerf Parallel IO In the 1990s, high performance computing (HPC) made a dramatic transition to massively parallel processors. As this model solidified over the next 20 years, supercomputing performance increased from gigaflops-billions of calculations per second-to

  3. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  4. High-Performance Computing for Advanced Smart Grid Applications...

    Office of Scientific and Technical Information (OSTI)

    Title: High-Performance Computing for Advanced Smart Grid Applications The power grid is becoming far more complex as a result of the grid evolution meeting an information ...

  5. DOE ZERH Webinar: High-Performance Home Sales Training, Part...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    number of other green and high-performance home programs, these skills will be critical. ... DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes ...

  6. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Lithium-Ion Battery Electrodes Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes ...

  7. High Performance Zintl Phase TE Materials with Embedded Particles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents results from embedding nanoparticles in magnesium silicide alloy matrix ... Zintl Phase Materials with Embedded Nanoparticles High performance Zintl phase TE ...

  8. Continuous Monitoring And Cyber Security For High Performance...

    Office of Scientific and Technical Information (OSTI)

    Continuous Monitoring And Cyber Security For High Performance Computing Malin, Alex B. Los Alamos National Laboratory; Van Heule, Graham K. Los Alamos National Laboratory...

  9. Affordable High Performance in Production Homes: Artistic Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    extraordinary impact, demonstrating the mainstream builder's business case for adopting ... that demonstrate how high performance homes can be affordable for the mainstream market. ...

  10. High Performance Without Increased Cost: Urbane Homes, Louisville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this profile, Urbane Homes of Louisville, KY, worked with Building America team National Association of Home Builders Research Center to build its first high performance home at ...

  11. High Performance Mica-based Compressive Seals for Solid Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Mica-based Compressive Seals for Solid Oxide Fuel Cells Pacific Northwest National Laboratory Contact PNNL About This Technology In their work, PNNL researchers...

  12. High Performance Photovoltaic Project: Identifying Critical Paths; Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Zweibel, K.; Benner, J.; Sheldon, P.; Noufi, R.; Kurtz, S.; Coutts, T.; Hulstrom, R.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Describes recent research accomplishments in in-house and subcontracted work in the High-Performance PV Project.

  13. Development of Alternative and Durable High Performance Cathode...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Fuel Cell Kickoff Meeting Agenda Energy Storage Systems 2012 Peer Review Presentations - ...

  14. A Comparison of Library Tracking Methods in High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Library Tracking Methods in High Performance Computing Computer System Cluster and Networking Summer Institute 2013 Poster Seminar William Rosenberger (New Mexico Tech), Dennis...

  15. NNSA Awards Contract for High-Performance Computers | National...

    National Nuclear Security Administration (NNSA)

    Awards Contract for High-Performance Computers October 02, 2007 Contract Highlights Efforts to Integrate Nuclear Weapons Complex WASHINGTON, D.C. -- The Department of Energy's ...

  16. Rethinking the idealized morphology in high-performance organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rethinking the idealized morphology in high-performance organic photovoltaics December 9, 2011 Tweet EmailPrint Traditionally, organic photovoltaic (OPV) active layers are viewed...

  17. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY...

    Energy Savers [EERE]

    high-performance deposition technology that addresses two major aspects of this manufacturing cost: the expense of organic materials per area of useable product, and the...

  18. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  19. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measuremen...

    Office of Scientific and Technical Information (OSTI)

    Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measuremen...

    Office of Scientific and Technical Information (OSTI)

    Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details ... Country of Publication: United States Language: English Subject: Materials Science(36) ...

  1. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  2. DOE Announces Webinars on High Performance Enclosure Strategies...

    Energy Savers [EERE]

    for Buildings, Fuel Cell Forklifts and Energy Management, and More DOE Announces Webinars on High Performance Enclosure Strategies for Buildings, Fuel Cell Forklifts and Energy ...

  3. Fermilab | Science at Fermilab | Computing | High-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lattice QCD Farm at the Grid Computing Center at Fermilab. Lattice QCD Farm at the Grid Computing Center at Fermilab. Computing High-performance Computing A workstation computer ...

  4. Rebuilding It Better: Greensburg, Kansas, High Performance Buildings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REBUILDING IT BETTER: GREENSBURG, KANSAS High Performance Buildings Meeting Energy Savings Goals Rebuilding Green: From Vision to Reality Greensburg gathered a diverse group of ...

  5. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  6. Window Types | Department of Energy

    Office of Environmental Management (EM)

    Tints Heat-absorbing window glazing contains special tints that change the color of the glass. Tinted glass absorbs a large fraction of the incoming solar radiation...

  7. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill...

  8. High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint

    SciTech Connect (OSTI)

    Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

    2002-05-01

    In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

  9. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance...

    Office of Scientific and Technical Information (OSTI)

    Room temperature sodium-ion batteries are of great interest for high-energy-density energy ... anode for high performance sodium-ion batteries though a facile ball-milling of red ...

  10. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  11. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  12. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    6 Case Study, The Solaire, New York, New York (Apartments/Multi-Family) Building Design Floor Area: 357,000 SF Units: 293 Maximum Occupancy: 700 Floors: 27 Site Size: 0.38 Acres Typical Occupancy(1): 578 Black-Water Treatment Facility (2) Shell Windows Material: Double Glazed, Low-e, Thermal Breaks with Insulated Spacers Operable Windows Fixed Windows Visual Transminttance 0.68 0.68 Solar Heat Gain Coefficient 0.35 0.35 U-Factor 0.47 0.41 Wall/Roof Material R-Value Exterior Walls: Insulated

  13. Berkeley Lab Scientists Developing Paint-on Coating for Energy Efficient Windows

    Broader source: Energy.gov [DOE]

    It’s estimated that 10 percent of all the energy used in buildings in the U.S. can be attributed to window performance, costing building owners about $50 billion annually, yet the high cost of replacing windows or retrofitting them with an energy efficient coating is a major deterrent. U.S. Dept. of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) researchers are seeking to address this problem with creative chemistry—a polymer heat-reflective coating that can be painted on at one-tenth the cost.

  14. Vacuum window glazings for energy-efficient buildings

    SciTech Connect (OSTI)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  15. Project Profile: High Performance Reduction/Oxidation Metal Oxides for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage | Department of Energy Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Sandia National Laboratory Logo Sandia National Lab (Sandia), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is systematically

  16. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation | Department of Energy Cladding Attachment Over Thick Exterior Rigid Insulation Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation This presentation, Cladding Attachment Over Thick Rigid Exterior Insulation, was delivered at the Building America webinar, High Performance Enclosure

  17. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Air Distribution Retrofit Strategies for Affordable Housing | Department of Energy Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable Housing Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES), and Francis Conlin, High Performance Building Solutions, Inc., presenting Air Distribution Retrofit Strategies for Affordable Housing.

  18. Flourescent Pigments for High-Performance Cool Roofing and Facades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Flourescent Pigments for High-Performance Cool Roofing and Facades Flourescent Pigments for High-Performance Cool Roofing and Facades Addthis 1 of 3 PPG Industries and Lawrence Berkeley National Laboratory are partnering to develop a new class of dark-colored pigments for cool metal roof and façade coatings that incorporate near-infrared fluorescence and reflectance to improve energy performance. Image: PPG Industries 2 of 3 Berkeley Lab Heat Island Group physicist Paul

  19. Innovative High-Performance Deposition Technology for Low-Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of OLED Lighting | Department of Energy Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Lead Performer: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,046,452 Cost Share: $1,046,452 Project Term: October 1, 2013 - December 31, 2015 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079

  20. Integrated Design: A High-Performance Solution for Affordable Housing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Lead Performer: The Levy Partnership, Inc.-New York, NY Partners: Habitat for Humanity International /Habitat Research Foundation, Atlanta, GA Columbia Count Habitat, NY Habitat of Newburgh, NY Habitat Greater

  1. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, M.; Springer, D.; Dakin, B.; German, A.

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  2. Rebuilding It Better: Greensburg, Kansas, High Performance Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Energy Savings Goals (Brochure) | Department of Energy Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. Rebuilding It Better: Greensburg, Kansas, High

  3. Final Report- Low Cost High Performance Nanostructured Spectrally Selective Coating

    Broader source: Energy.gov [DOE]

    Solar absorbing coating is a key enabling technology to achieve hightemperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), hightemperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency.

  4. A Pilot Demonstration of Electrochromic and Thermochromic Windows in the Denver Federal Center, Building 41, Denver, Colorado

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy; Jonsson, Carl Jacob; Curcija, D. Charlie; Pang, Xiufeng; DiBartolomeo, Dennis; Hoffmann, Sabine

    2013-07-01

    Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This project demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.

  5. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    SciTech Connect (OSTI)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the

  6. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon testingresidentiala...

  7. Local Option- Property Tax Credit for High Performance Buildings

    Broader source: Energy.gov [DOE]

    Similar to Maryland's Local Option Property Tax Credit for Renewable Energy, Title 9 of Maryland's property tax code creates an optional property tax credit for high performance buildings. This...

  8. Anne Arundel County- High Performance Dwelling Property Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. In October 2010 Anne Arundel...

  9. Montgomery County- High Performance Building Property Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. Montgomery County has...

  10. Howard County- High Performance and Green Building Property Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings and energy conservation devices (Md Code: Property Tax §...

  11. A High-Performance Recycling Solution for PolystyreneAchieved...

    Office of Scientific and Technical Information (OSTI)

    A High-Performance Recycling Solution for PolystyreneAchieved by the Synthesis of Renewable Poly(thioether) Networks Derived from D -Limonene Citation Details In-Document Search ...

  12. A Comprehensive Look at High Performance Parallel I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this era of "big data," high performance parallel IO-the way disk drives efficiently read and write information on HPC systems-is extremely important. Yet the last book to ...

  13. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  14. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  15. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I | Department of Energy I Building America Webinar: High Performance Space Conditioning Systems, Part I The webinar on Oct. 23, 2014, focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be: * Andrew Poerschke, IBACOS, presenting Simplified Space Conditioning in Low-load Homes. The presentation will focus on what is "simple" when it comes to space conditioning?

  16. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II | Department of Energy II Building America Webinar: High Performance Space Conditioning Systems, Part II The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar included: William Zoeller, Consortium for Advanced Residential Retrofit (CARB), presented Design Options for Locating Ducts within Conditioned Space. The presentation provided an

  17. Seven NNSS buildings achieve High Performance Sustainable Building status |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Seven NNSS buildings achieve High Performance Sustainable Building status Monday, March 21, 2016 - 2:15pm Nevada Support Facility (NSF), Nevada National Security Site administrative headquarters. Nevada National Security Site (NNSS) - The National Nuclear Security Administration announced the award today of seven High Performance Sustainable Building (HPSB) plaques to the NNSS team for seven "green" buildings. The buildings are:

  18. PPPL and Princeton join high-performance software project | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab and Princeton join high-performance software project By John Greenwald July 22, 2016 Tweet Widget Google Plus One Share on Facebook Co-principal investigators William Tang and Bei Wang (Photo by Elle Starkman/Office of Communications) Co-principal investigators William Tang and Bei Wang Princeton University and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing

  19. PPPL and Princeton join high-performance software project | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab and Princeton join high-performance software project By John Greenwald July 22, 2016 Tweet Widget Google Plus One Share on Facebook Co-principal investigators William Tang and Bei Wang. (Photo by Elle Starkman/Office of Communications) Co-principal investigators William Tang and Bei Wang. Princeton University and the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) are participating in the accelerated development of a modern high-performance computing

  20. High-Performance Computing and Visualization | Energy Systems Integration |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a research tool by which scientists and engineers find new ways to tackle our nation's energy challenges-challenges that cannot be addressed through traditional experimentation alone. Photo of two men standing in front of a 3D visualization screen These research efforts will save time and money and significantly improve the likelihood of breakthroughs

  1. Project Profile: Development and Performance Evaluation of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concrete for Thermal Energy Storage for Solar Power Generation | Department of Energy Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Arkansas logo The University of Arkansas, under the Thermal Storage FOA, is developing a novel concrete material that can withstand operating

  2. Project Profile: Dish Stirling High-Performance Thermal Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dish Stirling High-Performance Thermal Storage Project Profile: Dish Stirling High-Performance Thermal Storage Sandia National Laboratories logo -- This project is inactive -- Sandia National Laboratories (SNL) is working with the National Renewable Energy Laboratory (NREL) and the University of Connecticut, under the National Laboratory R&D competitive funding opportunity, to demonstrate key thermal energy storage (TES) system components for dish Stirling power

  3. 100 supercomputers later, Los Alamos high-performance computing still

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports national security mission High-performance computing supports national security 100 supercomputers later, Los Alamos high-performance computing still supports national security mission Los Alamos National Laboratory has deployed 100 supercomputers in the last 60 years. November 12, 2014 1952 MANIAC-I supercomputer 1952 MANIAC-I supercomputer Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "Computing power for our Laboratory's national security mission is a

  4. Text-Alternative Version of High Performance Space Conditioning Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part I | Department of Energy I Text-Alternative Version of High Performance Space Conditioning Systems: Part I High Performance Space Conditioning Systems: Part I October 21, 2014 Andrew Poerschke, Research Initiatives Specialist, IBACOS Kohta Ueno, Senior Associate, Building Science Corporation Gail: Hello everyone. I am Gail Werren with the National Renewable Energy Laboratory. And I'd like to welcome you to today's webinar hosted by the Building America Program. We are excited to have

  5. Reliable, High Performance Transistors on Flexible Substrates - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Reliable, High Performance Transistors on Flexible Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Backplanes for Conformal Electronics and Sensors, "Nano Lett., 2011, 11, 5408-5413 (924 KB) Technology Marketing Summary Researchers at Berkeley Lab have produced uniform, high performance transistors on mechanically

  6. Continuous Monitoring And Cyber Security For High Performance Computing

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Continuous Monitoring And Cyber Security For High Performance Computing Citation Details In-Document Search Title: Continuous Monitoring And Cyber Security For High Performance Computing Authors: Malin, Alex B. [1] ; Van Heule, Graham K. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-02 OSTI Identifier: 1089452 Report Number(s): LA-UR-13-21921 DOE Contract Number: AC52-06NA25396 Resource Type: Conference

  7. Vehicle Technologies Office Merit Review 2016: Advanced High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries for Electric Vehicle (EV) Applications | Department of Energy Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Presentation given by Amprius at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es241_stefan_2016_p_web.pdf (739.96 KB) More

  8. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Introduction | Department of Energy Introduction Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Introduction This presentation is the Introduction to the Building America webinar, High Performance Enclosure Strategies, Part II, held on August 13, 2014. BA webinar_intro_8_13_14.pdf (969.17 KB) More Documents & Publications Building America Webinar: Retrofitting Central Space Conditioning

  9. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  10. Building America Webinar: High Performance Building Enclosures: Part I,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Homes | Department of Energy High Performance Building Enclosures: Part I, Existing Homes Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May 21, 2014, focused on specific Building America projects that have implemented technical solutions to retrofit building enclosures to reduce energy use and improve durability. Presenters answered tough questions such as: How can builders deal with increasing exterior foundation

  11. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction | Department of Energy Strategies: Part II, New Construction Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction The webinar is the second in the series on designing and constructing high performance building enclosures, and will focus on effective strategies to address moisture and thermal needs. Peter Baker, Building Science Corporation, will discuss results of 3 years of laboratory and field exposure testing that examined the

  12. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  13. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  14. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  15. Project Profile: High Performance Reflector Panels for CSP Assemblies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power » Project Profile: High Performance Reflector Panels for CSP Assemblies Project Profile: High Performance Reflector Panels for CSP Assemblies PPG logo PPG, under the CSP R&D FOA, is aiming to develop and commercialize large-area second-surface glass mirrors that are superior in value, cost, and performance, to existing mirrors on the market today. Approach Photo of a metal stand with flat square-shaped pieces lined up in three rows. This

  16. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    3 Case Study, The Visitor Center at Zion National Park, Utah (Service/Retail/Office) Building Design Vistors Center (1): 8,800 SF Comfort Station (2): 2,756 SF Fee Station: 170 SF Shell Windows Type U-Factor SHGC (3) South/East Glass Double Pane Insulating Glass, Low-e, Aluminum Frames, Thermally Broken 0.44 0.44 North/West Glass Double Pane Insulating Glass, Heat Mirror, Aluminum Frames, Thermally Broken 0.37 0.37 Window/Wall Ratio: 28% Wall/Roof Materials Effective R-Value Trombe Walls:

  17. A Component Architecture for High-Performance Scientific Computing

    SciTech Connect (OSTI)

    Bernholdt, D E; Allan, B A; Armstrong, R; Bertrand, F; Chiu, K; Dahlgren, T L; Damevski, K; Elwasif, W R; Epperly, T W; Govindaraju, M; Katz, D S; Kohl, J A; Krishnan, M; Kumfert, G; Larson, J W; Lefantzi, S; Lewis, M J; Malony, A D; McInnes, L C; Nieplocha, J; Norris, B; Parker, S G; Ray, J; Shende, S; Windus, T L; Zhou, S

    2004-12-14

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  18. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  19. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. You are accessing a document ...

  20. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. It is well known that the spectrum ...

  1. Atmospheric Pressure Deposition for Electrochromic Windows |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows ...

  2. Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    in your home involves design, selection, and installation. Design Before selecting new windows for your home, determine what types of windows will work best and where to...

  3. Energy Efficient Window Treatments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can choose window treatments or coverings not only for decoration but also for saving energy. ... Federal incentives are available for efficient residential windows, doors, or ...

  4. High-Performance Photovoltaic Project: Identifying Critical Pathways; Kickoff Meeting

    SciTech Connect (OSTI)

    Symko-Davis, M.

    2001-11-07

    The High Performance Photovoltaic Project held a Kickoff Meeting in October, 2001. This booklet contains the presentations given by subcontractors and in-house teams at that meeting. The areas of subcontracted research under the HiPer project include Polycrystalline Thin Films and Multijunction Concentrators. The in-house teams in this initiative will focus on three areas: (1) High-Performance Thin-Film Team-leads the investigation of tandem structures and low-flux concentrators, (2) High-Efficiency Concepts and Concentrators Team-an expansion of an existing team that leads the development of high-flux concentrators, and (3) Thin-Film Process Integration Team-will perform fundamental process and characterization research, to resolve the complex issues of making thin-film multijunction devices.

  5. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  6. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  7. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and ...

  8. Project Profile: High-Performance Nanostructured Coating | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Performance Nanostructured Coating Project Profile: High-Performance Nanostructured Coating Two illustrations side by side showing how sunlight is absorbed through layers on the left, and on the right, blue dots are above rectangular slab with two layers. --This project is inactive -- The University of California San Diego, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is developing a new low-cost and scalable process for

  9. DOE ASSESSMENT SEAB Recommendations Related to High Performance Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 10 DOE ASSESSMENT SEAB Recommendations Related to High Performance Computing 1. Introduction The Department of Energy (DOE) is planning to develop and deliver capable exascale computing systems by 2023-24. These systems are expected to have a one-hundred to one-thousand-fold increase in sustained performance over today's computing capabilities, capabilities critical to enabling the next-generation computing for national security, science, engineering, and large- scale data analytics needed to

  10. Building America Webinar: High-Performance Enclosure Strategies, Part I:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Roof Systems and Innovative Advanced Framing Strategies | Department of Energy Vladimir Kochkin, Home Innovation Research Labs, will focus on approaches for climate zones 3-5 that increase energy performance and reduce moisture issues in walls. The presentation is based on the Builder's Guide to High Performance Walls, which will be published in 2015 Construction Guide: Energy Efficient, Durable Walls (2.15 MB) More Documents & Publications Race to Zero 2015 Design Excellence

  11. High Performance, Low Cost Hydrogen Generation from Renewable Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Performance, Low Cost Hydrogen Generation from Renewable Energy High Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pd071_ayers_2011_o.pdf (1.38 MB) More Documents & Publications Catalysis Working Group Meeting: June 2015 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2015

  12. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, Marc; Springer, David; Dakin, Bill; German, Alea

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  13. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    SciTech Connect (OSTI)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  14. LANL installs high-performance computer system | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) LANL installs high-performance computer system Friday, June 20, 2014 - 10:29am Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. Wolf will help modernize mid-tier resources available to the lab and can be used to advance many fields of science. Wolf, manufactured by Cray Inc., has 616 compute nodes, each with two 8-core 2.6 GHz Intel "Sandybridge" processors,

  15. High performance computing and communications: FY 1997 implementation plan

    SciTech Connect (OSTI)

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  16. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  17. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  18. Promising Technology: R-5 Window Replacements

    Broader source: Energy.gov [DOE]

    A significant amount of the energy used to heat and cool commercial buildings is lost through inefficient windows. Incorporating windows into a building that are resistant to heat transfer can significantly reduce the amount of energy that is lost through windows. R-values are an indication of how resistant a window is to heat transfer, and a larger R-value indicates a more insulating window. An R-5 window represents an efficient window, and has a larger R-value than what is required to qualify for ENERGY STAR.

  19. High-Performance Thermoelectric Devices Based on Abundant Silicide

    Broader source: Energy.gov (indexed) [DOE]

    Materials for Vehicle Waste Heat Recovery | Department of Energy Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology shi.pdf (4.76

  20. The role of interpreters in high performance computing

    SciTech Connect (OSTI)

    Naumann, Axel; Canal, Philippe; /Fermilab

    2008-01-01

    Compiled code is fast, interpreted code is slow. There is not much we can do about it, and it's the reason why interpreters use in high performance computing is usually restricted to job submission. We show where interpreters make sense even in the context of analysis code, and what aspects have to be taken into account to make this combination a success.

  1. High performance protection circuit for power electronics applications

    SciTech Connect (OSTI)

    Tudoran, Cristian D. Dădñrlat, Dorin N.; ToƟa, Nicoleta; MiƟan, Ioan

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  2. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  3. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  4. A secure communications infrastructure for high-performance distributed computing

    SciTech Connect (OSTI)

    Foster, I.; Koenig, G.; Tuecke, S.

    1997-08-01

    Applications that use high-speed networks to connect geographically distributed supercomputers, databases, and scientific instruments may operate over open networks and access valuable resources. Hence, they can require mechanisms for ensuring integrity and confidentially of communications and for authenticating both users and resources. Security solutions developed for traditional client-server applications do not provide direct support for the program structures, programming tools, and performance requirements encountered in these applications. The authors address these requirements via a security-enhanced version of the Nexus communication library; which they use to provide secure versions of parallel libraries and languages, including the Message Passing Interface. These tools permit a fine degree of control over what, where, and when security mechanisms are applied. In particular, a single application can mix secure and nonsecure communication, allowing the programmer to make fine-grained security/performance tradeoffs. The authors present performance results that quantify the performance of their infrastructure.

  5. Building America Top Innovations 2013 Profile – Window Replacement, Rehabilitation, & Repair Guide

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  6. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  7. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  8. Experimental Evaluation of High Performance Integrated Heat Pump

    SciTech Connect (OSTI)

    Miller, William A; Berry, Robert; Durfee, Neal; Baxter, Van D

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate the refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.

  9. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  11. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  13. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  14. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  15. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  16. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  17. High Performance Computing with Harness over InfiniBand

    SciTech Connect (OSTI)

    Valentini, Alessandro; Di Biagio, Christian; Batino, Fabrizio; Pennella, Guido; Palma, Fabrizio; Engelmann, Christian

    2009-01-01

    Harness is an adaptable and plug-in-based middleware framework able to support distributed parallel computing. By now, it is based on the Ethernet protocol which cannot guarantee high performance throughput and real time (determinism) performance. During last years, both, the research and industry environments have developed new network architectures (InfiniBand, Myrinet, iWARP, etc.) to avoid those limits. This paper concerns the integration between Harness and InfiniBand focusing on two solutions: IP over InfiniBand (IPoIB) and Socket Direct Protocol (SDP) technology. They allow the Harness middleware to take advantage of the enhanced features provided by the InfiniBand Architecture.

  18. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect (OSTI)

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  19. Long Duration Performance of High Temperature Irradiation Resistant Thermocouples

    SciTech Connect (OSTI)

    Rempe, Joy L; Knudson, D. L.; Condie, K. G.; Wilkins, S. C.

    2007-05-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature inpile degrade at temperatures above 1100 ÂșC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL’s recommended thermocouple design, a series of high temperature (from 1200 to 1800 ÂșC) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 ÂșC that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests.

  20. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  1. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  2. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  3. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  4. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    SciTech Connect (OSTI)

    Smokowski, R.T.

    1985-12-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis.

  5. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  6. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  7. High performance computing and communications: FY 1996 implementation plan

    SciTech Connect (OSTI)

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  8. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  9. High Performance House Showcased at Builders Show - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance House Showcased at Builders Show January 20, 2004 Golden, Colo. - Homebuilders attending the 2004 International Builders' Show in Las Vegas can tour a new kind of home-a highly energy-efficient Zero Energy Home that will produce as much electricity as it uses over the course of a year. The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) partnered with Pardee Homes and energy consultant ConSol to introduce the Zero Energy Home concept with this

  10. 'Catch and Suppress' Control of Instabilities in High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Plasmas | U.S. DOE Office of Science (SC) 'Catch and Suppress' Control of Instabilities in High Performance Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301)

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 6 Building America Best Practices Series | Department of Energy Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series The sixth volume of the Building America Best Practices Series presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific

  12. SC15 High Performance Computing (HPC) Transforms Batteries - Joint Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage Research September 21, 2015, Videos SC15 High Performance Computing (HPC) Transforms Batteries A new breakthrough battery-one that has significantly higher energy, lasts longer, and is cheaper and safer-will likely be impossible without a new material discovery. Kristin Persson and other JCESR scientists at Lawrence Berkeley National Laboratory are taking some of the guesswork out of the discovery process with the Electrolyte Genome Project. Electrolyte Genome

  13. Department of Energy Laboratories, Researchers to Showcase High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Expertise at SC07 Conference | U.S. DOE Office of Science (SC) Department of Energy Laboratories, Researchers to Showcase High Performance Computing Expertise at SC07 Conference News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW

  14. High-Performance Refrigerator Using Novel Rotating Hear Exchanger

    Broader source: Energy.gov (indexed) [DOE]

    High-Performance Refrigerator Using Novel Rotating Heat Exchanger 2016 Building Technologies Office Peer Review Omar Abdelaziz, abdelazizoa@ornl.gov Oak Ridge National Laboratory 2 Project Summary Timeline: Start date: 10/01/2014 Planned end date: 09/30/2016 Key Milestones 1. Development of the first prototype 2. Successful one-week-long open circuit testing 3. The rotating HX and frost collector unit successfully run and tested for one week Budget: Total Project $ to Date: * DOE: $895,977 *

  15. 100 supercomputers later, Los Alamos high-performance computing still

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports national security mission 100 supercomputers later Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit 100 supercomputers later, Los Alamos high-performance computing still supports national security mission Los Alamos National Laboratory has deployed 100 supercomputers in the last 60 years January 1, 2015 1952 MANIAC-I supercomputer 1952 MANIAC-I supercomputer Contact Linda Anderman Email From the 1952

  16. High Performance Computing at the Oak Ridge Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing at the Oak Ridge Leadership Computing Facility Go to Menu Page 2 Outline * Our Mission * Computer Systems: Present, Past, Future * Challenges Along the Way * Resources for Users Go to Menu Page 3 Our Mission Go to Menu Page 4 * World's most powerful computing facility * Nation's largest concentration of open source materials research * $1.3B budget * 4,250 employees * 3,900 research guests annually * $350 million invested in modernization * Nation's most diverse energy

  17. High Performance OLEDs with Air-stable Nanostructured Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search High Performance OLEDs with Air-stable Nanostructured Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have modified the cathode-organic layer of an OLED device to significantly enhance electron injection efficiency and reduce the sensitivity of the cathode to environmental degradation by water

  18. High Performance Parallel Computing of Flows in Complex Geometries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Geometries Authors: Gicquela, L.Y.M., Gourdaina, N., Boussugea, J.F., Deniaua, H., Staffelbach, G., Wolf, P., Poinsot, T. Efficient numerical tools taking advantage of the ever increasing power of high-performance computers, become key elements in the fields of energy supply and transportation, not only from a purely scientific point of view, but also at the design stage in industry. Indeed, flow phenomena that occur in or around the industrial

  19. High Performance Parallel Computing of Flows in Complex Geometries: I.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods | Argonne Leadership Computing Facility I. Methods Authors: Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G., Garcia, M., Boussuge, J-F, Poinsot, T. Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the

  20. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  1. High-performance Electrochemical Capacitors - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search High-performance Electrochemical Capacitors Nanoscale metal oxide coatings on 3D carbon nanoarchitectures Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication ENE05FactSheet (310 KB) Technology Marketing Summary A capacitor comprising an anode, cathode, and an electrolyte, wherein the anode, the cathode, or both comprise a composite of porous carbon structure with a coating on the

  2. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Heating and Cooling with Mini-Splits in the Northeast | Department of Energy I: Heating and Cooling with Mini-Splits in the Northeast Building America Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the Northeast This presentation, Heating and Cooling with Mini-Splits in the Northeast, was delivered by Kohta Ueno, Building Science Corporation. Kohta will discuss BSC's research on ductless heat pumps versus mini-splits being used in

  3. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Compact Buried Ducts | Department of Energy Compact Buried Ducts Building America Webinar: High Performance Space Conditioning Systems, Part II - Compact Buried Ducts Dave Mallay, Partnership for Home Innovation (PHI), presenting Compact Buried Ducts. Dave will discuss buried ducts and design considerations, the compact duct concept, results of field testing and monitoring, and alternative solutions for air sealing and insulating the ducts. ba_webinar_mallay_11_18-14.pdf (1.73 MB) More

  4. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space | Department of Energy II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts within Conditioned Space William Zoeller, Consortium for Advanced Residential Retrofit (CARB) delivers this presentation, which provides an overview of the technical aspects of buried and encapsulated duct systems as well as the

  5. Intro - High Performance Computing for 2015 HPC Annual Report

    SciTech Connect (OSTI)

    Klitsner, Tom

    2015-10-01

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  6. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  7. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    SciTech Connect (OSTI)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  8. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  9. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  10. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    4 Case Study, The Philip Merrill Environmental Center, Annapolis, Maryland (Office) Building Design Floor Area: 31,000 SF Floors: 2 Footprint: 220 ft. x (1) 2 Floors of open office space Attached pavilion containing: Meeting space Kitchen Staff dining Conference room Shell Windows U-Factor SHGC (2) Type: Double Pane, Low-e, Argon Filled Insulating Glass 0.244 0.41 Wall/Roof Material Effective R-Value Interior Wall plywood, gypsum, SIP foam, and sheathing 28.0 Exterior Wall gypsum and insulated

  11. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall :

  12. High Performance Laminates Using Blended Urethane Resin Chemistry

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Jones, George G.; Walsh, Sean P.; Wood, Geoff M.

    2005-03-24

    Hybrid blended resin systems have the potential to provide excellent impact performance in structured laminates. Although mostly under development for sheet molding compound (SMC) applications using glass fiber with high levels of fillers, the resins have been found to be useful in liquid molding applications with other high-performance fiber systems. A research pro-gram to develop the molding capability, property data, and capability to model the composites using newly de-veloped codes and modeling techniques was initiated through the Department of Energy’s Office of Freedom-Car and Vehicle Technologies. Results have shown ex-cellent adhesion to different fiber systems as evidenced by mechanical properties, and a capability to develop very good impact results – thereby allowing thin panel structures to be developed. Comparison to predicted me-chanical properties has been achieved and mechanisms for the development of observed high energy absorption under impact loadings are being investigated. Scale ef-fects based on panel thickness, fiber type loading, and position in laminate are being investigated. DOE pro-gram sponsorship was provided by Dr. Sidney Diamond, Technical Area Development Manager for High-Strength Weight-Reduction Materials.

  13. Towards an Abstraction-Friendly Programming Model for High Productivity and High Performance Computing

    SciTech Connect (OSTI)

    Liao, C; Quinlan, D; Panas, T

    2009-10-06

    General purpose languages, such as C++, permit the construction of various high level abstractions to hide redundant, low level details and accelerate programming productivity. Example abstractions include functions, data structures, classes, templates and so on. However, the use of abstractions significantly impedes static code analyses and optimizations, including parallelization, applied to the abstractions complex implementations. As a result, there is a common perception that performance is inversely proportional to the level of abstraction. On the other hand, programming large scale, possibly heterogeneous high-performance computing systems is notoriously difficult and programmers are less likely to abandon the help from high level abstractions when solving real-world, complex problems. Therefore, the need for programming models balancing both programming productivity and execution performance has reached a new level of criticality. We are exploring a novel abstraction-friendly programming model in order to support high productivity and high performance computing. We believe that standard or domain-specific semantics associated with high level abstractions can be exploited to aid compiler analyses and optimizations, thus helping achieving high performance without losing high productivity. We encode representative abstractions and their useful semantics into an abstraction specification file. In the meantime, an accessible, source-to-source compiler infrastructure (the ROSE compiler) is used to facilitate recognizing high level abstractions and utilizing their semantics for more optimization opportunities. Our initial work has shown that recognizing abstractions and knowing their semantics within a compiler can dramatically extend the applicability of existing optimizations, including automatic parallelization. Moreover, a new set of optimizations have become possible within an abstraction-friendly and semantics-aware programming model. In the future, we will

  14. Evacuated Window Glazing Research and Development: A Progress Report

    SciTech Connect (OSTI)

    Benson, D. K.; Tracy, C. E.; Jorgensen, G. J.

    1984-12-01

    This document summarizes progress during a nine-month period of an ongoing, exploratory research talk. The objective of the research is to evaluate the technical feasibility of a highly insulating, evacuated glazing for windows and other building apertures. Research includes engineering design and analysis of the glazing structure, materials development for its components, and the development of fabrication processes that could be used in the practical, mass production of such a glazing system. The targeted design performance goals are 70 percent solar weighted transmittance with less than 0.5 W/m2 K conductance (insulating R value greater than 12 F ft2 h/Btu) with an acceptable view quality.

  15. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is

  16. A directory service for configuring high-performance distributed computations

    SciTech Connect (OSTI)

    Fitzgerald, S.; Kesselman, C.; Foster, I.

    1997-08-01

    High-performance execution in distributed computing environments often requires careful selection and configuration not only of computers, networks, and other resources but also of the protocols and algorithms used by applications. Selection and configuration in turn require access to accurate, up-to-date information on the structure and state of available resources. Unfortunately, no standard mechanism exists for organizing or accessing such information. Consequently, different tools and applications adopt ad hoc mechanisms, or they compromise their portability and performance by using default configurations. We propose a Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state. We define an extensible data model to represent required information and present a scalable, high-performance, distributed implementation. The data representation and application programming interface are adopted from the Lightweight Directory Access Protocol; the data model and implementation are new. We use the Globus distributed computing toolkit to illustrate how this directory service enables the development of more flexible and efficient distributed computing services and applications.

  17. LIAR -- A computer program for the modeling and simulation of high performance linacs

    SciTech Connect (OSTI)

    Assmann, R.; Adolphsen, C.; Bane, K.; Emma, P.; Raubenheimer, T.; Siemann, R.; Thompson, K.; Zimmermann, F.

    1997-04-01

    The computer program LIAR (LInear Accelerator Research Code) is a numerical modeling and simulation tool for high performance linacs. Amongst others, it addresses the needs of state-of-the-art linear colliders where low emittance, high-intensity beams must be accelerated to energies in the 0.05-1 TeV range. LIAR is designed to be used for a variety of different projects. LIAR allows the study of single- and multi-particle beam dynamics in linear accelerators. It calculates emittance dilutions due to wakefield deflections, linear and non-linear dispersion and chromatic effects in the presence of multiple accelerator imperfections. Both single-bunch and multi-bunch beams can be simulated. Several basic and advanced optimization schemes are implemented. Present limitations arise from the incomplete treatment of bending magnets and sextupoles. A major objective of the LIAR project is to provide an open programming platform for the accelerator physics community. Due to its design, LIAR allows straight-forward access to its internal FORTRAN data structures. The program can easily be extended and its interactive command language ensures maximum ease of use. Presently, versions of LIAR are compiled for UNIX and MS Windows operating systems. An interface for the graphical visualization of results is provided. Scientific graphs can be saved in the PS and EPS file formats. In addition a Mathematica interface has been developed. LIAR now contains more than 40,000 lines of source code in more than 130 subroutines. This report describes the theoretical basis of the program, provides a reference for existing features and explains how to add further commands. The LIAR home page and the ONLINE version of this manual can be accessed under: http://www.slac.stanford.edu/grp/arb/rwa/liar.htm.

  18. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  19. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  20. Indoor air quality in 24 California residences designed as high-performance homes

    SciTech Connect (OSTI)

    Less, Brennan; Mullen, Nasim; Singer, Brett; Walker, Iain

    2015-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possibly window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr-1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. In addition, these similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve