National Library of Energy BETA

Sample records for high performance rooftop

  1. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect (OSTI)

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  2. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  3. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. ...

  4. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology (Journal Article) | SciTech Connect Journal Article: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of

  5. Development of a High Latent Effectiveness Energy Recovery Ventilator with Integration into Rooftop Package Equipment

    SciTech Connect (OSTI)

    Gregory M. Dobbs; Norberto O. Lemcoff; Frederick J. Cogswell; Jeffrey T. Benolt

    2006-03-01

    This Final Report covers the Cooperative Program carried out to design and optimize an enhanced flat-plate energy recovery ventilator and integrate it into a packaged unitary (rooftop) air conditioning unit. The project objective was to optimize the design of a flat plate energy recovery ventilator (ERV) core that compares favorably to flat plate air-to-air heat exchanger cores on the market and to cost wise to small enthalpy wheel devices. The benefits of an integrated unit incorporating an enhanced ERV core and a downsized heating/cooling unit were characterized and the design of an integrated unit considering performance and cost was optimized. Phase I was to develop and optimize the design of a membrane based heat exchanger core. Phase II was the creation and observation of a system integrated demonstrator unit consisting of the Enhanced Energy Recovery Ventilator (EERV) developed in Phase I coupled to a standard Carrier 50HJ rooftop packaged unitary air conditioning unit. Phase III was the optimization of the system prior to commercialization based on the knowledge gained in Phase II. To assure that the designs chosen have the possibility of meeting cost objectives, a preliminary manufacturability and production cost study was performed by the Center for Automation Technologies at RPI. Phase I also included a preliminary design for the integrated unit to be further developed in Phase II. This was to assure that the physical design of the heat exchanger designed in Phase I would be acceptable for use in Phase II. An extensive modeling program was performed by the Center for Building Performance & Diagnostics of CMU. Using EnergyPlus as the software, a typical office building with multiple system configurations in multiple climatic zones in the US was simulated. The performance of energy recovery technologies in packaged rooftop HVAC equipment was evaluated. The experimental program carried out in Phases II and III consisted of fabricating and testing a demonstrator unit using Carrier Comfort Network (CCN) based controls. Augmenting the control signals, CCN was also used to monitor and record additional performance data that supported modeling and conceptual understanding. The result of the testing showed that the EERV core developed in Phase I recovered energy in the demonstrator unit at the expected levels based on projections. In fact, at near-ARI conditions the core recovered about one ton of cooling enthalpy when operating with a three-ton rooftop packaged unit.

  6. Sunshot Rooftop Solar Challenge | Department of Energy

    Energy Savers [EERE]

    Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge Sunshot Rooftop Solar Challenge

  7. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  8. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect (OSTI)

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  9. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  10. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  11. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging ... Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU ...

  12. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  13. Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge Rooftop Solar Challenge The Rooftop Solar Challenge aims to reduce the cost of rooftop solar energy systems through improved permitting, financing, zoning, net metering, and interconnection processes for residential and small commercial photovoltaic (PV) installations. Launched in February 2012, the first round of the Rooftop Solar Challenge supported one-year projects for 22 regional teams. The aggregated efforts of Rooftop Solar Challenge I teams cut permitting time by

  14. Rooftop Diagnostician - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Diagnostician Pacific Northwest National Laboratory Contact PNNL About This Technology The diagnostician is a self-contained unit that can be installed in any rooftop package unit. The diagnostician is a self-contained unit that can be installed in any rooftop package unit. Once powered up, results are available and can be viewed at the device's web site. Once powered up, results are available and can be viewed at the device's web site. Technology Marketing Summary The Rooftop

  15. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Did you know that rooftop unit (RTU) air conditioners serve cooling to 60% of U.S. commercial building floor space? Odds are high that you've worked from, shopped at, or eaten in ...

  16. Rooftop Solar Challenge Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge Award Winners Rooftop Solar Challenge Award Winners Select an Awardee Return to map Rooftop Solar Challenge II Award Winners Award Winner Headquarters

  17. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As ... One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop ...

  18. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  19. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  20. SunShot Rooftop Challenge Awardees

    Broader source: Energy.gov [DOE]

    Awardees, partners, award amounts, estimated population, and project descriptions for the 2011 SunShot Rooftop Challenge.

  1. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  2. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  3. Modeling the U.S. Rooftop Photovoltaics Market

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2010-09-01

    Global rooftop PV markets are growing rapidly, fueled by a combination of declining PV prices and several policy-based incentives. The future growth, and size, of the rooftop market is highly dependent on continued PV cost reductions, financing options, net metering policy, carbon prices and future incentives. Several PV market penetration models, sharing a similar structure and methodology, have been developed over the last decade to quantify the impacts of these factors on market growth. This study uses a geospatially rich, bottom-up, PV market penetration model--the Solar Deployment Systems (SolarDS) model developed by the National Renewable Energy Laboratory--to explore key market and policy-based drivers for residential and commercial rooftop PV markets. The identified drivers include a range of options from traditional incentives, to attractive customer financing options, to net metering and carbon policy.

  4. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Sandia Rooftop PV Structural Report Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid ... Sandia Rooftop PV Structural Report Webinar A roof structure is made ...

  6. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault ... and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Rooftop Unit ...

  7. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin ... from two Arizona utilities that have implemented utility owned rooftop solar programs. ...

  8. Phoenix American Rooftop Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    American Rooftop Solar Technologies Jump to: navigation, search Name: Phoenix American Rooftop Solar Technologies Place: Michigan Zip: 48168 Sector: Solar Product: Manufacturer of...

  9. Demonstrations of Integrated Advanced Rooftop Unit Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics - 2014 BTO Peer Review Demonstrations of Integrated Advanced Rooftop Unit...

  10. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  11. Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review Presenter: Jim Braun, Purdue University (The ...

  12. Next Generation Rooftop Unit

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: Trane Company, Ingersoll Rand Inc. - Davidson, NC

  13. Final Report - Arizona Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Final Report - Arizona Rooftop Solar Challenge Awardee: Arizona Governor's Office of Energy Policy Location: Phoenix, AZ Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The Arizona Rooftop Solar Challenge (ARC) is a regional partnership of the Rooftop Solar Challenge. Funded through the U.S. Department of Energy's SunShot Initiative, this program is focused on streamlining processes and reducing costs to make solar more affordable for the

  14. Development of a Hydronic Rooftop Unit-HyPak-MA

    SciTech Connect (OSTI)

    Eric Lee; Mark Berman

    2009-11-14

    The majority of U.S. commercial floor space is cooled by rooftop HVAC units (RTUs). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTUs are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. 36% percent of annual U.S. energy, and two-thirds of electricity, is consumed in and by buildings. Commercial buildings consume approximately 4.2 quads of energy each year at a cost of $230 billion per year, with HVAC equipment consuming 1.2 quads of electricity. More than half of all U.S. commercial floor space is cooled by packaged HVAC units, most of which are rooftop units (RTUs). Inefficient RTUs create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming5. Also, RTUs often fail to maintain adequate ventilation air and air filtration, reducing indoor air quality. This is the second HyPak project to be supported by DOE through NETL. The prior project, referred to as HyPak-1 in this report, had two rounds of prototype fabrication and testing as well as computer modeling and market research. The HyPak-1 prototypes demonstrated the high performance capabilities of the HyPak concept, but made it clear that further development was required to reduce heat exchanger cost and improve system reliability before HyPak commercialization can commence. The HyPak-1 prototypes were limited to about 25% ventilation air fraction, limiting performance and marketability. The current project is intended to develop a 'mixed-air' product that is capable of full 0-100% modulation in ventilation air fraction, hence it was referred to as HyPak-MA in the proposal. (For simplicity, the -MA has been dropped when referencing the current project.) The objective of the HyPak Project is to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit, and reduction in peak energy consumption of 50% and 33% respectively. In addition to performance targets, our goal is to develop a production-ready design with durability, reliability and maintainability similar to air-cooled packaged equipment, and that can be commercialized immediately following the conclusion of this project.

  15. DEVELOPMENT OF A HYDRONIC ROOFTOP UNIT -- HYPAK

    SciTech Connect (OSTI)

    Eric Lee; Dick Bourne; Mark Berman

    2004-03-25

    The majority of US commercial floor space is cooled by rooftop HVAC units (RTU's). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTU's are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. Existing RTU's in the U.S. consume an estimated 2.4 quads annually. Inefficient RTU's create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming. Also, RTU's often fail to maintain adequate ventilation air and air filtration. This project was developed to evaluate the feasibility of a radically new ''HyPak'' RTU design that significantly and cost-effectively increases RTU performance and delivered air quality. The objective of the HyPak Project was to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit.

  16. Rooftop Solar Challenge to Cut Solar's Red Tape | Department...

    Energy Savers [EERE]

    Rooftop Solar Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor ...

  17. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  18. Better Buildings Alliance, Advanced Rooftop Unit Campaign: Rooftop Unit Measurement and Verification (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This document provides facility managers and building owners an introduction to measurement and verification (M&V) methods to estimate energy and cost savings of rooftop units replacement or retrofit projects to estimate paybacks or to justify future projects.

  19. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOEs Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  20. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOE’s Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  1. Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

    Broader source: Energy.gov [DOE]

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  2. Integration of Rooftop Photovoltaic Systems in St. Paul Ford Site's Redevelopment Plans

    SciTech Connect (OSTI)

    Olis, D.; Mosey, G.

    2015-03-01

    The purpose of this analysis is to estimate how much electricity the redeveloped Ford Motor Company assembly plant site in St. Paul, Minnesota, might consume under different development scenarios and how much rooftop photovoltaic (PV) generation might be possible at the site. Because the current development scenarios are high-level, preliminary sketches that describe mixes of residential, retail, commercial, and industrial spaces, electricity consumption and available rooftop area for PV under each scenario can only be grossly estimated. These results are only indicative and should be used for estimating purposes only and to help inform development goals and requirements moving forward.

  3. Solar access of residential rooftops in four California cities

    SciTech Connect (OSTI)

    Levinson, Ronnen; Akbari, Hashem; Pomerantz, Melvin; Gupta, Smita

    2009-12-15

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km{sup 2} residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (author)

  4. High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC INL Logo Home High-Performance Computing INL's high-performance computing center provides general use scientific computing capabilities to support the lab's efforts in advanced...

  5. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  6. Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-05-01

    This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

  7. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  8. Energy Department Recognizes Organizations for Leadership in Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Recognizes Organizations for Leadership in Rooftop Unit Efficiency Energy Department Recognizes Organizations for Leadership in Rooftop Unit Efficiency April 26, 2016 - 12:00pm Addthis As part of the Administration's strategy to increase energy productivity and cut energy waste in our nation's buildings, today the U.S. Department of Energy recognized six organizations for their leadership in replacing and upgrading rooftop units as part of the Better

  9. Washington: Putting More Solar on More Rooftops in Washington State

    Broader source: Energy.gov [DOE]

    EERE SunShot Initiative awardee Evergreen State Solar Partnership (ESSP) is working to reduce the costs of installing rooftop photovoltaics.

  10. Energy Department Finalizes Loan Guarantee for Transformational Rooftop Solar Project

    Broader source: Energy.gov [DOE]

    Largest rooftop project in U.S. history will enable wide distribution of solar power across country while funding at least a thousand jobs

  11. Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System ... Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection ...

  12. Rooftop Solar Challenge: Empowering Innovators to Reach for the...

    Broader source: Energy.gov (indexed) [DOE]

    of the Rooftop Solar Challenge. | Infographic by Sarah ... converts complex aerial data into an easy-to-understand ...

  13. Rooftop Solar Photovoltaic Technical Potential in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract No. DE-AC36-08GO28308 Rooftop Solar Photovoltaic ... Elmore National Renewable Energy Laboratory Technical ... Abbott-Whitley for their assistance in processing data. ...

  14. Rooftop Unit Network Project - 2013 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU Smart Monitoring and Diagnostic System - 2013 BTO Peer Review Technical Meeting: Software Framework for Transactive ...

  15. Solar access of residential rooftops in four California cities...

    Office of Scientific and Technical Information (OSTI)

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes ...

  16. Department of Energy Commits Support for Landmark Rooftop Solar Project

    Broader source: Energy.gov [DOE]

    Largest Rooftop Project in U.S. History Will Enable Wide Distribution of Solar Power Across Country While Creating at Least a Thousand Jobs

  17. Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Award Number: DE-EE0000549 Project Period December 1, 2011 ... Policy September 30, 2013 Arizona Rooftop Solar Challenge Final Report Table of Contents ...

  18. NREL-Optimizing Rooftop Space with SolOpt Presentation | Open...

    Open Energy Info (EERE)

    Optimizing Rooftop Space with SolOpt Presentation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Optimizing Rooftop Space with SolOpt AgencyCompany Organization:...

  19. Rooftop Unit Comparison Calculator User Manual

    SciTech Connect (OSTI)

    Miller, James D.

    2015-04-30

    This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.

  20. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and bioscience capabiities. Occupational Medicine will become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field...

  1. High performance systems

    SciTech Connect (OSTI)

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  2. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide highlights the DOE O 413.3B drivers for incorporating high performance sustainable building (HPSB) principles into Critical Decisions 1 through 4 and provides guidance for implementing the Order's HPSB requirements.

  3. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-11-09

    This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements of DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-6.

  4. High Performance Sustainable Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Goal 3: High Performance Sustainable Buildings Maintaining the conditions of a building improves the health of not only the surrounding ecosystems, but also the well-being of its occupants. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL The Radiological Laboratory

  5. Episode 1: Tackling the Hidden Costs of Rooftop Solar

    Broader source: Energy.gov [DOE]

    In the very first episode of Direct Current - An Energy.gov Podcast, we take you inside the hidden costs of rooftop solar, explore the history of the Energy Department, and more!

  6. Control and Diagnostics for Rooftop Units- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Jim Braun, Purdue University (The Pennsylvania State University Consortium for Building Energy Innovation) This project aims to develop and validate cost-effective methods for rooftop air conditioning unit (RTU) coordination and diagnostics in small commercial buildings.

  7. NREL Raises Rooftop Photovoltaic Technical Potential Estimate - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Raises Rooftop Photovoltaic Technical Potential Estimate New analysis nearly doubles previous estimates and shows U.S. building rooftops could generate close to 40 percent of national electricity sales March 24, 2016 Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) have used detailed light detection and ranging (LiDAR) data for 128 cities nationwide, along with improved data analysis methods and simulation tools, to update its estimate of

  8. Unleashing Rooftop Solar Energy through More Efficient Government |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Unleashing Rooftop Solar Energy through More Efficient Government Unleashing Rooftop Solar Energy through More Efficient Government June 1, 2011 - 11:45am Addthis Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies

  9. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

  10. High Performance Sustainable Building

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A and provides useful information on the incorporation of high performance sustainable building principles into building-related General Plant Projects and Institutional General Plant Projects at DOE sites. Canceled by DOE G 413.3-6A. Does not cancel other directives.

  11. High Performance Window Attachments

    Energy Savers [EERE]

    High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but

  12. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  13. High Performance Buildings Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  14. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  15. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  16. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  17. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E

    2012-08-10

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  18. High Performance Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Energy Management Reduce energy use and meet your business objectives By applying continuous improvement practices similar to Lean and Six Sigma, the BPA Energy Smart...

  19. Rooftop Solar Photovoltaic Technical Potential in the United States

    SciTech Connect (OSTI)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- and populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.

  20. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  1. Introduction to High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction to High Performance Computing Introduction to High Performance Computing June 10, 2013 Photo on 7 30 12 at 7.10 AM Downloads Download File Gerber-HPC-2.pdf...

  2. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  3. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  4. Software and High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software and High Performance Computing Software and High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email Software Computational physics, computer science, applied mathematics, statistics and the

  5. Connecting HPC and High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC and High Performance Networks for Scientists and Researchers SC15 Austin, Texas November 18, 2015 1 Agenda 2 * Welcome and introductions * BoF Goals * Overview of National Research & Education Networks at work Globally * Discuss needs, challenges for leveraging HPC and high-performance networks * HPC/HTC pre-SC15 ESnet/GEANT/Internet2 survey results overview * Next steps discussion * Closing and Thank You BoF: Connecting HPC and High Performance Networks for Scientists and Researchers

  6. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Kim, Woohyun; Lutes, Robert G.; Underhill, Ronald M.

    2015-09-30

    This report documents the development, testing and field validation of the integrated AFDD and advanced rooftop unit (RTU) controls using a single controller in buildings.

  7. What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaks | Department of Energy What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks February 16, 2016 - 4:50pm Addthis What is the #1 Way to Save Money on Your Rooftop Unit? Fix it BEFORE it Breaks What are the key facts? Rooftop units over 15 years old can waste substantial energy and money, while providing less-than-quality service. The Advanced RTU Campaign published a business case for

  8. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Advanced RTU Campaign | Department of Energy What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign November 10, 2015 - 11:40am Addthis What’s on your Roof? Rooftop Unit (RTU) Efficiency Advice and Guidance from the Advanced RTU Campaign By Marta Schantz This is the first in a series of upcoming blogs on DOE's Advanced Rooftop Unit

  9. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles 2011 DOE ...

  10. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect (OSTI)

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  11. High Performance Home Cost Performance Trade-Offs: Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders - ...

  12. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  13. Sustainability Performance Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Management » Sustainability Performance Office Sustainability Performance Office Forrestal's Rooftop Solar Array Forrestal's Rooftop Solar Array National Renewable Energy Laboratory's Research Support Facility National Renewable Energy Laboratory's Research Support Facility Savannah River Site's Biomass Steam Plants Savannah River Site's Biomass Steam Plants Pantex Plant's Wind Farm Pantex Plant's Wind Farm Argonne National Laboratory's Mira Supercomputer Argonne National

  14. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  15. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  16. Residential and Commercial Property Assessed Clean Energy (PACE) Financing in California Rooftop Solar Challenge Areas

    Broader source: Energy.gov [DOE]

    This version of the report updates the original report published in March 2013. It identifies and describes the current state of residential and commercial property assessed clean energy (PACE) financing programs in California. The report discusses the Improvement Act of 1911, the Mello-Roos Act of 1982, the different philosophies cities have adopted in implementing PACE financing, and various PACE program structures. It also discusses the first implementation of PACE by cities that used their charter authority to create programs under the Mello-Roos Act of 1982 before the enactment of AB 811 and SB 555.1. This report focuses on PACE as a mechanism to increase the amount of rooftop solar systems installed, but also recognizes that these programs provide an effective means to finance energy and water efficiency projects. The updated report provides new information on California’s Residential PACE Loss Reserve Program, the Federal Housing Finance Agency, program requirements, and program performance.

  17. INL High Performance Building Strategy

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED®) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

  18. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  19. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  20. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  1. High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

  2. Episode 1: Tackling the Hidden Costs of Rooftop Solar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Episode 1: Tackling the Hidden Costs of Rooftop Solar Episode 1: Tackling the Hidden Costs of Rooftop Solar Direct Current - An Energy.gov Podcast Energy.gov Digital Team Play audio Download File Join our hosts, Matt Dozier and Allison Lantero, as they investigate the sneaky "soft costs" driving up the price of rooftop solar, delve into the archives for a look at the turbulent times around the Energy Department's creation, and contemplate some alternatives to the name

  3. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to Exabytes of Data 2 Science at Scale: Simulations Aid in Understanding Climate Impacts 3 Antarctic ice speed (left): AMR enables sub-1 km resolution (black, above) (Using NERSC's Hopper) BISICLES Pine Island Glacier simulation - mesh resolution crucial for grounding line behavior. Enhanced POP ocean model solution for

  4. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  5. Building-Integrated Photovoltaics (BIPV) in the Residential Section: An Analysis of Installed Rooftop Prices (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 17, 2012, in Denver, CO, discusses building-integrated photovoltaics (BIPV) in the residential section and includes an analysis of installed rooftop prices.

  6. Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton

    Energy Savers [EERE]

    National Cemetery | Department of Energy Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing the proposed construction of a Photovoltaic System at the Calvertion National Cemetery (CNC) in Calverton, New York. PDF icon CX rulemaking files More Documents & Publications Department of

  7. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  8. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The ...

  9. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building ... New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes ...

  10. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions

  11. Building America Webinar: High Performance Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Building Enclosures: Part I, Existing Homes Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May ...

  12. High Performance and Sustainable Buildings Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance PDF icon High Performance and Sustainable Buildings Guidance More Documents & ... EXECUTIVE ORDER 13XXX Federal Leadership in Environmental, Energy and Economic Performance

  13. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    versus mini-splits being used in high performance (high R value enclosurelow air leakage) houses, often configured as a simplified distribution system (one heat source per floor). ...

  14. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques

    SciTech Connect (OSTI)

    Melius, J.; Margolis, R.; Ong, S.

    2013-12-01

    A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and California to compare modeled results to actual on-the-ground measurements.

  15. Presentation: High Performance Computing Applications | Department of

    Energy Savers [EERE]

    Energy High Performance Computing Applications Presentation: High Performance Computing Applications A briefing to the Secretary's Energy Advisory Board on High Performance Computing Applications delivered by Frederick H. Streitz, Lawrence Livermore National Laboratory. PDF icon High Performance Computing More Documents & Publications Presentation: QER Energy Topics DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies Office Merit

  16. High Performance Binderless Electrodes for Rechargeable Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Binderless Electrodes for Rechargeable Lithium Batteries National ... Electrode for fast-charging Lithium Ion Batteries, Accelerating Innovation Webinar ...

  17. EERE Success Story-Washington: Putting More Solar on More Rooftops in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington State | Department of Energy Putting More Solar on More Rooftops in Washington State EERE Success Story-Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. EERE SunShot

  18. Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power for U.S. Military Housing | Department of Energy Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing Energy Department Loan Guarantee Would Support Large-Scale Rooftop Solar Power for U.S. Military Housing September 7, 2011 - 2:10pm Addthis Washington D.C. - U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment for a partial guarantee of a $344 million loan that will support the SolarStrong Project, which is expected

  19. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  20. Building-Integrated Photovoltaics (BIPV) in the Residential Sector: An Analysis of Installed Rooftop System Prices

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.; Woodhouse, M.; Margolis, R.; Ong, S.

    2011-11-01

    For more than 30 years, there have been strong efforts to accelerate the deployment of solar-electric systems by developing photovoltaic (PV) products that are fully integrated with building materials. This report examines the status of building-integrated PV (BIPV), with a focus on the cost drivers of residential rooftop systems, and explores key opportunities and challenges in the marketplace.

  1. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  2. High Performance Computing Student Career Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC » Students High Performance Computing Student Career Resources Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Us Student Liaison Josephine Kilde (505) 667-5086 Email High Performance Computing Capabilities The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class Supercomputing Centers. Our

  3. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High Performance Space Conditioning Systems, Part II - Compact ... to Determining Climate Regions by County DOE ZERH Webinar: Ducts in Conditioned Space

  4. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts ...

  5. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies ...

  6. OCIO Technology Summit: High Performance Computing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The summit explored how Energy is using high performance computing to address a number of ... Oak Ridge National Laboratory, National Energy Research Scientific Computing Center ...

  7. High Performance Computing Data Center Metering Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... operations and control of key systems. In high performance computing facilities, intelligent integration of ... facility for all network traffic D72-5600 ERP5 + 7% xfmr ...

  8. High performance carbon nanocomposites for ultracapacitors

    DOE Patents [OSTI]

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  9. Method of making a high performance ultracapacitor

    DOE Patents [OSTI]

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  10. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Simplified Space Conditioning in Low Load Homes Building America Webinar: High Performance Space Conditioning Systems, Part I: Simplified Space Conditioning in Low Load Homes ...

  11. Building America Roadmap to High Performance Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 ...

  12. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - ... Sheathing Building America Technology Solutions for New and ...

  13. Functionalized High Performance Polymer Membranes for Separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized High Performance Polymer Membranes for Separation of Carbon Dioxide and Methane Previous Next List Natalia Blinova and Frantisek Svec, J. Mater. Chem. A, 2, 600-604...

  14. SciTech Connect: "high performance computing"

    Office of Scientific and Technical Information (OSTI)

    Advanced Search Term Search Semantic Search Advanced Search All Fields: "high performance computing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  15. High Performance Sustainable Building - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Adam Pugh Functional areas: Program Management, Project Management This Guide provides approaches for implementing the High Performance Sustainable Building (HPSB) requirements...

  16. Building America Webinar: High Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies, Part II: Low-E Storm Windows and Window Attachments Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments ...

  17. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  18. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    SciTech Connect (OSTI)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.

  19. High Performance Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Window Attachments High Performance Window Attachments Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech20_curcija_040413.pdf More Documents & Publications Fenestration Software Tools Advanced Facades, Daylighting, and Complex Fenestration Systems OpenStudio - 2013 Peer Review

  20. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC...

  1. Using High Performance Libraries and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Libraries and Tools Using High Performance Libraries and Tools Memkind Library on Edison The memkind library is a user extensible heap manager built on top of jemalloc which enables control of memory characteristics and a partitioning of the heap between kinds of memory (including user defined kinds of memory). This library can be used to simulate the benefit of the high bandwidth memory that will be available on KNL system on the dual socket Edison compute nodes (the two

  2. high-performance | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Sorbents for Carbon Dioxide Capture from Air Project No.: DE-FE0002438 NETL has partnered with the Georgia Institute of Technology to perform a combined experimental and modeling study of air capture of CO2 using low-cost, high-capacity sorbents (a material used to absorb liquid or gas) including, but not limited to, mesoporous (material containing pores with diameters between 2 and 50 nanometers) or solids functionalized with hyperbranched amino-polymers (highly branched,

  3. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  4. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center in the ESIF and talks about some of the capabilities and unique features of the center.

  5. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  6. Durham County- High-Performance Building Policy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and...

  7. High Performance Computing Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    This two-page fact sheet describes the new High Performance Computing Data Center being built in the ESIF and talks about some of the capabilities and unique features of the center.

  8. Introduction to High Performance Computing Using GPUs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC Using GPUs Introduction to High Performance Computing Using GPUs July 11, 2013 NERSC, NVIDIA, and The Portland Group presented a one-day workshop "Introduction to High Performance Computing Using GPUs" on July 11, 2013 in Room 250 of Sutardja Dai Hall on the University of California, Berkeley, campus. Registration was free and open to all NERSC users; Berkeley Lab Researchers; UC students, faculty, and staff; and users of the Oak Ridge Leadership Computing Facility. This workshop

  9. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specificmore » characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.« less

  10. Final Report- Streamlining Solar Standards and Process: Southern California Rooftop Challenge

    Broader source: Energy.gov [DOE]

    The Southern California Rooftop Solar Challenge (RSC) supported the goals of the Department of Energy (DOE) Solar Energy Technologies Program and the SunShot Initiative, which seeks to make solar electricity cost competitive without subsidies by the end of the decade by reducing balance of system costs for Photovoltaics (PV). In order to achieve market transformation, the California Center for Sustainable Energy (CCSE) led a regional Southern California team that focused on expanding financing options for residential and commercial customers, streamlining permitting and interconnection processes, and standardizing net metering and interconnection standards across investor- and municipally-owned utilities in the region. These goals were achieved by fostering cross jurisdictional collaboration culminating in the development of a set of regional best practices. In subsequent phases of the project, the team will build on these best practices and integrate the lessons learned in Southern California with other successful Rooftop Solar Challenge teams in California and beyond.

  11. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  12. Integration of Photovoltaics into Building Energy Usage through Advanced Control of Rooftop Unit

    SciTech Connect (OSTI)

    Starke, Michael R; Nutaro, James J; Irminger, Philip; Ollis, Benjamin; Kuruganti, Phani Teja; Fugate, David L

    2014-01-01

    This paper presents a computational approach to forecast photovoltaic (PV) power in kW based on a neural network linkage of publicly available cloud cover data and on-site solar irradiance sensor data. We also describe a control approach to utilize rooftop air conditioning units (RTUs) to support renewable integration. The PV forecasting method is validated using data from a rooftop PV panel installed on the Distributed Energy, Communications, and Controls (DECC) laboratory at Oak Ridge National Laboratory. The validation occurs in multiple phases to ensure that each component of the approach is the best representation of the actual expected output. The control of the RTU is based on model predictive methods.

  13. High Performance Dielectrics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Dielectrics Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (342 KB) Technology Marketing Summary Current dielectric materials are limited and unable to meet all operating, temperature, response frequency, size, and reliability requirements needed for uncooled high-reliability electronics. To address this problem, scientists at Sandia have developed a method for producing dielectric materials using engineered

  14. Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008

    Broader source: Energy.gov [DOE]

    Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

  15. High Performance and Sustainable Buildings Guidance

    Energy Savers [EERE]

    HIGH PERFORMANCE and SUSTAINABLE BUILDINGS GUIDANCE Final (12/1/08) PURPOSE The Interagency Sustainability Working Group (ISWG), as a subcommittee of the Steering Committee established by Executive Order (E.O.) 13423, initiated development of the following guidance to assist agencies in meeting the high performance and sustainable buildings goals of E.O. 13423, section 2(f). 1 E.O. 13423, sec. 2(f) states "In implementing the policy set forth in section 1 of this order, the head of each

  16. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect (OSTI)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  17. High Performance Plastic DSSC | ANSER Center | Argonne-Northwestern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory High Performance Plastic DSSC Home > Research > ANSER Research Highlights > High Performance Plastic DSSC

  18. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  19. High Performance Builder Spotlight: Imagine Homes

    SciTech Connect (OSTI)

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  20. Debugging a high performance computing program

    DOE Patents [OSTI]

    Gooding, Thomas M.

    2014-08-19

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  1. Debugging a high performance computing program

    DOE Patents [OSTI]

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  2. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  3. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  4. High Performance Commercial Fenestration Framing Systems

    SciTech Connect (OSTI)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial fenestration framing systems, by investigating new technologies that would improve the thermal performance of aluminum frames, while maintaining their structural and life-cycle performance. The project targeted an improvement of over 30% (whole window performance) over conventional commercial framing technology by improving the performance of commercial framing systems.

  5. Programming Abstractions for High Performance and High Productivity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Programming Abstractions for High Performance and High Productivity Start Date: May 11 2016 - 10:30am to 11:30am Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Naoya Maruyama Speaker(s) Title: RIKEN Advanced Institute for Computational Science Host: Pavan Balaji Abstract: Exploiting accelerators such as GPUs is one of the most important challenges in the petascale computing and beyond. In particular, developing

  6. High Performance Leasing Strategies for State and Local Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Leasing Strategies for State and Local Governments High Performance Leasing Strategies for State and Local Governments Presentation for the SEE Action Series: High ...

  7. High Performance Walls in Hot-Dry Climates (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    High Performance Walls in Hot-Dry Climates Citation Details In-Document Search Title: High Performance Walls in Hot-Dry Climates High performance walls represent a high priority...

  8. Rooftop Solar Challenge to Cut Solar's Red Tape | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge to Cut Solar's Red Tape Rooftop Solar Challenge to Cut Solar's Red Tape December 1, 2011 - 4:35pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The 22 teams will implement step-by-step actions throughout the next year to standardize solar permitting processes, update planning and zoning codes, improve standards for connecting solar power to the electric grid, and increase access to financing. Up to 40

  9. Influence of architectural screens on rooftop concentrations due to effluent from short stacks

    SciTech Connect (OSTI)

    Petersen, R.L.; Carter, J.J.; Ratcliff, M.A.

    1999-07-01

    This paper describes the wind tunnel study conducted on behalf of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) to evaluate and quantify the effect of architectural screens on rooftop concentration levels due to effluent from short stacks. An equivalent stack height (ESH) concept is introduced, which is used to develop a stack height reduction (SHR) factor that may be used in conjunction with existing stack design procedures found in the 1997 ASHRAE Handbook--Fundamentals to account for the presence of architectural screens.

  10. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to demonstrate a high-efficiency compressor design that is critical to enabling low direct-GWP high-efficiency small-commercial rooftop and residential systems (1.5 TR to 10 TR). ...

  11. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  12. High Performance Computing Richard F. BARRETT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of Co-design in High Performance Computing Richard F. BARRETT a,1 , Shekhar BORKAR b , Sudip S. DOSANJH c , Simon D. HAMMOND a , Michael A. HEROUX a , X. Sharon HU d , Justin LUITJENS e , Steven G. PARKER e , John SHALF c , and Li TANG d a Sandia National Laboratories, Albuquerque, NM, USA b Intel Corporation c Lawrence Berkeley National Laboratory, Berkeley, CA, USA d University of Notre Dame, South Bend, IN, USA e Nvidia, Inc., Santa Clara, CA, USA Abstract. Preparations for Exascale

  13. Climate Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Mirin, A A

    2007-02-05

    The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

  14. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect (OSTI)

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  15. High-performance laboratories and cleanrooms

    SciTech Connect (OSTI)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  16. High-performance computing for airborne applications

    SciTech Connect (OSTI)

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  17. Ariz. Rooftops Key to Unlocking the Potential of Distributed Solar

    Broader source: Energy.gov [DOE]

    Nestled in the mountains of northern Arizona and just 75 miles from Grand Canyon National Park, the city of Flagstaff, Ariz. is an ideal city for the Arizona Public Service (APS) to pilot a high concentration of solar photovoltaic energy systems.

  18. High-Performance Leasing for State and Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Describes the value of high-performance leasing and how states can lead by example by using high-performance leases in their facilities and encourage high-performance leasing in the private sector.

  19. LBNL: High Performance Active Perimeter Building Systems - 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter ...

  20. Centerra Earns High Performance Rating for Savannah River Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centerra Earns High Performance Rating for Savannah River Site Security Operations Centerra Earns High Performance Rating for Savannah River Site Security Operations January 27, ...

  1. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  2. A High-Performance Recycling Solution for PolystyreneAchieved...

    Office of Scientific and Technical Information (OSTI)

    A High-Performance Recycling Solution for PolystyreneAchieved by the Synthesis of ... Citation Details In-Document Search Title: A High-Performance Recycling Solution for ...

  3. Business Metrics for High-Performance Homes: A Colorado Springs...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Business Metrics for High-Performance Homes: A Colorado Springs Case Study Citation Details In-Document Search Title: Business Metrics for High-Performance Homes: ...

  4. ARIES: Building America, High Performance Factory Built Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: ...

  5. Seeking Information on Design and Construction of High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeking Information on Design and Construction of High-Performance Tenant Spaces Seeking Information on Design and Construction of High-Performance Tenant Spaces August 3, 2015 - ...

  6. Materials Modeling for High-Performance Radiation Detectors ...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors ...

  7. Nuclear Forces and High-Performance Computing: The Perfect Match...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Forces and High-Performance Computing: The Perfect Match Citation Details In-Document Search Title: Nuclear Forces and High-Performance Computing: The Perfect ...

  8. High-Performance Affordable Housing with Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation High-Performance Affordable Housing with Habitat for Humanity - Building America Top ...

  9. Federal Leadership in High Performance and Sustainable Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding ...

  10. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells ...

  11. Reduced Call-Backs with High Performance Production Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced Call-Backs with High Performance Production Builders - Building America Top Innovation Reduced Call-Backs with High Performance Production Builders - Building America Top ...

  12. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  13. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  14. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Cost Barriers of High-Performance Lithium-IonBattery Electrodes Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes 2012 DOE Hydrogen ...

  15. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes...

  16. New rocket propellant and motor design offer high-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested...

  17. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vaporliquidsolid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 m) and low surface recombination velocities (S << 70 cms-1). Single-wire radial pn junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  18. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and ...

  19. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  20. Demonstrations of Integrated Advanced Rooftop Unit Controls and Automated Fault Detection and Diagnostics- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Srinivas Katipamula, Pacific Northwest National Laboratory This multiyear research and development project aims to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioner units (RTUs) with advanced control strategies not ordinarily used for packaged units.

  1. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  2. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions | Department of Energy Next Gen Advanced Framing for High Performance Homes Integrated System Solutions Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Next Gen Advanced Framing for High Performance Homes Integrated System Solutions This presentation, Next Gen Advanced Framing for High Performance Homes -

  3. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    load homes and home performance retrofits. Presenters and specific topics for this webinar will be: * Andrew Poerschke, IBACOS, presenting Simplified Space Conditioning in Low-load ...

  4. High performance Zintl phase TE materials with embedded nanoparticles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Performance of zintl phase thermoelectric materials with embedded particles are evaluated PDF icon shakouri.pdf More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High Performance Zintl Phase TE Materials with Embedded Particles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles

  5. Toward a new metric for ranking high performance computing systems...

    Office of Scientific and Technical Information (OSTI)

    as a true measure of system performance for a growing collection of important science and engineering applications. In this paper we describe a new high performance conjugate...

  6. High Power Performance Lithium Ion Battery - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence ... have increased the power performance of lithium ion batteries by over 20 percent by ...

  7. High performance Zintl phase TE materials with embedded nanoparticles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Performance of zintl phase thermoelectric ...

  8. Project Profile: Development and Performance Evaluation of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Performance Evaluation of High Temperature Concrete for Thermal EnergyStorage for Solar Power Generation Project Profile: Development and Performance Evaluation of ...

  9. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  10. Computational Performance of Ultra-High-Resolution Capability...

    Office of Scientific and Technical Information (OSTI)

    Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model Citation Details In-Document Search Title: Computational Performance of ...

  11. Bedford Farmhouse High Performance Retrofit Prototype

    SciTech Connect (OSTI)

    2010-04-26

    In this case study, Building Science Corporation partnered with Habitat for Humanity of Greater Lowell on a retrofit of a mid-19th century farmhouse into affordable housing meeting Building America performance standards.

  12. High Performance Home Building Guide for Habitat for Humanity Affiliates

    SciTech Connect (OSTI)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  13. Technology Solutions Case Study: High-Performance Ducts in Hot...

    Office of Scientific and Technical Information (OSTI)

    : Technology Solutions Case Study: High-Performance Ducts in Hot-Dry Climates Citation Details In-Document Search Title: Technology Solutions Case Study: High-Performance Ducts in ...

  14. Guiding Market Introduction of High-Performance SSL Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Market Introduction of High-Performance SSL Products Guiding Market Introduction of High-Performance SSL Products 2014 DOE Solid-State Lighting Program Fact Sheet PDF icon...

  15. Metaproteomics: Harnessing the power of high performance mass...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Metaproteomics: Harnessing the power of high performance mass ... Citation Details In-Document Search Title: Metaproteomics: Harnessing the power of high ...

  16. Energy Efficiency Opportunities in Federal High Performance Computing Data Centers

    Broader source: Energy.gov [DOE]

    Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers.

  17. Building America Webinar: High-Performance Enclosure Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Strategies and Compartmentalization Requirements - Joe Lstiburek Building Science Building America Webinar: High-Performance Enclosure Strategies, Part I: ...

  18. ARIES: Building America, High Performance Factory Built Housing - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: Jordan Dentz, Levy Partnership View the Presentation PDF icon ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review More Documents & Publications ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Integrated Design: A High-Performance Solution

  19. High-Performance Computing Data Center Metering Protocol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Performance Computing Data Center Metering Protocol High-Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High-Performance Computing (HPC) data center facilities and documents system strategies that have been used in Department of Energy data centers to increase data center energy efficiency. PDF icon Download the guide. More Documents & Publications Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing

  20. Boosting Small Engines to High Performance - Boosting Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Combustion Development Methodology Boosting Small Engines to High Performance - Boosting Systems and Combustion Development Methodology Overview on combustion approaches ...

  1. NREL: Photovoltaics Research - High-Performance Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dual-axis tracking modules use small mirrors to focus sunlight on high-efficient multijunction cells... NREL is a national laboratory of the U.S. Department of Energy, Office of ...

  2. LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy High Performance Active Perimeter Building Systems - 2015 Peer Review LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review Presenter: Eleanor Lee, LBNL View the Presentation PDF icon LBNL: High Performance Active Perimeter Building Systems - 2015 Peer Review More Documents & Publications FLEXLAB Connected Buildings Interoperability Vision Webinar 2015 DOE CONNECTED LIGHTING SYSTEMS PRESENTATIONS

  3. A High-Performance PHEV Battery Pack | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es002_alamgir _2011_p.pdf More Documents & Publications A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery

  4. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  5. High Performance Green LEDs by Homoepitaxial

    SciTech Connect (OSTI)

    Wetzel, Christian; Schubert, E Fred

    2009-11-22

    This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

  6. High-Performance Computing at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Computing at Los Alamos announces milestone for key/ value middleware May 26, 2014 Billion inserts-per-second data milestone reached for supercomputing tool LOS ALAMOS, N.M., May 29, 2014-At Los Alamos, a supercomputer epicenter where "big data set" really means something, a data middleware project has achieved a milestone for specialized information organization and storage. The Multi-dimensional Hashed Indexed Middleware (MDHIM) project at Los Alamos National Laboratory

  7. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration Hawaii and Guam Energy Improvement Technology Demonstration Project I. Doebber, J. Dean, J. Dominick, and G. Holland Produced under direction of Naval Facilities Engineering Command (NAVFAC) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement 11-01829 Technical Report

  8. Project Profile: High-Performance Nanostructured Coating

    Broader source: Energy.gov [DOE]

    The University of California San Diego, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is developing a new low-cost and scalable process for fabricating spectrally selective coatings (SSCs) to be used in solar absorbers for high-temperature CSP systems.

  9. High-performance commercial building facades

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

  10. High Thermoelectric Performance in Copper Telluride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Ying; Zhang, Tiansong; Shi, Xun; Wei, Su-Huai; Chen, Lidong

    2015-06-21

    Recently, Cu 2-δ S and Cu 2-δ Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-δ Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu2Te, which has many stable and meta-stable phasesmore » as well as weaker ionic bonding between Cu and Te as compared with Cu2S and Cu2Se. In this study, high-density Cu2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-δ X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.« less

  11. Memorandum of American High-Performance Buildings Coalition DOE Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 19, 2013 | Department of Energy Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through

  12. High Performance Green Building Partnership Consortia | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Performance Green Building Partnership Consortia High Performance Green Building Partnership Consortia The High-Performance Green Building Partnership Consortia are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to high-performance green buildings. Groups that met specific qualifications outlined in the Energy Independence and Security Act of 2007 applied to be recognized as Consortia members through a Federal Register

  13. A high performance field-reversed configuration

    SciTech Connect (OSTI)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.; Garate, E.; Tuszewski, M.; Smirnov, A.; Gota, H.; Barnes, D.; Deng, B. H.; Thompson, M. C.; Trask, E.; Yang, X.; Putvinski, S.; Rostoker, N.; Andow, R.; Aefsky, S.; Bolte, N.; Bui, D. Q.; Ceccherini, F.; Clary, R.; and others

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions, highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.

  14. Affordable High Performance in Production Homes: Artistic Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Albuquerque, NM - Building America Top Innovation | Department of Energy Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM - Building America Top Innovation Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM - Building America Top Innovation Photo of a home in New Mexico. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America

  15. High-Performance Energy Applications and Systems

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  16. Energy Savings Performance Contracts ENABLE: Energy Conservation Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary | Department of Energy Contracts ENABLE: Energy Conservation Measures Summary Energy Savings Performance Contracts ENABLE: Energy Conservation Measures Summary Presentation summarizes energy conservation measures that are offered through the Energy Savings Performance Contract ENABLE program. PDF icon Download the ENABLE presentation. More Documents & Publications Energy Savings Performance Contract ENABLE Briefing Rooftop Unit Suite: RTU Challenge, RTU Advanced Controls and RTU

  17. Building America's Top Innovations Advance High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have

  18. Text-Alternative Version of High Performance Space Conditioning Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part II | Department of Energy II Text-Alternative Version of High Performance Space Conditioning Systems: Part II High Performance Space Conditioning Systems: Part II November 18, 2014 William Zoeller, Stephen Winter Associates Dave Mallay, Home Innovation Research Labs Jordan Dentz, The Levy Partnership Francis Conlin, High Performance Building Solutions Hello everyone! I am Gail Werren with the National Renewable Energy Laboratory, and I'd like to welcome you to today's webinar hosted by

  19. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Los Alamos National Laboratory Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research September 2, 2014 New insights to changing the atomic structure of metals The Wolf computer system modernizes

  20. High Performance Builder Spotlight: Green Coast Enterprises - New Orleans,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana | Department of Energy High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. PDF icon green_coast_enterprises.pdf More Documents & Publications High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana

  1. High-Performance Affordable Housing with Habitat for Humanity - Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation | Department of Energy High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation Photo of people building ENERGY STAR homes. High-performance homes provide compelling benefits for all homeowners, but no sector is better served than affordable housing. These are the homeowners that most need the reduced costs of ownership and maintenance

  2. Building America Webinar: High-Performance Enclosure Strategies, Part I:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Roof Systems and Innovative Advanced Framing Strategies | Department of Energy High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies This webinar, held on February 12, 2015, focused on methods to design and build roof and wall systems for high performance homes that optimize energy and

  3. Building America Webinar: Ventilation Strategies for High Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Part I: Application-Specific Ventilation Guidelines | Department of Energy Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines This webinar, held on Aug. 26, 2015, covered what makes high-performance homes different from a ventilation perspective and how they might need to be treated differently than

  4. Funding Opportunity: Building America High Performance Housing Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The Building Technologies Office (BTO) Residential Buildings Integration Program has announced the availability of $5.5 million for Funding Opportunity Announcement (FOA) DE-FOA-0001395, "Building America Industry Partnerships for High Performance Housing Innovation." DOE seeks to fund up

  5. NREL: Energy Systems Integration Facility - High-Performance Computing and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytics High-Performance Computing and Analytics High-performance computing and analytic capabilities at the Energy Systems Integration Facility enable study and simulation of material properties, processes, and fully integrated systems that would otherwise be too expensive, too dangerous, or even impossible to study by direct experimentation. With state-of-the-art computational modeling and predictive simulation capabilities, the Energy System Integration Facility's high-performance

  6. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Lab High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research. June 17, 2014 The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "This machine

  7. NRC Leadership Expectations and Practices for Sustaining a High Performing

    Energy Savers [EERE]

    Organization | Department of Energy NRC Leadership Expectations and Practices for Sustaining a High Performing Organization NRC Leadership Expectations and Practices for Sustaining a High Performing Organization May 16, 2012 Presenter: William C. Ostendorff, NRC Commissioner Topics Covered: NRC Mission Safety Culture NRC Oversight NRC Inspection Program Technical Qualification Continuous Learning PDF icon NRC Leadership Expectations and Practices for Sustaining a High Performing Organization

  8. High Performance Mica-based Compressive Seals for Solid Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Mica-based Compressive Seals for Solid Oxide Fuel Cells Pacific Northwest National Laboratory Contact PNNL About This Technology In their work, PNNL researchers...

  9. High Performance Photovoltaic Project: Identifying Critical Paths; Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Zweibel, K.; Benner, J.; Sheldon, P.; Noufi, R.; Kurtz, S.; Coutts, T.; Hulstrom, R.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Describes recent research accomplishments in in-house and subcontracted work in the High-Performance PV Project.

  10. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY...

    Energy Savers [EERE]

    high-performance deposition technology that addresses two major aspects of this manufacturing cost: the expense of organic materials per area of useable product, and the...

  11. DOE Announces Webinars on High Performance Enclosure Strategies...

    Energy Savers [EERE]

    for Buildings, Fuel Cell Forklifts and Energy Management, and More DOE Announces Webinars on High Performance Enclosure Strategies for Buildings, Fuel Cell Forklifts and Energy ...

  12. Exploration of multi-block polymer morphologies using high performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploration of multi-block polymer morphologies using high performance computing Modern material design increasingly relies on controlling small scale morphologies. Multi-block...

  13. Building America Webinar: Ventilation Strategies for High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation Guidelines Building America Webinar: Ventilation Strategies for High Performance Homes, Part I: Application-Specific Ventilation Guidelines This webinar, held ...

  14. Rethinking the idealized morphology in high-performance organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rethinking the idealized morphology in high-performance organic photovoltaics December 9, 2011 Tweet EmailPrint Traditionally, organic photovoltaic (OPV) active layers are viewed...

  15. DOE High Performance Computing for Manufacturing (HPC4Mfg) Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DOE's national labs to use the labs' high-performance computing (HPC) systems to upgrade their manufacturing processes and bring new clean energy technologies to market. ...

  16. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Title: Moderate Doping Leads to High Performance of SemiconductorInsulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, ...

  17. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; ...

  18. High Performance Without Increased Cost: Urbane Homes, Louisville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this profile, Urbane Homes of Louisville, KY, worked with Building America team National Association of Home Builders Research Center to build its first high performance home at ...

  19. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  20. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supports for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells This presentation, which focuses on cathode supports for PEM ...

  1. LANL installs high-performance computer system | National Nuclear...

    National Nuclear Security Administration (NNSA)

    computer system Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. Wolf will help...

  2. Technology Transfer Webinar on November 12: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

  3. A Comprehensive Look at High Performance Parallel I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comprehensive Look at High Performance Parallel I/O A Comprehensive Look at High Performance Parallel I/O Book Signing @ SC14! Nov. 18, 5 p.m. in Booth 1939 November 10, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov HighPerf Parallel IO In the 1990s, high performance computing (HPC) made a dramatic transition to massively parallel processors. As this model solidified over the next 20 years, supercomputing performance increased from gigaflops-billions of calculations per second-to

  4. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  5. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: High Performance Homes, Chamberlain Court 75, Gettysburg, PA DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates Avenue, Lakeland, ...

  6. DOE ZERH Webinar: High-Performance Home Sales Training, Part...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sales ... Businesses cannot succeed if the value of their products or services is not ... However, the skills needed to sell the invisible value associated with high-performance ...

  7. in High Performance Computing Computer System, Cluster, and Networking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iSSH v. Auditd: Intrusion Detection in High Performance Computing Computer System, Cluster, and Networking Summer Institute David Karns, New Mexico State University Katy Protin,...

  8. High Performance Zintl Phase TE Materials with Embedded Particles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents results from embedding nanoparticles in magnesium silicide alloy matrix ... Zintl Phase Materials with Embedded Nanoparticles High performance Zintl phase TE ...

  9. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  10. Memorandum of American High-Performance Buildings Coalition DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Green Building Certification Systems Requirement for New ...

  11. High Performance Composite Membranes for Separation of Carbon Dioxide from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High Performance Composite Membranes for Separation of Carbon Dioxide from Methane

  12. Transcript for SEE Action Series: High Performance Leasing Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will help break down traditional barriers to implementing ... businesses or owners on aspects of high-performing ... And the curriculum's main objective is really to increase ...

  13. Continuous Monitoring And Cyber Security For High Performance...

    Office of Scientific and Technical Information (OSTI)

    Continuous Monitoring And Cyber Security For High Performance Computing Malin, Alex B. Los Alamos National Laboratory; Van Heule, Graham K. Los Alamos National Laboratory...

  14. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes ...

  15. A Comparison of Library Tracking Methods in High Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Library Tracking Methods in High Performance Computing Computer System Cluster and Networking Summer Institute 2013 Poster Seminar William Rosenberger (New Mexico Tech), Dennis...

  16. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measuremen...

    Office of Scientific and Technical Information (OSTI)

    Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  17. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measuremen...

    Office of Scientific and Technical Information (OSTI)

    Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details ... Country of Publication: United States Language: English Subject: Materials Science(36) ...

  18. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation | Department of Energy Cladding Attachment Over Thick Exterior Rigid Insulation Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Cladding Attachment Over Thick Exterior Rigid Insulation This presentation, Cladding Attachment Over Thick Rigid Exterior Insulation, was delivered at the Building America webinar, High Performance Enclosure

  19. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Air Distribution Retrofit Strategies for Affordable Housing | Department of Energy Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable Housing Jordan Dentz, Advanced Residential Integrated Energy Solutions (ARIES), and Francis Conlin, High Performance Building Solutions, Inc., presenting Air Distribution Retrofit Strategies for Affordable Housing.

  20. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Broader source: Energy.gov (indexed) [DOE]

    Materials | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2012_o.pdf More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials

  1. Flourescent Pigments for High-Performance Cool Roofing and Facades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Flourescent Pigments for High-Performance Cool Roofing and Facades Flourescent Pigments for High-Performance Cool Roofing and Facades Addthis 1 of 3 PPG Industries and Lawrence Berkeley National Laboratory are partnering to develop a new class of dark-colored pigments for cool metal roof and façade coatings that incorporate near-infrared fluorescence and reflectance to improve energy performance. Image: PPG Industries 2 of 3 Berkeley Lab Heat Island Group physicist Paul

  2. Integrated Design: A High-Performance Solution for Affordable Housing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Design: A High-Performance Solution for Affordable Housing Integrated Design: A High-Performance Solution for Affordable Housing ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Lead Performer: The Levy Partnership, Inc.-New York, NY Partners: Habitat for Humanity International /Habitat Research Foundation, Atlanta, GA Columbia Count Habitat, NY Habitat of Newburgh, NY Habitat Greater

  3. Natural Refrigerant High-Performance Heat Pump for Commercial Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Refrigerant High-Performance Heat Pump for Commercial Applications Natural Refrigerant High-Performance Heat Pump for Commercial Applications Credit: S-RAM Credit: S-RAM Lead Performer: S-RAM - Franklin, TN Partners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Purdue University - West Lafayette, IN -- ReGen Power - Canning Vale, Western Australia DOE Funding: $400,000 Cost Share: $125,000 Project Term: December 2013 - December 2017 Funding Opportunity: Building

  4. Fluorescent Pigments for High-Performance Cool Roofing and Facades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fluorescent Pigments for High-Performance Cool Roofing and Facades Fluorescent Pigments for High-Performance Cool Roofing and Facades 1 of 3 PPG Industries and Lawrence Berkeley National Laboratory are partnering to develop a new class of dark-colored pigments for cool metal roof and façade coatings that incorporate near-infrared fluorescence and reflectance to improve energy performance. Image: PPG Industries 2 of 3 Berkeley Lab Heat Island Group physicist Paul Berdahl

  5. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, M.; Springer, D.; Dakin, B.; German, A.

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  6. Fermilab | Science at Fermilab | Computing | High-performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lattice QCD Farm at the Grid Computing Center at Fermilab. Lattice QCD Farm at the Grid Computing Center at Fermilab. Computing High-performance Computing A workstation computer can perform billions of multiplication and addition operations each second. High-performance parallel computing becomes necessary when computations become too large or too long to complete on a single such machine. In parallel computing, computations are divided up so that many computers can work on the same problem at

  7. Final Report- Low Cost High Performance Nanostructured Spectrally Selective Coating

    Broader source: Energy.gov [DOE]

    Solar absorbing coating is a key enabling technology to achieve hightemperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), hightemperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency.

  8. Anne Arundel County- High Performance Dwelling Property Tax Credit

    Broader source: Energy.gov [DOE]

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. In October 2010 Anne Arundel...

  9. A Comprehensive Look at High Performance Parallel I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this era of "big data," high performance parallel IO-the way disk drives efficiently read and write information on HPC systems-is extremely important. Yet the last book to ...

  10. A High-Performance Recycling Solution for PolystyreneAchieved...

    Office of Scientific and Technical Information (OSTI)

    A High-Performance Recycling Solution for PolystyreneAchieved by the Synthesis of Renewable Poly(thioether) Networks Derived from D -Limonene Citation Details In-Document Search ...

  11. Development of Alternative and Durable High Performance Cathode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE ...

  12. Montgomery County- High Performance Building Property Tax Credit

    Broader source: Energy.gov [DOE]

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings if they choose to do so. Montgomery County has...

  13. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  14. Howard County- High Performance and Green Building Property Tax Credit

    Broader source: Energy.gov [DOE]

    The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings and energy conservation devices (Md Code: Property Tax §...

  15. Local Option- Property Tax Credit for High Performance Buildings

    Broader source: Energy.gov [DOE]

    Similar to Maryland's Local Option Property Tax Credit for Renewable Energy, Title 9 of Maryland's property tax code creates an optional property tax credit for high performance buildings. This...

  16. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I | Department of Energy I Building America Webinar: High Performance Space Conditioning Systems, Part I The webinar on Oct. 23, 2014, focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be: * Andrew Poerschke, IBACOS, presenting Simplified Space Conditioning in Low-load Homes. The presentation will focus on what is "simple" when it comes to space conditioning?

  17. High-Performance OLED Panel and Luminaire | Department of Energy

    Energy Savers [EERE]

    OLED Panel and Luminaire High-Performance OLED Panel and Luminaire Lead Performer: OLEDWorks, LLC - Rochester, NY Partners: Acuity Brands Lighting - Berkeley, CA DOE Total Funding: $1,376,999 Cost Share: $458,999 Project Term: 10/1/2014 - 3/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project seeks to develop and integrate the cost effective manufacturing technologies necessary to achieve the DOE performance and cost

  18. Text-Alternative Version of Building America Webinar: High Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments | Department of Energy Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments October 27, 2015 Speakers Katherine Cort, Research Economist, Pacific Northwest National

  19. Text-Alternative Version of High Performance Space Conditioning Systems:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part I | Department of Energy I Text-Alternative Version of High Performance Space Conditioning Systems: Part I High Performance Space Conditioning Systems: Part I October 21, 2014 Andrew Poerschke, Research Initiatives Specialist, IBACOS Kohta Ueno, Senior Associate, Building Science Corporation Gail: Hello everyone. I am Gail Werren with the National Renewable Energy Laboratory. And I'd like to welcome you to today's webinar hosted by the Building America Program. We are excited to have

  20. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. PDF icon es_hot_water_systems.pdf More Documents & Publications

  1. Evaluation of distributed ANSYS for high performance computing of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Evaluation of distributed ANSYS for high performance computing of MEMS. Citation Details In-Document Search Title: Evaluation of distributed ANSYS for high performance computing of MEMS. No abstract prepared. Authors: Baker, Michael Sean ; Yarberry, Victor R. ; Wittwer, Jonathan W. Publication Date: 2007-04-01 OSTI Identifier: 908706 Report Number(s): SAND2007-2708C TRN: US200722%%755 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource

  2. High-Performance External Insulation and Finish System Incorporating Vacuum

    Office of Scientific and Technical Information (OSTI)

    Insulation Panels Foam Panel Composite and Hot Box Testing (Conference) | SciTech Connect High-Performance External Insulation and Finish System Incorporating Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Citation Details In-Document Search Title: High-Performance External Insulation and Finish System Incorporating Vacuum Insulation Panels Foam Panel Composite and Hot Box Testing Authors: Seitz, Aaron J [1] ; Carbary, Lawrence D [2] ; Serino, Roland [1] ; Biswas, Kaushik

  3. Interface design principles for high-performance organic semiconductor

    Office of Scientific and Technical Information (OSTI)

    devices (Journal Article) | SciTech Connect Interface design principles for high-performance organic semiconductor devices Citation Details In-Document Search Title: Interface design principles for high-performance organic semiconductor devices Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which

  4. Interface design principles for high-performance organic semiconductor

    Office of Scientific and Technical Information (OSTI)

    devices (Journal Article) | SciTech Connect Interface design principles for high-performance organic semiconductor devices Citation Details In-Document Search Title: Interface design principles for high-performance organic semiconductor devices × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  5. Materials Modeling for High-Performance Radiation Detectors (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors Abstract not provided. Authors: Lordi, V. [1] + Show Author Affiliations Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) Publication Date: 2014-10-30 OSTI Identifier: 1178392 Report Number(s): LLNL-TR--663544 DOE Contract Number: AC52-07NA27344 Resource Type: Technical Report

  6. Moderate Doping Leads to High Performance of Semiconductor/Insulator

    Office of Scientific and Technical Information (OSTI)

    Polymer Blend Transistors (Journal Article) | SciTech Connect Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Citation Details In-Document Search Title: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, Patrick ; Frisch, Johannes ; Lieberwirth, Ingo ; Salzmann, Ingo ; Oehzelt, Martin ; Pietro, Riccardo Di ; Salleo, Alberto ;

  7. Building America Webinar: High Performance Building Enclosures: Part I,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Existing Homes | Department of Energy High Performance Building Enclosures: Part I, Existing Homes Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May 21, 2014, focused on specific Building America projects that have implemented technical solutions to retrofit building enclosures to reduce energy use and improve durability. Presenters answered tough questions such as: How can builders deal with increasing exterior foundation

  8. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction | Department of Energy Strategies: Part II, New Construction Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction The webinar is the second in the series on designing and constructing high performance building enclosures, and will focus on effective strategies to address moisture and thermal needs. Peter Baker, Building Science Corporation, will discuss results of 3 years of laboratory and field exposure testing that examined the

  9. Seven NNSS buildings achieve High Performance Sustainable Building status |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Seven NNSS buildings achieve High Performance Sustainable Building status Monday, March 21, 2016 - 2:15pm Nevada Support Facility (NSF), Nevada National Security Site administrative headquarters. Nevada National Security Site (NNSS) - The National Nuclear Security Administration announced the award today of seven High Performance Sustainable Building (HPSB) plaques to the NNSS team for seven "green" buildings. The buildings are:

  10. Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Citation Details In-Document Search Title: Direct Probe Mounted High-Performance Amplifiers for Pulsed Measurement Authors: Wartenbe, Mark [1] ; Stegen, Zachary [1] ; McDonald, Ross David [2] ; Balakirev, Fedor F. [2] + Show Author Affiliations FSU, NHMFL Los Alamos National Laboratory Publication Date: 2014-01-07 OSTI Identifier: 1114404 Report Number(s): LA-UR-14-20074 DOE Contract

  11. Rebuilding It Better: Greensburg, Kansas, High Performance Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Energy Savings Goals (Brochure) | Department of Energy Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. PDF icon Rebuilding It Better: Greensburg,

  12. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  13. 100 supercomputers later, Los Alamos high-performance computing still

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports national security mission High-performance computing supports national security 100 supercomputers later, Los Alamos high-performance computing still supports national security mission Los Alamos National Laboratory has deployed 100 supercomputers in the last 60 years. November 12, 2014 1952 MANIAC-I supercomputer 1952 MANIAC-I supercomputer Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "Computing power for our Laboratory's national security mission is a

  14. Reliable, High Performance Transistors on Flexible Substrates - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Reliable, High Performance Transistors on Flexible Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Backplanes for Conformal Electronics and Sensors, "Nano Lett., 2011, 11, 5408-5413 (924 KB) Technology Marketing Summary Researchers at Berkeley Lab have produced uniform, high performance transistors on mechanically

  15. Continuous Monitoring And Cyber Security For High Performance Computing

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Continuous Monitoring And Cyber Security For High Performance Computing Citation Details In-Document Search Title: Continuous Monitoring And Cyber Security For High Performance Computing Authors: Malin, Alex B. [1] ; Van Heule, Graham K. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-08-02 OSTI Identifier: 1089452 Report Number(s): LA-UR-13-21921 DOE Contract Number: AC52-06NA25396 Resource Type: Conference

  16. Development of Alternative and Durable High Performance Cathode Supporst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for PEM Fuel Cells | Department of Energy Supporst for PEM Fuel Cells Development of Alternative and Durable High Performance Cathode Supporst for PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3_pnnl.pdf More Documents & Publications Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Fuel Cell Kickoff Meeting Agenda 2015 Pathways to Commercial Success: Technologies and Products

  17. Building America Roadmap to High Performance Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to High Performance Homes Building America Roadmap to High Performance Homes This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon ba_roadmap_highperformance_werling.pdf More Documents & Publications Update on U.S. Department of Energy Building America Program Goals Update on U.S. Department of Energy Building America Program Goals Collective Impact for Zero Net Energy Homes

  18. Building America Webinar: High Performance Enclosure Strategies: Part II,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Construction - August 13, 2014 - Introduction | Department of Energy Introduction Building America Webinar: High Performance Enclosure Strategies: Part II, New Construction - August 13, 2014 - Introduction This presentation is the Introduction to the Building America webinar, High Performance Enclosure Strategies, Part II, held on August 13, 2014. PDF icon BA webinar_intro_8_13_14.pdf More Documents & Publications Building America Webinar: Retrofitting Central Space Conditioning

  19. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Broader source: Energy.gov (indexed) [DOE]

    Materials | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace026_peden_2011_o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials

  20. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    SciTech Connect (OSTI)

    Ronk, Jennifer

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of addressing financial barriers to residential solar; Maintaining www.solarhoustontx.org; and Continuing meetings with stakeholders to get ongoing feedback from the solar community on their needs. The following sections provide a brief summary of the activities completed under each of the nine tasks specifically related to the RSC grant. Reports and other backup information are included in the appendices.

  1. High-Performance Photovoltaic Project: Identifying Critical Pathways; Kickoff Meeting

    SciTech Connect (OSTI)

    Symko-Davis, M.

    2001-11-07

    The High Performance Photovoltaic Project held a Kickoff Meeting in October, 2001. This booklet contains the presentations given by subcontractors and in-house teams at that meeting. The areas of subcontracted research under the HiPer project include Polycrystalline Thin Films and Multijunction Concentrators. The in-house teams in this initiative will focus on three areas: (1) High-Performance Thin-Film Team-leads the investigation of tandem structures and low-flux concentrators, (2) High-Efficiency Concepts and Concentrators Team-an expansion of an existing team that leads the development of high-flux concentrators, and (3) Thin-Film Process Integration Team-will perform fundamental process and characterization research, to resolve the complex issues of making thin-film multijunction devices.

  2. Towards High-Performance Nonaqueous Redox Flow Electrolyte via Ionic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of Active Species - Joint Center for Energy Storage Research 14, 2014, Research Highlights Towards High-Performance Nonaqueous Redox Flow Electrolyte via Ionic Modification of Active Species (Top) Material Synthesis for Highly Soluble Ferrocene Derivative (Left) NMR Decoding Solvation (Right) Li-Graphite Hybrid Anode Decent cyclability at high conc. Scientific Achievement Material tailoring led to a significant increase in the solubility of the ferrocene redox material. NMR

  3. High intensity performance and upgrades at the Brookhaven AGS (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect performance and upgrades at the Brookhaven AGS Citation Details In-Document Search Title: High intensity performance and upgrades at the Brookhaven AGS Upgrades to the Brookhaven AGS are described. The AGS Booster which delivers proton beams of 1.5-1.9 GeV and the 200 MeV linac facilities are described. Space charge and beam emittance characteristics are discussed. (AIP) Authors: Roser, Thomas [1] + Show Author Affiliations AGS Department, Brookhaven National

  4. DOE ASSESSMENT SEAB Recommendations Related to High Performance Computing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 10 DOE ASSESSMENT SEAB Recommendations Related to High Performance Computing 1. Introduction The Department of Energy (DOE) is planning to develop and deliver capable exascale computing systems by 2023-24. These systems are expected to have a one-hundred to one-thousand-fold increase in sustained performance over today's computing capabilities, capabilities critical to enabling the next-generation computing for national security, science, engineering, and large- scale data analytics needed to

  5. Building America Webinar: High-Performance Enclosure Strategies, Part I:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Roof Systems and Innovative Advanced Framing Strategies | Department of Energy Vladimir Kochkin, Home Innovation Research Labs, will focus on approaches for climate zones 3-5 that increase energy performance and reduce moisture issues in walls. The presentation is based on the Builder's Guide to High Performance Walls, which will be published in 2015 PDF icon Construction Guide: Energy Efficient, Durable Walls More Documents & Publications Race to Zero 2015 Design Excellence

  6. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, Marc; Springer, David; Dakin, Bill; German, Alea

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  7. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  8. High performance computing and communications: FY 1997 implementation plan

    SciTech Connect (OSTI)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  9. High-Performance Buildings Value, Messaging, Financial and Policy Mechanisms

    SciTech Connect (OSTI)

    McCabe, Molly

    2011-02-22

    At the request of the Pacific Northwest National Laboratory, an in-depth analysis of the rapidly evolving state of real estate investments, high-performance building technology, and interest in efficiency was conducted by HaydenTanner, LLC, for the U.S. Department of Energy (DOE) Building Technologies Program. The analysis objectives were to evaluate the link between high-performance buildings and their market value to identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to appropriately value and deploy high-performance strategies and technologies across new and existing buildings to summarize financial mechanisms that facilitate increased investment in these buildings. To meet these objectives, work consisted of a literature review of relevant writings, examination of existing and emergent financial and policy mechanisms, interviews with industry stakeholders, and an evaluation of the value implications through financial modeling. This report documents the analysis methodology and findings, conclusion and recommendations. Its intent is to support and inform the DOE Building Technologies Program on policy and program planning for the financing of high-performance new buildings and building retrofit projects.

  10. The role of interpreters in high performance computing

    SciTech Connect (OSTI)

    Naumann, Axel; Canal, Philippe; /Fermilab

    2008-01-01

    Compiled code is fast, interpreted code is slow. There is not much we can do about it, and it's the reason why interpreters use in high performance computing is usually restricted to job submission. We show where interpreters make sense even in the context of analysis code, and what aspects have to be taken into account to make this combination a success.

  11. High-Performance Thermoelectric Devices Based on Abundant Silicide

    Broader source: Energy.gov (indexed) [DOE]

    Materials for Vehicle Waste Heat Recovery | Department of Energy Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  12. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  13. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  14. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  15. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  16. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  17. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  18. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  19. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  20. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  1. Revisit of Energy Use and Technologies of High Performance Buildings

    SciTech Connect (OSTI)

    Li , Cheng; Hong , Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  2. Long Duration Performance of High Temperature Irradiation Resistant Thermocouples

    SciTech Connect (OSTI)

    Rempe, Joy L; Knudson, D. L.; Condie, K. G.; Wilkins, S. C.

    2007-05-01

    Many advanced nuclear reactor designs require new fuel, cladding, and structural materials. Data are needed to characterize the performance of these new materials in high temperature, radiation conditions. However, traditional methods for measuring temperature inpile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple that contains alloys of molybdenum and niobium. To verify the performance of INL’s recommended thermocouple design, a series of high temperature (from 1200 to 1800 ºC) long duration (up to six months) tests has been initiated. This paper summarizes results from the tests that have been completed. Data are presented from 4000 hour tests conducted at 1200 and 1400 ºC that demonstrate the stability of this thermocouple (less than 2% drift). In addition, post test metallographic examinations are discussed which confirm the compatibility of thermocouple materials throughout these long duration, high temperature tests.

  3. Coal-fired high performance power generating system. Final report

    SciTech Connect (OSTI)

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  4. High performance computing and communications: FY 1996 implementation plan

    SciTech Connect (OSTI)

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  5. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  6. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  7. Micro-polarimeter for high performance liquid chromatography

    DOE Patents [OSTI]

    Yeung, Edward E.; Steenhoek, Larry E.; Woodruff, Steven D.; Kuo, Jeng-Chung

    1985-01-01

    A micro-polarimeter interfaced with a system for high performance liquid chromatography, for quantitatively analyzing micro and trace amounts of optically active organic molecules, particularly carbohydrates. A flow cell with a narrow bore is connected to a high performance liquid chromatography system. Thin, low birefringence cell windows cover opposite ends of the bore. A focused and polarized laser beam is directed along the longitudinal axis of the bore as an eluent containing the organic molecules is pumped through the cell. The beam is modulated by air gap Faraday rotators for phase sensitive detection to enhance the signal to noise ratio. An analyzer records the beams's direction of polarization after it passes through the cell. Calibration of the liquid chromatography system allows determination of the quantity of organic molecules present from a determination of the degree to which the polarized beam is rotated when it passes through the eluent.

  8. High Performance House Showcased at Builders Show - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance House Showcased at Builders Show January 20, 2004 Golden, Colo. - Homebuilders attending the 2004 International Builders' Show in Las Vegas can tour a new kind of home-a highly energy-efficient Zero Energy Home that will produce as much electricity as it uses over the course of a year. The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) partnered with Pardee Homes and energy consultant ConSol to introduce the Zero Energy Home concept with this

  9. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  10. 100 supercomputers later, Los Alamos high-performance computing still

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports national security mission 100 supercomputers later Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit 100 supercomputers later, Los Alamos high-performance computing still supports national security mission Los Alamos National Laboratory has deployed 100 supercomputers in the last 60 years January 1, 2015 1952 MANIAC-I supercomputer 1952 MANIAC-I supercomputer Contact Linda Anderman Email From the 1952

  11. Intro - High Performance Computing for 2015 HPC Annual Report

    SciTech Connect (OSTI)

    Klitsner, Tom

    2015-10-01

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  12. High Performance Computing at the Oak Ridge Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing at the Oak Ridge Leadership Computing Facility Go to Menu Page 2 Outline * Our Mission * Computer Systems: Present, Past, Future * Challenges Along the Way * Resources for Users Go to Menu Page 3 Our Mission Go to Menu Page 4 * World's most powerful computing facility * Nation's largest concentration of open source materials research * $1.3B budget * 4,250 employees * 3,900 research guests annually * $350 million invested in modernization * Nation's most diverse energy

  13. High Performance OLEDs with Air-stable Nanostructured Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search High Performance OLEDs with Air-stable Nanostructured Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryScientists at Berkeley Lab have modified the cathode-organic layer of an OLED device to significantly enhance electron injection efficiency and reduce the sensitivity of the cathode to environmental degradation by water

  14. High-performance Electrochemical Capacitors - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search High-performance Electrochemical Capacitors Nanoscale metal oxide coatings on 3D carbon nanoarchitectures Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication ENE05FactSheet (310 KB) Technology Marketing Summary A capacitor comprising an anode, cathode, and an electrolyte, wherein the anode, the cathode, or both comprise a composite of porous carbon structure with a coating on the

  15. SC15 High Performance Computing (HPC) Transforms Batteries - Joint Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage Research September 21, 2015, Videos SC15 High Performance Computing (HPC) Transforms Batteries A new breakthrough battery-one that has significantly higher energy, lasts longer, and is cheaper and safer-will likely be impossible without a new material discovery. Kristin Persson and other JCESR scientists at Lawrence Berkeley National Laboratory are taking some of the guesswork out of the discovery process with the Electrolyte Genome Project. Electrolyte Genome

  16. Building America Webinar: High Performance Enclosure Strategies, Part II:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-E Storm Windows and Window Attachments | Department of Energy Strategies, Part II: Low-E Storm Windows and Window Attachments Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments This webinar discussed how window attachments and coverings, such as storm windows and cellular shades, can be a cost-effective means of reducing energy use in residential buildings. This webinar reviewed some of the latest research in this area,

  17. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Compact Buried Ducts | Department of Energy Compact Buried Ducts Building America Webinar: High Performance Space Conditioning Systems, Part II - Compact Buried Ducts Dave Mallay, Partnership for Home Innovation (PHI), presenting Compact Buried Ducts. Dave will discuss buried ducts and design considerations, the compact duct concept, results of field testing and monitoring, and alternative solutions for air sealing and insulating the ducts. PDF icon ba_webinar_mallay_11_18-14.pdf More

  18. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II - Design Options for Locating Ducts within Conditioned Space | Department of Energy II - Design Options for Locating Ducts within Conditioned Space Building America Webinar: High Performance Space Conditioning Systems, Part II - Design Options for Locating Ducts within Conditioned Space William Zoeller, Consortium for Advanced Residential Retrofit (CARB) delivers this presentation, which provides an overview of the technical aspects of buried and encapsulated duct systems as well as the

  19. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  20. Creating high performance buildings: Lower energy, better comfort

    SciTech Connect (OSTI)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 6484F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.

  1. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  2. High Performance Laminates Using Blended Urethane Resin Chemistry

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Jones, George G.; Walsh, Sean P.; Wood, Geoff M.

    2005-03-24

    Hybrid blended resin systems have the potential to provide excellent impact performance in structured laminates. Although mostly under development for sheet molding compound (SMC) applications using glass fiber with high levels of fillers, the resins have been found to be useful in liquid molding applications with other high-performance fiber systems. A research pro-gram to develop the molding capability, property data, and capability to model the composites using newly de-veloped codes and modeling techniques was initiated through the Department of Energys Office of Freedom-Car and Vehicle Technologies. Results have shown ex-cellent adhesion to different fiber systems as evidenced by mechanical properties, and a capability to develop very good impact results thereby allowing thin panel structures to be developed. Comparison to predicted me-chanical properties has been achieved and mechanisms for the development of observed high energy absorption under impact loadings are being investigated. Scale ef-fects based on panel thickness, fiber type loading, and position in laminate are being investigated. DOE pro-gram sponsorship was provided by Dr. Sidney Diamond, Technical Area Development Manager for High-Strength Weight-Reduction Materials.

  3. Towards an Abstraction-Friendly Programming Model for High Productivity and High Performance Computing

    SciTech Connect (OSTI)

    Liao, C; Quinlan, D; Panas, T

    2009-10-06

    General purpose languages, such as C++, permit the construction of various high level abstractions to hide redundant, low level details and accelerate programming productivity. Example abstractions include functions, data structures, classes, templates and so on. However, the use of abstractions significantly impedes static code analyses and optimizations, including parallelization, applied to the abstractions complex implementations. As a result, there is a common perception that performance is inversely proportional to the level of abstraction. On the other hand, programming large scale, possibly heterogeneous high-performance computing systems is notoriously difficult and programmers are less likely to abandon the help from high level abstractions when solving real-world, complex problems. Therefore, the need for programming models balancing both programming productivity and execution performance has reached a new level of criticality. We are exploring a novel abstraction-friendly programming model in order to support high productivity and high performance computing. We believe that standard or domain-specific semantics associated with high level abstractions can be exploited to aid compiler analyses and optimizations, thus helping achieving high performance without losing high productivity. We encode representative abstractions and their useful semantics into an abstraction specification file. In the meantime, an accessible, source-to-source compiler infrastructure (the ROSE compiler) is used to facilitate recognizing high level abstractions and utilizing their semantics for more optimization opportunities. Our initial work has shown that recognizing abstractions and knowing their semantics within a compiler can dramatically extend the applicability of existing optimizations, including automatic parallelization. Moreover, a new set of optimizations have become possible within an abstraction-friendly and semantics-aware programming model. In the future, we will apply our programming model to more large scale applications. In particular, we plan to classify and formalize more high level abstractions and semantics which are relevant to high performance computing. We will also investigate better ways to allow language designers, library developers and programmers to communicate abstraction and semantics information with each other.

  4. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

  5. A directory service for configuring high-performance distributed computations

    SciTech Connect (OSTI)

    Fitzgerald, S.; Kesselman, C.; Foster, I.

    1997-08-01

    High-performance execution in distributed computing environments often requires careful selection and configuration not only of computers, networks, and other resources but also of the protocols and algorithms used by applications. Selection and configuration in turn require access to accurate, up-to-date information on the structure and state of available resources. Unfortunately, no standard mechanism exists for organizing or accessing such information. Consequently, different tools and applications adopt ad hoc mechanisms, or they compromise their portability and performance by using default configurations. We propose a Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state. We define an extensible data model to represent required information and present a scalable, high-performance, distributed implementation. The data representation and application programming interface are adopted from the Lightweight Directory Access Protocol; the data model and implementation are new. We use the Globus distributed computing toolkit to illustrate how this directory service enables the development of more flexible and efficient distributed computing services and applications.

  6. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  7. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  8. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  9. High-performance Computing Applied to Semantic Databases

    SciTech Connect (OSTI)

    Goodman, Eric L.; Jimenez, Edward; Mizell, David W.; al-Saffar, Sinan; Adolf, Robert D.; Haglin, David J.

    2011-06-02

    To-date, the application of high-performance computing resources to Semantic Web data has largely focused on commodity hardware and distributed memory platforms. In this paper we make the case that more specialized hardware can offer superior scaling and close to an order of magnitude improvement in performance. In particular we examine the Cray XMT. Its key characteristics, a large, global shared-memory, and processors with a memory-latency tolerant design, offer an environment conducive to programming for the Semantic Web and have engendered results that far surpass current state of the art. We examine three fundamental pieces requisite for a fully functioning semantic database: dictionary encoding, RDFS inference, and query processing. We show scaling up to 512 processors (the largest configuration we had available), and the ability to process 20 billion triples completely in-memory.

  10. High-performance computing applied to semantic databases.

    SciTech Connect (OSTI)

    al-Saffar, Sinan; Jimenez, Edward Steven, Jr.; Adolf, Robert; Haglin, David; Goodman, Eric L.; Mizell, David

    2010-12-01

    To-date, the application of high-performance computing resources to Semantic Web data has largely focused on commodity hardware and distributed memory platforms. In this paper we make the case that more specialized hardware can offer superior scaling and close to an order of magnitude improvement in performance. In particular we examine the Cray XMT. Its key characteristics, a large, global shared-memory, and processors with a memory-latency tolerant design, offer an environment conducive to programming for the Semantic Web and have engendered results that far surpass current state of the art. We examine three fundamental pieces requisite for a fully functioning semantic database: dictionary encoding, RDFS inference, and query processing. We show scaling up to 512 processors (the largest configuration we had available), and the ability to process 20 billion triples completely in-memory.

  11. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  12. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  13. UltraSciencenet: High- Performance Network Research Test-Bed

    SciTech Connect (OSTI)

    Rao, Nageswara S; Wing, William R; Poole, Stephen W; Hicks, Susan Elaine; DeNap, Frank A; Carter, Steven M; Wu, Qishi

    2009-04-01

    The high-performance networking requirements for next generation large-scale applications belong to two broad classes: (a) high bandwidths, typically multiples of 10Gbps, to support bulk data transfers, and (b) stable bandwidths, typically at much lower bandwidths, to support computational steering, remote visualization, and remote control of instrumentation. Current Internet technologies, however, are severely limited in meeting these demands because such bulk bandwidths are available only in the backbone, and stable control channels are hard to realize over shared connections. The UltraScience Net (USN) facilitates the development of such technologies by providing dynamic, cross-country dedicated 10Gbps channels for large data transfers, and 150 Mbps channels for interactive and control operations. Contributions of the USN project are two-fold: (a) Infrastructure Technologies for Network Experimental Facility: USN developed and/or demonstrated a number of infrastructure technologies needed for a national-scale network experimental facility. Compared to Internet, USN's data-plane is different in that it can be partitioned into isolated layer-1 or layer-2 connections, and its control-plane is different in the ability of users and applications to setup and tear down channels as needed. Its design required several new components including a Virtual Private Network infrastructure, a bandwidth and channel scheduler, and a dynamic signaling daemon. The control-plane employs a centralized scheduler to compute the channel allocations and a signaling daemon to generate configuration signals to switches. In a nutshell, USN demonstrated the ability to build and operate a stable national-scale switched network. (b) Structured Network Research Experiments: A number of network research experiments have been conducted on USN that cannot be easily supported over existing network facilities, including test-beds and production networks. It settled an open matter by demonstrating that the performance of switched connections and Multiple Protocol Label Switching tunnels over routed networks are comparable. Furthermore, such connections can be easily peered, and the performance of the resultant hybrid connections is still comparable to the constituent pure connections. USN experiments demonstrated that Infiniband transport can be effectively extended to wide-area connections of thousands of miles, which opens up new opportunities for efficient bulk data transport. USN provided dedicated connections to Cray X1 supercomputer and helped diagnose TCP performance problems which might have been otherwise incorrectly attributed to traffic on shared connections. USN contributed to the development of transport methods for dedicated connections to other traffic. Recently, experiments were conducted to assess the performance of application acceleration devices that employ flow optimization and data compression methods to improve TCP performance.

  14. Fluorescent Pigments for High-Performance Cool Roofing

    Energy Savers [EERE]

    Fluorescent Pigments for High-Performance Cool Roofing 2015 Building Technologies Office Peer Review Michael Zalich, Ph.D. Paul Berdahl, Ph.D. mzalich@ppg.com phberdahl@lbl.gov PPG Industries, Inc. LBNL Project Summary Timeline: Start date: October 1, 2013 Planned end date: September 30, 2015 Key Milestones 1. Additional Pigments Identified, End Q2 and Q6 2. 500g of 2 New Pigments, End Q3 and Q7 3. ESR Measured on New Cool Roof Coating, End Q4 and Q8 4. Potential Manufacturing Partner, Q3 and

  15. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    SciTech Connect (OSTI)

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S.

    2014-02-24

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ?50 s-SWCNTs ?m{sup ?1}. At a channel length of 9??m the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2??10{sup 7} and 46?cm{sup 2}?V{sup ?1}?s{sup ?1}, respectively. At a channel length of 400?nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61??S??m{sup ?1} and the on/off ratio is 4??10{sup 5}. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400?nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

  16. Successful development and application of high performance plate steels

    SciTech Connect (OSTI)

    Wilson, A.D.

    1995-12-31

    New high performance plate steels (HPPS) are developed in reaction to customer requirements and the availability of essential steelmaking facilities. In this decade significant improvements to steelmaking equipment has made possible the development and production of a variety of new HPPS. Four case studies are presented reviewing the key metallurgical needs and the innovative steel processing that was required. These applications include: (1) Hydrogen Induced Cracking Resistant A516 C-Mn pressure vessel steel with ultra low sulfur and controlled carbon equivalent levels, (2) Temper Embrittlement Resistant A387 Cr-Mo alloy steels for high temperature pressure vessels with low phosphorus, J Factor and sulfur levels with high toughness, (3) formable, weldable, 400HB abrasion resistant alloy steels, which are produced with extra low sulfur levels, reduced carbon and carbon equivalent levels and rigorous heat treatment controls, and (4) weldable, high strength structural steels with low carbon levels, based on Cu-Ni precipitation hardening and A710. Future opportunities for HPPS will result with the installation of additional new steelmaking facilities.

  17. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  18. High-Performance Ducts in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, Marc; Chitwood, Rick; German, Alea; Weitzel, Elizabeth

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  19. High performance computing and communications: FY 1995 implementation plan

    SciTech Connect (OSTI)

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  20. DOE Tour of Zero Floorplans: Chamberlain Court #75 by High Performance

    Energy Savers [EERE]

    Homes | Department of Energy Chamberlain Court #75 by High Performance Homes DOE Tour of Zero Floorplans: Chamberlain Court #75 by High Performance Homes DOE Tour of Zero Floorplans: Chamberlain Court #75 by High Performance

  1. A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu

    2014-08-31

    Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to todays power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

  2. Rooftop Unit and Autonomous Control and Communication for RTU Network- Supermarket

    Broader source: Energy.gov [DOE]

    Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Project Partner: Emerson - St. Louis, MO

  3. Performance of Lanthanum Strontium Manganite Electrodes at High Pressure

    SciTech Connect (OSTI)

    Thomsen, Edwin C.; Coffey, Greg W.; Pederson, Larry R.; Marina, Olga A.

    2009-06-15

    The high-pressure performance of lanthanum strontium manganite (LSM), LSM-zirconia, and LSM/ceria composite electrodes was studied by impedance spectroscopy and dc methods. Electrode resistances decreased in proportion to P(O2)1/2 for the LSM electrode in both cathodic and anodic directions to at least 100 atm, a decrease that was attributed to dissociative oxygen adsorption, surface diffusion, and related phenomena. For the LSM-20/zirconia composite electrode, resistances decreased in proportion to P(O2)1/4 across the entire pressure range considered. Two principal features appeared in the impedance spectra, one that showed a P(O2)1/4 dependence attributed to charge transfer reactions, and one that was nearly pressure-independent, possibly due to transport in the zirconia portion of the composite. For the LSM-20/ceria composite electrode, resistances decreased as P(O2)0.3-0.4 at high pressure, depending on temperature. Two features appeared in the impedance spectra: one at low to intermediate frequency having a P(O2)1/2 dependence and one at high frequency having a P(O2)1/4 dependence. These features are attributed to dissociative oxygen adsorption and to charge transfer reactions, respectively. Results suggest that cathodic losses can be substantially lowered by operation of solid oxide fuel cells at greater than ambient pressure.

  4. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle ...

  5. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles ...

  6. DOE Tour of Zero Floorplans: Chamberlain Court #75 by High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chamberlain Court 75 by High Performance Homes DOE Tour of Zero Floorplans: Chamberlain Court 75 by High Performance Homes DOE Tour of Zero Floorplans: Chamberlain Court 75 by...

  7. U.S. Department of Energy High Performance and Sustainable Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan ...

  8. High Performance Building Facade Solutions PIER Final Project Report

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.

  9. Power/energy use cases for high performance computing.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  10. High Performance Computing - Power Application Programming Interface Specification.

    SciTech Connect (OSTI)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  11. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  12. Halide and Oxy-Halide Eutectic Systems for High-Performance,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature...

  13. Building America Webinar: High Performance Space Conditioning Systems, Part II

    Broader source: Energy.gov [DOE]

    The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits.

  14. High-Level Waste Corporate Board Performance Assessment Subcommittee

    Office of Environmental Management (EM)

    of performance assessments across the DOE complex. Objectives: 4 Objectives: 1. Develop a body of knowledge relating to the preparation and application of performance assessments...

  15. High-Performance Renewable Base Oils for Industrial Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When used in industrial lubricants of all types, Biosynthetic's oils achieved superior performance in many critical performance areas, including pour point, viscosity index, flash ...

  16. Coal-fired high performance power generating system

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  17. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect (OSTI)

    Laura Ann Salazar

    2003-05-31

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

  18. Progress Towards High Performance, Steady-state Spherical Torus

    SciTech Connect (OSTI)

    M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden

    2003-10-02

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted on NSTX to test the method up to Ip {approx} 500 kA. In parallel, start-up using radio-frequency current drive and only external poloidal field coils are being developed on NSTX. The area of power and particle handling is expected to be challenging because of the higher power density expected in the ST relative to that in conventional aspect-ratio tokamaks. Due to its promise for power and particle handling, liquid lithium is being studied in CDX-U as a potential plasma-facing surface for a fusion reactor.

  19. Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Liu, E.; Bebic, J.

    2008-02-01

    This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

  20. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis; Groll, Eckhard A.; Braun, James E.

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  1. Building America Webinar: High Performance Space Conditioning Systems, Part II

    Broader source: Energy.gov [DOE]

    The webinar will continue our series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar...

  2. Building America Webinar: High Performance Space Conditioning Systems, Part I

    Office of Energy Efficiency and Renewable Energy (EERE)

    The webinar will focus on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be:

  3. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  4. Transforming Power Grid Operations via High Performance Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Nieplocha, Jarek

    2008-07-31

    Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve todays grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

  5. High-Performance Secure Database Access Technologies for HEP Grids

    SciTech Connect (OSTI)

    Matthew Vranicar; John Weicher

    2006-04-17

    The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicist’s computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications.” There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure authorization is pushed into the database engine will eliminate inefficient data transfer bottlenecks. Furthermore, traditionally separated database and security layers provide an extra vulnerability, leaving a weak clear-text password authorization as the only protection on the database core systems. Due to the legacy limitations of the systems’ security models, the allowed passwords often can not even comply with the DOE password guideline requirements. We see an opportunity for the tight integration of the secure authorization layer with the database server engine resulting in both improved performance and improved security. Phase I has focused on the development of a proof-of-concept prototype using Argonne National Laboratory’s (ANL) Argonne Tandem-Linac Accelerator System (ATLAS) project as a test scenario. By developing a grid-security enabled version of the ATLAS project’s current relation database solution, MySQL, PIOCON Technologies aims to offer a more efficient solution to secure database access.

  6. Builders Challenge High Performance Builder Spotlight Tommy Williams Homes

    SciTech Connect (OSTI)

    2010-02-05

    Builders Challenge fact sheet highlighting performance and energy-efficiency features of Tommy Williams Homes, Longleaf case study, Gainesville, FL

  7. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  8. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10??m were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  9. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  10. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemorecapable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).less

  11. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  12. User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners

    Broader source: Energy.gov [DOE]

    Lead Performer: University of California, Davis – Davis, CADOE Total Funding: $200,000Cost Share: $339,515Project Term: 2015 – 2017Funding Opportunity: Building University Innovators and Leaders...

  13. Integrated Design: A High-Performance Solution for Affordable...

    Energy Savers [EERE]

    Lead Performer: The Levy Partnership, Inc.-New York, NY Partners: Habitat for Humanity International Habitat Research Foundation, Atlanta, GA Columbia Count Habitat, NY Habitat of ...

  14. Promoting High-Performance Homes to Portland Real Estate Pros...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Home performance upgrades not only create healthier, safer, more comfortable places to live, but they also increase the value of our homes," said Derek Smith, CEW chief executive ...

  15. High-Performance Commercial Cold Climate Heat Pump | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: United Technologies Research Center - East Hartford, CT Partners: Carrier Corporation - Farmington, CT DOE Funding: 1,500,000 Cost Share: 373,000 Project Term: ...

  16. Toward a new metric for ranking high performance computing systems...

    Office of Scientific and Technical Information (OSTI)

    However, HPL is increasingly unreliable as a true measure of system performance for a growing collection of important science and engineering applications. In this paper we ...

  17. Webinar: High Performance Enclosure Strategies: Part I. Existing Homes

    Broader source: Energy.gov [DOE]

    The webinar will focus on specific Building America projects that have studied technical solutions to retrofit building enclosures to improve energy and durability performance. Presenters will...

  18. Moisture Performance of High-R Wall Systems

    Broader source: Energy.gov [DOE]

    Lead Performer: Home Innovation Research Labs—Upper Marlboro, MD Partners: -- American Chemistry Council -- National Association of Home Builders -- USDA Forest Products Lab -- Vinyl Siding Institute

  19. Technology Solutions Case Study: High-Performance Ducts in Hot...

    Office of Scientific and Technical Information (OSTI)

    collected in the California project with BEopt simulations of DCS performance in hotdry climate regions. Authors: M. Hoeschele, A. German, E. Weitzel, R. Chitwood...

  20. Introducing the Market to High-performance Building on Hilton Head Island

    SciTech Connect (OSTI)

    Rudd, Armin

    2007-12-01

    The whole-house performance approach described here builds a framework of principals,options, and plan for quality execution of producing high-performance homes.

  1. Building America Case Study: High Performance Ducts in Hot-Dry...

    Office of Scientific and Technical Information (OSTI)

    Performance Ducts in Hot-Dry Climates; Technology Solutions for New and Existing Homes, ... Title: Building America Case Study: High Performance Ducts in Hot-Dry Climates; Technology ...

  2. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact The current high manufacturing cost of OLED lighting is a major barrier to market acceptance. The project goal is to be able to supply affordable, high-quality ...

  3. High Performance Sustainable Building Design RM | Department of Energy

    Energy Savers [EERE]

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  4. A Review of High Occupancy Vehicle (HOV) Lane Performance and...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentreview-high-occupancy-vehicle-hov-lan Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This...

  5. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuelincluding the extent of fission product release and the evolution of kernel and coating microstructureswas evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 110 4 to 510 4 for 154Eu and 810 7 to 310 5 for 90Sr. The average 134Cs release from compacts was <310 6 when all particles maintained intact SiC. An estimated four particles out of 2.98105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  6. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect (OSTI)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (air capture). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

  7. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect (OSTI)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  8. Project Profile: High Performance Reflector Panels for CSP Assemblies

    Broader source: Energy.gov [DOE]

    PPG, under the CSP R&D FOA, is aiming to develop and commercialize large-area second-surface glass mirrors that are superior in value, cost, and performance, to existing mirrors on the market today.

  9. ZERH WEBINAR: HIGH-PERFORMANCE HOME SALES TRAINING PART II

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  10. ZERH Webinar: High-Performance Home Sales Training Part I

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  11. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nielsen, Ida M.B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  12. Buildings Energy Data Book: 9.4 High Performance Buildings

    Buildings Energy Data Book [EERE]

    Source(s): 1) Width varies from about 74 ft. to 59 ft. along different sections of the length. 2) Solar heat gain coefficient. NREL, Analysis of the Energy Performance of the ...

  13. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2012-09-01

    This report describes the work conducted by the Building Science Corporation (BSC) Building America Research Team's 'Energy Efficient Housing Research Partnerships' project. Based on past experience in the Building America program, they have found that combinations of materials and approaches---in other words, systems--usually provide optimum performance. No single manufacturer typically provides all of the components for an assembly, nor has the specific understanding of all the individual components necessary for optimum performance.

  14. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect (OSTI)

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris; Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette ; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris ; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio; Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05; CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  15. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  16. Performance of a High Speed Indirect Injection Diesel Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies The Linear Engine Pathway of Transformation High Fuel Economy Heavy-Duty Truck Engine

  17. Scalable File Systems for High Performance Computing Final Report

    SciTech Connect (OSTI)

    Brandt, S A

    2007-10-03

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  18. Project Profile: Maintenance-Free Stirling Engine for High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintenance-Free Stirling Engine for High-Performance Dish CSP Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP Image of a prototype 30-kW Stirling ...

  19. Building America Whole-House Solutions for New Homes: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Homes: High-Performance Ducts in Hot-Dry Climates Building America Whole-House Solutions for New Homes: High-Performance Ducts in Hot-Dry Climates The Alliance for Residential...

  20. Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Liquid Cooling v. Air Cooling Evaluation in the Maui High-Performance Computing Center Study ...

  1. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  2. High performance batteries with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  3. Building America System Research Results. Innovations for High Performance Homes

    SciTech Connect (OSTI)

    none,

    2006-05-01

    This report provides a summary of key lessons learned from the first 10 years of the Building America program and also included a summary of the future challenges that must be met to reach the programs long term performance goals.

  4. U.S. Department of Energy High Performance and Sustainable Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation Plan | Department of Energy High Performance and Sustainable Buildings Implementation Plan U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Plan outlining DOE's commitment to designing, building, operating, and maintaining high performance and sustainable buildings (HPSB). PDF icon U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan More Documents & Publications Three Year Rolling Timeline Slide 1

  5. Handbook for Planning and Conducting Charrettes for High-Performance Projects: Second Edition

    SciTech Connect (OSTI)

    Lindsay, G.; Todd, J. A.; Hayter, S. J.; Ellis, P. G.

    2009-09-01

    This handbook furnishes guidance for planning and conducting a high-performance building charrette, sometimes called a "greening charrette."

  6. Report of the Task Force on Next Generation High Performance Computing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation High Performance Computing (TFHPC) was established by the Secretary of Energy on December 20, 2014 to review the mission and national capabilities related to next generation high performance computing. The Task Force's findings and recommendations are framed by three broad considerations including a "new"

  7. Energy Design Guidelines for High Performance Schools: Arctic and Subarctic Climates

    SciTech Connect (OSTI)

    2004-11-01

    Energy Design Guidelines for High Performance Schools book detailing DOE's EnergySmart Schools Program for Arctic Climates.

  8. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  9. Evaluating Performance, Power, and Cooling in High Performance Computing (HPC) Data Centers

    SciTech Connect (OSTI)

    Evans, Jeffrey; Sandeep, Gupta; Karavanic, Karen; Marquez, Andres; Varsamopoulos, Girogios

    2012-01-24

    This chapter explores current research focused on developing our understanding of the interrelationships involved with HPC performance and energy management. The first section explores data center instrumentation, measurement, and performance analysis techniques, followed by a section focusing on work in data center thermal management and resource allocation. This is followed by an exploration of emerging techniques to identify application behavioral attributes that can provide clues and advice to HPC resource and energy management systems for the purpose of balancing HPC performance and energy efficiency.

  10. Literature review : reducing soft costs of rooftop solar installations attributed to structural considerations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.

    2013-03-01

    Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure a simple and basic determinate beam. That is, instead of considering the composite action of the entire roof structure, the engineer evaluates only a single beam that is deemed conservatively to represent an affected rafter or top chord of a truss. This simplification based on assumptions of a complex problem is where significant conservatism can be introduced. Empirical data will be developed to evaluate this issue. Simple wood beams will be tested to failure. More complex and complete sections of roof structures that include composite action will also be tested to failure. The results can then be compared. An initial step in this process involves a literature review of any work that has been performed on roof structure composite action. The following section summarizes the literature review that was completed.

  11. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities ...

  12. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new low-cost, high-efficiency LED architecture made possible by novel large-area ... Related Publications PDF icon 2015 BTO Peer Review Presentation - Print-based ...

  13. New GATEWAY Report Monitors LED System Performance in a High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    There was no measured shift in the color of the light. The Yuma site is an extreme environment: high ambient temperatures and direct solar radiation heat up the luminaires ...

  14. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical experimental data for thermal performance of advanced materials help to develop next-generation electronic components. With the rapid development of electronics systems, significant effort is being put into exploring effective thermal management strategies to remove excessive heat that can degrade or damage components and devices. The heat removal path in electronics packaging usually involves multiple layers. These layers and the associated contact resistances can present a significant

  15. High Fidelity Evaluation of Tidal Turbine Performance for Industry Partner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fidelity Evaluation of Tidal Turbine Performance for Industry Partner - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  16. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    SciTech Connect (OSTI)

    Grin, A.; Lstiburek, J.

    2012-09-01

    Based on past experience in the Building America program, BSC has found that combinations of materials and approachesin other words, systemsusually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.

  17. Reliable High Performance Peta- and Exa-Scale Computing

    SciTech Connect (OSTI)

    Bronevetsky, G

    2012-04-02

    As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continue to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty operation. By synthesizing models of individual components into a whole-system behavior models my work is making it possible to automatically understand the behavior of arbitrary real-world systems to enable them to tolerate a wide range of system faults. My project is following a multi-pronged research strategy. Section II discusses my work on modeling the behavior of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a system should be designed from the ground up to make resilience natural and easy.

  18. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect (OSTI)

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  19. Dish Stirling High Performance Thermal Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    313_wagner.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Temperature Solar Thermoelectric Generators (STEG) Near-Blackbody Enclosed Particle Receiver Program | Department of Energy

    Code comparison presentation by Mark White of PNNL at the 2012 Peer Review meeting on May 10. PDF icon gtp_2012peerreview_pnnl_white.pdf More Documents & Publications PNNL Support of the DOE GTO Model

  20. Carbon Molecular Sieve Membranes for High Performance Gas Separations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Pyung-Soo; Bhave, Ramesh R

    2016-01-01

    Thin carbon molecular sieve membranes (more »performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 (462), CO2/N2 (97), and O2/N2 (15.4). As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 (156), CO2/N2 (88), and O2/N2 (7.7).« less

  1. High-performance double-filter soft x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance double-filter soft x-ray diagnostic for measurement of electron temperature structure and dynamics M. B. McGarry, P. Franz, D. J. Den Hartog, J. A. Goetz, M. A. Thomas et al. Citation: Rev. Sci. Instrum. 83, 10E129 (2012); doi: 10.1063/1.4740274 View online: http://dx.doi.org/10.1063/1.4740274 View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v83/i10 Published by the American Institute of Physics. Additional information on Rev. Sci. Instrum. Journal Homepage:

  2. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  3. High-Performance Design Patterns for Modern Fortran

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Haveraaen, Magne; Morris, Karla; Rouson, Damian; Radhakrishnan, Hari; Carson, Clayton

    2015-01-01

    This paper presents ideas for using coordinate-free numerics in modern Fortran to achieve code flexibility in the partial differential equation (PDE) domain. We also show how Fortran, over the last few decades, has changed to become a language well-suited for state-of-the-art software development. Fortran’s new coarray distributed data structure, the language’s class mechanism, and its side-effect-free, pure procedure capability provide the scaffolding on which we implement HPC software. These features empower compilers to organize parallel computations with efficient communication. We present some programming patterns that support asynchronous evaluation of expressions comprised of parallel operations on distributed data. We implemented thesemore » patterns using coarrays and the message passing interface (MPI). We compared the codes’ complexity and performance. The MPI code is much more complex and depends on external libraries. The MPI code on Cray hardware using the Cray compiler is 1.5–2 times faster than the coarray code on the same hardware. The Intel compiler implements coarrays atop Intel’s MPI library with the result apparently being 2–2.5 times slower than manually coded MPI despite exhibiting nearly linear scaling efficiency. As compilers mature and further improvements to coarrays comes in Fortran 2015, we expect this performance gap to narrow.« less

  4. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  5. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  6. High-performance, transparent conducting oxides based on cadmium stannate

    SciTech Connect (OSTI)

    Coutts, T.J.; Wu, X.; Mulligan, W.P.; Webb, J.M.

    1996-06-01

    We discuss the modeling of thin films of transparent conducting oxides and we compare the predictions with the observed properties of cadmium stannate. Thin films of this material were deposited using radio-frequency magnetron sputtering. The Drude free-carrier model is used to model the optical and electrical properties. The model demonstrates the need for high mobilities. The free-carrier absorbance in the visible spectrum is used as a comparative figure-of-merit for cadmium stannate and tin oxide. This shows that free-carrier absorbance is much less in cadmium stannate than in tin oxide. X-ray diffraction shows that annealed films consist of a single-phase spinel structure. The post-deposition annealing sequence is shown to be crucial to forming a single phase, which is vital for optimal optical and electrical properties. The films are typically high mobility (up to 65 cm{sup 2}V{sup -1}s{sup -1}) and have carrier concentrations as high as 10{sup 21} cm{sup -3}. Resistivities are as low as 1.3 10{sup -4} {Omega} cm, the lowest values reported for cadmium stannate. Atomic force microscopy indicates that the root-mean-square surface roughness is approximately {+-}15A. Cadmium stannate etches readily in both hydrofluoric and hydrochloric acid, which is a commanding advantage over tin oxide. 11 refs., 15 figs.

  7. High Performance and Durable Low PGM Cathode Catalysts

    SciTech Connect (OSTI)

    Wang, Yong; Liu, Jun; Shao, Yuyan; Cheng, Yingwen; Borup, Rodney L.; Rockward, Tommy; Brosha, Eric Lanich

    2015-08-17

    There is a strong need to decrease the amount of Pt electrocatalyst used in fuel cells and increase its durability for transportation application. Conventional strategies include Pt nanocrystals and Pt alloy with well-controlled structures, durable carbon support, non-carbon support, etc. We have developed the so-called “metal-metal oxide-carbon” triple junction concept to stabilize Pt and protect carbon from corrosion. It also improved the activity of Pt. The good performance was not achieved in fuel cell test mainly because of the transport issue due to the use of 2D graphene. In this project, our main goal is to demonstrate the concept in fuel cell device test using 3D porous graphene as support so that the transport issue could be addressed.

  8. High Performance Organic Photovoltaics via Novel Materials Combinations

    SciTech Connect (OSTI)

    Laird, Dr Darin; McGuiness, Dr Christine; Storch, Mark

    2011-01-20

    OPV cell efficiencies have increased significantly over the last decade and verified champion efficiencies are currently at 8.3% for both single and multi-junction device types. These increases in efficiency have been driven through the development and optimization of the donor and acceptor materials in bulk heterojunction active layers. Plextronics and Solarmer Energy Inc. are two of the world leading developers of these donor and acceptor materials. Solarmer Energy has reported NREL certified 6.77% efficiencies using optimized low band gap donor materials in combination with PC61BM and PC71BM acceptors and recently reported a champion NREL certified efficiency of 8.1%. Plextronics has reported Newport certified efficiencies of 6.7% using PC71BM acceptors with low band gap materials. In addition, Plextronics has also demonstrated that OPV efficiency of P3HT based materials can be improved by 50% by improving the Voc using alternative acceptors (indene substituted C60 and C70) to PC61BM and PC71BM. However, performance of these alternative acceptors in combination with low band gap materials has not been investigated and the potential for efficiency improvement is evident. In this collaboration, four low band gap donor materials from Solarmer Energy Inc were combined with Plextronics indene-class acceptors Plextronics indene substituted C60 and C70 acceptors to demonstrate OPV performance greater than 7%. Two main indene class C60 acceptors (codenamed Mono-indene[C60] Mono-indene[C60] , Bis-indene[C60] ) were screened with the Solarmer polymers. These four polymers were screened and optimized with the indene class acceptors at both Plextronics and Solarmer. A combination was identified which produced 6.7% (internal measurement) with a Solarmer polymer and a Plextronics fullerene acceptor. This was accomplished primarily by improving the Voc as well as improving the current (Jsc) and FF.

  9. High-dose neutron irradiation performance of dielectric mirrors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  10. High Dose Neutron Irradiation Performance of Dielectric Mirrors

    SciTech Connect (OSTI)

    Nimishakavi, Anantha Phani Kiran Kumar; Leonard, Keith J; Jellison Jr, Gerald Earle; Snead, Lance Lewis

    2015-01-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. The ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  11. High performance static latches with complete single event upset immunity

    DOE Patents [OSTI]

    Corbett, Wayne T.; Weaver, Harry T.

    1994-01-01

    An asymmetric response latch providing immunity to single event upset without loss of speed. The latch has cross-coupled inverters having a hardened logic state and a soft state, wherein the logic state of the first inverter can only be changed when the voltage on the coupling node of that inverter is low and the logic state of the second inverter can only be changed when the coupling of that inverter is high. One of more of the asymmetric response latches may be configured into a memory cell having complete immunity, which protects information rather than logic states.

  12. Process of making cryogenically cooled high thermal performance crystal optics

    DOE Patents [OSTI]

    Kuzay, Tuncer M.

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  13. Process of making cryogenically cooled high thermal performance crystal optics

    DOE Patents [OSTI]

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  14. High performance static latches with complete single event upset immunity

    DOE Patents [OSTI]

    Corbett, W.T.; Weaver, H.T.

    1994-04-26

    An asymmetric response latch providing immunity to single event upset without loss of speed is described. The latch has cross-coupled inverters having a hardened logic state and a soft state, wherein the logic state of the first inverter can only be changed when the voltage on the coupling node of that inverter is low and the logic state of the second inverter can only be changed when the coupling of that inverter is high. One of more of the asymmetric response latches may be configured into a memory cell having complete immunity, which protects information rather than logic states. 5 figures.

  15. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  16. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B.; DuBois, David H.

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  17. A high-performance electron beam ion source

    SciTech Connect (OSTI)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  18. Performance of Gas-Engine Driven Heat Pump Unit

    SciTech Connect (OSTI)

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

  19. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  20. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  1. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas Lillo; Richard Wright

    2009-05-01

    HVOF coatings have shown high resistance to corrosion in fossil energy applications and it is generally accepted that mechanical failure, e.g. cracking or spalling, ultimately will determine coating lifetime. The high velocity oxygen-fuel method (HVOF) for applying coatings is one of the most commercially viable and allows the control of various parameters including powder particle velocity and temperature which influence coating properties, such as residual stress, bond coat strength and microstructure. The mechanical durability of coatings is being assessed using a dual eddy current coil method to monitor crack formation in real time during thermal cycling. Absolute impedence signals from two coils, which interrogate two different areas on the sample, are collected. Crack detection can be determined from the differential signal generated from these absolute signals. The coils are operated at two different frequencies, resulting in two differential signals used for crack detection. Currently this crack detection method is being used to elucidate the influence of thermal cycling temperature and coating thickness on cracking. Recent results (cycles to failure) will be presented for FeAl coatings thermally sprayed (HVOF) onto carbon steel to two coating thicknesses (160 microns and 250 microns thick) and subsequently cycled at temperatures up to 700oC. Thinner coatings exhibit greater resistance to cracking. Ultimately the resistance to cracking will be used to explore the relationship between HVOF spraying parameters, the mechanical properties of the coating and coating bond strength to develop optimized thermal spray parameters. To this end thermal spray coatings (FeAl and Fe3Al) have been applied to additional alloy substrates (Grade 91 steel, 316 SS, etc.) relevant to the fossil industry. Future plans also include a direct comparison to conventional weld overlay coatings currently used in the industry as well as exploration of new coatings. The room temperature mechanical strength and coating adhesion to the substrate is also of considerable importance. Eddy current methods are being developed to detect coating failure during room temperature tensile tests to optimize surface preparation as well as aid in the optimization of the HVOF thermal spray parameters.

  2. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography

    SciTech Connect (OSTI)

    Guiochon, Georges A; Shalliker, R. Andrew

    2010-01-01

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.

  3. Resolution of a High Performance Cavity Beam Positron Monitor System

    SciTech Connect (OSTI)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; /SLAC /Caltech /KEK, Tsukuba

    2007-07-06

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  4. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect (OSTI)

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  5. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J.; Goerz, David A.

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  6. CAMX - A High Performance Cutting Technique for Underwater Use

    SciTech Connect (OSTI)

    Bach, Fr.-W.; Versemann, R.; Bienia, H.; Kremer, G.

    2003-02-27

    During the past years a new cutting technology, the CAMX-process-family (Contact-Arc-Metal-X [X is for Cutting, Grinding and Drilling]) was developed at the Institute of Materials Science in Hanover. These are electro-thermal underwater separation processes for metallic structures. The CAMX technology covers the Contact-Arc-Metal- Cutting (CAMC) with a sword-like cutting electrode, the Contact-Arc-Metal-Grinding (CAMG) with a rotating electrode and the Contact-Arc-Metal-Drilling (CAMD) with a wrap mechanism to fix and carry the workpiece. There are no limitations of CAMC concerning the capability of cutting complicated structures of workpieces. Undercuts and cavities in the workpiece do not affect the CAMC. The CAMG is a separation process for straight cuts with a very high cutting speed. The CAMD is a technology to drill holes or pocket holes of any geometry. With the integrated wrap mechanism it is possible to fix and carry workpieces, which are not to handle with conventional mechanisms.

  7. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine; Dalton, Luke; Roemer, Andy; Carter, Blake; Niedzwiecki, Mike; Manco, Judith; Anderson, Everett; Capuano, Chris; Wang, Chao-Yang; Zhao, Wei

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  8. High performance alloys: How they are used offshore

    SciTech Connect (OSTI)

    Schillmoller, C.M.

    1988-07-01

    Stainless steels and nickel-based alloys are increasingly applied in the oil and gas industry for exploitation of sour crudes. Containing considerable quantities of H/sub 2/S, CO/sub 2/ and salted formation waters, these crudes show a high corrosivity with respect to general corrosion and stress corrosion cracking by sulfides (SSCC), by chlorides (CSCC) or by their combined action. Traditionally Monel, K-Monel and copper-nickel alloys have served the industry well for sucker rods, instrumentation, packers, valves for gas lift, pumpshafts, sea water piping, heat exchange tubing and many other critical components. In the new generation of offshore platforms, deep sour gas wells, CO/sub 2/ enhanced oil recovery projects and production in the Arctic, extensive use is now being made of the specialty Cr-Ni-Mo stainless steels and the Ni-Cr-Mo alloys for extremely severe corrosive applications. Examples of applications are cited, an economic analysis provided of using the corrosion resistant alloys (CRA) in downhole tubulars and several suggestions for reducing the weight of topside construction on offshore platforms. Further, guidelines are presented for the selection of alloys to reliably resist the very aggressive corrosive environments.

  9. Bio-Engineering High Performance Microbial Strains for MEOR

    SciTech Connect (OSTI)

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different substrates gave different performance. Those rhamnolipids with plant oil as substrate showed as low an IFT as 0.05mN/m in the buffer solution with pH5.0 and 2% NaCl. Core flooding tests showed that rhamnolipids produced by our engineered bacteria are effective agents for EOR. At 250ppm rhamnolipid concentration from P. aeruginosa PEER02, 42% of the remaining oil after waterflood was recovered. These results were therefore significant towards considering the exploration of the studied rhamnolipids as EOR agents.

  10. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  11. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  12. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  13. Next Generation Rooftop Unit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Flexible Research Platform - March 2014 DLL Hardware-based HPDMModelica model library to support RTU design, building control strategy development, fault diagnosis, etc.

  14. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... platform or in the Cloud * Embedded automated diagnostics and advanced controls in the RTU platform and the controller * Applications running in the Cloud in cases where RTU ...

  15. Rooftop package unit diagnostician

    DOE Patents [OSTI]

    Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA

    2004-08-17

    A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.

  16. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  17. Rooftop Unit Campaign

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  18. Rooftop Unit Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... was completed, including components for financing, M&V, and marketing * Key industry partners reviewed the plan, including CEE, RILA, ASHRAE, BOMA International and other key ...

  19. DOE Science Showcase - High-Performance Computing | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information High-Performance Computing Supercomputers or massively parallel high-performance computers (HPCs) are machines that employ very large numbers of processors in parallel to address scientific and engineering challenges. HPCs carry out trillions or even quadrillions of calculations each second - current high-performance computers are powerful enough to simulate some of the most complex physical, biological, and chemical phenomena.

  20. Text-Alternative Version of Building America Webinar: High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enclosure Strategies, Part 1: Unvented Roof Systems and Innovative Advanced Framing Strategies | Department of Energy High-Performance Enclosure Strategies, Part 1: Unvented Roof Systems and Innovative Advanced Framing Strategies Text-Alternative Version of Building America Webinar: High-Performance Enclosure Strategies, Part 1: Unvented Roof Systems and Innovative Advanced Framing Strategies High-Performance Enclosure Strategies, Part 1: Unvented Roof Systems and Innovative Advanced