Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Technologies Office: High Performance Windows Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Office: High Performance Windows Volume Purchase to someone by E-mail Share Building Technologies Office: High Performance Windows Volume Purchase on Facebook...

2

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

Solar Control Office Windows William King December 1977 C'eSOLAR CONTROL OFFICE WINDOWS Wm. J. King KINETIC COATINGS,R. Berman. Consultation on window characteristics and aid in

King, William J.

2011-01-01T23:59:59.000Z

3

Building Technologies Office: Advanced Insulation for High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

4

High performance solar control office windows  

SciTech Connect

Investigations conducted over a 9 month period on the use of ion beam sputtering methods for the fabrication of solar control windows for energy conservation are described. Principal emphasis was placed on colored, reflecting, heat rejecting, office building windows for reducing air conditioning loads and to aid in the design of energy conserving buildings. The coating techniques were developed primarily for use with conventional absorbing plate glass such as PPG solarbronze, but were also demonstrated on plastic substrates for retrofit applications. Extensive material investigations were conducted to determine the optimum obtainable characteristics, with associated weathering studies as appropriate aimed at achieving a 20 year minimum life. Conservative estimates indicate that successful commercialization of the windows developed under this program would result in energy savings of 16,000,000 barrels of oil/year by 1990 if installation were only 10 percent of new commercial building stock. These estimates are relative to existing design for energy conserving windows. Installation in a greater percentage of new stock and for retrofit applications could lead to proportionately greater energy savings. All such installations are projected as cost effective as well as energy effective. A secondary program was carried out to modify the techniques to yield thermal control windows for residential applications. These windows were designed to provide a high heat retention capability without seriously affecting their transmission of incident solar radiation, thereby enhancing the greenhouse effect. This part of the program was successful in producing a window form which could be interchanged for standard residential window material in a cost and energy effective manner. The only variation from standard stock in appearance is a very light rose or neutral gray coloring.

King, W.J.

1977-12-01T23:59:59.000Z

5

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

boratory University of California/Berkeley r t::;t:; r I thefor LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA Berkeley, California 94701 This work was performed for the

King, William J.

2011-01-01T23:59:59.000Z

6

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

7

Office of Legacy Management Designated as a High-Performing Organization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Designated as a High-Performing Office of Legacy Management Designated as a High-Performing Organization Office of Legacy Management Designated as a High-Performing Organization July 6, 2009 - 11:45am Addthis Office of Legacy Management Designated as a High-Performing Organization What does this project do? Goal 5. Sustain management excellence Executive Summary: The U.S. Department of Energy (DOE) Office of Legacy Management (LM) was established in 2003 to serve as the steward for the nation's Cold War nuclear legacy. LM is responsible for the long-term surveillance and maintenance of environmental remedies, promotion of beneficial reuse, and management of records and information associated with over 70 former nuclear weapons production sites located in 26 states. LM is also responsible for the administration of contractor pension plans and

8

Office of Legacy Management Designated as a High-Performing Organization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Designated as a High-Performing Office of Legacy Management Designated as a High-Performing Organization Office of Legacy Management Designated as a High-Performing Organization July 6, 2009 - 11:45am Addthis What does this project do? Goal 5. Sustain management excellence Executive Summary: The U.S. Department of Energy (DOE) Office of Legacy Management (LM) was established in 2003 to serve as the steward for the nation's Cold War nuclear legacy. LM is responsible for the long-term surveillance and maintenance of environmental remedies, promotion of beneficial reuse, and management of records and information associated with over 70 former nuclear weapons production sites located in 26 states. LM is also responsible for the administration of contractor pension plans and post-retirement benefits for over 10,000 former contractor workers.

9

DOE Greenbook - Needs and Directions in High-Performance Computing for the Office of Science  

Science Conference Proceedings (OSTI)

The NERSC Users Group (NUG) encompasses all investigators utilizing the NERSC computational and storage resources of the Department of Energy Office of Science facility. At the February 2001 meeting held at the National Energy Research Scientific Computing (NERSC) facility, the NUG executive committee (NUGEX) began the process to assess the role of computational science and determine the computational needs in future Office of Science (OS) programs. The continuing rapid development of the computational science fields and computer technology (both hardware and software) suggest frequent periodic review of user requirements and the role that computational science should play in meeting OS program commitments. Over the last decade, NERSC (and many other supercomputer centers) have transitioned from a center based on vector supercomputers to one almost entirely dedicated to massively parallel platforms (MPPs). Users have had to learn and transform their application codes to make use of these parallel computers. NERSC computer time requests suggest that a vast majority of NERSC users have accomplished this transition and are ready for production parallel computing. Tools for debugging, mathematical toolsets, and robust communication software have enabled this transition. The large memory and CPU power of these parallel machines are allowing simulations at resolutions, timescales, and levels of realism in physics that were never before possible. Difficulties and performance issues in using MPP systems remain linked to the access of non-uniform memory: cache, local, and remote memory. This issue includes both the speed of access and the methods of access to the memory architecture. Optimized mathematical tools to perform standard functions on parallel machines are available. Users should be encouraged to make heavy use of those tools to enhance productivity and system performance. There are at least four underlying components to the computational resources used by OS researchers. (1) High-Performance Computing Technology; (2) Advanced Software Technology and Algorithms; (3) Energy Sciences Network; and (4) Basic Research and Human Resources. In addition to the availability from the vendor community, these components determine the implementation and direction of the development of the supercomputing resources for the OS community. In this document we will identify scientific and computational needs from across the five Office of Science organizations: High Energy and Nuclear Physics, Basic Energy Sciences, Fusion Energy Science, Biological and Environmental Research, and Advanced Scientific Computing Research. We will also delineate the current suite of NERSC computational and human resources. Finally, we will provide a set of recommendations that will guide the utilization of current and future computational resources at the DOE NERSC.

Rotman, D; Harding, P

2002-04-01T23:59:59.000Z

10

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network (OSTI)

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed facades. Many studies suggest that the energy needed to keep the interior conditions at required comfort levels in buildings depends on several factors such as physical and optical properties of building elements, indoor and outdoor climate and behaviour of the occupants, etc. Moreover depending on the different orientation of building facade, the impact of these parameters might vary. The buildings are usually designed without paying much attention to this fact. The needs of each building zone might differ greatly and in order to achieve better indoor environment, different actions might be needed to taken considering the individual characteristics of each zone. In the proposed research the possibilities of evaluating building energy and comfort performance simultaneously taking into account the impact of facade orientation with use of whole building energy simulation tools are investigated through a case study.

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

11

U.S. Department of Energy, Office of Legacy Management Post Competition Accountability Report: High Performing Organization Proposal May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Office of Legacy Management Energy, Office of Legacy Management Post Competition Accountability Report: High Performing Organization Proposal May 2012 This report serves as an official record of the annual cost, personnel, and performance information for the Office of Legacy Management to satisfy the post competition accountability requirements. Reporting Period: Fiscal Years (FY) 2012 - 2016 FY2013 Annual Report Management Excellence Goals Driving Top Priorities Target FY2012 FY2013 FY2014 FY2015 FY2016 1. Achieve EMS/Sustainability Goals (normalized to the number of legacy sites). Be a leader among DOE offices in sustainability.* Annual   2. Publish Post Competition Accountability Report on the LM internet. Quarterly   3. Conduct independent evaluations of key programs, projects, or technical issues by goal

12

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

13

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

Science Conference Proceedings (OSTI)

This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

Pless, S.; Torcellini, P.

2012-05-01T23:59:59.000Z

14

High Performance Computing at TJNAF| U.S. DOE Office of Science...  

Office of Science (SC) Website

(301) 903-3833 E: sc.np@science.doe.gov More Information Spinoff Archives High Performance Computing at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application...

15

High Performance Computing at TJNAF| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Performance Computing at TJNAF Performance Computing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Performance Computing at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Performance Computing Developed at: Thomas Jefferson National Laboratory Developed in: 1998 - 2010 Result of NP research: NP computational studies in LQCD

16

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

17

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

18

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlling Capital Costs in Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers Preprint Shanti Pless and Paul Torcellini To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55264 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

19

STIL2 Swedish Office Buildings Survey The STIL2 project has performed...  

Open Energy Info (EERE)

Office Buildings Survey The STIL2 project has performed a survey of high performance office buildings in Sweden to provide energy efficiency data for non-residential...

20

Building Technologies Office: Diagnostic Measurement and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic Measurement and Performance Feedback for Residential Space Conditioning Equipment Expert Meeting to someone by E-mail Share Building Technologies Office: Diagnostic...

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy-Efficient Office Technologies Performance Evaluation  

Science Conference Proceedings (OSTI)

In response to the significant electrical end use of commercial office equipment, the U.S. EPA, with help from EPRI and member utilities, began the Energy Star program, which created energy efficiency standards for computers (CPUs), monitors, printers, copiers, fax machines, and controlling devices. This report describes methods for evaluating the performance of office equipment, typical load shapes for a variety of office equipment, and the results of field monitoring. Such information will help utility...

1997-04-28T23:59:59.000Z

22

Methodology to Develop and Test an Easy-to-use Procedure for the Preliminary Selection of High-performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, Sool Yeon

2009-08-01T23:59:59.000Z

23

Methodology to Develop and Test an Easy-To-Use Procedure for the Preliminary Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures iv were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, S.

2009-08-01T23:59:59.000Z

24

DOE Field Procurement Offices Where EM Work is Performed | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management Acquisition DOE Field Procurement Offices Where EM Work is Performed DOE Field Procurement Offices Where EM Work is Performed The following is a list of...

25

High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Science, Computing, Applied Math » Information Science, Computing, Applied Math » High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of strategic national interest Gary Grider High Performance Computing Division Leader Randal Rheinheimer High Performance Computing Deputy Division Leader Contact Us Carol Hogsett Student/Internship Opportunities Email Division Office Email Managing world-class supercomputing centers Powerall simulations modeling Read caption + The Powerwall is used by LANL scientists to view objects and processes in 3D. High Performance Computing video 13:01 Gary Grider, HPC Divison Leader The High Performance Computing (HPC) Division supports the Laboratory mission by managing world-class Supercomputing Centers.

26

High Performance Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

27

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

28

Office Inspector General DOE Annual Performance Report FY 2008...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY...

29

Development of a Simulation Toolkit for the Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates (Phase I: Calibrated Simulation of the Case Study Building)  

E-Print Network (OSTI)

This paper reports on the development of an easy-to-use tool for the selection of high-performance systems in office buildings in hot and humid climates. In this paper, the preliminary results of a calibrated simulation of a typical large office building are presented for the John Connally building (124,000 sq-ft) in College Station, TX. To calibrate the DOE-2 simulation model, measured data were retrieved from permanently installed data loggers in the building, which measured whole-building electricity use and sub-metered cooling electricity use, lighting and miscellaneous equipment use, as well as thermal energy measurements for chilled water and hot water use. Also used in the calibration process were portable data loggers for comparing the performance of the buildings air-handling units with the simulated performance. For the calibration of the DOE-2 model, several calibration methodologies were used, including manual & iterative calibrations, graphical & statistical analysis, and signature analysis. This calibrated simulation model will be used as a base-case model for the development of a easy-to-use simulation tool for the selection of high-performance systems in office buildings in hot and humid climates. This paper presents the calibrated simulation results of the office building and outlines the additional steps for the development of the high-performance systems selection tool.

Cho, S.; Haberl, J. S.

2008-08-01T23:59:59.000Z

30

Fermilab | Directorate | Office of Integrated Planning & Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Integrated Planning & Performance Management (IPPM) Office of Integrated Planning & Performance Management (IPPM) Integrated Planning Diagram Integrated Planning Diagram [Download PPT] Mission: The Office of Integrated Planning and Performance Management (IPPM) within the Fermilab Directorate provides systems and management processes for institutional planning and performance assessment and evaluation. The office of IPPM leads multi-year, forward-looking planning and integration of institutional plans, programs, projects, operations and budgets. In addition it develops, implements and maintains integrated laboratory systems and management processes for strategic planning and goal setting, project and program oversight, enterprise risk management and performance planning and oversight. IPPM Facilitates:

31

Office of Inspector General Annual Performance Plan 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Report FY 2010 Performance Report FY 2010 Annual Performance Plan FY 2011 Office of Inspector General DOE/IG-APP012 Annual Performance Report FY 2010 Annual Performance Plan FY 2011 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL II DEPARTMENT OF ENERGY, OFFicE OF iNsPEcTOR GENERAl THIS PAGE INTENTIONALLY LEFT BLANK FY 2010 ANNUAl PERFORMANcE REPORT III Message from the Inspector General I am pleased to submit the Office of Inspector General's combined Fiscal Year 2010 Annual Performance Report and Fiscal Year 2011 Annual Performance Plan. Over the past year, much of our work has centered on oversight of the Department of Energy's efforts under the American Recovery and Investment Act of 2009 (Recovery Act). Under the Recovery Act, the Department of Energy received just

32

Building Technologies Office: Home Performance with ENERGY STAR®  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance with ENERGY STAR® Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills. Contractors that participate in HPwES are qualified by local sponsors such as utilities, state energy offices, and other organizations to ensure that they can offer high-quality, comprehensive energy assessments (also known as "energy audits") using sophisticated equipment to diagnose a home's energy, health, and safety issues.

33

Highlighting High Performance: National Renewable Energy Laboratory's Thermal Test Facility, Golden, Colorado. Office of Building Technology State and Community Programs (BTS) Brochure  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory's Thermal Test Facility in Golden, Colorado, was designed using a whole-building approach--looking at the way the building's systems worked together most efficiently. Researchers monitor the performance of the 11,000-square-foot building, which boasts an energy cost savings of 63% for heating, cooling, and lighting. The basic plan of the building can be adapted to many needs, including retail and warehouse space. The Thermal Test Facility contains office and laboratory space; research focuses on the development of energy-efficiency and renewable energy technologies that are cost-effective and environmentally friendly.

Burgert, S.

2002-10-21T23:59:59.000Z

34

High Performance Networks for High Impact Science  

Science Conference Proceedings (OSTI)

This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

Scott, Mary A.; Bair, Raymond A.

2003-02-13T23:59:59.000Z

35

EM Corporate Performance Measures- Site Office Level  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Environmental Management assigns specific measures to each site that is tailored to the unique nature and scope of each areas contamination and cleanup work.

36

High Performance Computing  

Science Conference Proceedings (OSTI)

High Performance Computing. Summary: High Performance Computing (HPC) enables work on challenging problems that ...

2012-03-05T23:59:59.000Z

37

Office of Inspector General Annual Performance Plan 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Inspector General Office of Inspector General Gregory H. Friedman Inspector General This report is also available on the Department of Energy/Office of Inspector General website at http://www.ig.energy.gov ANNUAL PERFORMANCE REPORT FY 2009 ANNUAL PERFORMANCE PLAN FY 2010 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL THIS PAGE INTENTIONALLY LEFT BLANK Message from the Inspector General I am pleased to present the Office of Inspector GeneralÕs combined Fiscal Year 2009 Annual Performance Report and Fiscal Year 2010 Annual Performance Plan. On February 17, 2009, the American Recovery and Investment Act of 2009 (Recovery Act) was enacted. Under the Recovery Act, the Department of Energy received just under $40 billion for various energy, environmental and science programs and initiatives. The

38

High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Science, Computing, Applied Math High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables...

39

Building Technologies Office: Diagnostic Measurement and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnostic Measurement and Performance Feedback for Residential Space Conditioning Equipment Expert Meeting Building America hosted the "Diagnostic Measurement and Performance...

40

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: High Efficiency, Low Emission Supermarket  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency, Low High Efficiency, Low Emission Supermarket Refrigeration Research Project to someone by E-mail Share Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Facebook Tweet about Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Twitter Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Google Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Delicious Rank Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Digg Find More places to share Building Technologies Office: High

42

Building Technologies Office: Global Superior Energy Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

43

EERE: Sustainability Performance Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hard hats talking among multiple rows of photovoltaic arrays. News DOE Releases 2011 Strategic Sustainability Performance Plan October 31, 2011 DOE Releases Strategic...

44

Building Technologies Office: System Performance Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvements, were presented in the following sessions: Air Sealing Ventilation (Day 1) Space Conditioning Distribution Foundation Insulation High-R Enclosures Ventilation (Day...

45

High Performance Rooftop Units  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentationname High Performance RTUs Life Cycle Cost Comparison Calculator * Web-based tool for comparing costs of standard and high performance RTUs. * Weather data for 237...

46

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

47

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

48

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

49

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

50

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

51

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

52

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

53

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

54

Building Technologies Office: Shape-Stable and Highly Conductive  

NLE Websites -- All DOE Office Websites (Extended Search)

Shape-Stable and Highly Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project to someone by E-mail Share Building Technologies Office: Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project on Facebook Tweet about Building Technologies Office: Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project on Twitter Bookmark Building Technologies Office: Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project on Google Bookmark Building Technologies Office: Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project on Delicious Rank Building Technologies Office: Shape-Stable and Highly Conductive Nano-Phase-Change Materials Research Project on Digg Find More places to share Building Technologies Office: Shape-Stable

55

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

56

High Performance Computing in  

E-Print Network (OSTI)

High Performance Computing in Bioinformatics Thomas Ludwig (t.ludwig@computer.org) Ruprecht PART I: High Performance Computing Thomas Ludwig PART II: HPC Computing in Bioinformatics Alexandros #12;© Thomas Ludwig, Alexandros Stamatakis, GCB'04 3 PART I High Performance Computing Introduction

Stamatakis, Alexandros

57

GAO United States General Accounting Office Performance and Accountability Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO GAO United States General Accounting Office Performance and Accountability Series January 2001 Major Management Challenges and Program Risks Department of Energy GAO-01-246 Page 1 GAO-01-246 DOE Challenges Contents Letter 3 Overview 6 Major Management Challenges and Program Risks: Department of Energy 13 Related GAO Products 48 Performance and Accountability Series 52 Page 2 GAO-01-246 DOE Challenges Comptroller General of the United States Page 3 GAO-01-246 DOE Challenges United States General Accounting Office Washington, D.C. 20548 L e t t e r January 2001 The President of the Senate The Speaker of the House of Representatives This report addresses the major performance and accountability challenges facing the Department of Energy (DOE) as it seeks to maintain the nation's

58

.NET High Performance Computing.  

E-Print Network (OSTI)

?? Graphics Processing Units (GPUs) have been extensively applied in the High Performance Computing (HPC) community. HPC applications require additional special programming environments to improve (more)

Ou, Hsuan-Hsiu

2012-01-01T23:59:59.000Z

59

High Performance Tooling Materials  

Science Conference Proceedings (OSTI)

High performance tools are necessary for the successful manufacturing of every consumer product as well as oil drilling and mining operations. Increasing...

60

Office Inspector General DOE Annual Performance Report FY 2008, Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspector General DOE Annual Performance Report FY 2008, Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 During Fiscal Year (FY) 2008, we reviewed a variety of critical areas relevant to the Department's mission priorities. One of our goals, for example, was to examine possible programmatic improvements in Department operations relating to cyber security and contract management. Overall, our efforts resulted in the issuance of over 70 audit and inspection reports containing recommendations for enhancing Departmental operations, with likely savings of over $7 million. Further as a result of our investigative efforts, we obtained 20 criminal convictions, recovered $22.8 million in

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High performance systems  

SciTech Connect

This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

Vigil, M.B. [comp.

1995-03-01T23:59:59.000Z

62

This work was supported by the Director, Office of Science, Office of High Energ  

Office of Scientific and Technical Information (OSTI)

* This work was supported by the Director, Office of Science, Office of High Energy * This work was supported by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC03-76SF0098. LBNL - 46036 Medical Applications of Nuclear Physics and Heavy-Ion Beams* Jose R. Alonso Ion-Beam Technology Program Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 August 2000 Invited Paper presented at NN2000 The 7 th International Conference on Nucleus-Nucleus Collisions Palais de la Musique et des Congrès Strasbourg, France July 3-7, 2000 - 1 - Medical Applications of Nuclear Physics and Heavy-Ion Beams * Jose R. Alonso Lawrence Berkeley National Laboratory Berkeley, California 94720 Abstract Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly

63

High Performance Sustainable Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

become a High Performance Sustainable Building in 2013. On the former County landfill, a photovoltaic array field uses solar energy to provide power for Los Alamos County and the...

64

High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Computing Managing world-class supercomputing centers Read caption + The Powerwall is used by LANL scientists to view objects and processes in 3D. 13:01 Gary...

65

High Performance Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make...

66

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

Testing For the first four systems investigated (brass-SiO ' brass-AI 0 , Z Z 3 Al- Si0 , AI-AI ), families ofP substrate II Z3 R&T vs A; Brass-SiO II Z ; G substrate II

King, William J.

2011-01-01T23:59:59.000Z

67

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

was organized to conduct reflectivity investigations in thenecessary to conduct a detailed investigation of thewas to conduct a broadly based systematic investigation to

King, William J.

2011-01-01T23:59:59.000Z

68

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

has the most critical energy problem in the sense that it ispresent a particular problem in energy conservation sinceequal or exceed energy consumption, Obviously the problem of

King, William J.

2011-01-01T23:59:59.000Z

69

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

70

High Performance Windows Volume Purchase: About the High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

71

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Sustainable High Performance Sustainable Building Design Review Module March 2010 CD-0 O High 0 This Re Les OFFICE OF h Perform CD-1 eview Module ssons learned f F ENVIRON Standard R mance Su Revi Critical D CD-2 M has been pilot from the pilot h NMENTAL Review Plan ustainabl iew Module Decision (CD C March 2010 ted at the SRS have been incor L MANAGE n (SRP) le Buildin e D) Applicabili D-3 SWPF and MO rporated in Rev EMENT ng Design ity CD-4 OX FFF projec view Module n Post Ope cts. eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The

72

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

73

DOE Sustainability Performance Office FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OFFICE FY14 BUDGET AT-A-GLANCE DOE SUSTAINABILITY PERFORMANCE OFFICE FY 14 BUDGET AT-A-GLANCE The Sustainability Performance Office (SPO) supports DOE's internal activities to meet goals related to sustainability, including energy; water; land and paper conservation and use; greenhouse gas emission reductions; and other objectives related to sustainability such as the development of DOE's annual Strategic Sustainability Performance Plan (SSPP). The SPO provides support and assistance to the DOE Senior Sustainability Officer, Under Secretaries, Power Marketing Administrations, and National Laboratories and sites, in support of all DOE sustainability efforts. The SPO ensures the integration and coordination of sustainability activities across DOE and, with respect to

74

U.S. Department of Energy Office of Inspector General fiscal year 1999 annual performance plan  

SciTech Connect

This plan is published pursuant to requirements of the Government Performance and Results Act of 1993. The plan outlines the goals, objectives, and strategies that the Office of Inspector General intends to implement and execute in FY 1999. The plan also includes the details of this office`s efforts to continually improve customer service.

NONE

1998-10-01T23:59:59.000Z

75

High Performance Computing School COMSC  

E-Print Network (OSTI)

High Performance Computing School COMSC This module aims to provide the students with fundamental knowledge and understanding of techniques associated with High Performance Computing and its practical' skills in analysing and evaluating High Performance Computing and will be structured around

Martin, Ralph R.

76

High Performance Buildings Database  

DOE Data Explorer (OSTI)

The High Performance Buildings Database is a shared resource for the building industry. The Database, developed by the U.S. Department of Energy and the National Renewable Energy Laboratory (NREL), is a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The Database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses.

The Database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site. Early partners using the database include:

  • The Federal Energy Management Program
  • The U.S. Green Building Council
  • The American Institute of Architects' Committee on the Environment
  • The Massachusetts Technology Collaborative
  • Efficiency Vermont
    • Copied (then edited) from http://eere.buildinggreen.com/partnering.cfm

77

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

E-Print Network (OSTI)

of Highly Controlled Lighting for Offices and Commercialefficient, customized lighting for open-office cubicles.s ambient and task lighting components, 2) occupancy

Rubinstein, Francis

2010-01-01T23:59:59.000Z

78

Fuel Cell Technologies Office: DOE Hydrogen Delivery High-Pressure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

79

High Performance Computing: Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Computing: Modeling & Simulation High Performance Computing: Modeling & Simulation Express Licensing Adaptive Real-Time Methodology for Optimizing Energy-Efficient...

80

High Performance Network Monitoring  

SciTech Connect

Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

Martinez, Jesse E [Los Alamos National Laboratory

2012-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

82

The Advantage of Highly Controlled Lighting for Offices and Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

The Advantage of Highly Controlled Lighting for Offices and Commercial The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings Title The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings Publication Type Conference Paper LBNL Report Number LBNL-2514E Year of Publication 2008 Authors Rubinstein, Francis M., Dmitriy Bolotov, Mark S. Levi, Kevin Powell, and P. Schwartz Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Volume 78 Call Number LBNL-2514E Abstract A dual-cathode arc plasma source was combined with a computer-controlled bias amplifier such as to synchronize substrate bias with the pulsed production of plasma. In this way, bias can be applied in a material-selective way. The principle has been applied to the synthesis metal-doped diamond-like carbon films, where the bias was applied and adjusted when the carbon plasma was condensing, and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by too-energetic metal ions can be avoided while the sp3/sp2 ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias. The principle can be extended to multiple-material plasma sources and complex materials.

83

Introduction to High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to High Performance Computing Introduction to High Performance Computing June 10, 2013 Photo on 7 30 12 at 7.10 AM Downloads Download File Gerber-HPC-2.pdf...

84

High Performance Computing Data Center Metering Protocol  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance High Performance Computing Data Center Metering Protocol Prepared for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Prepared by: Thomas Wenning Michael MacDonald Oak Ridge National Laboratory September 2010 ii Introduction Data centers in general are continually using more compact and energy intensive central processing units, but the total number and size of data centers continues to increase to meet progressive computing requirements. In addition, efforts are underway to consolidate smaller data centers across the country. This consolidation is resulting in a growth of high-performance computing facilities (i.e. - supercomputers) which consume large amounts of energy to support the numerically intensive

85

Fuel Cell Technologies Office: 2006 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes, Andrew Herring, Colorado School of Mines (PDF 213 KB) Design and Development of High-Performance...

86

High Performance Computing contributions to  

E-Print Network (OSTI)

High Performance Computing contributions to DoD Mission Success 2002 #12;Approved for public/C nanotube in a field emitter configuration #12;HIGH PERFORMANCE COMPUTING contributions tocontributions ­ SECTION 1 INTRODUCTION 1 Introduction 3 Overview of the High Performance Computing Modernization Program 3

87

Creating high performance enterprises  

E-Print Network (OSTI)

How do enterprises successfully conceive, design, deliver, and operate large-scale, engineered systems? These large-scale projects often involve high complexity, significant technical challenges, a large number of diverse ...

Stanke, Alexis K. (Alexis Kristen), 1977-

2006-01-01T23:59:59.000Z

88

Performance of the United Kingdom Meteorological Office Global Model in Predicting the Movement of Tropical Cyclones  

Science Conference Proceedings (OSTI)

A detailed evaluation of the performance of the United Kingdom Meteorological Office Global Model (UKMO) in predicting the movement of 15 tropical cyclones (TCs) that occurred over the western North Pacific during 1987 is presented. The ...

Johnny C. L. Chan; Wai-Kau Kay

1993-09-01T23:59:59.000Z

89

High Performance and Sustainable Buildings Guidance | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

90

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

91

Report on Inspection of the Performance Based Incentive Program at the Richland Operations Office, IG-0401  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(8-89) EFG (07-90) United States Government Department of Energy MEMORANDUM DATE: March 10, 1997 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Report on "Inspection of the Performance Based Incentive Program at the Richland Operations Office" TO: The Acting Secretary BACKGROUND: The subject final report is provided for your information. While conducting other inspection work at the Richland Operations Office (Richland), the Office of Inspector General identified the Fiscal Year 1995 Richland Performance Based Incentive (PBI) Program as an area of concern. Specifically, we were unable to identify any

92

Office of HC Strategy Budget and Performance Metrics (HC-50) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Budget and Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital Strategy, Budget, and Performance Metrics provides strategic direction and advice to its stakeholders through the integration of budget analysis, workforce projections, and performance metrics in support of the goals and missions of the Department of Energy. Functions: Promotes business partnerships with Departmental elements to define and design HCM implementation strategies in alignment with Departmental mission, goals, and objectives. Provides strategic direction and advice through analysis of budget, workforce projections, and performance to respond to congressional mandates, administration goals, Departmental priorities and mission needs.

93

Thrusts in High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to...

94

Office of Inspector General Annual Performance Plan 2012 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

95

Evaluation of the Energy Performance of Six High-Performance Buildings: Preprint  

DOE Green Energy (OSTI)

The energy performance of six high-performance buildings around the United States was monitored and evaluated by the NREL. The six buildings include the Visitor Center at Zion National Park, the NREL Thermal Test Facility, the Chesapeake Bay Foundation's Merrill Center, the BigHorn Home Improvement Center, the Cambria Office Building, and the Oberlin College Lewis Center.

Torcellini, P. A.; Pless, S.; Crawley, D. B.

2005-04-01T23:59:59.000Z

96

High Performance Computing and Visualization Group ...  

Science Conference Proceedings (OSTI)

High Performance Computing and Visualization Group. Welcome. The High Performance Computing and Visualization Group. ...

2011-09-27T23:59:59.000Z

97

U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL ANNUAL PERFORMANCE REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANNUAL PERFORMANCE REPORT ANNUAL PERFORMANCE REPORT FY 2013 ANNUAL PERFORMANCE PLAN FYS 2014 & 2015 U.S. Department of Energy, Office of Inspector General Table of Contents Page Message from the Inspector General ii At a Glance: Performance Results for FY 2013 iii Overview 1 Our Organization 2 External Factors Challenging Our Organization 4 Our Management Challenges 5 Measuring Our FY 2013 Performance 6 Our FY 2014 and FY 2015 Performance Plan 15 Appendix A 18 Audit Work Plan for FY 2014 18 Inspection Work Plan for FY 2014 22 Appendix B 23 Investigative Work Plan for FY 2014 23 Annual Performance Report FY 2013 Annual Performance Plan FYs 2014 & 2015 Page i U.S. Department of Energy, Office of Inspector General Message from the Inspector General

98

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

99

Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 14, 8: November 14, 2005 Effect of High Gasoline Prices on Older Adults to someone by E-mail Share Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Facebook Tweet about Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Twitter Bookmark Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Google Bookmark Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Delicious Rank Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Digg Find More places to share Vehicle Technologies Office: Fact #398:

100

Computational biology and high performance computing  

E-Print Network (OSTI)

Biology and High Performance Computing Manfred Zorn, TeresaBiology and High Performance Computing Presenters: Manfred99-Portland High performance computing has become one of the

Shoichet, Brian

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INL High Performance Building Strategy  

SciTech Connect

High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nations premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, Federal Leadership in Environmental, Energy, and Economic Performance [2009], EO 13423, Strengthening Federal Environmental, Energy, and Transportation Management [2007], and DOE Order 430.2B, Departmental Energy, Renewable Energy, and Transportation Management [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design (LEED) Green Building Rating System (LEED 2009). The document employs a two-level approach for high performance building at INL. The first level identifies the requirements of the Guiding Principles for Sustainable New Construction and Major Renovations, and the second level recommends which credits should be met when LEED Gold certification is required.

Jennifer D. Morton

2010-02-01T23:59:59.000Z

102

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

103

High Performance Photovoltaic Project Overview  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

Symko-Davies, M.; McConnell, R.

2005-01-01T23:59:59.000Z

104

Report on inspection of the performance based incentive program at the Richland Operations Office  

Science Conference Proceedings (OSTI)

The Fiscal Year (FY) 1995 Performance Based Incentive (PBI) Program at the Department of Energy`s (DOE) Richland Operations Office (Richland) was initiated by Richland as one part of the broader DOE Contract Reform Initiative being implemented at the Hanford Site in FY 1995. This program was identified as an area of concern by the Office of Inspections as a result of previous inspection work. Specifically, during a limited review of the construction of an Effluent Treatment Facility at the Hanford Site, we were unable to identify any written policies describing PBI program controls or implementation procedures. We were told that Richland Operations Office Program Management personnel were not directly involved in the selection of the Effluent Treatment Facility project for the PBI Program, or in the determination that this particular PBI would be established with a potential fee of $1 million.

NONE

1997-03-10T23:59:59.000Z

105

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

106

High-Performance Building Requirements for State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

107

High School Principals' Perceptions of Central Office Administrator Support For Planning, Coordinating, and Evaluating Teaching and the Curriculum  

E-Print Network (OSTI)

This dissertation was designed to gain insight in the area of central office instructional leadership support from the perception of the high school principal. With increasing standards and high student performance expectations coupled with strict federal and state accountability measures, it is impossible for the high school principal to bear the sole responsibility of meeting the needs of their students, staff, and community without further support. Central office is a critical factor in school improvement. The primary aim of this study was to provide insight and a deep understanding how successful high school principals feel supported as the instructional leader specifically in the area of planning, coordinating, and evaluating teaching and the curriculum. The research was guided by a single overarching question: What are high school principal perceptions of support given to them by district central office administrators in the areas of planning, coordinating, and evaluating teaching and the curriculum? Qualitative research was selected for this study to allow for deep and thorough investigation of a small group of high school principals' beliefs regarding the central office administrator instructional leadership support. Interviews were conducted with six successful high school principals from three large school districts. The findings that emerged from the interviews were categorized into eight themes including: the school district focus; instructional leader toolbox; effective use of data; deployment of curriculum and instruction; quality professional development; collaboration; connections; and communication. A synthesis of participants' responses and prior research lead to three overall conclusions: setting high learning expectations; focusing on curriculum and instruction; and establishing district-campus partnerships. Campus principals need assistance in meeting the high standards and challenges they face today. District central office administrators can assist principals become the instructional leader all schools need. This study begins to fill the gap in the literature on how high school principals can be supported by district central office administrators in the areas of planning, coordinating, and evaluating of teaching and the curriculum.

Lawson, Kimberly Kelleher

2011-08-01T23:59:59.000Z

108

Memorandum of American High-Performance Buildings Coalition DOE Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum of American High-Performance Buildings Coalition DOE Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) that took place on Monday, August 19, 2013. Memorandum of AHPBC DOE Meeting_8_19_2013_FINAL_SIGNED More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum

109

High Performance Windows Volume Purchase: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events to someone by E-mail Share High Performance Windows Volume Purchase: Events on Facebook Tweet about High Performance Windows Volume Purchase: Events on Twitter Bookmark High...

110

High Performance Windows Volume Purchase: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by E-mail Share High Performance Windows Volume Purchase: News on Facebook Tweet about High Performance Windows Volume Purchase: News on Twitter Bookmark High...

111

Measured energy performance of a US-China demonstrationenergy-efficient office building  

SciTech Connect

In July 1998, the U.S. Department of Energy (USDOE) and China's Ministry of Science of Technology (MOST) signed a Statement of Work (SOW) to collaborate on the design and construction of an energy-efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m{sup 2} (140,000 ft{sup 2}) nine-story office building would use U.S. energy-efficient materials, space-conditioning systems, controls, and design principles that were judged to be widely replicable throughout China. The SOW stated that China would contribute the land and provide for the costs of the base building, while the U.S. would be responsible for the additional (or marginal) costs associated with the package of energy efficiency and renewable energy improvements to the building. The project was finished and the building occupied in 2004. Using DOE-2 to analyze the energy performance of the as-built building, the building obtained 44 out of 69 possible points according to the Leadership in Energy and Environmental Design (LEED) rating, including the full maximum of 10 points in the energy performance section. The building achieved a LEED Gold rating, the first such LEED-rated office building in China, and is 60% more efficient than ASHRAE 90.1-1999. The utility data from the first year's operation match well the analysis results, providing that adjustments are made for unexpected changes in occupancy and operations. Compared with similarly equipped office buildings in Beijing, this demonstration building uses 60% less energy per floor area. However, compared to conventional office buildings with less equipment and window air-conditioners, the building uses slightly more energy per floor area.

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-08-28T23:59:59.000Z

112

Measured energy performance of a US-China demonstrationenergy-efficient office building  

SciTech Connect

In July 1998, the U.S. Department of Energy (USDOE) and China's Ministry of Science of Technology (MOST) signed a Statement of Work (SOW) to collaborate on the design and construction of an energy-efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m{sup 2} (140,000 ft{sup 2}) nine-story office building would use U.S. energy-efficient materials, space-conditioning systems, controls, and design principles that were judged to be widely replicable throughout China. The SOW stated that China would contribute the land and provide for the costs of the base building, while the U.S. would be responsible for the additional (or marginal) costs associated with the package of energy efficiency and renewable energy improvements to the building. The project was finished and the building occupied in 2004. Using DOE-2 to analyze the energy performance of the as-built building, the building obtained 44 out of 69 possible points according to the Leadership in Energy and Environmental Design (LEED) rating, including the full maximum of 10 points in the energy performance section. The building achieved a LEED Gold rating, the first such LEED-rated office building in China, and is 60% more efficient than ASHRAE 90.1-1999. The utility data from the first year's operation match well the analysis results, providing that adjustments are made for unexpected changes in occupancy and operations. Compared with similarly equipped office buildings in Beijing, this demonstration building uses 60% less energy per floor area. However, compared to conventional office buildings with less equipment and window air-conditioners, the building uses slightly more energy per floor area.

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-08-28T23:59:59.000Z

113

A method of optimizing solar control and daylighting performance in commercial office buildings  

SciTech Connect

We present a method for analyzing the annual cooling and lighting electricity use and peak demand associated with varying fenestration and lighting strategies in commercial office buildings. A prototypical office building module consisting of four perimeter zones and a central core zone was defined and a series of DOE-2 building energy simulations were completed to create a data base for varying fenestration and lighting system parameters. Using regression analysis procedures, we characterize energy and peak performance patterns as a function of solar aperture, defined as the product of shading coefficient and window-to-wall ratio, and effective daylighting aperture, defined as the product of visible transmittance and window-to-wall ratio. Optimum performance consists of defining the solar and effective daylighting aperture values that minimize annual energy consumption and peak demand, a process easily facilitated by the methods described herein.

Sullivan, R.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

114

High Performance Computing Meets Experimental Mathematics  

E-Print Network (OSTI)

High Performance Computing Meets Experimental Mathematics David H. Bailey Lawrence Berkeley large, high-performance computer systems. What's more, in these new appli- cations the computer computation, implemented on high performance computer (HPC) systems. We present these results, in part

Bailey, David H.

115

Army High Performance Computing Research Center  

E-Print Network (OSTI)

Army High Performance Computing Research Center Applying advanced computational science research challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing Research

Prinz, Friedrich B.

116

Bringing Energy Efficiency to High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Energy Efficiency to High Performance Computing Oak Ridge National Laboratory's Jaguar Supercomputer William Tschudi September 2013 The ability of high performance...

117

Collaboration to advance high-performance computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration to advance high-performance computing Collaboration to advance high-performance computing LANL and EMC will enhance, design, build, test, and deploy new cutting-edge...

118

High performance computing Igal G. Rasin  

E-Print Network (OSTI)

High performance computing Igal G. Rasin Department of Chemical Engineering, Technion Israel with different parallelization techniques and tools used in high performance computing (HPC). The tutorial

Adler, Joan

119

High Performance Windows Volume Purchase: For Builders  

NLE Websites -- All DOE Office Websites (Extended Search)

For Builders to someone by E-mail Share High Performance Windows Volume Purchase: For Builders on Facebook Tweet about High Performance Windows Volume Purchase: For Builders on...

120

High Performance Windows Volume Purchase: For Manufacturers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Manufacturers to someone by E-mail Share High Performance Windows Volume Purchase: For Manufacturers on Facebook Tweet about High Performance Windows Volume Purchase: For...

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance Evaluation of Energy-Efficient Lighting and Office Technologies in New York City  

Science Conference Proceedings (OSTI)

Lighting and office equipment are significant electricity end uses in commercial office buildings. Recent technology developments offer significant improvements in lighting quality along with potentially substantial reductions in lighting and office equipment electricity use. This project demonstrated successful application of energy-efficient lighting and office technologies in an office building in New York City.

1997-09-15T23:59:59.000Z

122

Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis  

Science Conference Proceedings (OSTI)

Natural night ventilation is an interesting passive cooling method in moderate climates. Driven by wind and stack generated pressures, it cools down the exposed building structure at night, in which the heat of the previous day is accumulated. The performance of natural night ventilation highly depends on the external weather conditions and especially on the outdoor temperature. An increase of this outdoor temperature is noticed over the last century and the IPCC predicts an additional rise to the end of this century. A methodology is needed to evaluate the reliable operation of the indoor climate of buildings in case of warmer and uncertain summer conditions. The uncertainty on the climate and on other design data can be very important in the decision process of a building project. The aim of this research is to develop a methodology to predict the performance of natural night ventilation using building energy simulation taking into account the uncertainties in the input. The performance evaluation of natural night ventilation is based on uncertainty and sensitivity analysis. The results of the uncertainty analysis showed that thermal comfort in a single office cooled with single-sided night ventilation had the largest uncertainty. The uncertainties on thermal comfort in case of passive stack and cross ventilation were substantially smaller. However, since wind, as the main driving force for cross ventilation, is highly variable, the cross ventilation strategy required larger louvre areas than the stack ventilation strategy to achieve a similar performance. The differences in uncertainty between the orientations were small. Sensitivity analysis was used to determine the most dominant set of input parameters causing the uncertainty on thermal comfort. The internal heat gains, solar heat gain coefficient of the sunblinds, internal convective heat transfer coefficient, thermophysical properties related to thermal mass, set-point temperatures controlling the natural night ventilation, the discharge coefficient C{sub d} of the night ventilation opening and the wind pressure coefficients C{sub p} were identified to have the largest impact on the uncertainty of thermal comfort. The impact of the warming climate on the uncertainty of thermal comfort was determined. The uncertainty on thermal comfort appeared to increase significantly when a weather data set with recurrence time of 10 years (warm weather) was applied in the transient simulations in stead of a standard weather data set. Natural night ventilation, designed for normal weather conditions, was clearly not able to ensure a high probability of good thermal comfort in warm weather. To ensure a high probability of good thermal comfort and to reduce the performance uncertainty in a warming climate, natural night ventilation has to be combined with additional measures. Different measures were analysed, based on the results of the sensitivity analysis. All the measures were shown to significantly decrease the uncertainty of thermal comfort in warm weather. The study showed the importance to carry out simulations with a warm weather data set together with the analysis under typical conditions. This approach allows to gain a better understanding of the performance of a natural night ventilation design, and to optimize the design to a robust solution. (author)

Breesch, H. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Sustainable Building Research Group, Department of Construction, Catholic University College Ghent, Gebroeders Desmetstraat 1, B-9000 Ghent (Belgium); Janssens, A. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

2010-08-15T23:59:59.000Z

123

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsors Sponsors High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Sponsors California Energy Commission Public Interest Energy Research (PIER) Buildings End-Use Energy Efficiency Program Michael Seaman, California Energy Commission Contract Manager http://www.energy.ca.gov/research/index.html U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology, State and Community Programs Office of Building Research and Standards Marc LaFrance, Program Manager http://www.eere.energy.gov/buildings/ In-kind Cost-share Advanced Glazings Ltd. Hunter Douglas Köster Lichplanung

124

Demonstration and Performance Monitoring of Foundation Heat Exchangers in Low Load, High Performance Research Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Low Load, High Performance Research Homes Piljae Im, Ph.D. Oak Ridge National Laboratory Building America Technical Update Meeting April 29 - 30, Denver, Colorado ACKNOWLEDGEMENT * This project was sponsored by the Building Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and the Tennessee Valley Authority (TVA). Managed by UT-Battelle for the U.S. Department of Energy 2 PRESENTATION OVERVIEW * INTRODUCTION * FIELD TEST OF THE FOUNDATION HEAT EXCHANGER (FHX) CONCEPT * FOUNDATION HEAT EXCHANGER PERFORMANCE MEASUREMENTS * ADDITIONAL FINDINGS AND COST COMPARISON * SUMMARY Managed by UT-Battelle for the U.S. Department of Energy

125

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office  

E-Print Network (OSTI)

If you could change the lighting in your office, what wouldapply. Highly-Controlled Lighting 50 of 50 April 19, 2010Europa 2009, 11th European Lighting Conference, Istanbul,

Rubinstein, Francis

2010-01-01T23:59:59.000Z

126

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

127

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

128

Guide for High-Performance Buildings Available  

SciTech Connect

This article is an overview of the new "Sustainable, High-Performance Operations and Maintenance" guidelines.

Bartlett, Rosemarie

2012-10-01T23:59:59.000Z

129

Identification of Market Requirements of Smart Buildings Technologies for High Rise Office Buildings  

E-Print Network (OSTI)

This paper reports the findings on the identification of market requirements of smart buildings technologies for high rise office buildings in Saudi Arabia including: levels of importance of smart building technologies for office buildings, current practices of utilizing hi-tech smart building technologies in office buildings, required additional features of smart building technologies for office buildings, challenges for integrating smart building technologies for office buildings, major benefits of hi-tech smart buildings technologies for office buildings, and priorities of smart building technologies based on current usage. The paper also reports on key parameters of the comparison of smart office building technologies between Saudi Arabia and developed countries which are based on the survey results for the former and literature review for the latter. This comparison provides in a nutshell a conclusion of the complete survey analysis conducted in this research and at the same time provides an indication on the utilization level of smart office buildings in Saudi Arabia compared to the current practices in developed countries.

Reffat, R. M.

2010-01-01T23:59:59.000Z

130

High-Level Waste Corporate Board Performance Assessment Subcommittee  

NLE Websites -- All DOE Office Websites (Extended Search)

Level Waste Corporate Board Performance Assessment Community of Practice John E. Marra, Ph.D. Associate Laboratory Director 21 May 2009 Denver, CO Office of Waste Processing...

131

HIGH PERFORMANCE COMPUTING TODAY Jack Dongarra  

E-Print Network (OSTI)

1 HIGH PERFORMANCE COMPUTING TODAY Jack Dongarra Computer Science Department, University detailed and well-founded analysis of the state of high performance computing. This paper summarizes some of systems available for performing grid based computing. Keywords High performance computing, Parallel

Dongarra, Jack

132

High School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

High School High School National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 High School Teams 2013 High School National Teams The high school competition began in 1991 as the National Science Bowl (NSB) as a highly competitive science education and academic event among teams of high school students who compete in a fast-paced verbal forum to solve technical problems and answer questions in all branches of science

133

High Performance Windows Volume Purchase: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

134

IDD High Performance Resilience Program  

Science Conference Proceedings (OSTI)

... construction issues related to: Blast, earthquake, high wind, and flood resistance, and cyber ... 3D propagation ? FLEX finite element software is ...

135

Tutorial: High Performance Computing Igal G. Rasin  

E-Print Network (OSTI)

Tutorial: High Performance Computing Igal G. Rasin Department of Chemical Engineering Israel Computing 27 Nisan 5769 (21.04.2009) 1 / 18 #12;Motivation What is High Performance Computing? What for serial Computing? Igal G. Rasin (Technion) Tutorial: High Performance Computing 27 Nisan 5769 (21

Adler, Joan

136

Providing Access to High Performance Computing Technologies  

E-Print Network (OSTI)

Providing Access to High Performance Computing Technologies Jack Dongarra 1 , Shirley Browne 2 to high performance computing technologies. One effort, the National HPCC Software Exchange, is providing scientists involved with High Performance Computing and Communications (HPCC) [1] 3 . The NHSE facilitates

Dongarra, Jack

137

College of Engineering High Performance Computing Cluster  

E-Print Network (OSTI)

College of Engineering High Performance Computing Cluster Policy and Procedures COE-HPC-01 and registered as requiring high performance computing; the course identification/registrations process the College High Performance Computing system will need register for system access by visiting http

Demirel, Melik C.

138

Fuel Cell Technologies Office: 2003 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

in New Electrolytes, Bryan Pivovar, LANL (PDF 731 KB) Hetero-Polyacids, Andrew Herring, Colorado School of Mines (PDF 5 MB) New Polymeric Proton Conductors for High...

139

High Performance I/O  

Science Conference Proceedings (OSTI)

Parallelisation, serial optimisation, compiler tuning, and many more techniques are used to optimise and improve the performance scaling of parallel programs. One area which is frequently not optimised is file I/O. This is because it is often not considered ... Keywords: I/O, HPC, optimisation, parallelisation, Lustre, GPFS, MPI-I/O, HDF5, NetCDF

Adrian Jackson; Fiona Reid; Joachim Hein; Alejandro Soba; Xavier Saez

2011-02-01T23:59:59.000Z

140

An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings  

E-Print Network (OSTI)

This research focuses on an advanced optical light pipe daylighting system as a means to deliver natural light at the back of deep-plan office buildings (15ft to 30ft), using optimized geometry and high reflective materials. The light pipe configurations follow a previous study at the Lawrence Berkeley National Laboratory (Beltr??n et al., 1997). The current system is designed for College Station, TX (lat: 30?? 36??N), with predominantly mostly sunny sky conditions. This work consists of the monitoring of two scale models simulating a portion of a multi-story office building with open-plan configuration, with interior dimensions 30ft x 20ft x 10ft, built at 1:4 of its real scale, one of the models being the reference case and the other the test case where the light pipe system is placed. The main objectives of this thesis are (a) to examine this daylighting system comparative to the reference case, taking measurements for longer periods than the study at LBNL, as well as to collect detailed data of its performance under different weather conditions and with different materials; (b) to evaluate the visual comfort and possible glare problems of the light pipe system through photographic evaluation and the conduction of a survey that provides people??s opinions and suggestions about the daylighting system. The light pipe system demonstrated a higher performance than the reference case in terms of appropriate levels of light and people??s preferences. The illuminance at the workplane level showed to be adequate with any of the two different diffusing materials used to spread the light into the room. The light pipe without a diffuser was the other condition observed to further understand the bounces of the sunbeam inside the reflective chamber and its consequences on the lighting output. Recommended standards for office spaces with VDT screens together with the analysis of the daylight system, led to preliminary suggestions on how to integrate the light pipe system in an open-plan office configuration. Further study is indicated to reach the complete potential of this advanced optical light pipe that ties illuminance quality with energy savings through the integration of daylight and electric light systems.

Martins Mogo de Nadal, Betina Gisela

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

142

Fuel Cell Technologies Office: High-Throughput/Combinatorial...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D On June 26, 2007 the Hydrogen Storage Program of the U.S. Department of Energy (DOE) held a one-day...

143

High Performance Windows Volume Purchase: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

144

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

145

High-performance commercial building systems  

SciTech Connect

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

146

Operational Awareness Oversight of the Portsmouth/Paducah Project Office Performance of the Contractor Assurance System Program, April 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR PORTS-2012-09-24 HIAR PORTS-2012-09-24 Site: Portsmouth Gaseous Diffusion Plant Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness Oversight of the Portsmouth/Paducah Project Office (PPPO) Performance of the Contractor Assurance System (CAS) Program Dates of Activity : 09/24/12 - 10/04/12 Report Preparer: Joseph P. Drago Activity Description/Purpose: The Office of Health, Safety and Security (HSS) shadowed PPPO's review of specific elements of the Fluor-B&W Portsmouth (FBP) CAS program at the Portsmouth Gaseous Diffusion Plant (PORTS). The review was limited to three requirements of Department of Energy (DOE) Order 226.1B, Implementation of Department of Energy Oversight Policy:

147

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

148

HIGH-PERFORMANCE COATING MATERIALS  

DOE Green Energy (OSTI)

Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

SUGAMA,T.

2007-01-01T23:59:59.000Z

149

Integrating High Performance Computing and Virtual Environments  

E-Print Network (OSTI)

High performance computing has become accepted as a tool that can be used to solve many large scale computational problems. Because of the complexity of the problems associated with high performance computing, visualization of the output of high performance computing applications has always been an important factor in providing a complete problem solving environment for the high performance computing user. As visualization technology advances, it is important to consider what impacts those advances will have on the integration of high performance computing and visualization. Virtual environments are the most recent, and arguably the most powerful, visualization environments in use today. In this paper we analyze the current state of the research of integrating visualization, and in particular virtual environments, with high performance computing. We also present a framework for implementing such an environment and report on the status of its implementation at the Australian National Un...

Brian Corrie; David Sitsky; Paul Mackerras

1997-01-01T23:59:59.000Z

150

AGILA: The Ateneo High Performance Computing System  

E-Print Network (OSTI)

A Beowulf cluster is a low-cost parallel high performance computing system that uses commodity hardware components such as personal computers and standard Ethernet adapters and switches and runs on freely available software such as Linux and LAM-MPI. In this paper the development of the AGILA HPCS, which stands for the Ateneo GigaflopsRange Performance, Linux OS, and Athlon Processors High Performance Computing System, is discussed including its hardware and software configurations and performance evaluation. Keywords High-performance computing, commodity cluster computing, parallel computing, Beowulf-class cluster 1.

Rafael Salda Na; Felix P. Muga Ii; Jerrold J. Garcia; William Emmanuel; S. Yu

2000-01-01T23:59:59.000Z

151

423A HIGH-PERFORMANCE COMPUTING/NUMERICAL The International Journal of High Performance Computing Applications,  

E-Print Network (OSTI)

423A HIGH-PERFORMANCE COMPUTING/NUMERICAL The International Journal of High Performance Computing and barriers in the development of high-performance computing (HPC) algorithms and software. The activity has computing, numerical analy- sis, roadmap, applications and algorithms, software 1 The High-performance

Higham, Nicholas J.

152

High Performance Buildings Database | Open Energy Information  

Open Energy Info (EERE)

High Performance Buildings Database High Performance Buildings Database Jump to: navigation, search The High Performance Buildings Database (HPBD), developed by the United States Department of Energy and the National Renewable Energy Laboratory, is "a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad."[1] Map of HPBD entries Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"-","intro":"","outro":"","searchlabel":"\u2026

153

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

154

Related Links on High-Performance Schools  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into building or renovating high-performance schools.

155

Computational biology and high performance computing  

E-Print Network (OSTI)

Paper in Computational Biology The First Step Beyond theM . Glaeser, Mol. & Cell Biology, UCB and Life SciencesLBNL-44460 Computational Biology and High Performance

Shoichet, Brian

2011-01-01T23:59:59.000Z

156

MPICH | High-Performance Portable MPI  

NLE Websites -- All DOE Office Websites (Extended Search)

MPICH High-Performance Portable MPI Skip to content Home About MPICH Overview News and Events Collaborators Downloads Documentation Guides MPICH Wiki Hydra Usage Developer Docs...

157

Mercury | RPC for High-Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

RPC for High-Performance Computing Skip to content Home About Overview Collaborators Downloads Documentation Getting Started Doxygen Publications Support Mailing Lists Bug Reports...

158

Lawrence Livermore National Laboratory opens High Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

06302011 | NR-11-06-08 Lawrence Livermore National Laboratory opens High Performance Computing Innovation Center for collaboration with industry Donald B Johnston, LLNL,...

159

Method of making a high performance ultracapacitor  

DOE Patents (OSTI)

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

2000-07-26T23:59:59.000Z

160

Related Links on High-Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE))

Below are related links to resources for incorporating energy efficiency and renewable energy into high-performance commercial and residential buildings.

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gas-Filled Panels, High Performance Insulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Filled Panels high performance insulation Windows & Daylighting | Building Technologies | Environmental Energy Technologies Division | Berkeley Lab gfp4b.jpg (5624 bytes)...

162

UCSC Student Health Services Student Health Insurance Office 1156 High Street Phone: (831) 459-2389  

E-Print Network (OSTI)

UCSC Student Health Services Student Health Insurance Office 1156 High Street Phone: (831) 459 your health plan's customer service number for assistance.** 5. Does your health insurance plan cover conditions? Yes / No Emergency room services? Yes / No Diagnostic services including laboratory tests? Yes

163

Performance analysis of dedicated heat-pump water heaters in an office building  

SciTech Connect

An evaluation is made of the performance of two generic dedicated heat pump water heaters (HPWHs) in supplying the domestic hot water (DHW) needs of a medium-sized office building in Colorado. Results are based on preliminary data measurements, and assumptions are made to compensate for a faulty flow meter. A stand-alone heat pump plumbed to a conventional tank obtains a coefficient of performance (COP) of 2.4 but only delivers load water temperatures of about 41/sup 0/C (105/sup 0/F) because of the 15,142 L/day (4000 gal/day) recirculating loop flow. An industrial-grade stand-alone HPWH will replace this unit. An integral heat pump/tank unit is being tested, but results are not available because of compressor starting problems. Recirculating loop losses account for 75% of the energy delivered by the HPWHs. These losses could be reduced by 75% if the recirculating loop were insulated, thus reducing the DHW fuel costs by 50%. The insulation expense could be paid in less than 3 years by savings in DHW fuel costs.

Morrison, L.

1981-05-01T23:59:59.000Z

164

Introduction to High Performance Computing Using GPUs  

NLE Websites -- All DOE Office Websites (Extended Search)

HPC Using GPUs Introduction to High Performance Computing Using GPUs July 11, 2013 NERSC, NVIDIA, and The Portland Group will present a one-day workshop "Introduction to High...

165

High-density Fuel Development for High Performance Research ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High density UMo (7-12wt% Mo) fuel for high performance research ... High Energy X-ray Diffraction Study of Deformation Behavior of Alloy HT9.

166

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

167

Multimedia for The Visualization of High Performance ...  

Science Conference Proceedings (OSTI)

... Office of Science, the SciDAC (Scientific Discovery through Advanced Computing) program brings together computational scientists, applied ...

2012-03-05T23:59:59.000Z

168

High-performance commercial building systems  

E-Print Network (OSTI)

We filed an invention disclosure for MORE with the Office ofaction. We filed an invention disclosure for MORE with the

Selkowitz, Stephen

2003-01-01T23:59:59.000Z

169

Los Alamos Lab: High-Performance Computing: Roadrunner  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Computing, HPC High-Performance Computing, HPC Home HPC-1 HPC-2 HPC-3 HPC-5 Contacts HPC Division Leader Gary Grider (acting) Deputy Division Leader Randal Rheinheimer (acting) Chief of Staf Angelina Trujillo HPC Division Office MS B260 Los Alamos, NM 87545 (505) 667-6164 Header Luna LUNA Joins LANL Supercomputers The Appro Xtreme-X(tm) Supercomputer was selected as part of the second Tri-Lab Linux Capacity Cluster (TLCC2) program to add 6 petaFlop/s to the computer power of the Department of Energy National Nuclear Security Administration (NNSA). The Los Alamos computer is named Luna (moon) in keeping with its predecessor Cielo (sky), honoring New Mexico's Spanish heritage. These supercomputers are in use by the three national laboratories in NNSA's Advanced Simulation and Computing (ASC) program: Lawrence Livermore (LLNL), Los Alamos (LANL) and Sandia (SNL).

170

AGILA: The Ateneo High Performance Computing System  

E-Print Network (OSTI)

A Beowulf cluster is a low-cost parallel high performance computing system that uses commodity hardware components such as personal computers and standard Ethernet adapters and switches and runs on freely available software such as Linux and LAM-MPI. In this paper the development of the AGILA HPCS, which stands for the Ateneo GigaflopsRange Performance, Linux OS, and Athlon Processors High Performance Computing System, is discussed including its hardware and software configurations and performance evaluation. Keywords High-performance computing, commodity cluster computing, parallel computing, Beowulf-class cluster 1. INTRODUCTION In the Philippines today, computing power in the range of gigaflops is not generally available for use in research and development. Conventional supercomputers or high performance computing systems are very expensive and are beyond the budgets of most university research groups especially in developing countries such as the Philippines. A lower cost option...

Rafael P. Saldaa; Felix P. Muga; II; Jerrold J. Garcia; William Emmanuel S. Yu; S. Yu

2000-01-01T23:59:59.000Z

171

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

SciTech Connect

The paper presents results from pilot studies of new 'workstation-specific' luminaires that are designed to provide highly, efficient, customized lighting for open-office cubicles. Workstation specific luminaires have the following characteristics: (1) they provide separate, dimming control of the cubicle's 'ambient' and 'task' lighting components, (2) occupancy sensors and control photosensors are integrated into the fixture's design and operation, (3) luminaires can be networked using physical cabling, microcontrollers and a PC running control software. The energy savings, demand response capabilities and quality of light from the two WS luminaires were evaluated and compared to the performance of a static, low-ambient lighting system that is uncontrolled. Initial results from weeks of operation provide strong indication that WS luminaires can largely eliminate the unnecessary lighting of unoccupied cubicles while providing IESNA-required light levels when the cubicles are occupied. Because each cubicle's lighting is under occupant sensor control, the WS luminaires can capitalize on the fact cubicles are often unoccupied during normal working hours and reduce their energy use accordingly.

Rubinstein, Francis; Bolotov, Dmitriy; Levi, Mark; Powell, Kevin; Schwartz, Peter

2008-08-17T23:59:59.000Z

172

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

Science Conference Proceedings (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

173

Homepage: High-Performance Computing Systems, HPC-3: High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

1188 667-5243 Fax: 667-7665 MS T080 Computing Solutions that work for you High-Performance Computing Systems The High-Performance Computing Systems Group provides production...

174

High Performance and Sustainable Buildings Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIGH PERFORMANCE and SUSTAINABLE BUILDINGS GUIDANCE Final (12/1/08) PURPOSE The Interagency Sustainability Working Group (ISWG), as a subcommittee of the Steering Committee established by Executive Order (E.O.) 13423, initiated development of the following guidance to assist agencies in meeting the high performance and sustainable buildings goals of E.O. 13423, section 2(f). 1 E.O. 13423, sec. 2(f) states "In implementing the policy set forth in section 1 of this order, the head of each agency shall: ensure that (i) new construction and major renovations of agency buildings comply with the Guiding Principles for Federal Leadership in High Performance and Sustainable Buildings set forth in the Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding (2006)

175

Implementation Workshop: High Performance Work Organizations  

E-Print Network (OSTI)

Since the rise of the industrial revolution, there are few challenges that compare in scale and scope with the challenge of implementing lean principles in order to achieve high performance work systems. This report summarize ...

Klein, Jan

176

High Performance Sustainable Building Design RM  

Energy.gov (U.S. Department of Energy (DOE))

The High Performance Sustainable Building Design (HPSBD) Review Module (RM) is a tool that assists the DOE federal project review teams in evaluating the technical sufficiency for projects that may...

177

High Performance Computing Richard F. BARRETT  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Co-design in High Performance Computing Richard F. BARRETT a,1 , Shekhar BORKAR b , Sudip S. DOSANJH c , Simon D. HAMMOND a , Michael A. HEROUX a , X. Sharon HU d , Justin...

178

High Performance Computing Data Center (Fact Sheet)  

SciTech Connect

This two-page fact sheet describes the new High Performance Computing Data Center being built in the ESIF and talks about some of the capabilities and unique features of the center.

Not Available

2012-08-01T23:59:59.000Z

179

High performance computing meets experimental mathematics  

Science Conference Proceedings (OSTI)

In this paper we describe some novel applications of high performance computing in a discipline now known as "experimental mathematics." The paper reviews some recent published work, and then presents some new results that have not yet appeared in the ...

David H. Bailey; David Broadhurst; Yozo Hida; Xiaoye S. Li; Brandon Thompson

2002-11-01T23:59:59.000Z

180

Trends in High-Performance Computer Architecture  

E-Print Network (OSTI)

Trends in High-Performance Computer Architecture David J. Lilja Department of Electrical;Historical Trends and Perspective pre-WW II: Mechanical calculating machines WW II - 50's: Technology of Minnesota April 1996 #12;Performance Metrics System throughput - work per unit time rate - used by system

Minnesota, University of

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Highlighting High Performance: Whitman Hanson Regional High School; Whitman, Massachusetts  

Science Conference Proceedings (OSTI)

This brochure describes the key high-performance building features of the Whitman-Hanson Regional High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar and wind energy, building envelope, heating and cooling systems, water conservation, and acoustics. Energy cost savings are also discussed.

Not Available

2006-06-01T23:59:59.000Z

182

for the Support of High Performance Computing  

E-Print Network (OSTI)

Architecture for the Support of High Performance Computing was sponsored by the National Science Foundation to identify critical research topics in computer architecture as they relate to high performance computing. Following a wide-ranging discus-sion of the computational characteristics and requirements of the grand challenge applications, the workshop identified four major computer architecture grand challenges as crucial to advancing the state of the art of high performance computation in the coming decade. These are: (1) idealized parallel computer models; (2) usable peta-ops (1015 ops) performance; (3) computers in an era of HDTV, gigabyte networks, and visualization; and (4) infrastruc-ture for prototyping architectures. This report overviews some of the demands of the grand challenge applications and presents the above four grand challenges for computer architecture. Q MZ AM-demic Press, Inc. A. Origin of the Workshop

Howard Jay Siegel; Seth Abraham; William L. Bain; Kenneth E. Batcher; Thomas L. Casavant; Doug Degroot; Jack B. Dennis; David C. Douglas; Tse-yun Feng; James R. Goodman; Alan Huang; Harry F. Jordan; J. Robertjump; Yalen. Patt; I Alan; Jay Smith; James E. Smith; Lawrence Snyder; I~harold S. Stone; Russ Tuck; Benjamin W. Wah

1992-01-01T23:59:59.000Z

183

Lessons Learned from Field Evaluation of Six High-Performance Buildings: Preprint  

DOE Green Energy (OSTI)

The energy performance of six high-performance buildings around the United States was monitored in detail. The six buildings include the Visitor Center at Zion National Park; the National Renewable Energy Laboratory's Thermal Test Facility; the Chesapeake Bay Foundation's Merrill Center; The BigHorn Home Improvement Center; the Cambria DEP Office Building; and the Oberlin College Lewis Center. This paper discusses the design energy targets and actual performance.

Torcellini, P.; Deru, M.; Griffith, B.; Long, N.; Pless, S.; Judkoff, R.; Crawley, D. B.

2004-07-01T23:59:59.000Z

184

High Performance Computing Data Center Metering Protocol | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Computing Data Center Metering Protocol High Performance Computing Data Center Metering Protocol Guide details the methods for measurement in High Performance...

185

High performance computing: Clusters, constellations, MPPs, and future directions  

E-Print Network (OSTI)

and Jim Gray, High Performance Computing: Crays, Clusters,The Marketplace of High-Performance Computing, ParallelHigh Performance Computing Clusters, Constellations, MPPs,

Dongarra, Jack; Sterling, Thomas; Simon, Horst; Strohmaier, Erich

2003-01-01T23:59:59.000Z

186

Solar-energy-system performance evaluation. Reedy Creek Utility District office building, Lake Buena Vista, Florida, September 1978-February, 1979  

DOE Green Energy (OSTI)

The Reedy Creek site is a two-story office building in Florida whose solar heating system provides space heating and domestic hot water and space cooling. The system consists of an array of parabolic trough collectors, an absorption chiller, a 10,000-gallon hot water tank and a 10,000-gallon cold water tank. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

187

Performance analysis of memory hierachies in high performance systems  

SciTech Connect

This thesis studies memory bandwidth as a performance predictor of programs. The focus of this work is on computationally intensive programs. These programs are the most likely to access large amounts of data, stressing the memory system. Computationally intensive programs are also likely to use highly optimizing compilers to produce the fastest executables possible. Methods to reduce the amount of data traffic by increasing the average number of references to each item while it resides in the cache are explored. Increasing the average number of references to each cache item reduces the number of memory requests. Chapter 2 describes the DLX architecture. This is the architecture on which all the experiments were performed. Chapter 3 studies memory moves as a performance predictor for a group of application programs. Chapter 4 introduces a model to study the performance of programs in the presence of memory hierarchies. Chapter 5 explores some compiler optimizations that can help increase the references to each item while it resides in the cache.

Yogesh, A.

1993-07-01T23:59:59.000Z

188

MPICH | High-Performance Portable MPI  

NLE Websites -- All DOE Office Websites (Extended Search)

MPICH MPICH High-Performance Portable MPI Skip to content Home About MPICH Overview News and Events Collaborators MPI Forum Downloads Releases Release Timeline Pending Tickets Source Changes Documentation Guides Publications MPICH Wiki Hydra Usage Developer Docs Contributor Docs Support FAQs Mailing Lists Bug Reports ABI Compatibility Initiative MPICH is a high performance and widely portable implementation of the Message Passing Interface (MPI) standard. The goals of MPICH are: to provide an MPI implementation that efficiently supports different computation and communication platforms including commodity clusters (desktop systems, shared-memory systems, multicore architectures), high-speed networks and proprietary high-end computing systems (Blue Gene, Cray) to enable cutting-edge research in MPI through an easy-to-extend

189

High Performance Computing in Accelerator Science: Past Successes. Future Challenges  

E-Print Network (OSTI)

High Performance Computing in Accelerator Science: PastAC02- 05CH11231. High Performance Computing in Accelerator

Ryne, R.

2013-01-01T23:59:59.000Z

190

Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom  

Science Conference Proceedings (OSTI)

With many operational centers moving toward order 1-km-gridlength models for routine weather forecasting, this paper presents a systematic investigation of the properties of high-resolution versions of the Met Office Unified Model for short-range ...

Humphrey W. Lean; Peter A. Clark; Mark Dixon; Nigel M. Roberts; Anna Fitch; Richard Forbes; Carol Halliwell

2008-09-01T23:59:59.000Z

191

Strategy Guideline: Partnering for High Performance Homes  

SciTech Connect

High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

Prahl, D.

2013-01-01T23:59:59.000Z

192

Co-design for high performance computing.  

Science Conference Proceedings (OSTI)

Co-design has been identified as a key strategy for achieving Exascale computing in this decade. This paper describes the need for co-design in High Performance Computing related research in embedded computing the development of hardware/software co-simulation methods.

Dosanjh, Sudip Singh; Hemmert, Karl Scott; Rodrigues, Arun F.

2010-07-01T23:59:59.000Z

193

Co?design for High Performance Computing  

Science Conference Proceedings (OSTI)

Co?design has been identified as a key strategy for achieving Exascale computing in this decade. This paper describes the need for co?design in High Performance Computing related research in embedded computing the development of hardware/software co?simulation methods.

Arun Rodrigues; Sudip Dosanjh; Scott Hemmert

2010-01-01T23:59:59.000Z

194

Debugging a high performance computing program  

SciTech Connect

Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

Gooding, Thomas M.

2013-08-20T23:59:59.000Z

195

Project materials [Commercial High Performance Buildings Project  

Science Conference Proceedings (OSTI)

The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

None

2001-01-01T23:59:59.000Z

196

ARM Data Quality Office … Real-Time Assessment of Instrument Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Quality Office Data Quality Office Real-Time Assessment of ARM Data *Ken Kehoe *Randy Peppler *Karen Sonntag *Terra Thompson *Nathan Hiers *Chris Schwarz Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, Norman, OK *Sean Moore ATK Mission Research, Santa Barbara, CA ARM Data Quality History Originally, each Site Scientist and Instrument Mentor was responsible for data quality analysis. This resulted in uneven treatment of instruments at the different ARM climate research facilities. The ARM Infrastructure Review in 1999 decided there was a need for a single data quality "czar" to oversee DQ activities for all sites. In response to this review the ARM DQO was established in July 2000 at The University of Oklahoma. ARM's goal is to provide the best data possible for scientific

197

High-Performance Mass Spectrometry Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

HPMSF Overview HPMSF Overview Section 2-4-1 High-Performance Mass Spectrometry Facility The High-Performance Mass Spectrometry Facility (HPMSF) provides state-of-the-art mass spectrometry (MS) and separations instrumentation that has been refined for leading-edge analysis of biological problems with a primary emphasis on proteomics. Challenging research in proteomics, cell signaling, cellular molecular machines, and high-molecular weight systems receive the highest priority for access to the facility. Current research activities in the HPMSF include proteomic analyses of whole cell lysates, analyses of organic macro-molecules and protein complexes, quantification using isotopically labeled growth media, targeted proteomics analyses of subcellular fractions, and nucleic acid analysis of

198

High Performance Commercial Fenestration Framing Systems  

SciTech Connect

A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial fenestration framing systems, by investigating new technologies that would improve the thermal performance of aluminum frames, while maintaining their structural and life-cycle performance. The project targeted an improvement of over 30% (whole window performance) over conventional commercial framing technology by improving the performance of commercial framing systems.

Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

2010-01-31T23:59:59.000Z

199

Energy Star Helps Manufacturers To Achieve High Energy Performance  

E-Print Network (OSTI)

From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U.S. Environmental Protection Agency, within the construct of ENERGY STAR, is extending the benefits to manufacturers in new and meaningful ways. Through the development of tools and technical resources specifically targeting manufacturing companies, ENERGY STAR seeks to provide a means for these businesses to understand and achieve excellence in energy performance by reinforcing the link between energy, financial, and environmental performance. Discussed are the enhanced programmatic offerings as well as two new tools under development that will illustrate the impact of energy consumption on financial performance. The first tool will permit an assessment of energy performance, or benchmark it, at a plant level normalizing for such variables as product type, annual plant hours, plant capacity, annual product value, number of employees, and location. Use of this tool and the information it provides as a means to assess, track and provide targets for plant energy performance is examined. The second tool seeks to elevate the consideration of energy use to an executive level within an organization by calculating financial energy indices specific to individual companies and industrial sectors. These indices relate a business' energy use to such factors as net operating income, value of sales, net income, and so forth. Corporate executives, Wall Street analysts, and energy managers are intended to be the primary users of these ratios. Programmatic improvements to ENERGY STAR include greater networking among participants in the partnership and more opportunities for recognition of their achievements. With the new tools, resources, and program enhancements, it is believed that manufacturers will be equipped with valuable and credible information from which more informed and progressive energy performance decisions can be made. Further, these businesses will be doing their part to demonstrate that protection of the environment is good for business.

Dutrow, E.; Hicks, T.

2001-05-01T23:59:59.000Z

200

Engineered Cathodes for High Performance SOFCs  

Science Conference Proceedings (OSTI)

Computational design analysis of a high performance cathode is a cost-effective means of exploring new microstructure and material options for solid oxide fuel cells. A two-layered porous cathode design has been developed that includes a thinner layer with smaller grain diameters at the cathode/electrolyte interface followed by a relatively thicker outer layer with larger grains at the electrode/oxidant interface. Results are presented for the determination of spatially dependent current generation distributions, assessment of the importance of concentration polarization, and sensitivity to measureable microstructural variables. Estimates of the electrode performance in air at 700C indicate that performance approaching 3.1 A/cm2 at 0.078 V is theoretically possible. The limitations of the model are described, along with efforts needed to verify and refine the predictions. The feasibility of fabricating the electrode configuration is also discussed.

Williford, Rick E.; Singh, Prabhakar

2004-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of high-performance computing software  

Science Conference Proceedings (OSTI)

The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

1996-12-31T23:59:59.000Z

202

Monitoring SLAC High Performance UNIX Computing Systems  

SciTech Connect

Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

2005-12-15T23:59:59.000Z

203

Computational Biology and High Performance Computing 2000  

SciTech Connect

The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

2000-10-19T23:59:59.000Z

204

DOE Office of Science Computing Facility Operational Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment (OA) Review of the efficiencies in the steady-state operations of each of the DOE Office of Science High Performance Computing (HPC) Facilities. * OMB requirement for...

205

FY 2006 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

6 SC Laboratory Performance Report Cards 6 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards FY 2006 SC Laboratory Performance Report Cards Ames: Oct 1, 2005 - Sept 30, 2006 Argonne: Oct 1, 2005 - Sept 30, 2006 BNL: Oct 1, 2005 - Sept 30, 2006 Fermilab: Oct 1, 2005 - Sept 30, 2006 LBNL: Oct 1, 2005 - Sept 30, 2006 ORNL: Oct 1, 2005 - Sept 30, 2006 PNNL: Oct 1, 2005 - Sept 30, 2006 PPPL: Oct 1, 2005 - Sept 30, 2006

206

ESCC Evening Discussion: High Performance Data Transfer Eli Dart, Network Engineer  

NLE Websites -- All DOE Office Websites (Extended Search)

ESCC Evening Discussion: ESCC Evening Discussion: High Performance Data Transfer Eli Dart, Network Engineer ESnet Network Engineering Group Summer ESCC/Joint Techs Columbus, OH July 14, 2010 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science High Performance Data Transfer * This is a broad topic with several components * Last discussion - perfSONAR * Tonight's discussion - possible next steps to increase the performance achieved by scientists in their use of the network - What is "the network" from a user's perspective? - Deployment of dedicated systems - Need for cooperation - Do the easy stuff first 7/13/10 2 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science Data Transfer Is A Tractable Problem

207

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

208

A Report from the NERSC User Group Prepared for the U.S. Department of Energy Office of Science  

E-Print Network (OSTI)

of Science DOE Greenbook Needs and Directions in High Performance Computing for the Office of Science PPPL

209

DOE High Performance Concentrator PV Project  

DOE Green Energy (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

210

Forced Air Systems in High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORCED AIR SYSTEMS IN FORCED AIR SYSTEMS IN HIGH PERFORMANCE HOMES Iain Walker (LBNL) Building America Meeting 2013 What are the issues? 1. Sizing  When is too small too small? 2. Distribution  Can we get good mixing at low flow? 3. Performance  Humidity Control  Part load efficiency  Blowers & thermal losses Sizing  Part-load - not an issue with modern equipment  Careful about predicted loads - a small error becomes a big problem for tightly sized systems  Too Low Capacity = not robust  Extreme vs. design days  Change in occupancy  Party mode  Recovery from setback Sizing  Conventional wisdom - a good envelope = easy to predict and not sensitive to indoor conditions  But..... Heating and cooling become discretionary - large variability depending on occupants

211

FY 2010 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

10 SC Laboratory Performance Report Cards 10 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards Ames: Oct 1, 2009 - Sept 30, 2010 Argonne: Oct 1, 2009 - Sept 30, 2010 BNL: Oct 1, 2009 - Sept 30, 2010 Fermilab: Oct 1, 2009 - Sept 30, 2010 LBNL: Oct 1, 2009 - Sept 30, 2010 ORNL: Oct 1, 2009 - Sept 30, 2010 PNNL: Oct 1, 2009 - Sept 30, 2010 PPPL: October 1, 2009 - September 30, 2010 SLAC: Oct 1, 2009 - Sept 30, 2010 JLab: Oct 1, 2009 - Sept 30, 2010 FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

212

FY 2013 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

3 SC Laboratory Performance Report Cards 3 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards Ames: Oct 1, 2012 - Sept 30, 2013 Argonne: Oct 1, 2012 - Sept 30, 2013 BNL: Oct 1, 2012 - Sept 30, 2013 Fermilab: Oct 1, 2012 - Sept 30, 2013 LBNL: Oct 1, 2012 - Sept 30, 2013 ORNL: Oct 1, 2012 - Sept 30, 2013 PNNL: Oct 1, 2012 - Sept 30, 2013 PPPL: Oct 1, 2012 - Sept 30, 2013 SLAC: Oct 1, 2012 - Sept 30, 2013 JLab: Oct 1, 2012 - Sept 30, 2013 FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

213

FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

2 SC Laboratory Performance Report Cards 2 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards Ames: Oct 1, 2011 - Sept 30, 2012 Argonne: Oct 1, 2011 - Sept 30, 2012 BNL: Oct 1, 2011 - Sept 30, 2012 Fermilab: Oct 1, 2011 - Sept 30, 2012 LBNL: Oct 1, 2011 - Sept 30, 2012 ORNL: Oct 1, 2011 - Sept 30, 2012 PNNL: Oct 1, 2011 - Sept 30, 2012 PPPL: Oct 1, 2011 - Sept 30, 2012 SLAC: Oct 1, 2011 - Sept 30, 2012 JLab: Oct 1, 2011 - Sept 30, 2012 FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

214

FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

1 SC Laboratory Performance Report Cards 1 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards Ames: Oct 1, 2010 - Sept 30, 2011 Argonne: Oct 1, 2010 - Sept 30, 2011 BNL: Oct 1, 2010 - Sept 30, 2011 Fermilab: Oct 1, 2010 - Sept 30, 2011 LBNL: Oct 1, 2010 - Sept 30, 2011 ORNL: Oct 1, 2010 - Sept 30, 2011 PNNL: Oct 1, 2010 - Sept 30, 2011 PPPL: October 1, 2010 - September 30, 2011 SLAC: Oct 1, 2010 - Sept 30, 2011 JLab: Oct 1, 2010 - Sept 30, 2011 FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

215

Lessons learned when building a greenfield high performance computing ecosystem  

Science Conference Proceedings (OSTI)

Faced with a fragmented research computing environment and growing needs for high performance computing resources, Michigan State University established the High Performance Computing Center in 2005 to serve as a central high performance computing resource ...

Andrew R. Keen; William F. Punch; Greg Mason

2012-12-01T23:59:59.000Z

216

Middleware in Modern High Performance Computing System Architectures  

E-Print Network (OSTI)

Middleware in Modern High Performance Computing System Architectures Christian Engelmann, Hong Ong trend in modern high performance computing (HPC) system architectures employs "lean" compute nodes) continue to reside on compute nodes. Key words: High Performance Computing, Middleware, Lean Compute Node

Engelmann, Christian

217

Managing Stakeholder Requirements in High Performance Computing Procurement  

E-Print Network (OSTI)

Managing Stakeholder Requirements in High Performance Computing Procurement John Rooksby1 , Mark Department of Management, Lancaster University High Performance Computing (HPC) facilities are provided strategy can rigorously meet the demands of the potential users. 1 Introduction High Performance Computing

Sommerville, Ian

218

SYSTEMS ENGINEERING FOR HIGH PERFORMANCE COMPUTING SOFTWARE: THE HDDA DAGH  

E-Print Network (OSTI)

SYSTEMS ENGINEERING FOR HIGH PERFORMANCE COMPUTING SOFTWARE: THE HDDA DAGH INFRASTRUCTURE systems implementing high performance computing applications. The example which drives the creation in the context of high performance computing software. Applicationof these principleswill be seen

Parashar, Manish

219

Purchase of High Performance Computing (HPC) Central Compute Resources  

E-Print Network (OSTI)

Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers summarizes High Performance Computing (HPC) compute resources that faculty engaged in research may purchase of code on the Quest high performance computing system. The installation cycles for new

Shull, Kenneth R.

220

Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics  

SciTech Connect

This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

Fisk, William; Black, Douglas; Brunner, Gregory

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing  

SciTech Connect

This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

Khaleel, Mohammad A.

2009-10-01T23:59:59.000Z

222

High-performance laboratories and cleanrooms  

SciTech Connect

The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

2002-07-01T23:59:59.000Z

223

High Energy Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

HEP User Facilities HEP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The High Energy Physics program supports the operation of the following national scientific user facilities: Fermilab Accelerator Complex External link The Fermilab Accelerator Complex at Fermi National Accelerator Laboratory is composed of the accelerator complex and several experiments-both actual and proposed--that utilize its protons. The complex currently

224

The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

4E 4E The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings F. Rubinstein & D. Bolotov Lawrence Berkeley National Laboratory M. Levi & K. Powell U.S. General Services Administration P. Schwartz Peter Schwartz, & Associates, LLC August 2008 Presented at the 2008 ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, CA, August 17-22, 2008, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes

225

Office of River Protection (ORP) Monthly Performance Report for July 2000  

SciTech Connect

River Protection Project (RPP) performance for the month of July 2000 was very good. The most significant accomplishments that occurred during the month include the following: The Interim Stabilization Project pumped approximately 30,000 gallons from four tanks. Project-to-date (since June 1998) volume pumped is approximately 808,000 gallons. Five tanks have been interim stabilized this fiscal year, and tanks 241-S-106,241-U-103, and 241-U-105 are being evaluated to determine if the stabilization criteria have been met. Out of the 149 single-shell tanks (SSTs), 124 tanks have been stabilized. Pumping this waste from the single-shell tanks to more secure double-shell tanks (DSTs) supports stabilization of the waste tanks and mitigates leakage to the environment. The Interim Stabilization Project is planned to complete by September 2004. Waste Characterization obtained one grab sample in the month of July 2000. A total of 14 core samples, 12 grab samples, and 6 vapor samples have been taken fiscal year-to-date (FYTD) in support of three key FY 2000 sampling milestones. The Waste Treatment Plant Design and Operation organizations have been developed and staffed, including transitioning BNFL Inc./Bechtel National Inc. employees to CHG. Since the termination of the BNFL contract, CHG has temporarily assumed the work scope for design and operation of the Waste Treatment Plant. A new waste treatment facility will be built at the Hanford Site in which highly radioactive waste from the tanks will be turned into glass and permanently stored. Approval of the Notice of Construction (NOC) for the AN Farm tank retrieval system was received from the U.S. Department of Energy (DOE) and the Environmental Protection Agency on July 21,2000. This is a significant step forward for Project W-211, ''Initial Tank Retrieval Systems'' in preparing waste for delivery to the Waste Treatment Plant.

WAGNILD, K.J.

2000-10-23T23:59:59.000Z

226

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network (OSTI)

and analysis of building energy efficiency in China.in evaluating relative building energy performance in Chinabuildings. The available building energy use data are for

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

227

Federal Leadership in High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of...

228

Federal Leadership in High Performance and Sustainable Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leadership in High Performance and Sustainable Buildings Memorandum of Understanding Federal Leadership in High Performance and Sustainable Buildings Memorandum of Understanding...

229

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

230

Energy Efficiency Opportunities in Federal High Performance Computing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

231

DOE Science Showcase - High-Performance Computing | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Science Showcase - High-Performance Computing Supercomputers or massively parallel high-performance computers (HPCs) are machines that employ very large numbers of processors in...

232

High Performance computing Data Center (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

via efficient evaporative cooling towers serving the HPC data center. High Performance Computing Data Center The new high performance computing (HPC) data center in NREL's...

233

Memorandum of American High-Performance Buildings Coalition DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This...

234

HEP Graduate Fellows in High Energy Theory | U.S. DOE Office...  

Office of Science (SC) Website

News In the News In Focus Presentations & Testimony Recovery Act About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical...

235

Integrating advanced facades into high performance buildings  

SciTech Connect

Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability can also offer solutions to building owners where reliable access to the electric grid is a challenge, in both less-developed countries and in industrialized countries where electric generating capacity has not kept pace with growth. We find that when properly designed and executed as part of a complete building solution, advanced facades can provide solutions to many of these challenges in building design today.

Selkowitz, Stephen E.

2001-05-01T23:59:59.000Z

236

DOE Office of Science - Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 National Laboratory Performance Appraisal Reports In Fiscal Year 2006, the Office of Science (SC) instituted a new process for evaluating the scientific, technological,...

237

USING MULTITAIL NETWORKS IN HIGH PERFORMANCE CLUSTERS  

Science Conference Proceedings (OSTI)

Using multiple independent networks (also known as rails) is an emerging technique to overcome bandwidth limitations and enhance fault-tolerance of current high-performance clusters. We present and analyze various venues for exploiting multiple rails. Different rail access policies are presented and compared, including static and dynamic allocation schemes. An analytical lower bound on the number of networks required for static rail allocation is shown. We also present an extensive experimental comparison of the behavior of various allocation schemes in terms of bandwidth and latency. Striping messages over multiple rails can substantially reduce network latency, depending on average message size, network load and allocation scheme. The methods compared include a static rail allocation, a round-robin rail allocation, a dynamic allocation based on local knowledge, and a rail allocation that reserves both end-points of a message before sending it. The latter is shown to perform better than other methods at higher loads: up to 49% better than local-knowledge allocation and 37% better than the round-robin allocation. This allocation scheme also shows lower latency and it saturates on higher loads (for messages large enough). Most importantly, this proposed allocation scheme scales well with the number of rails and message sizes.

S. COLL; E. FRACHTEMBERG; F. PETRINI; A. HOISIE; L. GURVITS

2001-03-01T23:59:59.000Z

238

Highlighting High Performance: National Renewable Energy Laboratory's Visitors Center, Golden, Colorado  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory Visitors Center, also known as the Dan Schaefer Federal Building, is a high-performance building located in Golden, Colorado. The 6,400-square-foot building incorporates passive solar heating, energy-efficient lighting, an evaporative cooling system, and other technologies to minimize energy costs and environmental impact. The Visitors Center displays a variety of interactive exhibits on energy efficiency and renewable energy, and the building includes an auditorium, a public reading room, and office space.

Burgert, S.

2001-06-19T23:59:59.000Z

239

Energy Savings Performance Contracts (ESPCs) | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Savings Performance Contracts (ESPCs) Energy Savings Performance Contracts (ESPCs) Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Services Energy Savings Performance Contracts (ESPCs) Print Text Size: A A A RSS Feeds FeedbackShare Page Energy Savings Contracts (Utility Energy Savings Contracts [UESCs] and Energy Savings Performance Contracts [ESPCs]) allow federal agencies to accomplish energy projects for their facilities without depending on special appropriations to pay for the improvements. The contractor conducts

240

Medical Assisting Medical Assistants perform routine administrative and clinical tasks to keep the offices of physi-  

E-Print Network (OSTI)

Medical Assisting Medical Assistants perform routine administrative and clinical tasks to keep. Medical assis- patients for x-rays, take electrocardiograms, remove sutures, and change dressings. Medical Description: Medical Assisting Associate of Applied Science (4 semesters after prerequisites are complet

Crone, Elizabeth

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Office of River Protection (ORP) Monthly Performance Report for September 2000  

Science Conference Proceedings (OSTI)

CH2M Hill Hanford Group, Inc. (CHG) had an outstanding year. The most significant accomplishments that occurred throughout fiscal year (FY) 2000 include the following: On April 24,2000, DOE ORP received BNFL Inc. B-1 deliverables and CHG completed Phase 1 Part B-2 Readiness-to-Proceed (RTP), to demonstrate the ability to provide waste feed to be treated/stored in a long-term disposal facility. The RTP consisted of key enabling assumptions, critical risks, waste handling actions, financial and schedule risk analysis, staffing plans, a project execution plan, and a resource loaded schedule. The Department determined that the BNFL Inc. proposal was unacceptable in many areas and essentially shifted the financial risk from BNFL Inc. back to the Federal government; thus a key benefit of privatization was lost. On May 8,2000, the Secretary announced that the privatization contract be terminated. In the interim, the Department directed the onsite Tank Farm Contractor, CHG, to continue the design work scope for the Waste Treatment and Immobilization Plant until a new waste treatment contract is awarded. DOE ORP released its request for proposals (RFP) for a new Waste Treatment and Immobilization contractor on August 31,2000 and is on schedule to meet award of the contract by January 15,2000. CHG successfully reached 1,000,000 safe work hours without a lost workday injury or illness on Wednesday, September 23,2000. The record was initiated on May 23,2000 and took 114 days to achieve. All Tri-Party Agreement and Consent Decree milestones scheduled for the fiscal year were completed. Along with meeting all enforceable agreement milestones, nineteen out of twenty Performance Incentives (PIS) were successfully completed. The 20 PIS comprised of 114 specific deliverables, of which 107 were met. In addition to the 20 scheduled PIS, six accelerated activities were completed. Tank 241-SY-101 hydrogen generation was successfully mitigated this fiscal year, including a series of transfers and back-dilutions that remediated the flammable gas hazards and closed the surface level growth Unreviewed Safety Question (USQ) associated with the tank. CHG transitioned from the Basis for Interim Operation to the Final Safety Analysis Report (FSAR) in October 1999. The High Heat Safety Issue on tank 241-C-106 was resolved, including the removal of the tank from the watch list. Several cross-site waste transfers were completed to support saltwell pumping efforts. In addition, Evaporator Campaign 00-1 began in April 2000, resulting in an estimated waste volume reduction of 600,000 gallons. Final sluicing operations of tank 241-C-106 were completed on October 6, 1999. The sludge recovery goal of 95 percent was exceeded. The total sludge transfer from tank 241-C-106 to 241-AY-102 was 67.8 inches (186,500 gallons). The successful test of the AZ-101 mixer pump was completed, proving that CHG has the technology necessary to retrieve tank waste for treatment. Approval of the Notice of Construction (NOC) for the AN Farm tank retrieval system was received from the U.S Department of Energy (DOE) and the Environmental Protection Agency on July 21,2000. This is a significant step forward for Project W-211, ''Initial Tank Retrieval Systems'' in preparing waste for delivery to the Waste Treatment and Immobilization Plant.

WAGNILD, K.J.

2000-11-21T23:59:59.000Z

242

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

243

What is High Performance UnionCollegeAlbanyWorkshopon  

E-Print Network (OSTI)

What is High Performance Computing? UnionCollegeAlbanyWorkshopon "High Performance Computing IN 47404 gcf@indiana.edu http://www.infomall.org #12;What is High Performance Computing? The meaning of this was clear 20 years ago when we were planning/starting the HPCC (High Performance Computing and Communication

Barr, Valerie

244

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE))

Case study describes an outline of energy efficiency opportunities in federal high performance computing data centers.

245

CENTER FOR HIGH PERFORMANCE COMPUTING Overview of CHPC  

E-Print Network (OSTI)

CENTER FOR HIGH PERFORMANCE COMPUTING Overview of CHPC Julia Harrison, Associate Director Center for High Performance Computing julia.harrison@utah.edu Spring 2009 #12;CENTER FOR HIGH PERFORMANCE://www.chpc.utah.edu/docs/services.html 2/26/09 http://www.chpc.utah.edu Slide 3 #12;CENTER FOR HIGH PERFORMANCE COMPUTING Arches 2

Alvarado, Alejandro Sánchez

246

C++ programming techniques for High Performance Computing on systems with  

E-Print Network (OSTI)

C++ programming techniques for High Performance Computing on systems with non-uniform memory access (including NUMA) without sacrificing performance. ccNUMA In High Performance Computing (HPC), shared- memory

Sanderson, Yasmine

247

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office  

SciTech Connect

An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

Rubinstein, Francis; Enscoe, Abby

2010-04-19T23:59:59.000Z

248

Measurement of performance of solar-heated office buildings. Final report, June 1, 1982-October 31, 1983  

DOE Green Energy (OSTI)

Prudential Insurance Company is building two new office buildings that are a showcase of innovative energy efficient design and solar energy utilization. In order for this effort to be fully successful, the actual performance of these buildings needs to be monitored. This report summarizes the progress made during the first year. A thorough theoretical analysis has been carried out, using the DOE2.1 computer simulation code. This analysis has been supplemented by shorthand calculations and by special models to provide an independent check of the coding and to evaluate certain features, e.g. the double wall, that cannot be modeled by DOE2.1. A steady state shorthand method has been developed to calculate annual energy use; it is a modification of the ASHRAE bin method and agrees with the computer simulation within about 15% for cooling and 2% for heating. Energy savings due to daylighting have been evaluated using both shorthand methods and the computer code DOE2.1b. The calculations of annual energy use that were performed at the design stage have been reproduced, and changes during later design phases, e.g. the outdoor air flow rate, have been identified. Even without a variety of further energy savings that appear feasible, these buildings promise to be among the most efficient in the current stock of office buildings. A 100-channel instrumentation and data acquisition system has been designed, and installation should be complete by February 1984. Extensive software has been prepared to confront the model predictions with field data.

Norford, L.N.; Rabl, A.; Socolow, R.H.

1984-01-01T23:59:59.000Z

249

Performance Analysis Tools Working Session | U.S. DOE Office of Science  

Office of Science (SC) Website

Performance Analysis Tools Working Performance Analysis Tools Working Session Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information »

250

A lightweight, high performance communication protocol for grid computing  

Science Conference Proceedings (OSTI)

This paper describes a lightweight, high-performance communication protocol for the high-bandwidth, high-delay networks typical of computational Grids. One unique feature of this protocol is that it incorporates an extremely accurate classification mechanism ... Keywords: Bayesian analysis, Classification mechanisms, Grid computing, High-performance communication protocols, High-performance networking

Phillip M. Dickens

2010-03-01T23:59:59.000Z

251

An integrated high performance Fastbus slave interface  

Science Conference Proceedings (OSTI)

A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip.

Christiansen, J.; Ljuslin, C. (CERN/ECP, Geneva (Switzerland))

1993-08-01T23:59:59.000Z

252

Green and High Performance Factory Crafted Housing  

E-Print Network (OSTI)

In the U.S., factory-built housing greater than 400 square feet is built either to the U.S. Department of Housing and Urban Development (HUD) code for mobile homes or site-built codes for modular housing. During the last few years, as the production of HUD code housing has dwindled, many leading edge factory builders have started building modular homes to compete with site-built housing and stay in business. As part of the Building America Industrialized Housing Partnership (BAIHP) we have assisted in the design and construction of several green and high performance modular homes that Palm Harbor Homes, Florida Division (PHH) has built for the International Builders Show (IBS) in 2006, 2007, and 2008. This paper will summarize the design features and the green and energy-efficient certification processes conducted for the 2008 show homes, one of which received the very first E-Scale produced by BAIHP for the U.S. Department of Energy (DOE) Builders Challenge program.

Thomas-Rees, S.; Chasar, D.; Chandra, S.; Stroer, D.

2008-12-01T23:59:59.000Z

253

High-performance commercial building systems  

E-Print Network (OSTI)

HVAC engineers and operators to optimize energy performance of buildings; and Develop simulation-based test and optimization

Selkowitz, Stephen

2003-01-01T23:59:59.000Z

254

Alaska Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

dates. Additional Contact: Name: Liz Patrick Office: 907-444-1815 Evening: 907-333-1892 Cell: 907-444-1815 Email: CheckmateDrive@yahoo.com Important Links: Coach Account Creation:...

255

Office of the Chief Financial Officer Annual Report 2009  

E-Print Network (OSTI)

by the Director, Office of Science of the U.S. Department ofto be a top DOE Office of Science (SC) national laboratoryincreased $0.5M. The Office of Sciences High Energy

Fernandez, Jeffrey

2010-01-01T23:59:59.000Z

256

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

257

Fermilab | Science at Fermilab | Computing | High-performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice QCD Farm at the Grid Computing Center at Fermilab. Computing High-performance Computing A workstation computer can perform billions of multiplication and addition...

258

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Sustainable Building Design for New Construction and Major Renovations High-Performance Sustainable Building Design for New Construction and Major Renovations New construction and major renovations to existing buildings offer Federal agencies opportunities to create sustainable high-performance buildings. High-performance buildings can incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies along with other innovative strategies. Also see Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings. Performance-Based Design Build Typically, architects, engineers, and project managers consider the potential to build a high-performance building to be limited by the initial cost. A different approach-performance-based design build-makes high performance the priority, from start to finish. Contracts are developed that focus on both limiting construction costs and meeting performance targets. The approach is not a source of funding, but rather a strategy to make the most out of limited, appropriated, funds.

259

OFFICE OF THE CHIEF INFORMATION OFFICER (OCIO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE CHIEF INFORMATION OFFICER (OCIO) THE CHIEF INFORMATION OFFICER (OCIO) FY 2014 HUMAN CAPITAL MANAGEMENT PLAN Executive Summary: The mission of the Office of the Chief Information Officer (OCIO) is to enable the Department of Energy's urgent missions in energy, science, and nuclear security through the power of information and technology in a manner that balances risk with required outcomes in programs that span from open science to national security. DOE promotes effective operations by encouraging performance-based management and facilitating the restructuring of mission- and business-related processes, where appropriate, before making significant IT investments to improve the performance and cost-effectiveness of the Department's information

260

Report: Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPORT TO THE REPORT TO THE ENVIRONMENTAL MANAGEMENT ADVISORY BOARD Removal of EM Projects from the GAO High Risk List: Strategies for Improving the Effectiveness of Project and Contract Management in the Office of Environmental Management Submitted by the EMAB Acquisition and Project Management Subcommittee December 5, 2011 Introduction: This report provides a comprehensive summary of the work performed by the Acquisition and Project Management Subcommittee (APMS) of the Environmental Management Advisory Board, since tasking in March 2010. In particular, this report includes the summary observations developed and recommendations previously approved by the EMAB on the Subcommittee's work and presented to the then Assistant Secretary of Environmental Management (EM). As the

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Performance Diesel Fueled Cabin Heater  

DOE Green Energy (OSTI)

Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

Butcher, Tom

2001-08-05T23:59:59.000Z

262

High Performance Adaptive Distributed Scheduling Algorithm  

Science Conference Proceedings (OSTI)

Exascale computing requires complex runtime systems that need to consider affinity, load balancing and low time and message complexity for scheduling massive scale parallel computations. Simultaneous consideration of these objectives makes online distributed ... Keywords: Distributed Scheduling, Adaptive Scheduling, Performance Analysis

Ankur Narang, Abhinav Srivastava, R. K. Shyamasundar

2013-05-01T23:59:59.000Z

263

Office of Science Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Chicago Office Mission, Vision and Values Mission Statement The Office of Science - Chicago Office (SC-CH) is a critical element of the Office of Science (SC) program execution and...

264

High Performance Electrolyzers for Hybrid Thermochemical Cycles  

DOE Green Energy (OSTI)

Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

Dr. John W. Weidner

2009-05-10T23:59:59.000Z

265

Empirical Performance Analysis of High Performance Computing Benchmarks Across Variations in Cloud Computing.  

E-Print Network (OSTI)

??High Performance Computing (HPC) applications are data-intensive scientific software requiring significant CPU and data storage capabilities. Researchers have examined the performance of Amazon Elastic Compute (more)

Mani, Sindhu

2012-01-01T23:59:59.000Z

266

SunShot Initiative: High-Performance Nanostructured Coating  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Nanostructured High-Performance Nanostructured Coating to someone by E-mail Share SunShot Initiative: High-Performance Nanostructured Coating on Facebook Tweet about SunShot Initiative: High-Performance Nanostructured Coating on Twitter Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Google Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Delicious Rank SunShot Initiative: High-Performance Nanostructured Coating on Digg Find More places to share SunShot Initiative: High-Performance Nanostructured Coating on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

267

Geocomputation's future at the extremes: high performance computing and nanoclients  

E-Print Network (OSTI)

Geocomputation's future at the extremes: high performance computing and nanoclients K.C. Clarke; High performance computing; Tractability; Geocom- putation E-mail address: kclarke@geog.ucsb.edu (K

Clarke, Keith

268

High Performance Windows Volume Purchase: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail to someone by E-mail Share High Performance Windows Volume Purchase: NewsDetail on Facebook Tweet about High Performance Windows Volume Purchase: NewsDetail on Twitter...

269

EL Program: Net-Zero Energy, High-Performance Buildings  

Science Conference Proceedings (OSTI)

... challenge, and the Office of Management and Budget has ... 1 White House Office of Science and ... refrigerants with a low global warming potential and ...

2013-01-08T23:59:59.000Z

270

Computational biology and high performance computing  

E-Print Network (OSTI)

Acknowledgements for Community White Paper in ComputationalComputational Biology white paper Is there strong objectionportions of community white paper on high end computing

Shoichet, Brian

2011-01-01T23:59:59.000Z

271

Spherical Nanoporous Phosphate Composites: High Performance ...  

Science Conference Proceedings (OSTI)

... great impact on transportation technology by partially or completely replacing gasoline. ... Enabling High Energy Density Redox Chemistries and 3D Electrode ...

272

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

273

High-Performance Flexible Organic Photovoltaic Cells with ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , 2013 and Beyond: Flexible Electronics. Presentation Title, High-Performance...

274

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg,...

275

Modelling and Grain Boundary Engineering for High Performance ...  

Science Conference Proceedings (OSTI)

... useful information for future development of polysilicon sollar cell with high performance photovoltaic and electric properties by grain boundary engineering,

276

High-Performance SOFC Anodes Prepared by Infiltration of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Presentation Title, High-Performance SOFC...

277

Software Reuse in High Performance Computing Shirley Browne  

E-Print Network (OSTI)

Software Reuse in High Performance Computing Shirley Browne University of Tennessee 107 Ayres Hall high performance computing architectures in the form of distributed memorymul- tiprocessors have become of programming applications to run on these machines. Economical use of high performance computing and subsequent

Dongarra, Jack

278

Advanced Environments and Tools for High Performance Computing  

E-Print Network (OSTI)

Advanced Environments and Tools for High Performance Computing Problem-Solving Environments Environments and Tools for High Performance Computing. The conference was chaired by Professor D. W. Walker and managing distributed high performance comput- ing resources is important for a PSE to meet the requirements

Walker, David W.

279

A Study of Software Development for High Performance Computing  

E-Print Network (OSTI)

A Study of Software Development for High Performance Computing Manish Parashar, Salim Hariri Parallel Distributed Systems, 1994 Abstract Software development in a High Performance Computing (HPC. The objective of this paper is to study the software development process in a high performance computing

Parashar, Manish

280

High Performance Computing (HPC) Central Storage Resources for Research Support  

E-Print Network (OSTI)

High Performance Computing (HPC) Central Storage Resources for Research Support Effective for FY. They also describe new applications and technologies related to research in high performance computing2011 Revised: March 7, 2011 Page 1 Information Technology Purpose This memo summarizes High Performance

Shull, Kenneth R.

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Applying High Performance Computing to Analyzing by Probabilistic Model Checking  

E-Print Network (OSTI)

Applying High Performance Computing to Analyzing by Probabilistic Model Checking Mobile Cellular on the use of high performance computing in order to analyze with the proba- bilistic model checker PRISM. The Figure Generation Script 22 2 #12;1. Introduction We report in this paper on the use of high performance

Schneider, Carsten

282

Universal High Performance Computing ---We Have Just Begun  

E-Print Network (OSTI)

Universal High Performance Computing --- We Have Just Begun Jerome A. Feldman April, 1994, and deployment. At present, high performance computing is entirely different. Although there have been some commercial factor. A prerequisite for Universal High Performance Computing (UHPC) is con­ vergence

California at Berkeley, University of

283

Evaluating Parameter Sweep Workflows in High Performance Computing*  

E-Print Network (OSTI)

Evaluating Parameter Sweep Workflows in High Performance Computing* Fernando Chirigati1,# , Vítor a large amount of tasks that are submitted to High Performance Computing (HPC) environments. Different, Parameter Sweep, High Performance Computing (HPC) 1. INTRODUCTION1 # Many scientific experiments are based

Paris-Sud XI, Université de

284

Software Reuse in High Performance Computing Shirley Browne  

E-Print Network (OSTI)

Software Reuse in High Performance Computing Shirley Browne University of Tennessee 107 Ayres Hall high performance computing architectures in the form of distributed memory mul­ tiprocessors have and cost of programming applications to run on these machines. Economical use of high performance computing

Dongarra, Jack

285

High Performance Computing with a Conservative Spectral Boltzmann Solver  

E-Print Network (OSTI)

High Performance Computing with a Conservative Spectral Boltzmann Solver Jeffrey R. Haack and Irene the structure of the collisional formulation for high performance computing environments. The locality in space on high performance computing resources. We also use the improved computational power of this method

286

1High Performance Computing at Liberal Arts Colleges Workshop 3  

E-Print Network (OSTI)

1High Performance Computing at Liberal Arts Colleges ­ Workshop 3 11October 27, 2009 Experiences (?) #12;2High Performance Computing at Liberal Arts Colleges ­ Workshop 3 22 Acknowledgements Thanks to. October 27, 2009 #12;3High Performance Computing at Liberal Arts Colleges ­ Workshop 3 33October 27, 2009

Barr, Valerie

287

High Performance www.rrze.uni-erlangen.de  

E-Print Network (OSTI)

High Performance Computing at RRZE 2008 HPCatRRZE www.rrze.uni-erlangen.de #12;G. Hager, T. Zeiser and G. Wellein: Concepts of High Performance Computing. In: Fehske et al. Lect. Notes Phys. 739, 681 Optimization Techniques for the Hitachi SR8000 architecture. In: A. Bode (Ed.) : High Performance Computing

Fiebig, Peter

288

Studying Code Development for High Performance Computing: The HPCS Program  

E-Print Network (OSTI)

Studying Code Development for High Performance Computing: The HPCS Program Jeff Carver1 , Sima at measuring the development time for programs written for high performance computers (HPC). Our goal. Introduction The development of High-Performance Computing (HPC) programs (codes) is crucial to progress

Basili, Victor R.

289

High-performance Electrochemical Capacitors - Energy ...  

... metal oxides on the high-surface-area walls of carbon nanofoam papers (0 ... Pairing MnOxcarbon nanofoam with FeOxcarbon nanofoam yields an energy ...

290

Available Technologies: Novel High-Performance Scintillators ...  

Oil exploration ; X-ray detection; ADVANTAGES: Extremely high light yield (80,000+ photons/MeV) ... (full width half maximum of the 662 keV absorption ...

291

High Performance Windows Volume Purchase: For Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and mixed climates, R-5 windows on average reduce window heat loss by 40% and overall space conditioning costs by 10% relative to common ENERGY STAR windows. Promotion of high...

292

Commodity High Performance Computing at Commodity Prices  

E-Print Network (OSTI)

The entry price of supercomputing has traditionally been very high. As processing elements, operating systems, and switch technology become cheap commodity parts, building a powerful supercomputer at a fraction of the price of a proprietary system becomes realistic.

Simon Cox Denis; Simon J. Cox; Denis A. Nicole; Kenji Takeda

1998-01-01T23:59:59.000Z

293

PERFORMANCE ASSESSMENT 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009  

E-Print Network (OSTI)

PERFORMANCE ASSESSMENT 2009 EPA WIPP RECERTIFICATION FACT SHEET United States Environmental Protection Agency | Office of Air and Radiation (6608J) | June 2009 http://www.epa.gov/radiation/wipp the Waste Isolation Pilot Plant (WIPP) to the accessible environment over a 10,000-year period. The WIPP PA

294

High Performance Green LEDs by Homoepitaxial  

SciTech Connect

This work's objective was the development of processes to double or triple the light output power from green and deep green (525 - 555 nm) AlGaInN light emitting diode (LED) dies within 3 years in reference to the Lumileds Luxeon II. The project paid particular effort to all aspects of the internal generation efficiency of light. LEDs in this spectral region show the highest potential for significant performance boosts and enable the realization of phosphor-free white LEDs comprised by red-green-blue LED modules. Such modules will perform at and outperform the efficacy target projections for white-light LED systems in the Department of Energy's accelerated roadmap of the SSL initiative.

Wetzel, Christian; Schubert, E Fred

2009-11-22T23:59:59.000Z

295

High intensity performance of the Brookhaven AGS  

SciTech Connect

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

296

High-performance data centers: A research roadmap  

E-Print Network (OSTI)

power supply (UPS) electricity consumption. The AEC analyses found that the office and telecommunications

Tschudi, William; Xu, Tengfang; Sartor, Dale; Stein, Jay

2004-01-01T23:59:59.000Z

297

May 28, 2007 Middleware in Modern High Performance Computing System Architectures 1/20 Middleware in Modern High Performance  

E-Print Network (OSTI)

May 28, 2007 Middleware in Modern High Performance Computing System Architectures 1/20 Middleware in Modern High Performance Computing System Architectures Christian Engelmann1,2, Hong Ong1, Stephen L 28, 2007 Middleware in Modern High Performance Computing System Architectures 2/20 Talk Outline

Engelmann, Christian

298

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

299

High-performance commercial building facades  

SciTech Connect

This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

2002-06-01T23:59:59.000Z

300

Federal Energy Management Program: High-Performance Sustainable Building  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance High-Performance Sustainable Building Design for New Construction and Major Renovations to someone by E-mail Share Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Facebook Tweet about Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Twitter Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Google Bookmark Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Delicious Rank Federal Energy Management Program: High-Performance Sustainable Building Design for New Construction and Major Renovations on Digg

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HIGH INTENSITY PERFORMANCE OF THE BROOKHAVEN AGS.  

SciTech Connect

The Brookhaven AGS provides 24 GeV protons for a multi-user program of fixed-target high energy physics experiments, such as the study of extremely rare Kaon decays. Up to 7 x 10{sup 13} protons are slowly extracted over 2.2 seconds each 5.1 seconds. The muon storage ring of the g-2 experiment is supplied with bunches of 7 x 10{sup 12} protons. Since the completion of the a 1.9 GeV Booster synchrotron and installation of a new high-power rf system and transition jump system in the AGS various modes of operation have been explored to overcome space charge limits and beam instabilities at these extreme beam intensities. Experiments have been done using barrier cavities to enable accumulation of debunched beam in the AGS as a potential path to significantly higher intensities. We report on the present understanding of intensity limitations and prospects for overcoming them.

AHRENS,L.A.; ALESSI,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.; GARDNER,C.; GLENN,J.W.; ROSER,T.; SMITH,K.S.; VAN ASSELT,W.; ZHANG,S.Y.

1999-03-29T23:59:59.000Z

302

North Texas Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

North Texas Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School...

303

UTPA Regional High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Texas Regions UTPA Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High...

304

High Performance Thermal Interface Technology Overview  

E-Print Network (OSTI)

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

305

Toward a new metric for ranking high performance computing systems.  

SciTech Connect

The High Performance Linpack (HPL), or Top 500, benchmark [1] is the most widely recognized and discussed metric for ranking high performance computing systems. However, HPL is increasingly unreliable as a true measure of system performance for a growing collection of important science and engineering applications. In this paper we describe a new high performance conjugate gradient (HPCG) benchmark. HPCG is composed of computations and data access patterns more commonly found in applications. Using HPCG we strive for a better correlation to real scientific application performance and expect to drive computer system design and implementation in directions that will better impact performance improvement.

Heroux, Michael Allen; Dongarra, Jack. [University of Tennessee, Knoxville, TN

2013-06-01T23:59:59.000Z

306

Video performance for high security applications.  

Science Conference Proceedings (OSTI)

The complexity of physical protection systems has increased to address modern threats to national security and emerging commercial technologies. A key element of modern physical protection systems is the data presented to the human operator used for rapid determination of the cause of an alarm, whether false (e.g., caused by an animal, debris, etc.) or real (e.g., a human adversary). Alarm assessment, the human validation of a sensor alarm, primarily relies on imaging technologies and video systems. Developing measures of effectiveness (MOE) that drive the design or evaluation of a video system or technology becomes a challenge, given the subjectivity of the application (e.g., alarm assessment). Sandia National Laboratories has conducted empirical analysis using field test data and mathematical models such as binomial distribution and Johnson target transfer functions to develop MOEs for video system technologies. Depending on the technology, the task of the security operator and the distance to the target, the Probability of Assessment (PAs) can be determined as a function of a variety of conditions or assumptions. PAs used as an MOE allows the systems engineer to conduct trade studies, make informed design decisions, or evaluate new higher-risk technologies. This paper outlines general video system design trade-offs, discusses ways video can be used to increase system performance and lists MOEs for video systems used in subjective applications such as alarm assessment.

Connell, Jack C.; Norman, Bradley C.

2010-06-01T23:59:59.000Z

307

Low Cost, High Performance, 50-year Electrode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

this ARPA-E project, Primus Power will develop an this ARPA-E project, Primus Power will develop an extremely durable, highly active, conductive, and inexpensive electrode for flow batteries. Flow batteries offer one of the most exciting opportunities for affordable grid storage, however electrodes are costly and are the single largest cost component in a well integrated design. Grid storage can yield numerous benefits in utility and customer- owned applications:  renewable firming  peak load reduction  load shifting  capital deferral  frequency regulation By incorporating volume production practices from the chlorine, filter media, and electroplating industries, Primus Power will effectively reduce electrode costs to exceed GRIDS cost targets while providing the durability essential for widespread grid-scale adoption.

308

BPA Regional Science Bowl - High School Edition | U.S. DOE Office...  

Office of Science (SC) Website

Oregon Regions BPA Regional Science Bowl - High School Edition National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches High School...

309

Redding Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

California Regions Redding Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School...

310

Florida Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Florida Regions Florida Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

311

Compiler-based Memory Optimizations for High Performance Computing Systems.  

E-Print Network (OSTI)

??Parallelism has always been the primary method to achieve higher performance. To advance the computational capabilities of state-of-the-art high performance computing systems, we continue to (more)

Kultursay, Emre

2013-01-01T23:59:59.000Z

312

Field Offices | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Offices Field Offices About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Field Offices Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science is accountable for the effective stewardship and management of ten world class laboratories, and employs a performance based management and operating contract model to achieve these objectives. Each Office of Science Site Office oversees the operation of their respective laboratory: Ames Site Office (AMSO) Argonne Site Office (ASO) Berkeley Site Office (BSO)

313

High Performance Windows Volume Purchase: Presentations for Past Events and  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations for Past Events and Webinars to someone by E-mail Share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Facebook Tweet about High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Twitter Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Google Bookmark High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Delicious Rank High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on Digg Find More places to share High Performance Windows Volume Purchase: Presentations for Past Events and Webinars on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers

314

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

315

High Performance Windows Volume Purchase: For Light Commercial Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

316

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

317

High Performance Windows Volume Purchase: For Residential Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buyers to someone by E-mail Residential Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Residential Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Residential Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Google Bookmark High Performance Windows Volume Purchase: For Residential Buyers on Delicious Rank High Performance Windows Volume Purchase: For Residential Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Residential Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Residential Buyers Both home owners and buyers can take advantage of the energy savings from

318

Offices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offices Offices Offices All Offices Program Offices Advanced Research Projects Agency - Energy Loan Programs Office Office of Electricity Delivery & Energy Reliability Office of Energy Efficiency & Renewable Energy Office of Environmental Management Office of Fossil Energy Office of Indian Energy Policy and Programs Office of Legacy Management Office of Nuclear Energy Office of Science Staff Offices Office of Congressional and Intergovernmental Affairs Office of Economic Impact and Diversity Office of Energy Policy and Systems Analysis Office of Health, Safety and Security Office of Hearings and Appeals Office of Inspector General Office of Intelligence and Counterintelligence Office of Management Office of NEPA Policy and Compliance Office of Policy and International Affairs

319

High Performance Builder Spotlight: Green Coast Enterprises - New Orleans,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Builder Spotlight: Green Coast Enterprises - New High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. green_coast_enterprises.pdf More Documents & Publications High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact Sheet), Integrated Deployment: Disaster Recovery (ID) Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact

320

High Performance Photovoltaic Project: Identifying Critical Paths; Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: Describes recent research accomplishments in in-house and subcontracted work in the High-Performance PV Project.

Symko-Davies, M.; Zweibel, K.; Benner, J.; Sheldon, P.; Noufi, R.; Kurtz, S.; Coutts, T.; Hulstrom, R.

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Argonne CNM Highlight: High-Performance Nano-Bio Photocatalyst...  

NLE Websites -- All DOE Office Websites (Extended Search)

A High-Performance Nano-Bio Photocatalyst for Targeted Brain Cancer Therapy Nano-Bio Photocatalyst for Targeted Brain Cancer Therapy Scientists from the CNM's Nanobio Interfaces...

322

NREL: News - NREL Selects Partners for New High Performance Computer...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling to accelerate innovation in more efficient use of energy critical for achieving exascale performance by end of the decade," Stephen Wheat, general manager of High...

323

Making The Business Case For High Performance Green Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Making The Business Case For High Performance Green Buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings...

324

Effect of memory access and caching on high performance computing.  

E-Print Network (OSTI)

??High-performance computing is often limited by memory access. As speeds increase, processors are often waiting on data transfers to and from memory. Classic memory controllers (more)

Groening, James

2012-01-01T23:59:59.000Z

325

NREL: Computational Science - High-Performance Computing Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Computing Capabilities The Computational Science Center carries out research using computers as the primary tool of investigation. The Center focuses on supporting...

326

Use of high performance computing in neutronics analysis activities  

NLE Websites -- All DOE Office Websites (Extended Search)

high performance computing in neutronics analysis activities M.A. Smith Argonne National Laboratory 9700 South Cass Avenue, Argonne Illinois 60439, USA Abstract Reactor design is...

327

High Performance Computing Systems Integration, HPC-5: HPC: LANL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fax: 664-0172 MS B272 Latest in cluster technologies New technology in High Performance Computing and Simulation HPC-5 provides advanced research, development, testing, and...

328

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization  

E-Print Network (OSTI)

64 _____________________________________Math & Computational Sciences Division High Performance Computing and Visualization Research and Development in Visual Analysis Judith Devaney Terrence Griffin John

Perkins, Richard A.

329

Homepage: Computing Operations & Support, HPC-2: High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Home SERVICES PRODUCTS Data Storage ES&H Management and Support High Performance Computing Operations Procurement Computer Support CONTACTS Group Leader (Acting) Cindy Martin...

330

Application of High Performance Computing to the DOE Joint Genomic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of High Performance Computing to the DOE Joint Genomic Institute's Data Challenges January 25-26, 2010 DOE Joint Genome Institute, Walnut Creek, CA USA -by invitation...

331

In the OSTI Collections: High-Performance Computing | OSTI, US...  

Office of Scientific and Technical Information (OSTI)

Sandia National Laboratories in the report "Toward a New Metric for Ranking High Performance Computing Systems" SciTech Connect, which describes a new benchmark that represents...

332

Net-Zero Energy, High-Performance Buildings Program  

Science Conference Proceedings (OSTI)

Net-Zero Energy, High-Performance Buildings Program. ... NIST completed design and construction of Net-Zero Energy Residential Test Facility; ...

2013-05-03T23:59:59.000Z

333

Durham County - High-Performance Building Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

334

Microbenchmark Performance Comparison of High-Speed Cluster Interconnects  

Science Conference Proceedings (OSTI)

High-speed cluster interconnects Myrinet, Quadrics, and InfiniBand achieve low latency and high bandwidth with low host overhead. However, they show quite different performance behaviors when handling communication buffer reuse patterns.

Jiuxing Liu; Balasubramanian Chandrasekaran; Weikuan Yu; Jiesheng Wu; Darius Buntinas; Sushmitha Kini; Dhabaleswar K. Panda; Pete Wyckoff

2004-01-01T23:59:59.000Z

335

A generic high-performance method for deinterleaving scientific data  

Science Conference Proceedings (OSTI)

High-performance and energy-efficient data management applications are a necessity for HPC systems due to the extreme scale of data produced by high fidelity scientific simulations that these systems support. Data layout in memory hugely impacts the ...

Eric R. Schendel, Steve Harenberg, Houjun Tang, Venkatram Vishwanath, Michael E. Papka, Nagiza F. Samatova

2013-08-01T23:59:59.000Z

336

Inspection of Emergency Management of the Idaho Operations Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Management of the Idaho Operations Office and Idaho National Engineering and Environmental Laboratory Office of Independent Oversight and Performance Assurance Office of the...

337

Impact of Data Assimilation on Forecasting Convection over the United Kingdom Using a High-Resolution Version of the Met Office Unified Model  

Science Conference Proceedings (OSTI)

A high-resolution data assimilation system has been implemented and tested within a 4-km grid length version of the Met Office Unified Model (UM). A variational analysis scheme is used to correct larger scales using conventional observation ...

Mark Dixon; Zhihong Li; Humphrey Lean; Nigel Roberts; Sue Ballard

2009-05-01T23:59:59.000Z

338

Badge Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Badge Office Badge Office Badge Office The central point where badges are issued to employees and official visitors. Contact Badge Office (505) 667-6901 Email Badge Office location As the central point where badges are issued to employees and official visitors, the Badge Office is located on the second floor of the Otowi Building (TA-3, Bldg. 261). Badge Office map Printable 2-page map to the Badge Office (pdf) More maps and directions Badge Office hours Monday-Friday: 7:30 am - 4 pm Wednesday: Closed 11 am - 12:30 pm Badge requirements US citizen employees must present a photo ID and proof of US citizenship. See Security Smart on Proof of United States Citizenship for the Badge Office (pdf). Foreign national guests and employees must have an approved visit and present a valid passport and documentation of US legal status and work

339

Office of Federal and State Materials and Environmental Management Programs (FSME) Procedure Approval Reviewing the Non-Common Performance Indicator,  

E-Print Network (OSTI)

This procedure was first issued by the former Office of State and Tribal Programs. As of October 1, 2006, any changes to the procedure will be the responsibility of the FSME Procedure Contact. Copies of FSME procedures will be available through the NRC website. Procedure Title: Reviewing the Non-Common

Robert Lewis; A. Duncan White; Janine F. Katanic

2010-01-01T23:59:59.000Z

340

Towards green computing using diskless high performance clusters  

Science Conference Proceedings (OSTI)

In recent years, significant research has been conducted to boost the performance and increase the reliability of high performance computing (HPC) clusters. As the number of compute nodes in modern HPC clusters continues to grow, it is critical to design ... Keywords: Linux, cluster computing and architecture, green computing, performance evaluation

K. Salah; R. Al-Shaikh; M. Sindi

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Grid-Controlled Lightpaths for High Performance Grid Applications  

E-Print Network (OSTI)

be shared among users and easily integrated with data and computation Grids. Keywords: network support for a data Grid supported by a high-performance network. Another concern in deploying Grids over the InternetGrid-Controlled Lightpaths for High Performance Grid Applications Raouf Boutaba, Wojciech Golab

Boutaba, Raouf

342

Principles of energy efficiency in high performance computing  

Science Conference Proceedings (OSTI)

High Performance Computing (HPC) is a key technology for modern researchers enabling scientific advances through simulation where experiments are either technically impossible or financially not feasible to conduct and theory is not applicable. However, ... Keywords: HPC, PUE, energy efficiency, high performance computing, power usage effectiveness

Axel Auweter; Arndt Bode; Matthias Brehm; Herbert Huber; Dieter Kranzlmller

2011-08-01T23:59:59.000Z

343

LinBox and future high performance computer algebra  

Science Conference Proceedings (OSTI)

Computer chip design is entering an era in which further increases in computational power will come by increased on-chip parallelism through multi-core architectures rather than by increasing clock speed. If high performance computer algebra tools are ... Keywords: high performance, multi-core, parallel computation

Bruce W. Char; B. David Saunders; Bryan Youse

2007-07-01T23:59:59.000Z

344

Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems  

Science Conference Proceedings (OSTI)

The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. ... Keywords: FPGA-based coprocessors, application acceleration, bioinformatics, biological sequence alignment, high performance reconfigurable computing

Matt Chiu; Martin C. Herbordt

2010-11-01T23:59:59.000Z

345

High-performance Computing in China: Research and Applications  

Science Conference Proceedings (OSTI)

In this report we review the history of high-performance computing (HPC) system development and applications in China and describe the current status of major government programs, HPC centers and facilities, major research institutions, important HPC ... Keywords: China, High performance computing, research and applications

Ninghui Sun; David Kahaner; Debbie Chen

2010-11-01T23:59:59.000Z

346

High-performance verification of large concurrent systems  

E-Print Network (OSTI)

High-performance verification of large concurrent systems Elbie taKrpska Ph.D. Thesis VU University Systems Ph.D. Thesis Elzbieta Krepska VU University Amsterdam, 2012 #12;This research was funded by the VU. #12;VRIJE UNIVERSITEIT TOWARDS BIG BIOLOGY: HIGH-PERFORMANCE VERIFICATION OF LARGE CONCURRENT SYSTEMS

Bal, Henri E.

347

Optimization of high-performance superscalar architectures for energy efficiency  

Science Conference Proceedings (OSTI)

In recent years reducing power has become a critical design goal for high-performance microprocessors. This work attempts to bring the power issue to the earliest phase of high-performance microprocessor development. We propose a methodology for power-optimization ...

V. Zyuban; P. Kogge

2000-08-01T23:59:59.000Z

348

Howard County - High Performance and Green Building Property Tax Credits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard County - High Performance and Green Building Property Tax Howard County - High Performance and Green Building Property Tax Credits Howard County - High Performance and Green Building Property Tax Credits < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate High Performance Buildings: none specified High Performance R-2, R-3 Buildings: $5,000 per building or owner-occupied unit Green Buildings (w/energy conservation devices): limited to assessed property taxes on the structure Program Info Start Date 07/01/2008 State Maryland

349

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2011 1, 2011 CX-005085: Categorical Exclusion Determination California-City-Cathedral City CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 01/21/2011 Location(s): Cathedral City, California Office(s): Energy Efficiency and Renewable Energy January 21, 2011 CX-005071: Categorical Exclusion Determination Vehicle Test Location at Bone Yard CX(s) Applied: A9, B3.6, B5.1 Date: 01/21/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office January 21, 2011 CX-005066: Categorical Exclusion Determination Development of a High Performance Cold Climate Heat Pump CX(s) Applied: B3.6 Date: 01/21/2011 Location(s): West Lafayette, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 21, 2011

350

Energy based performance tuning for large scale high performance computing systems  

Science Conference Proceedings (OSTI)

Recognition of the importance of power in the field of High Performance Computing, whether it be as an obstacle, expense or design consideration, has never been greater and more pervasive. In response to this challenge, we exploit the unique power measurement ... Keywords: energy efficiency, frequency scaling, high performance computing (HPC), power

James H. Laros, III; Kevin T. Pedretti; Suzanne M. Kelly; Wei Shu; Courtenay T. Vaughan

2012-03-01T23:59:59.000Z

351

Guiding Principles for Federal Leadership in High-Performance and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guiding Principles for Federal Leadership in High-Performance and Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings Guiding Principles for Federal Leadership in High-Performance and Sustainable Buildings October 4, 2013 - 4:49pm Addthis The Federal Energy Management Program (FEMP) provides guidance and assistance for compliance with the guiding principles established by the 2006 Federal Leadership in High-Performance and Sustainable Buildings Memorandum of Understanding (MOU), which became mandatory through Executive Order (E.O.) 13423 and reinforced in E.O. 13514. The common set of guiding principles include those for: Integrated design Energy performance Water conservation Materials to help: Reduce the total ownership cost of facilities Improve energy efficiency and water conservation

352

High Performance Computing at TJNAF| U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

353

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

354

Rebuilding It Better: Greensburg, Kansas, High Performance Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, High Performance Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 53539.pdf More Documents & Publications From Tragedy to Triumph: Rebuilding Greensburg, Kansas To Be a 100% Renewable Energy City: Preprint Rebuilding It Better; BTI-Greensburg, John Deere Dealership (Brochure) (Revised) Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;

355

Evaluation of GPFS Connectivity Over High-Performance Networks  

Science Conference Proceedings (OSTI)

We present the results of an evaluation of new features of the latest release of IBM's GPFS filesystem (v3.2). We investigate different ways of connecting to a high-performance GPFS filesystem from a remote cluster using Infiniband (IB) and 10 Gigabit Ethernet. We also examine the performance of the GPFS filesystem with both serial and parallel I/O. Finally, we also present our recommendations for effective ways of utilizing high-bandwidth networks for high-performance I/O to parallel file systems.

Srinivasan, Jay; Canon, Shane; Andrews, Matthew

2009-02-17T23:59:59.000Z

356

Standards Coordination Office Homepage  

Science Conference Proceedings (OSTI)

Standards Coordination Office. ... About the Standards Coordination Office (SCO). The Standards Coordination Office of the ...

2013-07-31T23:59:59.000Z

357

DOE NEPA Compliance Officers  

Energy.gov (U.S. Department of Energy (DOE))

NEPA Compliance Officers are listed first for Program Offices, then Power Marketing Administrations, then Field Offices.

358

Vehicle Technologies Office: ACEM Instrument Achieves Significant  

NLE Websites -- All DOE Office Websites (Extended Search)

ACEM Instrument Achieves ACEM Instrument Achieves Significant Performance Milestone to someone by E-mail Share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Facebook Tweet about Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Twitter Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Google Bookmark Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Delicious Rank Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on Digg Find More places to share Vehicle Technologies Office: ACEM Instrument Achieves Significant Performance Milestone on AddThis.com... ACEM Instrument Achieves Significant Performance Milestone

359

High Impact Performance Incentive Grant (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Performance Incentive Grant (Florida) Impact Performance Incentive Grant (Florida) High Impact Performance Incentive Grant (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Grant Program Provider Enterprise Florida The High Impact Performance Incentive Grant (HIPI) is a negotiated grant used to attract and grow major high impact facilities in Florida. Grants are provided to pre-approved applicants in certain high-impact sectors such as clean energy. Projects must create at least 50 new full-time jobs in a three-year period, and make a cumulative investment in the state of at least $50 million in a three year period. The business can be granted 50%

360

High Performance Green Schools Planning Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants High Performance Green Schools Planning Grants < Back Eligibility Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Pennsylvania Program Type State Grant Program Rebate Amount Determined on a case-by-case basis Provider Governor's Green Government Council The Governor's Green Government Council of Pennsylvania provides an incentive for new schools to be built according to green building standards. High Performance Green Schools Planning Grants are designed to cover a portion of the "soft" costs of designing a green building that are

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Building Standards in State Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

362

Improving Real World Efficiency of High Performance Buildings  

E-Print Network (OSTI)

Improving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings efficiency in highperformance buildings, however, are not always realized in practice. Addressing

363

High Performance Building Standards in New State Construction  

Energy.gov (U.S. Department of Energy (DOE))

In January 2008, New Jersey enacted legislation mandating the use of high performance green building standards in new state construction. The standard requires that new buildings larger than 15...

364

Littles law and high performance computing  

E-Print Network (OSTI)

This note discuses Littles law and relates the form cited in queuing theory with a form often cited in the field of high performance computing. A rigorous mathematical proof of Littles law is included.

David H. Bailey

1997-01-01T23:59:59.000Z

365

Montgomery County- High Performance Building Property Tax Credit  

Energy.gov (U.S. Department of Energy (DOE))

The state of Maryland permits local governments (Md Code: Property Tax 9-242) to offer property tax credits for high performance buildings if they choose to do so. Montgomery County has...

366

The Extreme Benchmark Suite : measuring high-performance embedded systems  

E-Print Network (OSTI)

The Extreme Benchmark Suite (XBS) is designed to support performance measurement of highly parallel "extreme" processors, many of which are designed to replace custom hardware implementations. XBS is designed to avoid many ...

Gerding, Steven (Steven Bradley)

2005-01-01T23:59:59.000Z

367

Mercury: Enabling Remote Procedure Call for High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

of High-Performance Computing (HPC), allows the execution of routines to be delegated to remote nodes, which can be set aside and dedicated to specific tasks. However, existing...

368

Los Alamos Lab: High-Performance Computing: Cielo supercomputer  

NLE Websites -- All DOE Office Websites (Extended Search)

ADTSC: High Performance Computing, HPC Home About Us Cielo CCC5 Call CCC Template (.doc) ASC Program Links ASC Headquarters ASC LANL ASC LLNL ASC Sandia Cielo Project Contacts...

369

Los Alamos Lab: High-Performance Computing: Roadrunner  

NLE Websites -- All DOE Office Websites (Extended Search)

ron unne r reta LANL has always been an early adopter of transformational high performance computing (HPC) technology. For example, in the 1970s when HPC was scalar; LANL...

370

High Performance Flow Simulations on Graphics Processing Units  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Flow Simulations on Graphics Processing Units Speaker(s): Wangda Zuo Date: June 17, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Michael Wetter...

371

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network (OSTI)

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, Franois-Xavier

2009-01-01T23:59:59.000Z

372

Humanities and High Performance Computers Connect at NERSC -...  

NLE Websites -- All DOE Office Websites (Extended Search)

or translated into English, which may have been influenced by the classics. "High performance computing really allows us to ask questions on a scale that we haven't been able to...

373

A HIGH PERFORMANCE/LOW COST ACCELERATOR CONTROL SYSTEM  

E-Print Network (OSTI)

LOW COST ACCELERATOR CONTROL SYSTEM S. Hagyary, J. Glat H.LOW COST ACCELERATOR CONTROL SYSTEM S. Magyary, J. Glatz, H.a high performance computer control system tailored to the

Magyary, S.

2010-01-01T23:59:59.000Z

374

High Performance Windows Volume Purchase: Subscribe to Windows...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Windows Volume Purchase Event News and Updates to someone by E-mail Share High Performance Windows Volume Purchase: Subscribe to Windows Volume Purchase Event News and...

375

New Jersey Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Jersey Regions » New Jersey Regional High Jersey Regions » New Jersey Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Jersey Regions New Jersey Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Please Note: All slots for the High School Science Bowl have been filled. Any team registering after December 17, 2013, will be placed on the wait-list. Should a school drop out of the competition, a new team will be

376

Low cost high performance generator technology program. Addendum report  

DOE Green Energy (OSTI)

The results of a system weight, efficiency, and size analysis which was performed on the 500 W(e) low cost high performance generator (LCHPG) are presented. The analysis was performed in an attempt to improve system efficiency and specific power over those presented in June 1975, System Design Study Report TES-SNSO-3-25. Heat source volume, configuration, and safety as related to the 500 W(e) LCHPG are also discussed. (RCK)

Not Available

1975-09-01T23:59:59.000Z

377

Energy Design Guidelines for High Performance Schools: Tropical Island Climates  

SciTech Connect

The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

378

Dependable high performance computing on a parallel sysplex cluster  

E-Print Network (OSTI)

Abstract In this paper we address the issue of dependable distributed high performance computing in the field of Symbolic Computation. We describe the extension of a middleware infrastructure designed for high performance computing with efficient checkpointing mechanisms. As target platform an IBM Parallel Sysplex Cluster is used. We consider the satisfiability checking problem for boolean formulae as an example application from the realm of Symbolic Computation. Time measurements for an implementation of this application on top of the described system environment are given.

Wolfgang Blochinger

2000-01-01T23:59:59.000Z

379

Complex version of high performance computing LINPACK benchmark (HPL)  

Science Conference Proceedings (OSTI)

This paper describes our effort to enhance the performance of the AORSA fusion energy simulation program through the use of high-performance LINPACK (HPL) benchmark, commonly used in ranking the top 500 supercomputers. The algorithm used by HPL, enhanced ... Keywords: HPL, parallel dense solver

R. F. Barrett; T. H. F. Chan; E. F. D'Azevedo; E. F. Jaeger; K. Wong; R. Y. Wong

2010-04-01T23:59:59.000Z

380

High School Coaches | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Coaches Coaches National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Coaches Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome High School Coaches Team Registrations Are Open Please click "High School Regionals" on the menu to the left. Click To Return To Your Registration External link Listed below is all the information you need to lead a team to success in the National Science Bowl. Be sure to read the rules and other very helpful

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

JPL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

JPL Regional High School JPL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions JPL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kimberly Lievense Email: Klievense@jpl.nasa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 1

382

UIC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UIC Regional High School UIC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Illinois Regions UIC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Ramirez Email: chicago.regional.science.bowl@gmail.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

383

Alabama High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alabama Regions » Alabama High School Science Alabama Regions » Alabama High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alabama Regions Alabama High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Pamela Quintana Email: pquintana@asms.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

384

PNNL Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

PNNL Regional High School PNNL Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions PNNL Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Beth Perry Email: bethperry13@msn.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 3

385

Arizona Regional High Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Arizona Regions » Arizona Regional High Arizona Regions » Arizona Regional High Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Arizona Regions Arizona Regional High Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Castle Catherine Email: ccastle@wapa.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

386

Alaska Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Alaska Regions » Alaska Regional High School Alaska Regions » Alaska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Alaska Regions Alaska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Cindy Carl Email: WellnessWorks_4u2@yahoo.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 12

387

SHPE NYC Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

SHPE NYC Regional High SHPE NYC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions SHPE NYC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dora Maria Abreu Email: Doramaria@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 3

388

Arkansas Regional High Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Arkansas Regions » Arkansas Regional High Arkansas Regions » Arkansas Regional High Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Arkansas Regions Arkansas Regional High Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: David Burkey Email: david.burkey@uafs.edu Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 16

389

LADWP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

LADWP Regional High LADWP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions LADWP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Walter Zeisl Email: walter.zeisl@ladwp.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 55 Maximum Number of Teams per School: 2

390

Kern County Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Kern County Regional High Kern County Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Meyer Email: tmeyer@csub.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

391

DC Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DC Regions » DC Regional High DC Regions » DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington DC Regions DC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jamie T. Scipio Email: jamie.scipio@hq.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 12

392

San Diego Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Diego Regional High San Diego Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ronald Lewis Email: sandiegonobcche@earthlink.net Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

393

Sacramento Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Sacramento Regional High Sacramento Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anita Wiley Email: wiley@wapa.gov Regional Event Information Date: March 1, 2014 Maximum Number of Teams: 26 Maximum Number of Teams per School: 2

394

Modesto Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Modesto Regional High Modesto Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Modesto Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Mike Zweifel Email: mikez@mid.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24 Maximum Number of Teams per School: 2

395

Tennessee Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Tennessee Regions » Tennessee Regional High Tennessee Regions » Tennessee Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Tennessee Regions Tennessee Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Martha Hammond Email: Martha.Hammond@orau.org Additional Contact: Name: Marolyn Randolph Email: Marolyn.Randolph@orau.org

396

SWPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pennsylvania Regions » SWPA Regional High Pennsylvania Regions » SWPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Pennsylvania Regions SWPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lilas Soukup Email: lilas.soukup@netl.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 48

397

North Texas Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

North Texas Regional High North Texas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions North Texas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rommel Alonzo Email: rommel.alonzo@mavs.uta.edu Regional Event Information Date: Saturday, February 15, 2014 Maximum Number of Teams: 12

398

Pantex Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Pantex Regional High School Pantex Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Debra Halliday Email: dhallida@pantex.com Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 40 Maximum Number of Teams per School: 3

399

UTPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

UTPA Regional High School UTPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions UTPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Joel Ruiz Email: jruiz@utpa.edu Additional Contacts: Name: Jessica Salinas Email: lopezj@utpa.edu Name: Karen Dorado Email: kadorado@utpa.edu Regional Event Information

400

Wisconsin Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wisconsin Regions » Wisconsin Regional High Wisconsin Regions » Wisconsin Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wisconsin Regions Wisconsin Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julie Schuster Email: schuster@msoe.edu Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Michigan Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Michigan Regions » Michigan Regional High Michigan Regions » Michigan Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Michigan Regions Michigan Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Andrew Chubb Email: achubb@svsu.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 15

402

High School Rules, Forms, and Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Resources National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals High School Rules, Forms, and Resources Print Text Size: A A A RSS Feeds FeedbackShare Page The following are resources for high school teams of the National Science Bowl. 2014 Official National Science Bowl Rules .pdf file (517KB)

403

Nevada Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nevada Regions » Nevada Regional High School Nevada Regions » Nevada Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nevada Regions Nevada Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Daniel Burns Email: burnsdb@nv.doe.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

404

BPA Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Oregon Regions » BPA Regional High School Oregon Regions » BPA Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oregon Regions BPA Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Christy Adams Email: cfadams@bpa.gov Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 64 Maximum Number of Teams per School: 3

405

NOBCChE Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

NOBCChE Regional High NOBCChE Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions NOBCChE Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Thomas Whitt Email: twhitt523@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 10 Maximum Number of Teams per School: 2

406

Maryland Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Maryland Regions » Maryland Regional High Maryland Regions » Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maryland Regions Maryland Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Mehalick Email: michael.mehalick@montgomerycollege.edu Regional Event Information Date: Saturday, January 18, 2014

407

Maine Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Maine Regions » Maine Regional High School Maine Regions » Maine Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Maine Regions Maine Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Rob Sanford Email: rsanford@usm.maine.edu Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 20

408

West Kentucky Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Kentucky Regions » West Kentucky Regional High Kentucky Regions » West Kentucky Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kentucky Regions West Kentucky Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Robert Smith Email: robert.smith@lex.doe.gov Additional Contact: Name: Donald Dihel Email: don.dihel@lex.doe.gov

409

San Antonio Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

San Antonio Regional High San Antonio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bobby Blount Email: bb@mitre.org Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 35 Maximum Number of Teams per School: 3

410

Indiana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Indiana Regions » Indiana Regional High School Indiana Regions » Indiana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Indiana Regions Indiana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Bala Dhungana Email: bkrishnad@hotmail.com Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 10

411

Kansas Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Kansas Regions » Kansas Regional High School Kansas Regions » Kansas Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Kansas Regions Kansas Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32 Maximum Number of Teams per School: 3

412

Iowa Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Iowa Regions » Iowa Regional High School Iowa Regions » Iowa Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Iowa Regions Iowa Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steve Karsjen Email: karsjen@ameslab.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 40

413

Nebraska Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Nebraska Regions » Nebraska Regional High Nebraska Regions » Nebraska Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Nebraska Regions Nebraska Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Todd Young Email: toyoung1@wsc.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 40

414

Graduate Fellows in High Energy Theory | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Graduate Fellows in High Energy Theory Graduate Fellows in High Energy Theory High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Merit / Review Policies Early Career Research Opportunities in High Energy Physics Graduate Fellows in High Energy Theory Guidelines Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » Funding Opportunities Graduate Fellows in High Energy Theory Print Text Size: A A A RSS Feeds FeedbackShare Page DOE High Energy Physics Graduate Fellowship in Theory

415

High School Regionals | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Regionals Regionals National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School High School Regionals Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Team Registration For more information, please visit the High School Coach page. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

416

Redding Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Redding Regional High Redding Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Redding Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Matt Madison Email: mmadison@reupower.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 28 Maximum Number of Teams per School: 3

417

Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Montana Regions » Montana Regional High School Montana Regions » Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Montana Regions Montana Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Josie Daggett Email: daggett@wapa.gov Regional Event Information Date: Saturday, March 8, 2014 Maximum Number of Teams: 30

418

SLAC Regional High School Science Bowl| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

SLAC Regional High School SLAC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Farah Rahbar Email: farah.rahbar@slac.stanford.edu Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 18

419

Virginia Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Virginia Regions » Virginia Regional High Virginia Regions » Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Virginia Regions Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jan Tyler Email: tyler@jlab.org Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 23

420

Missouri Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Missouri Regions » Missouri Regional High Missouri Regions » Missouri Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Missouri Regions Missouri Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Myra Everette Email: meverette@kcp.com Regional Event Information Date: February 1, 2014 Maximum Number of Teams: 32

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions » Georgia Regional High School Georgia Regions » Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 72

422

Florida Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Florida Regions » Florida Regional High School Florida Regions » Florida Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Florida Regions Florida Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Michael Chiang Email: michaelraymondchiang@gmail.com Regional Event Information Date: Saturday, February 8, 2014 Maximum Number of Teams: 24

423

Colorado Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Colorado Region » Colorado Regional High Colorado Region » Colorado Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Colorado Region Colorado Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Linda Lung Email: linda.lung@nrel.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 48

424

Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Oklahoma Regions » Oklahoma Regional High Oklahoma Regions » Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Oklahoma Regions Oklahoma Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gail Bliss Email: gnbliss@carnegienet.net Regional Event Information Date: Saturday, February 1, 2014 Maximum Number of Teams: 32

425

STEP Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

STEP Regional High School STEP Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions STEP Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Peter Macchia Email: mrmacchia@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

426

Minnesota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Minnesota Regions » Minnesota Regional High Minnesota Regions » Minnesota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Minnesota Regions Minnesota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Barbara Donoho Email: bdonoho@mnmas.org Regional Event Information Date: Friday, January 24, 2014 Maximum Number of Teams: 32

427

Inland Northwest Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Inland Northwest Regional Inland Northwest Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Washington Regions Inland Northwest Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kaye Kamp Email: kkamp@whitworth.edu Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 42

428

West Virginia Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

West Virginia Regions » West Virginia Regional West Virginia Regions » West Virginia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov West Virginia Regions West Virginia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kirk Gerdes Email: Kirk.Gerdes@NETL.DOE.GOV Regional Event Information Date: Saturday, February 1, 2014

429

U.S. Virgin Islands Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

U.S. Virgin Islands Regions » U.S. Virgin U.S. Virgin Islands Regions » U.S. Virgin Islands High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov U.S. Virgin Islands Regions U.S. Virgin Islands High School Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Gerald Walters Email: gwalters@sttj.k12.vi Regional Event Information

430

Savannah River Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » Savannah River Carolina Regions » Savannah River Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Carolina Regions Savannah River Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kim Mitchell Email: kimberly.mitchell@srs.gov Regional Event Information Date: Saturday, March 1, 2014

431

Puerto Rico Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Puerto Rico Regions » Puerto Rico Regional Puerto Rico Regions » Puerto Rico Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Puerto Rico Regions Puerto Rico Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Julienne Sanchez Email: julienne.sanchez@upr.edu Regional Event Information Date: Saturday, February 22, 2014

432

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

433

Mississippi Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Mississippi Regions » Mississippi Regional Mississippi Regions » Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Mississippi Regions Mississippi Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dionne Fortenberry Email: dfortenberry@as.muw.edu Regional Event Information Date: Friday, January 31, 2014

434

Northeast Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Massachusetts Regions » Northeast Regional Massachusetts Regions » Northeast Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Massachusetts Regions Northeast Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

435

Capital District Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Capital District Regional Capital District Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Capital District Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Dominic Fulgieri Email: dominic.fulgieri@unnpp.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 18

436

South Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Daktoa Regions » South Dakota Regional Daktoa Regions » South Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov South Daktoa Regions South Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Lesley Berg Email: lberg@wapa.gov Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 32

437

Connecticut Regional High School Science Bowl| U.S. DOE Office of Science  

Office of Science (SC) Website

Connecticut Regions » Connecticut Regional Connecticut Regions » Connecticut Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Connecticut Regions Connecticut Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Kevin McLaughlin Email: kjm@engr.uconn.edu Regional Event Information Date: Saturday, March 1, 2014

438

South Central Ohio Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

South Central Ohio Regional South Central Ohio Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions South Central Ohio Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Greg Simonton Email: greg.simonton@lex.doe.gov Regional Event Information Date: Friday, March 7, 2014 Maximum Number of Teams: 32

439

Greater Cincinnati Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Greater Cincinnati Regional Greater Cincinnati Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Ohio Regions Greater Cincinnati Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Betsy Volk Email: betsy.volk@emcbc.doe.gov Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 24

440

North Dakota Regional High School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Dakota Regions » North Dakota Regional Dakota Regions » North Dakota Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Dakota Regions North Dakota Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Tom Atkinson Phone: 701-221-4559 Email: tatkinson@wapa.gov Regional Event Information Date: Saturday, February 8, 2014

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

North Carolina Regional High School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Carolina Regions » North Carolina Carolina Regions » North Carolina Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov North Carolina Regions North Carolina Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Fredrick Johnson Email: fjohnson@nccu.edu Regional Event Information Date: Saturday, January 25, 2014

442

Nitrogen modification of highly porous carbon for improved supercapacitor performance  

E-Print Network (OSTI)

Nitrogen modification of highly porous carbon for improved supercapacitor performance Stephanie L for supercapacitor applications. Surface modification increases the amount of nitrogen by four times when compared elements in highly porous carbon used for electric double-layer supercapacitors.1 These elements modify

Cao, Guozhong

443

10 ASHRAE Journal November 2004 Re: High-Performance Buildings  

E-Print Network (OSTI)

10 ASHRAE Journal November 2004 Re: High-Performance Buildings In their recent article, "High energy-per- formance for a green academic building." ASHRAE Transac- tions, 108 promoting their own buildings. But the public requires and ASHRAE should demand more. John Scofield, Ph

Scofield, John H.

444

High performance low power CMOS dynamic logic for arithmetic circuits  

Science Conference Proceedings (OSTI)

This paper presents the design of high performance and low power arithmetic circuits using a new CMOS dynamic logic family, and analyzes its sensitivity against technology parameters for practical applications. The proposed dynamic logic family allows ... Keywords: CMOS digital integrated circuits, CMOS logic circuits, Dynamic logic, High speed arithmetic circuits, Low power arithmetic circuits

Victor Navarro-Botello; Juan A. Montiel-Nelson; Saeid Nooshabadi

2007-04-01T23:59:59.000Z

445

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

446

Simulation and High-Performance Computing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation and High-Performance Computing Simulation and High-Performance Computing Simulation and High-Performance Computing October 29, 2010 - 12:22pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science What are the key facts? The Chinese's Tianhe-1A machine is now the world's most powerful computer, 40% faster than the fastest American machine located at Oak Ridge National Laboratory. Of the top 500 supercomputers in the world, more than half are in the U.S., and 90% were built by U.S. hardware vendors. We are developing the next generation of supercomputers over the next decade, which will be capable of exaflop-class performance (a factor of 1000 more powerful than today's most powerful computers).

447

High Performance Building Façade Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Façade Solutions High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Glazing and façade systems have very large impacts on all aspects of commercial building performance. They directly influence peak heating and cooling loads, and indirectly influence lighting loads when daylighting is considered. In addition to being a major determinant of annual energy use, they can have significant impacts on peak cooling system sizing, electric load shape, and peak electric demand. Because they are prominent architectural and design elements and because they influence occupant preference, satisfaction and comfort, the design optimization challenge is

448

Home Performance with Energy Star High Efficiency Measure Incentive (HEMI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star High Efficiency Measure Incentive Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate $3,000 Program Info State New York Program Type State Rebate Program Rebate Amount 10% of project costs Provider New York State Energy Research and Development Authority The New York State Research and Development Authority (NYSERDA) offers an incentive for homeowners of 1-4 homes that participate in the Home Performance with Energy Star program. The program entitles the participant

449

Building Technologies Office: Strategic Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

450

Building Technologies Office: Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

451

DOE High Energy Physics Reports | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

DOE DOE High Energy Physics Reports High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources SC Graduate Fellowship Program: HEP 2010 Awardees External link Quick Links DOE High Energy Physics Reports HEP Sponsored Workshops and Conferences Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » News & Resources DOE High Energy Physics Reports Print Text Size: A A A RSS Feeds FeedbackShare Page The following are DOE High Energy Physics Reports for projects under construction and experiments operating using accelerators as well as

452

Energy-aware high performance computing: a taxonomy study, in  

E-Print Network (OSTI)

AbstractTo reduce the energy consumption and build a sustainable computer infrastructure now becomes a major goal of the high performance community. A number of research projects have been carried out in the field of energy-aware high performance computing. This paper is devoted to categorize energy-aware computing methods for the high-end computing infrastructures, such as servers, clusters, data centers, and Grids/Clouds. Based on a taxonomy of methods and system scales, this paper reviews the current status of energy-aware HPC research and summarizes open questions and research directions of software architecture for future energy-aware HPC studies.

Chang Cai; Lizhe Wang; Samee U. Khan; Jie Tao

2011-01-01T23:59:59.000Z

453

Buildings Energy Data Book: 9.4 High Performance Buildings  

Buildings Energy Data Book (EERE)

2 2 Case Study, The Cambria Department of Environmental Protection Office Building, Ebensburg, Pennsylvania (Office) Building Design Floor Area: Floors: 2 Open office space (1) File storage area Two small labratories Conference rooms Break room Storage areas Two mechanical rooms Telecom room Shell Windows Material: Triple Pane, low-e with Aluminum Frames and Wood Frames Triple Pane Triple Pane Aluminum Frames Wood Frames U-Factor 0.24 U-Factor 0.26 Wall/Roof Primary Material R-Value Wall : Insulating Concrete Forms 27.0 Roof: Decking and Insulation 33.0 HVAC Total Capacities(thousand Btu/hr) 12 Ground Source Heat Pumps 644 (2) 12 Auxiliary Electric Resistance Heaters 382 (3) Lighting Power Densities(W/SF) Open Office Area: 0.75 Office Area Task Lighting(4): 0.5 Energy/Power PV System: 18.2 kW grid-tie system (5)

454

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office  

E-Print Network (OSTI)

feet, bringing the cost to $4.72 per square foot. Highly-estimated to cost approximately $2 per square foot. Energy

Rubinstein, Francis

2010-01-01T23:59:59.000Z

455

A Breakthrough for High-Field Superconductors | U.S. DOE Office...  

Office of Science (SC) Website

A Breakthrough for High-Field Superconductors Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy...

456

Colorado High School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

National Renewable Energy Laboratory Address: Dakota Ridge High School; 13399 W. Coal Mine Ave; Littleton, CO 80127 Regional Date: January 26, 2013 Fee: NA Regional...

457

High Current Energy Recovery Linac at BNL | U.S. DOE Office of...  

Office of Science (SC) Website

High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIRSTTR...

458

Oak Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI) Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI) Partnering Agreement For The Transuranic Waste Processing Program Oak Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI) Partnering Agreement For The Transuranic Waste Processing Program The Transuranic (TRU) Waste Partnering Team will be viewed as a virtual High-Performing Organization that is widely recognized for exceeding expectations through innovative technical and management strategies, and whose commitment to its employees, the EM Mission, and the stewardship of the Oak Ridge Site are its highest priorities. Oak Ridge Operations Office (ORO) & Wastren Advantage, Inc. (WAI) Partnering Agreement For The Transuranic Waste Processing Program More Documents & Publications

459

Coordinated resource management for guaranteed high performance and efficient utilization in Lambda-Grids  

E-Print Network (OSTI)

Journal of High Performance Computing Applications, AugustConference on High Performance Computing and Communication (Symposium on High-Performance Computing in an Advanced

Taesombut, Nut

2007-01-01T23:59:59.000Z

460

On the user-scheduler relationship in high-performance computing  

E-Print Network (OSTI)

1.1. High-Performance Computing . . . . . . . . 1.2. ProblemJournal of High Performance Computing Applications, 19(4):IEEE Conference on High Performance Computing, Networking,

Lee, Cynthia Bailey

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network (OSTI)

NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

Antypas, Katie

2013-01-01T23:59:59.000Z

462

High-Performance Photovoltaic Project: Identifying Critical Pathways; Kickoff Meeting  

DOE Green Energy (OSTI)

The High Performance Photovoltaic Project held a Kickoff Meeting in October, 2001. This booklet contains the presentations given by subcontractors and in-house teams at that meeting. The areas of subcontracted research under the HiPer project include Polycrystalline Thin Films and Multijunction Concentrators. The in-house teams in this initiative will focus on three areas: (1) High-Performance Thin-Film Team-leads the investigation of tandem structures and low-flux concentrators, (2) High-Efficiency Concepts and Concentrators Team-an expansion of an existing team that leads the development of high-flux concentrators, and (3) Thin-Film Process Integration Team-will perform fundamental process and characterization research, to resolve the complex issues of making thin-film multijunction devices.

Symko-Davis, M.

2001-11-07T23:59:59.000Z

463

Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE Office of  

Office of Science (SC) Website

Ion Sources for High Energy Ion Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Ion Sources for High Energy Ion Implantation at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Ion Sources for High Energy Ion Implantation Developed at: Brookhaven National Laboratory, New York; High Current Electronic

464

What Causes High-temperature Superconductivity? | U.S. DOE Office of  

Office of Science (SC) Website

What Causes High-temperature Superconductivity? What Causes High-temperature Superconductivity? Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » March 2013 What Causes High-temperature Superconductivity? A phase change at absolute zero temperature may provide key insights into the decades-old mystery of high-temperature superconductivity. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ames Laboratory

465

High School Academic Competition - Round Robin | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Round Robin Round Robin National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Round Robin Print Text Size: A A A RSS Feeds FeedbackShare Page Welcome to the National Science Bowl Score Center! Looking for Round Robin Updates? Click on the division to go straight to the bracket - otherwise, scroll down the page and browse all the scores.

466

High Energy Physics Advisory Panel (HEPAP) Homepage | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

HEPAP Home HEPAP Home High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Members .pdf file (20KB) Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors HEP Home Print Text Size: A A A RSS Feeds FeedbackShare Page P5 Planning The high energy physics research community is engaged in developing a ten-year plan for U.S. particle physics. To learn more about the so-called "P5" process, and to stay abreast of meetings, please click on the following external link: Particle Physics Project Prioritization Panel (P5) External link The High Energy Physics Advisory Panel (HEPAP) has advised the Federal Government on the national program in experimental and theoretical high energy physics (HEP) research since its inception in 1967. Since October 2000, the Panel now has joint ownership and continues to be chartered by

467

High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

High Current Energy Recovery Linac at High Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Current Energy Recovery Linac at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Current Energy Recovery Linac Developed at: Brookhaven National Laboratory, New York and Advanced Energy Systems, New

468

High School Academic Competition - Double Elimination | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Double Double Elimination National Science Bowl® (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2013 Competition Results High School Academic Competition - Double Elimination Print Text Size: A A A RSS Feeds FeedbackShare Page No-Loss Bracket .pdf file (45KB)(Final Results) Challengers' Bracket .pdf file (42KB) (Final Results) Last modified: 4/29/2013 11:56:04 AM

469

SLAC Regional High School Science Bowl| U.S. DOE Office of Science...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions SLAC Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

470

Kern County Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Kern County Regional High School Science Bowl Print Text Size: A A A RSS...

471

Sacramento Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions Sacramento Regional High School Science Bowl Print Text Size: A A A RSS...

472

San Diego Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions San Diego Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

473

Georgia Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Sites will be announced after registration. The top two teams from different high schools will be invited to the regional (State) competition to be held at Armstrong on Feb....

474

San Antonio Regional High School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions San Antonio Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

475

El Paso Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions El Paso Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

476

Pantex Regional High School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Texas Regions Pantex Regional High School Science Bowl Print Text Size: A A A RSS Feeds...

477

Thermal and Daylighting Performance of an automated venetian blind and lighting system in a full scale private office  

E-Print Network (OSTI)

Dynamic envelope/lighting systems have the potential to optimize the perimeter zone energy balance between daylight admission and solar heat gain rejection on a real-time basis, and to increase occupant comfort. Two side-by-side full-scale offices in Oakland, California were built to further develop and test this concept. An automated venetian blind was operated in synchronization with a dimmable electric lighting system to block direct sun, provide the design workplane illuminance, and maximize view. The research program encompassed system design refinements, energy measurements, and human factors tests. In this study, we present lighting energy and cooling load data that were monitored in this facility over the course of a year. Significant energy savings and peak demand reductions were attained with the automated venetian blind / lighting system compared to a static venetian blind with the same dimmable electric lighting system. Correlations between key weather parameters and

E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz; E. S. Lee; D. L. Dibartolomeo; S. E. Selkowitz

1998-01-01T23:59:59.000Z

478

Commissioning High Performance Residences in Hot, Humid Climates  

E-Print Network (OSTI)

Since 2001, the authors have engaged several builders in the Gainesville, FL area to build over 500 high performance new energy efficient homes in multiple sub divisions. The builders keep building to increased levels of energy efficiency. Each home is individually designed, inspected, rated and commissioned for optimum performance. This paper summarizes the experiences to date with two production builders who have cost shared with the Building America program to deliver these outstanding results. Keys to success are commitment from the final decision maker; scopes of work for subcontractors with specific performance criteria; clear communication with the trades often accompanied by training and education activities; independent third party testing, commissioning and feedback to building; ongoing training of sales staff and model center displays and finally extensive marketing that educated the consumers about the benefits of high performance homes.

Fonorow, K.; Chandra, S.; McIlvaine, J.; Colon, C.

2007-01-01T23:59:59.000Z

479

Anne Arundel County - High Performance Dwelling Property Tax Credit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anne Arundel County - High Performance Dwelling Property Tax Credit Anne Arundel County - High Performance Dwelling Property Tax Credit Anne Arundel County - High Performance Dwelling Property Tax Credit < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate LEED or NGBS Silver: $1,000 LEED or NGBS Gold: $2,000 LEED Platinum or NGBS Emerald: $3,000 Program Info Start Date 07/01/2010 State Maryland Program Type Property Tax Incentive Rebate Amount LEED or NGBS Silver: 40% of property taxes for 5 years LEED or NGBS Gold: 60% of real property taxes for 5 years LEED Platinum or NGBS Emerald: 80% of real property taxes for 5 years

480

High Performance Building Facade Solutions: PIER Final Project Report  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Building Facade Solutions: PIER Final Project Report High Performance Building Facade Solutions: PIER Final Project Report Title High Performance Building Facade Solutions: PIER Final Project Report Publication Type Report LBNL Report Number LBNL-4583E Year of Publication 2009 Authors Lee, Eleanor S., Stephen E. Selkowitz, Dennis L. DiBartolomeo, Joseph H. Klems, Robert D. Clear, Kyle Konis, Robert J. Hitchcock, Mehry Yazdanian, Robin Mitchell, and Maria Konstantoglou Date Published 12/2009 Abstract Building façades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. façades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.

Note: This page contains sample records for the topic "high performance office" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High Performance Incentive Program (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High Performance Incentive Program (Kansas) High Performance Incentive Program (Kansas) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Corporate Tax Incentive Provider Commerce High Performance Incentive Program provides tax incentives to eligible employers that pay above-average wages and have a strong commitment to skills development for their workers. A substantial investment tax credit for new capital investment in Kansas and a related sales tax exemption are the primary benefits of this program. HPIP offers employers four potential

482

Publications on High-Performance Schools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Schools Publications on High-Performance Schools Learn about building high-performance schools that incorporate energy efficiency and renewable energy in publications from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL). Building Energy-Efficient Schools in New Orleans: Lessons Learned This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Building Energy-Efficient Schools in New Orleans: Lessons Learned Summary This summary presents the lessons learned at five schools in New Orleans that were rebuilt using energy efficiency and renewable energy technologies after Hurricanes Katrina and Rita. Energy Design Guidelines for High Performance Schools: Hot and Humid

483

Publications on High-Performance Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes Homes Publications on High-Performance Homes Find publications from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) on incorporating energy efficiency and renewable energy into homes. Builders Challenge High Performance Builder Spotlight: Green Coast Enterprises, New Orleans, Louisiana (2-pager) This 2-page fact sheet highlights New Orleans homebuilder Green Coast Enterprises' and the Project Home Again community-scale residential building project. Builders Challenge High Performance Builder Spotlight: Green Coast Enterprises, New Orleans, Louisiana (4-pager) This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. Builders Challenge Technology Information Packages - Hot-Humid Climate: New

484

'Catch and Suppress' Control of Instabilities in High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

'Catch and Suppress' Control of Instabilities in High Performance 'Catch and Suppress' Control of Instabilities in High Performance Fusion Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » October 2012 'Catch and Suppress' Control of Instabilities in High Performance Fusion Plasmas Real time steering of microwave beams is used to suppress deleterious modes on DIII-D. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of General Atomics

485

Software Tools for High Performance Computing: Survey and Recommendations  

E-Print Network (OSTI)

Applications programming for High Performance Computing is notoriously difficult. Although Parallel Programming is intrinsically complex, the principal reason why High Performance Computing is difficult is the lack of effective software tools. We believe that the lack of tools in turn is largely due to market forces rather than our inability to design and build such tools. Unfortunately, the poor availability and utilization of parallel tools hurts the entire supercomputing industry and the US High Performance Computing initiative which is focused on applications. A disproportionate amount of resources are being spent on faster hardware and architectures, while tools are being neglected. This paper introduces a taxonomy of tools, analyzes the major factors that contribute to this situation, and suggest ways that the imbalance could be redressed and the likely evolution of tools. 1 Received November 1994 Revised October 1995 Many attendees at the May 1993 Workshop on Parallel Compu...

Bill Appelbe Donna; Donna Bergmark (eds

</