National Library of Energy BETA

Sample records for high penetration rate

  1. Abstract--With the increasing fears of the impacts of the high penetration rates of Photovoltaic (PV) systems, a technical study

    E-Print Network [OSTI]

    Lavaei, Javad

    by the researchers and the developers in power systems. II. PSCAD MODEL OF GRID TIED PHOTOVOLTAIC SYSTEM The PSCAD-Tied Photovoltaic Systems and Total Harmonic Distortion Analysis Abdulrahman Y. Kalbat, Member, IEEE Fig. 1. Grid1 Abstract--With the increasing fears of the impacts of the high penetration rates of Photovoltaic

  2. Deploying High Penetration Photovoltaic Systems: A Case Study

    SciTech Connect (OSTI)

    Coddington, M. H.; Baca, D.; Kroposki, B. D.; Basso, T.

    2011-01-01

    Photovoltaic (PV) system capacity penetration, or simply 'penetration,' is often defined as the rated power output of the aggregate PV systems on a distribution circuit segment divided by the peak load of that circuit segment. Industry experts agree that a single value defining high penetration is not universally applicable. However, it is generally agreed that a conservative value to designate high penetration is the condition when the ratio of aggregate PV systems ratings to peak load exceeds 15%. This case study illustrates the case of a distribution feeder which is able to accommodate a traditional capacity penetration level of 47%, and perhaps more. New maximum penetration levels need to be defined and verified and enhanced definitions for penetration on a distribution circuit need to be developed. The new penetration definitions and studies will help utility engineers, system developers, and regulatory agencies better agree what levels of PV deployment can be attained without jeopardizing the reliability and power quality of a circuit.

  3. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  4. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical...

  5. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  6. Penetration rate prediction for percussive drilling via dry friction model

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a of percussive drilling assuming a dry friction mechanism to explain the experimentally observed drop in pene in drilling research is a fall of pene- tration rate for higher static loads. This is known both

  7. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  8. Distribution System Analysis Tools for Studying High Penetration of PV

    E-Print Network [OSTI]

    Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

  9. High?Penetration PV with Advanced Power Conditioning Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Virginia Polytechnic Institute and State University (VT) is evaluating the impacts of high photovoltaic (PV) penetration and methods to manage any impacts with improved power conditioning equipment.

  10. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  11. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Environmental Management (EM)

    on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from...

  12. High Penetration Photovoltaic Case Study Report

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.; Keller, J.; Coddington, M.

    2013-01-01

    Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

  13. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect (OSTI)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  14. High Penetration Solar Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the High...

  15. Evaluating Future Standards and Codes with a Focus on High Penetration Photovoltaic (HPPV) System Deployment (Poster)

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.

    2010-12-01

    Poster displaying solutions for evaluating future standards and codes for high penetration photovoltaic (HPPV) systems.

  16. High renewable energy penetrations in the Australian National Electricity Market

    E-Print Network [OSTI]

    New South Wales, University of

    Distribution Sector: - DNSPS Electricity flow Multi-region five-minute energy & FCAS markets Intentions, offers by AEMO ­ A multi-region gross wholesale electricity spot market with dynamic intra-regional loss factorsHigh renewable energy penetrations in the Australian National Electricity Market: key challenges

  17. Smart Grid Inverters for High-Penetration PV Applications

    E-Print Network [OSTI]

    Smart Grid Inverters for High- Penetration PV Applications Hawai`i Natural Energy Institute of recognized energy industry leaders working to develop enhanced capability smart inverters and to demonstrate by deploying and evaluating smart inverters on operating utility distribution feeders in two locations

  18. Grid-Independent Cooperative Microgrid Networks with High Renewable Penetration

    E-Print Network [OSTI]

    Kundur, Deepa

    Grid-Independent Cooperative Microgrid Networks with High Renewable Penetration Eman M. Hammad, Toronto, Ontario, Canada Email: {ehammad, abdallah, dkundur}@ece.utoronto.ca Abstract--Microgrids (MG framework for cooperation amongst a set of grid-independent microgrids to improve the overall microgrid

  19. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  20. A Comparative Study of High Renewables Penetration Electricity Grids

    E-Print Network [OSTI]

    McAuliffe, Jon

    A Comparative Study of High Renewables Penetration Electricity Grids Jay Taneja, Virginia Smith,culler}@cs.berkeley.edu,vsmith@berkeley.edu Catherine Rosenberg Department of Electrical and Computer Engineering University of Waterloo Email: cath@uwaterloo.ca Abstract--Electricity grids are transforming as renewables proliferate, yet operational concerns due

  1. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation- tems, photovoltaic generation, power distribution, power system economics, smart grids. I. INTRODUCTION study of electric distribution systems with high penetration of photovoltaic (PV) panels within

  2. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect (OSTI)

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  3. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  4. Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy

    E-Print Network [OSTI]

    Wong, Vincent

    Load Scheduling and Power Trading in Systems with High Penetration of Renewable Energy Resources with high penetration of renewable energy resources (RERs). We adopt approximate dynamic programming friendly renewable energy resources (RERs). Regulations have been passed to increase the pro- duction

  5. DYNAMICS OF LIQUID METAL JETS PENETRATING A STRONG MAGNETIC FIELD IN HIGH-POWER COLLIDERS

    E-Print Network [OSTI]

    Harilal, S. S.

    DYNAMICS OF LIQUID METAL JETS PENETRATING A STRONG MAGNETIC FIELD IN HIGH-POWER COLLIDERS A. Liquid metal jets (pulsed or continuous) are proposed as potential target candidates. Such a proposal poses two critical problems: penetration of a free liquid jet inside the required strong inhomogeneous

  6. Penetration of the Triangularity Shaping in High-Beta Tokamaks and Stability of the Internal Kink Mode

    E-Print Network [OSTI]

    Penetration of the Triangularity Shaping in High-Beta Tokamaks and Stability of the Internal Kink Mode

  7. Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Bebic, J.

    2008-02-01

    This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

  8. Policies and Programs to Integrate High Penetrations of Variable Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2012-06-01

    The goals of this project are to highlight the diverse approaches for enabling high renewable energy penetration; synthesize lessons on effective policies and programs and present avenues for action to energy ministers and other stakeholders.

  9. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  10. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  11. High repetition rate fiber lasers

    E-Print Network [OSTI]

    Chen, Jian, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    This thesis reports work in high repetition rate femtosecond fiber lasers. Driven by the applications including optical arbitrary waveform generation, high speed optical sampling, frequency metrology, and timing and frequency ...

  12. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    We estimate the long-run economic value of variable renewable generation with increasing penetration using a unique investment and dispatch model that captures long-run investment decisions while also incorporating detailed operational constraints and hourly time resolution over a full year. High time resolution and the incorporation of operational constraints are important for estimating the economic value of variable generation, as is the use of a modeling framework that accommodates new investment decisions. The model is herein applied with a case study that is loosely based on California in 2030. Increasing amounts of wind, photovoltaics (PV), and concentrating solar power (CSP) with and without thermal energy storage (TES) are added one at a time. The marginal economic value of these renewable energy sources is estimated and then decomposed into capacity value, energy value, day-ahead forecast error cost, and ancillary services. The marginal economic value, as defined here, is primarily based on the combination of avoided capital investment cost and avoided variable fuel and operations and maintenance costs from other power plants in the power system. Though the model only captures a subset of the benefits and costs of renewable energy, it nonetheless provides unique insights into how the value of that subset changes with technology and penetration level. Specifically, in this case study implementation of the model, the marginal economic value of all three solar options is found to exceed the value of a flat-block of power (as well as wind energy) by \\$20--30/MWh at low penetration levels, largely due to the high capacity value of solar at low penetration. Because the value of CSP per unit of energy is found to be high with or without thermal energy storage at low penetration, we find little apparent incremental value to thermal storage at low solar penetration in the present case study analysis. The marginal economic value of PV and CSP without thermal storage is found to drop considerably (by more than \\$70/MWh) as the penetration of solar increases toward 30\\percent on an energy basis. This is due primarily to a steep drop in capacity value followed by a decrease in energy value. In contrast, the value of CSP with thermal storage drops much less dramatically as penetration increases. As a result, at solar penetration levels above 10\\percent, CSP with thermal storage is found to be considerably more valuable relative to PV and CSP without thermal storage. The marginal economic value of wind is found to be largely driven by energy value, and is lower than solar at low penetration. The marginal economic value of wind drops at a relatively slower rate with penetration, however. As a result, at high penetration, the value of wind can exceed the value of PV and CSP without thermal storage. Though some of these findings may be somewhat unique to the specific case study presented here, the results: (1) highlight the importance of an analysis framework that addresses long-term investment decisions as well as short-term dispatch and operational constraints, (2) can help inform long-term decisions about renewable energy procurement and supporting infrastructure, and (3) point to areas where further research is warranted.

  13. Numerical simulation of high-speed penetration-perforation dynamics in layered armor shields

    E-Print Network [OSTI]

    Ayzenberg-Stepanenko, Mark

    2012-01-01

    Penetration models and calculating algorithms are presented, describing the dynamics and fracture of composite armor shields penetrated by high-speed small arms. A shield considered consists of hard (metal or ceramic) facing and multilayered fabric backing. A simple formula is proved for the projectile residual velocity after perforation of a thin facing. A new plastic-flow jet model is proposed for calculating penetration dynamics in the case of a thick facing of ceramic or metal-ceramic FGM materials. By bringing together the developed models into a calculating algorithm, a computer tool is designed enabling simulations of penetration processes in the above-mentioned shields and analysis of optimization problems. Some results of computer simulation are presented. It is revealed in particular that strength proof of pliable backing can be better as compared with more rigid backing. Comparison of calculations and test data shows sufficient applicability of the models and the tool.

  14. Numerical simulation of high-speed penetration-perforation dynamics in layered armor shields

    E-Print Network [OSTI]

    Mark Ayzenberg-Stepanenko; Grigory Osharovich

    2012-03-07

    Penetration models and calculating algorithms are presented, describing the dynamics and fracture of composite armor shields penetrated by high-speed small arms. A shield considered consists of hard (metal or ceramic) facing and multilayered fabric backing. A simple formula is proved for the projectile residual velocity after perforation of a thin facing. A new plastic-flow jet model is proposed for calculating penetration dynamics in the case of a thick facing of ceramic or metal-ceramic FGM materials. By bringing together the developed models into a calculating algorithm, a computer tool is designed enabling simulations of penetration processes in the above-mentioned shields and analysis of optimization problems. Some results of computer simulation are presented. It is revealed in particular that strength proof of pliable backing can be better as compared with more rigid backing. Comparison of calculations and test data shows sufficient applicability of the models and the tool.

  15. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  16. High compression rate text summarization

    E-Print Network [OSTI]

    Branavan, Satchuthananthavale Rasiah Kuhan

    2008-01-01

    This thesis focuses on methods for condensing large documents into highly concise summaries, achieving compression rates on par with human writers. While the need for such summaries in the current age of information overload ...

  17. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJianDepartmentHigh

  18. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect (OSTI)

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  19. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing ToolSustainableSecurityHigh Energy Cost GrantsEnergy

  20. High Penetration Solar Deployment Funding Opportunity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJianDepartment

  1. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  2. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    conventional power plants and wind power. IEEE Transactionsplanning with significant wind power generation. IEEEmix with high level of wind power penetration. Applied

  3. Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1

    E-Print Network [OSTI]

    Borchers, Brian

    Effects of magnetite on high-frequency ground-penetrating radar Remke L. Van Dam1 , Jan M. H, paleoclimatology (Maher and Thompson, 1995), soil development (Singer et al., 1996; Van Dam et al., 2008 et al., 2011), the detection of unexploded ordnance (UXO) and land mines (Van Dam et al., 2005

  4. Strategies to Mitigate Declines in the Economic Value of Wind and Solar at High Penetration in California

    Broader source: Energy.gov [DOE]

    This resource evaluates several options to reduce and eliminate the decline in the value of wind and solar PV technology, as a previous study had quantified the decline as penetration levels increased. Researchers found that largest increase in the value of PV at high penetration levels comes from assuming that low-cost bulk power storage is an investment option. Other attractive options, particularly at more modest penetration levels, include real-time pricing and technology diversity.

  5. Analysis of High-Penetration Levels of Photovoltaics into the Distribution Grid on Oahu, Hawaii: Detailed Analysis of HECO Feeder WF1

    SciTech Connect (OSTI)

    Stewart, E.; MacPherson, J.; Vasilic, S.; Nakafuji, D.; Aukai, T.

    2013-05-01

    Renewable generation is growing at a rapid rate due to the incentives available and the aggressive renewable portfolio standard targets implemented by state governments. Distributed generation in particular is seeing the fastest growth among renewable energy projects, and is directly related to the incentives. Hawaii has the highest electricity costs in the country due to the high percentage of oil burning steam generation, and therefore has some of the highest penetration of distributed PV in the nation. The High Penetration PV project on Oahu aims to understand the effects of high penetration PV on the distribution level, to identify penetration levels creating disturbances on the circuit, and to offer mitigating solutions based on model results. Power flow models are validated using data collected from solar resources and load monitors deployed throughout the circuit. Existing interconnection methods and standards are evaluated in these emerging high penetration scenarios. A key finding is a shift in the level of detail to be considered and moving away from steady-state peak time analysis towards dynamic and time varying simulations. Each level of normal interconnection study is evaluated and enhanced to a new level of detail, allowing full understanding of each issue.

  6. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  7. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  8. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  9. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    based on solar trough or parabolic dish technology) to PV astechnologies: wind, single-axis tracking photovoltaics (PV), 1 concentrating solarTechnology High Penetration of VG Single-Axis PV CSP w/ 6hr TES Wind Solar

  10. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  11. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  12. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  13. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect (OSTI)

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  14. Renewable Electricity Futures:  Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: Energy.gov [DOE]

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The High scenario had approximately 82% renewable generation after curtailment, which included 41% of its generation coming from variable generation (VG) sources like wind and solar photovoltaics (PV). The remaining renewable generation came from hydropower, geothermal, and concentrating solar power (CSP). The Higher Baseload scenario adds CSP and geothermal to the High scenario to make 88% renewable generation. This study also included a Higher VG scenario with added wind and solar PV generation to get to 86% renewable generation. Both Higher scenarios added the same amount of possible generation, but the Higher VG scenario showed more curtailment from the incremental generation, leading to lower penetration levels after curtailment. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  15. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  16. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    SciTech Connect (OSTI)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F.

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  17. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  18. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  19. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    for Competitive Renewable Energy Zones in Texas, Report,Supply, National Renewable Energy Laboratory. Sensfuß, F. ,in Modeling Renewable Energy Penetration Scenarios Marco

  20. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  1. Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage

    SciTech Connect (OSTI)

    Drouilhet, S. M.

    1999-07-29

    This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.

  2. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01

    COVERED (From - To) Renewable Energy and Efficiency Modelinga Common High Renewable Energy Penetration Scenario in 2025OnLocation) National Renewable Energy Laboratory 1617 Cole

  3. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01

    DATES COVERED (From - To) Renewable Energy and EfficiencyModels Addressed a Common High Renewable Energy PenetrationWood (OnLocation) National Renewable Energy Laboratory 1617

  4. Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation

    SciTech Connect (OSTI)

    Drouilhet, S.; Shirazi, M.

    2002-05-01

    To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

  5. Constitutive Model for Material Comminuting at High Shear Rate

    E-Print Network [OSTI]

    Zdenek P. Bazant; Ferhun C. Caner

    2013-06-04

    The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate is enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The rate of release of free energy density consisting of the sum of this energy and the fracture energy of the interface between the forming particle is minimized. The particle sizes are assumed to be distributed according to Schuhmann's power law. It is concluded that the minimum particle size is inversely proportional to the (2/3)-power of the shear strain rate, that the kinetic energy release is to proportional to the (2/3)-power, and that the dynamic comminution creates an apparent material viscosity inversely proportional to the (1/3)-power of the shear strain rate.

  6. OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY

    E-Print Network [OSTI]

    Perez, Richard R.

    OFF-SHORE WIND AND GRID-CONNECTED PV: HIGH PENETRATION PEAK SHAVING FOR NEW YORK CITY Richard Perez-shore wind and PV generation using the city of New York as a test case. While wind generation is not known one year's worth of hourly site & time-specific data including electrical demand PV and off-shore wind

  7. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  8. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  9. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  10. Numerical modelling of high-frequency ground-penetrating radar antennas 

    E-Print Network [OSTI]

    Warren, Craig

    2009-01-01

    Ground-Penetrating Radar (GPR) is a non-destructive electromagnetic investigative tool used in many applications across the fields of engineering and geophysics. The propagation of electromagnetic waves in lossy materials ...

  11. Optimal Inverter VAR Control in Distribution Systems with High PV Penetration

    E-Print Network [OSTI]

    Farivar, Masoud; Clarke, Christopher; Low, Steven

    2011-01-01

    The intent of the study detailed in this paper is to demonstrate the benefits of inverter var control on a fast timescale to mitigate rapid and large voltage fluctuations due to the high penetration of photovoltaic generation and the resulting reverse power flow. Our approach is to formulate the volt/var control as a radial optimal power flow (OPF) problem to minimize line losses and energy consumption, subject to constraints on voltage magnitudes. An efficient solution to the radial OPF problem is presented and used to study the structure of optimal inverter var injection and the net benefits, taking into account the additional cost of inverter losses when operating at non-unity power factor. This paper will illustrate how, depending on the circuit topology and its loading condition, the inverter's optimal reactive power injection is not necessarily monotone with respect to their real power output. The results are demonstrated on a distribution feeder on the Southern California Edison system that has a very ...

  12. China's High Savings Rates Rick Harbaugh

    E-Print Network [OSTI]

    Martins, Emília

    the highest in the world. That savings would grow in a country emerging from poverty is not necessarilyChina's High Savings Rates Rick Harbaugh Prepared for conference on "The Rise of China Revisited Abstract Since the early 1980s China has witnessed a rapid increase in its national savings rate to one

  13. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  14. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  15. Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

    2011-12-01

    This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

  16. High-Rate Capable Floating Strip Micromegas

    E-Print Network [OSTI]

    Jonathan Bortfeldt; Michael Bender; Otmar Biebel; Helge Danger; Bernhard Flierl; Ralf Hertenberger; Philipp Lösel; Samuel Moll; Katia Parodi; Ilaria Rinaldi; Alexander Ruschke; André Zibell

    2015-08-04

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60MHz/cm$^2$. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48cm$\\times$50cm with 1920 copper anode strips exhibits in 120GeV pion beams a spatial resolution of 50$\\mu$m at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below $5^\\circ$ are observed. Systematic deviations of this $\\mu$TPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4cm$\\times$6.4cm floating strip Micromegas under intense background irradiation of the whole active area with 20MeV protons at a rate of 550kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4cm$\\times$6.4cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2MHz and 2GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  17. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore »regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  18. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect (OSTI)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  19. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2014-01-01

    550-48247, National Renewable Energy Laboratory, Golden, CO,decisions in the Western Renewable Energy Zone initiative.in modeling renewable energy penetration scenarios. TU

  20. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    some renewable resources, particularly wind and solar, leadssome renewable resources, in particular wind and solar. InFor a 33% renewable energy target, the solar penetration, in

  1. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  2. Renewable Electricity Futures Study Volume 1: Exploration of High-Penetration Renewable Electrcity Futures

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Renewable Electricity Futures Study (RE Futures) is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States1 over the next several decades. This study includes geographic and electric system operation resolution that is unprecedented for long-term studies of the U.S. electric sector. The analysis examines the implications and challenges of renewable electricity generation levels—from 30% up to 90%, with a focus on 80%, of all U.S. electricity generation from renewable technologies—in 2050. The study focuses on some key technical implications of this environment, exploring whether the U.S. power system can supply electricity to meet customer demand with high levels of renewable electricity, including variable wind and solar generation. The study also begins to address the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

  3. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect (OSTI)

    Grudberg, Peter Matthew [XIA LLC

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many â?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with associated preamplifiers; these detectors surpassed the performance we expected to get from the Ketek detectors, however they are housed in a sealed module, which does not offer the ease of repair and expandability weâ??d hoped to achieve with the Ketek SDDâ??s. Our packaging efforts were quite successful, as we came up with a very compact way to mount the detector and to house the associated electronics, as well as a very effective way to reliably take out the heat (from the electronics as well as the detectorâ??s Peltier coolers) without risk of condensation and without external airflow or vibration, which could create problems for the target applications. While we were able to design compact processing electronics that fit into the detector assembly, they are still at the prototype stage, and would require a significant redesign to achieve product status. We have not yet tested this detector at a synchrotron facility; we do still plan on working with some close contacts at the nearby Stanford Synchrotron Radiation Laboratory (SSRL) to get some testing with the beam (using existing commercial electronics for readout, as the integrated processor is not ready for use).

  4. High Velocity Penetration/Perforation Using Coupled Smooth Particle Hydrodynamics-Finite Element Method

    E-Print Network [OSTI]

    Swaddiwudhipong, S; Liu, Z S

    2012-01-01

    Finite element method (FEM) suffers from a serious mesh distortion problem when used for high velocity impact analyses. The smooth particle hydrodynamics (SPH) method is appropriate for this class of problems involving severe damages but at considerable computational cost. It is beneficial if the latter is adopted only in severely distorted regions and FEM further away. The coupled smooth particle hydrodynamics - finite element method (SFM) has been adopted in a commercial hydrocode LS-DYNA to study the perforation of Weldox 460E steel and AA5083-H116 aluminum plates with varying thicknesses and various projectile nose geometries including blunt, conical and ogival noses. Effects of the SPH domain size and particle density are studied considering the friction effect between the projectile and the target materials. The simulated residual velocities and the ballistic limit velocities from the SFM agree well with the published experimental data. The study shows that SFM is able to emulate the same failure mechan...

  5. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect (OSTI)

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  6. High-G accelerometer for earth-penetrator weapons applications. LDRD final report

    SciTech Connect (OSTI)

    Davies, B.R.; Montague, S.; Bateman, V.I.; Brown, F.A.; Chanchani, R.; Christenson, T.; Murray, J.R.; Rey, D.; Ryerson, D.

    1998-03-01

    Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).

  7. Foolproof completions for high rate production wells 

    E-Print Network [OSTI]

    Tosic, Slavko

    2009-05-15

    wells, particularly those with subsea wellheads, and the alternative has been to subject the completion to increasingly high drawdown, accepting a high skin effect. A far better solution is to use a HPF completion. Of course the execution of a successful...

  8. High Penetration Project Summary

    Broader source: Energy.gov (indexed) [DOE]

    Program Name or Ancillary Text eere.energy.gov Solar Energy Technologies Program Peer Review Sunshine State Solar Grid Initiative SUNGRIN Rick Meeker Florida State University...

  9. Liquid Argon Calorimeter performance at High Rates

    E-Print Network [OSTI]

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  10. Liquid argon calorimeter performance at high rates

    E-Print Network [OSTI]

    Seifert, F; The ATLAS collaboration

    2012-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  11. Probing Ultrafast Solvation Dynamics with High Repetition-Rate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. Thanks to implementation of a high-repetition-rate (54 kHz-6.5 MHz), high-power (>10 W) laser system at the X-ray Science Division 7-ID-D beamline at the Advanced...

  12. Evaluation of Terrestrial Laser Scanning and Ground Penetrating Radar for Field-Based High-Throughput Phenotyping in Wheat Breeding 

    E-Print Network [OSTI]

    Thompson, Sean M

    2014-08-05

    laser scanning (TLS) and ground penetrating radar (GPR) have the potential to fill this gap by non-invasively estimating biomass and mapping three-dimensional above- and below-ground vegetation. The research objective was to evaluate the use of TLS...

  13. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that this process could be employed for any high-volume expansion material. * Volumetric capacity at 1C is 2000 mAhcm 3 (3 x graphite). Commercial Fe 3 O 4 material works...

  14. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: ProfessorHigh-Pressure MOFOffice of Energy

  15. Solidification at the High and Low Rate Extreme

    SciTech Connect (OSTI)

    Halim Meco

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt-pool oscillation may be the dominant factor governing the onset of unsteady thermal conditions accompanied by varying amounts of crystalline nucleation observed near the lower limit. At high quench-wheel velocities, the influence of these oscillations is minimal due to very short melt-pool residence times. However, microstructural evidence suggests that the entrapment of gas pockets at the wheel-metal interface plays a critical role in establishing the upper rate limit. An observed transition in wheel-side surface character with increasing melt-spinning rate supports this conclusion.

  16. Operations-Based Planning for Placement and Sizing of Energy Storage in a Grid With a High Penetration of Renewables

    E-Print Network [OSTI]

    Dvijotham, Krishnamurthy; Backhaus, Scott

    2011-01-01

    As the penetration level of transmission-scale time-intermittent renewable generation resources increases, control of flexible resources will become important to mitigating the fluctuations due to these new renewable resources. Flexible resources may include new or existing synchronous generators as well as new energy storage devices. The addition of energy storage, if needed, should be done optimally to minimize the integration cost of renewable resources, however, optimal placement and sizing of energy storage is a difficult optimization problem. The fidelity of such results may be questionable because optimal planning procedures typically do not consider the effect of the time dynamics of operations and controls. Here, we use an optimal energy storage control algorithm to develop a heuristic procedure for energy storage placement and sizing. We generate many instances of intermittent generation time profiles and allow the control algorithm access to unlimited amounts of storage, both energy and power, at a...

  17. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01

    5B. Base Case reference run – renewable energy capacity inrenewable energy runs (in addition, “natural” penetration reference cases).renewable energy capacity values for the 20% RE penetration case.

  18. High strain rate deformation of NiAl

    SciTech Connect (OSTI)

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  19. Use of phosphates to reduce slag penetration in Cr2O3-based refractories

    DOE Patents [OSTI]

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  20. The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories

    DOE Patents [OSTI]

    Kwong, Kyei-Sing (Albany, OR); Dogan, Cynthia P. (Albany, OR); Bennett, James P. (Albany, OR); Chinn, Richard E. (Albany, OR); Petty, Arthur V. (Albany, OR)

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  1. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  2. Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the US Western Interconnection under High Wind and Solar Penetration

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Samaan, Nader A.; Jin, Chunlian

    2014-12-24

    This paper introduces a comprehensive analysis to quantify the potential savings in production cost due to consolidation of 32 US western interconnection Balancing Authorities (BAs). Three simulation scenarios are developed: current Western Electricity Coordinating Council (WECC) BAs structure, full copper-sheet consolidation, and full consolidation with transmission congestion considered. The study uses WECC Transmission Expansion Planning Policy Committee (TEPPC) model that was developed for the year 2020. The model assumes 8% wind and 3% solar energy penetration as percentage of total WECC demand in 2020. Sensitivity analyses are carried out to assess the impact of transmission hurdle rates between WECC BAs on potential benefits. The study shows savings that ranges from $400 Million (2.4% of total one year production cost) to $600 Million (3.2%) per year in thermal units production cost due to consolidation can be achieved. The copper sheet consolidation scenario shows an extra savings of $240 Million (1.4%) per year.

  3. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    pricing, high solar penetrations in the market could lead tosolar power (CSP), and wind penetrations in the electricity market.in wholesale market electricity prices. Under high solar

  4. High strain-rate model for fiber-reinforced composites

    SciTech Connect (OSTI)

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  5. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    The Renewable Energy and Efficiency Modeling and Analysis Partnership (REMAP) sponsors ongoing workshops to discuss individual 'renewable' technologies, energy/economic modeling, and - to some extent - policy issues related to renewable energy. Since 2002, the group has organized seven workshops, each focusing on a different renewable technology (geothermal, solar, wind, etc.). These workshops originated and continue to be run under an informal partnership of the Environmental Protection Agency (EPA), the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE), the National Renewable Energy Laboratory (NREL), and the American Council on Renewable Energy (ACORE). EPA originally funded the activities, but support is now shared between EPA and EERE. REMAP has a wide range of participating analysts and models/modelers that come from government, the private sector, and academia. Modelers include staff from the Energy Information Administration (EIA), the American Council for an Energy-Efficient Economy (ACEEE), NREL, EPA, Resources for the Future (RFF), Argonne National Laboratory (ANL), Northeast States for Coordinated Air Use Management (NESCAUM), Regional Economic Models Inc. (REMI), ICF International, OnLocation Inc., and Boston University. The working group has more than 40 members, which also includes representatives from DOE, Lawrence Berkeley National Laboratory (LBNL), Union of Concerned Scientists (UCS), Massachusetts Renewable Energy Trust, Federal Energy Regulatory Commission (FERC), and ACORE. This report summarizes the activities and findings of the REMAP activity that started in late 2006 with a kickoff meeting, and concluded in mid-2008 with presentations of final results. As the project evolved, the group compared results across models and across technologies rather than just examining a specific technology or activity. The overall goal was to better understand how and why different energy models give similar and/or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  6. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  7. Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser 

    E-Print Network [OSTI]

    Hinson, Brett Darren

    1998-01-01

    peak power. The linear cavity laser produced pulses with repetition rates as high as 128 MHz and a peak power of 6 mW. The ring cavity laser produced pulses with repetition rates as high as 1 GHz and a peak power of 36 mW....

  8. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.

  9. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo (Downers Grove, IL)

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  10. Avalanche Photo-Detection for High Data Rate Applications

    E-Print Network [OSTI]

    H. B. Coldenstrodt-Ronge; C. Silberhorn

    2007-09-19

    Avalanche photo detection is commonly used in applications which require single photon sensitivity. We examine the limits of using avalanche photo diodes (APD) for characterising photon statistics at high data rates. To identify the regime of linear APD operation we employ a ps-pulsed diode laser with variable repetition rates between 0.5MHz and 80MHz. We modify the mean optical power of the coherent pulses by applying different levels of well-calibrated attenuation. The linearity at high repetition rates is limited by the APD dead time and a non-linear response arises at higher photon-numbers due to multiphoton events. Assuming Poissonian input light statistics we ascertain the effective mean photon-number of the incident light with high accuracy. Time multiplexed detectors (TMD) allow to accomplish photon- number resolution by photon chopping. This detection setup extends the linear response function to higher photon-numbers and statistical methods may be used to compensate for non-linearity. We investigated this effect, compare it to the single APD case and show the validity of the convolution treatment in the TMD data analysis.

  11. The Gamma Ray Burst Rate at High Photon Energies

    E-Print Network [OSTI]

    Karl Mannheim; Dieter Hartmann; Burkhardt Funk

    1996-05-17

    Some gamma-ray burst (GRB) spectra exhibit high energy tails with the highest photon energy detected at 18 GeV. The spectral slope of the high-energy tails is sufficiently flat in nu F_nu to consider the possibility of their detection at still higher energies. We calculate how many bursts can reasonably be expected above a given energy threshold for a cosmological distribution of bursts satisfying the observed apparent brightness distribution. The crucial point is that the gamma-ray absorption by pair production in the intergalactic diffuse radiation field eliminates bursts from beyond the gamma-ray horizon tau ~ 1, thus drastically reducing the number of bursts at high energies. Our results are consistent with the non-detection of bursts by current experiments in the 100 GeV to 100 TeV energy range. For the earth-bound detector array MILAGRO, we predict a maximal GRB rate of ~ 10 events per year. The Whipple Observatory can detect, under favorable conditions, ~1 event per year. The event rate for the HEGRA array is ~ 0.01 per year. Detection of significantly higher rates of bursts would severely challenge cosmological burst scenarios.

  12. Session: Hard Rock Penetration

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  13. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect (OSTI)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  14. Low resistance bakelite RPC study for high rate working capability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore »structure performs as efficiently as traditional RPCs.« less

  15. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  16. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect (OSTI)

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

  17. ALICE TPC upgrade for High-Rate operations

    E-Print Network [OSTI]

    ,

    2015-01-01

    A new type of Time Projection Chamber (TPC) has been proposed for the upgrade of the ALICE (A Large Ion Collider Experiment at CERN) so as to cater to the high luminosity environment expected at the Large Hadron Collider (LHC) facility in future. This device will rely on the intrinsic ion back flow (IBF) suppression of Micro-Pattern Gas Detectors (MPGD) based technology in particular the Gas Electron Multiplier (GEM). GEM is to minimise the space charge effect in the main drift volume and thus will not require the standard gating grid and the resulting intrinsic dead time. It will thus be possible to read all minimum bias Pb--Pb events that the Large Hadron Collider (LHC) will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era in Run 3. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1~TByte/s. The new read-out chambers will consist of stacks of 4 GEM foils combining different hole pitches. In addition to a low ion...

  18. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  19. ALICE TPC upgrade for High-Rate operations

    E-Print Network [OSTI]

    Saikat Biswas

    2015-11-08

    A new type of Time Projection Chamber (TPC) has been proposed for the upgrade of the ALICE (A Large Ion Collider Experiment at CERN) so as to cater to the high luminosity environment expected at the Large Hadron Collider (LHC) facility in future. This device will rely on the intrinsic ion back flow (IBF) suppression of Micro-Pattern Gas Detectors (MPGD) based technology in particular the Gas Electron Multiplier (GEM). GEM is to minimise the space charge effect in the main drift volume and thus will not require the standard gating grid and the resulting intrinsic dead time. It will thus be possible to read all minimum bias Pb--Pb events that the Large Hadron Collider (LHC) will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era in Run 3. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1~TByte/s. The new read-out chambers will consist of stacks of 4 GEM foils combining different hole pitches. In addition to a low ion back flow ($<$ 1\\%) other important requirements are good energy resolution (better than 12\\% (sigma) for $^{55}$Fe X-rays) and operational stability.

  20. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    E-Print Network [OSTI]

    Venturini, M.

    2012-01-01

    REPETITION RATE X-RAY FEL ? M. Venturini † , J. Corlett, L.support a high repetition rate FEL operating in the soft x-of high-repetition rate FEL machine generat- ing soft x-rays

  1. Adaptive High Learning Rate Probabilistic Disruption Predictors from Scratch for the Next Generation of Tokamaks

    E-Print Network [OSTI]

    Adaptive High Learning Rate Probabilistic Disruption Predictors from Scratch for the Next Generation of Tokamaks

  2. SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF

    E-Print Network [OSTI]

    Meyers, Marc A.

    SHEAR LOCALIZATION AND CHEMICAL REACTION IN HIGH-STRAIN, HIGH-STRAIN-RATE DEFORMATION OF Ti regions can initiate chemical reaction inside a reac- tive powder mixture. The shear band spacing was H0-induced chemical reactions in silicide systems have been investigated in recent years. Vreeland and coworkers [7

  3. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  4. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE II Annual-Efficiency Single-Junction a-SiGe Solar Cells Section 3 Optimization of High-efficiency a-Si Top Cell Section 4. Figure 2-3 J-V curve of a single-junction a-SiGe solar cell with initial, active-area efficiency

  5. Optimization of time-based rates in forward energy markets

    E-Print Network [OSTI]

    Wang, J.

    This paper presents a new two-step design approach of Time-Based Rate (TBR) programs for markets with a high penetration of variable energy sources such as wind power. First, an optimal market time horizon must be determined ...

  6. Pressure enhanced penetration with shaped charge perforators

    DOE Patents [OSTI]

    Glenn, Lewis A. (Danville, CA)

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  7. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PACI Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...

  8. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 392K) Final FRN for Rate Order No. WAPA-139 - Notice of Order Temporarily Extending Formula Rates for Power, Transmission and Ancillary Services (PDF - 49K) Final FRN for Rate...

  9. Particle penetration through building cracks

    E-Print Network [OSTI]

    Liu, D L; Nazaroff, William W

    2003-01-01

    advanced our knowledge, they have not fully elucidated the extent to which particles penetrate building envelopes.

  10. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect (OSTI)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  11. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  12. High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications

    SciTech Connect (OSTI)

    Dillon, A. C.

    2012-01-01

    Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2} cathode material. Raman spectroscopy was employed to understand how the SWNTs function as a highly flexible conductive additive.

  13. RATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Washoe Project, Stampede Division FERC Order Approving Extension of Non-Firm Power Formula Rate - Rate Order No. WAPA-160 (Sept. 5, 2013) (PDF - 22K) Notice of Extension of...

  14. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical...

  15. Development and Construction of Low-Cracking High-Performance Concrete (LC-HPC) Bridge Decks: Construction Methods, Specifications, and Resistance to Chloride Ion Penetration

    E-Print Network [OSTI]

    McLeod, Heather Anne Kirkvold

    2009-08-22

    is divided into three parts covering (1) an evaluation of the chloride penetration into concrete using long-term salt-ponding tests, (2) a comprehensive discussion of specifications for LC-HPC construction and standard practices in Kansas, and (3...

  16. eCAM: Ultra Compact, High Data-Rate Wireless Sensor Node with a Miniature Camera

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    eCAM: Ultra Compact, High Data-Rate Wireless Sensor Node with a Miniature Camera Chulsung Park Email: {chulsung, phchou}@uci.edu Abstract-- eCAM is an ultra-compact, high data-rate wireless sensor to the theoretical peak performance. In this demo, we propose eCAM, an ultra compact, high data-rate wireless sensor

  17. Cone penetration testing in polar snow

    E-Print Network [OSTI]

    McCallum, Adrian Bruce

    2012-04-10

    Penetration Testing. Creep Ductile deformation of ice (and thus snow) primarily through the movement of crystallographic basal planes due to load applied at low strain rates . Effective Area The extended end-bearing area of the cone or plate during penetra... of determining snow strength. . . . . . . . . . . . . . . . . . . 17 2.7 Classical creep curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Methods 28 3.1 Test location, Greenland. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3...

  18. Studies of the CMS tracker at high trigger rate

    E-Print Network [OSTI]

    Chan, M.

    During the latter months of 2006 and the first half of 2007, the CMS Tracker was assembled and operated at the Tracker Integration Facility at CERN. During this period the performance of the tracker at trigger rates up to ...

  19. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov (indexed) [DOE]

    in high precision manufacturing environments: Fuel injector nozzle drilling (automotive industry) Ceramic hole drilling (electronics industry) Precious metal...

  20. Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with

    E-Print Network [OSTI]

    Short Communication High hydrogen production rate of microbial electrolysis cell (MEC) with reduced production rate Microbial electrolysis cell a b s t r a c t Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved

  1. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    E-Print Network [OSTI]

    CORLETT, J.

    2009-01-01

    for a High-Repetition-Rate FEL Facility at LBNL* A. Brepetition-rate, seeded FEL. Figure 2: Longitudinal phase-spontaneous emission FEL with energy-chirped electron beam

  2. High power and high repetition rate pulse generation using self injection-locking in Fabry-Perot Laser diode

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    , but the output power is not very high. High repetition pulse generation based on nonlinear propagation of a dual1 High power and high repetition rate pulse generation using self injection-locking in Fabry-doped fiber ring lasers (ED-FRL) [2-3] are attractive methods to generate high speed pulse trains

  3. High frame-rate, large field wavefront sensor

    SciTech Connect (OSTI)

    Avicola, K.; Salmon, J.T.; Brase, J.; Waltjen, K.; Presta, R.; Balch, K.S.

    1992-03-01

    A two-stage intensified 192 {times} 239 pixel imager developed by Eastman Kodak for motion analysis was used to construct a 1 kHz frame-rate Hartmann wavefront sensor. The sensor uses a monolithic array of lenslets with a focal length that is adjusted by an index fluid between the convex surface and an optical flat. The accuracy of the calculated centroid position, which is related to wavefront measurement accuracy, was obtained as a function of spot power and spot size. The sensor was then dynamically tested at a 1 kHz frame-rate with a 9 {times} 9 lenslet array and a fast steering mirror, which swept a plane wavefront across the wavefront sensor. An 8 cm diameter subaperture will provide a return signal (589 nm) level of about 1000 photons/ms using the AVLIS 1 kW laser (stretched pulse) as guide star source, which is sufficient to yield a wavefront measurement of better than {gamma}/10 rms. If an area of 6 {times} 6 pixels per Hartmann spot were allocated, this wavefront sensor could support a 32 {times} 32, or 1024, element deformable mirror.

  4. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&High impactHigh

  5. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&High impactHighAndy

  6. High Strain-Rate Characterization of Magnesium Alloys | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGH PERFORMANCEEnergy

  7. Instrumentation and Diagnostics for High Repetition Rate LINAC-Driven FEL

    E-Print Network [OSTI]

    De Santis, S

    2014-01-01

    Evtushenko, “Electron Beam Diagnostics For High Current FELDrivers”, FEL 2011, Shanghai (2011). [5] F. Sannibale, etREPETITION RATE LINAC-DRIVEN FEL S. De Santis # , J. Byrd,

  8. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  9. Pathway to a lower cost high repetition rate ignition facility

    SciTech Connect (OSTI)

    Obenschain, S.P.; Colombant, D.G.; Schmitt, A.J.; Sethian, J.D.; McGeoch, M. W. [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, D.C. 20375 (United States); Plex LLC, Brookline, Massachusetts 02446-5478 (United States)

    2006-05-15

    An approach to a high-repetition ignition facility based on direct drive with the krypton-fluoride laser is presented. The objective is development of a 'Fusion Test Facility' that has sufficient fusion power to be useful as a development test bed for power plant materials and components. Calculations with modern pellet designs indicate that laser energies well below a megajoule may be sufficient. A smaller driver would result in an overall smaller, less complex and lower cost facility. While this facility might appear to have most direct utility to inertial fusion energy, the high flux of neutrons would also be able to address important issues concerning materials and components for other approaches to fusion energy. The physics and technological basis for the Fusion Test Facility are presented along with a discussion of its applications.

  10. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J. [Studiengesellschaft fuer Eisenerzaufbereitung, Liebenburg-Othfresen (Germany); Cappel, F.; Weisel, H.; Richter, G. [LURGI AG, Frankfurt (Germany)

    1995-12-01

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  11. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect (OSTI)

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  12. High-rate reactive sputter deposition of zirconium dioxide (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTechHigh-contrastproperties of

  13. High Metal Removal Rate Process for Machining Difficult Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian

  14. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01

    Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

  15. Design Studies for a High-Repetition-Rate FEL Facility at LBNL.

    E-Print Network [OSTI]

    CORLETT, J.

    2009-01-01

    high-resolution diagnostics of photon and electron beams, tobeams, free-electron lasers, photocathodes, high-repetition-rate electron-gun systems, laser systems, CW superconducting rf cryomodules, diagnostics,

  16. Universal penetration test apparatus with fluid penetration sensor

    DOE Patents [OSTI]

    Johnson, Phillip W. (Rochester, MN); Stampfer, Joseph F. (Santa Fe, NM); Bradley, Orvil D. (Santa Fe, NM)

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  17. Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications

    E-Print Network [OSTI]

    Pedram, Massoud

    Battery-Supercapacitor Hybrid System for High-Rate Pulsed Load Applications Donghwa Shin, Younghyun--Modern batteries (e.g., Li-ion batteries) provide high discharge efficiency, but the rate capacity effect in these batteries drastically decreases the discharge efficiency as the load current increases. Electric double

  18. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    E-Print Network [OSTI]

    Cai, Jing

    2007-01-01

    PTFE.Rate Flow and Failure in PTFE/Al/W Granular Composites”,and Microstructural Properties of PTFE-Al-W System”, 2007

  19. Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions Romain Available online 8 March 2012 Keywords: A1. Mineral replacement rate A1. Serpentinization A1. TG analyses B1. Alkaline medium B2. Chrysotile nanotubes a b s t r a c t Olivine mineral replacement by serpentine is one

  20. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    E-Print Network [OSTI]

    Cai, Jing

    2007-01-01

    17 2.3 Reaction at High Velocity Impact of PTFE-Basedprocess [60]. 2.3 Reaction at High Velocity Impact of PTFE-of reaction of energetic materials at high velocity impact,

  1. High repetition rate mode-locked erbium-doped fiber lasers with complete electric field control

    E-Print Network [OSTI]

    Sickler, Jason William, 1978-

    2008-01-01

    Recent advances in fully-stabilized mode-locked laser systems are enabling many applications, including optical arbitrary waveform generation (OAWG). In this thesis work, we describe the development of high repetition-rate ...

  2. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  3. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  4. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  5. Self-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems

    E-Print Network [OSTI]

    Zhong, Lin

    of a system in the lab using high quality external power measurements. Such methods are not only laborSelf-Constructive High-Rate System Energy Modeling for Battery-Powered Mobile Systems Mian Dong, low power, mobile systems 1. Introduction An energy model estimates the energy consumption by a mobile

  6. Barycentric rational interpolation with no poles and high rates of approximation

    E-Print Network [OSTI]

    Hormann, Kai

    Barycentric rational interpolation with no poles and high rates of approximation Michael S. Floater to control the occurrence of poles. In this paper we propose and study a family of barycentric rational inter- polants that have no real poles and arbitrarily high approximation orders on any real interval, regardless

  7. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  8. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    SciTech Connect (OSTI)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  9. Extra-galactic high-energy transients: event rate densities and luminosity functions

    E-Print Network [OSTI]

    Sun, Hui; Li, Zhuo

    2015-01-01

    Several types of extra-galactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients, and derive the local specific event rate density, which also represents its global luminosity function. Long GRBs have a large enough sample to reveal features in the global luminosity function, which is best characterized as a triple power law. All the other transients are consistent with having a single power law luminosity function. The total event rate density depends on the minimum luminosity, and...

  10. From whole gland to hemigland to ultra-focal high-dose rate prostate brachytherapy: A dosimetric analysis

    E-Print Network [OSTI]

    Banerjee, R; Park, S; Anderson, ES; Demanes, DJ; Wang, J; Kamrava, MR

    2015-01-01

    Focal high-dose-rate brachytherapy: A dosimetric comparisonwhole-gland treatment. Brachytherapy 2013;12:434e441. [6]P, et al. High-dose-rate brachytherapy boost to the dominant

  11. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    SciTech Connect (OSTI)

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  12. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect (OSTI)

    Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50?km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  13. Hanford waste treatment plant Immobilized High Level Waste (IHLW) canister radiation dose rate and radiolytic heat load analysis

    SciTech Connect (OSTI)

    PIERSON, R.M.

    2003-09-02

    This document provides an analysis of anticipated radiation dose rates and heat loads for immobilized high level waste (IHW) canisters

  14. Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

    E-Print Network [OSTI]

    Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

  15. Implications of High Renewable Electricity Penetration in the U.S. for Water Use, Greenhouse Gas Emissions, Land-Use, and Materials Supply

    Broader source: Energy.gov [DOE]

    Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply are identified.

  16. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    of narrow bandgap a-SiGe and µc-SiGe films deposited using different hydrogen dilution Section 3 Triple-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High 3-1 I-V performance of triple cell having heavily doped tunnel-junction interface layers

  17. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore »hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  18. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect (OSTI)

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  19. Coexistence of high-bit-rate quantum key distribution and data on optical fiber

    E-Print Network [OSTI]

    K. A. Patel; J. F. Dynes; I. Choi; A. W. Sharpe; A. R. Dixon; Z. L. Yuan; R. V. Penty; A. J. Shields

    2012-11-30

    Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.

  20. TRANS4: a computer code calculation of solid fuel penetration of a concrete barrier. [LMFBR; GCFR

    SciTech Connect (OSTI)

    Ono, C. M.; Kumar, R.; Fink, J. K.

    1980-07-01

    The computer code, TRANS4, models the melting and penetration of a solid barrier by a solid disc of fuel following a core disruptive accident. This computer code has been used to model fuel debris penetration of basalt, limestone concrete, basaltic concrete, and magnetite concrete. Sensitivity studies were performed to assess the importance of various properties on the rate of penetration. Comparisons were made with results from the GROWS II code.

  1. Analogy between glass rheology and crystal plasticity: yielding at high strain rate

    E-Print Network [OSTI]

    Yildiz, Bilge

    Analogy between glass rheology and crystal plasticity: yielding at high strain rate Yue Fan arising from avalanche dynamics.10 View from crystal plasticity The experimental evidence of up fluctuation to stress activated processes. For crystals this behavior has been recently explained using

  2. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses

    E-Print Network [OSTI]

    Kobtsev, Sergei M.

    of research into passively mode- locked fiber laser with a record-setting optical length of the resonant-repetition rate high- energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser," presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia

  3. A method to quench and recharge avalanche photo diodes for use in high rate situations

    SciTech Connect (OSTI)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI.

  4. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT* J. Corlett#

    E-Print Network [OSTI]

    Wurtele, Jonathan

    A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT* J. Corlett# , J. Byrd, W. M. Fawley, M. Gullans, Berkeley, CA 94720, U.S.A. Abstract We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders

  5. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    SciTech Connect (OSTI)

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R. [Universidade Federal do Pampa - UNIPAMPA-Bage, 96413-170 (Brazil); Laboratorio Nacional de Luz Sincrotron - LNLS, 13086-100 (Brazil)

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  6. High-Rate Glass Resistive Plate Chambers For LHC Muon Detectors Upgrade

    E-Print Network [OSTI]

    Laktineh, I; Cauwenbergh, S; Combret, C; Crotty, I; Haddad, Y; Grenier, G; Guida, R; Kieffer, R; Lumb, N; Mirabito, L; Schirra, F; Seguin, N; Tytgat, M; Van der Donckt, M; Wang, Y; Zaganidis, N

    2012-01-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPC) used as muon detector in LHC experiments is behind the absence of such detectors in the high TJ regions in both CMS and ATLAS detectors. RPCs made with low resistivity glass plates (10ID O.cm) could be an adequate solution to equip the high TJ regions extending thus both the trigger efficiency and the physics performance. Different beam tests with single and multi-gap configurations using the new glass have shown that such detectors can operate at few thousands Hzlcm2 with high efficiency( > 90%).

  7. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, Joseph (Laguna Beach, CA); Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Glinsky, Michael E. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Perry, Michael D. (Livermore, CA); Feit, Michael D. (Livermore, CA); Rubenchik, Alexander M. (Livermore, CA)

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  8. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  9. The compressive response of porcine adipose tissue from low to high strain rate Kerstyn Comley, Norman Fleck*

    E-Print Network [OSTI]

    Fleck, Norman A.

    at high strain rates (1000 sÀ1 e5700 sÀ1 ) were conducted with a split Hopkinson pressure bar (SHPB) using polycarbonate bars. Over the full range of strain rate from quasi-static to high strain rate, the magnitude pressure bar (SHPB) with polycarbonate bars (PC). It is demon- strated that a one dimensional Ogden model

  10. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    SciTech Connect (OSTI)

    Braggio, C., E-mail: caterina.braggio@unipd.it [Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Borghesani, A. F. [CNISM unit, Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)] [CNISM unit, Dip. di Fisica e Astronomia and INFN sez. di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)

    2014-02-15

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  11. High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood

    E-Print Network [OSTI]

    Salz, M; Czesla, S; Schmitt, J H M M

    2015-01-01

    Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyman alpha transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyman alpha luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyman alpha transit spectroscopy...

  12. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J.V. [Chemical Sciences and Engineering Division, D-193, Bldg. 200, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and methylcyclohexane. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment. (author)

  13. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and methylcyclohexane. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment.

  14. Nuclear reaction rates and energy in stellar plasmas : The effect of highly damped modes

    E-Print Network [OSTI]

    Merav Opher; Luis O. Silva; Dean E. Dauger; Viktor K. Decyk; John M. Dawson

    2001-05-09

    The effects of the highly damped modes in the energy and reaction rates in a plasma are discussed. These modes, with wavenumbers $k \\gg k_{D}$, even being only weakly excited, with less than $k_{B}T$ per mode, make a significant contribution to the energy and screening in a plasma. When the de Broglie wavelength is much less than the distance of closest approach of thermal electrons, a classical analysis of the plasma can

  15. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  16. Quantifying the Intergration of LEED Ratings to Military High Performance Sustainable Buildings 

    E-Print Network [OSTI]

    Walewski, J.

    2013-01-01

    of LEED ratings to Military High Performance Sustainable Buildings CATEE 2013 MAJ Autumn Leveridge, U.S. Army CPT Brian Schonefeld, U.S. Navy CPT Jared Solether, U.S. Navy Dr. John Walewski Department of Civil Engineering, Texas A&M University CCLD... & Coatings / Carpet Systems Thermal Comfort, Design Daylight & Views Daylight 75% of Spaces Innovation & Design Process (ID) NA 18 Key LEED Credits for Military High Performance Sustainable Buildings ESL-KT-13-12-08 CATEE 2013: Clean Air Through Energy...

  17. Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities

    SciTech Connect (OSTI)

    March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Kraessig, Bertold; Southworth, Stephen H.; Attenkofer, Klaus; Kurtz, Charles A.; Young, Linda [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Stickrath, Andrew [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Chen, Lin X. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2011-07-15

    We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 {mu}m wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of {approx}250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 {mu}J/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.

  18. High repetition rate laser-induced breakdown spectroscopy using acousto-optically gated detection

    SciTech Connect (OSTI)

    Po?ízka, Pavel [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Klessen, Benjamin; Gornushkin, Igor; Riedel, Jens [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Panne, Ulrich [BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany)

    2014-07-15

    This contribution introduces a new type of setup for fast sample analysis using laser-induced breakdown spectroscopy (LIBS). The novel design combines a high repetition rate laser (up to 50 kHz) as excitation source and an acousto-optical modulator (AOM) as a fast switch for temporally gating the detection of the emitted light. The plasma radiation is led through the active medium of the AOM where it is diffracted on the transient ultrasonic Bragg grid. The diffracted radiation is detected by a compact Czerny-Turner spectrometer equipped with a CCD line detector. Utilizing the new combination of high repetition rate lasers and AOM gated detection, rapid measurements with total integration times of only 10 ms resulted in a limit of detection (LOD) of 0.13 wt.% for magnesium in aluminum alloys. This short integration time corresponds to 100 analyses/s. Temporal gating of LIP radiation results in improved LODs and consecutively higher sensitivity of the LIBS setup. Therefore, an AOM could be beneficially utilized to temporally detect plasmas induced by high repetition rate lasers. The AOM in combination with miniaturized Czerny-Turner spectrometers equipped with CCD line detectors and small footprint diode pumped solid state lasers results in temporally gateable compact LIBS setups.

  19. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  20. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    E-Print Network [OSTI]

    Jaiswal, A.

    2010-01-01

    12 for High Rate Li-ion Batteries A. Jaiswal 1 , C. R. Hornenext generation of Li-ion batteries for consumer electronics

  1. Robot-guided open-loop insertion of skew-line needle arrangements for high dose rate brachytherapy

    E-Print Network [OSTI]

    2013-01-01

    system for prostate brachytherapy,” Computer Aided Surgery,Stoianovici, “Automatic brachytherapy seed placement underof High-dose-rate Brachytherapy Acci- dents,” Annals of the

  2. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect (OSTI)

    Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas [Department of Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  3. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  4. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals

    SciTech Connect (OSTI)

    Ganesh, Panchapakesan; Kent, P. R. C.; Sumpter, Bobby G; Lubimtsev, Andrew A

    2013-01-01

    Pseudocapacitors aim to maintain the high power density of supercapacitors while increasing the energy density towards those of energy dense storage systems such as lithium ion batteries. Recently discovered intercalation pseudocapacitors (e.g. Nb2O5) are particularly interesting because their performance is seemingly not limited by surface reactions or structures, but instead determined by the bulk crystalline structure of the material. We study ordered polymorphs of Nb2O5 and detail the mechanism for the intrinsic high rates and energy density observed for this class of materials. We find that the intercalating atom (lithium) forms a solid solution adsorbing at specific sites in a network of quasi-2D NbOx faces with x {1.3, 1.67, or 2}, donating electrons locally to its neighboring atoms, reducing niobium. Open channels in the structure have low diffusion barriers for ions to migrate between these sites (Eb 0.28 0.44 eV) comparable to high-performance solid electrolytes. Using a combination of complementary theoretical methods we rationalize this effect in LixNb2O5 for a wide range of compositions (x) and at finite temperatures. Multiple adsorption sites per unit-cell with similar adsorption energies and local charge transfer result in high capacity and energy density, while the interconnected open channels lead to low cost diffusion pathways between these sites, resulting in high power density. The nano-porous structure exhibiting local chemistry in a crystalline framework is the origin of high-rate pseudocapacitance in this new class of intercalation pseudocapacitor materials. This new insight provides guidance for improving the performance of this family of materials.

  5. Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model 

    E-Print Network [OSTI]

    Lang, K.

    1982-01-01

    technologies. This paper briefly discusses the observed patterns of the diffusion of new' technologies and the determinants (both sociological and economic) which have been proposed to explain the variation in the diffusion rates. Existing market penetration...

  6. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    SciTech Connect (OSTI)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry, which underwent several iterations before an optimal electrode configuration was found. The model was tested and validated against real-world measurements with existing germanium detectors. Extensive modeling of electronic noise was conducted using established formulae, and real-world measurements were performed on candidate front-end electronic components. This initial work proved the feasibility of the design with respect to expected high count rate and energy resolution performance. Phase I also delivered the mechanical design of the detector housing and vacuum cryostat to be built in Phase II. Finally, a Monte Carlo simulation was created to show the response of the complete design to a Cs-137 source. This development presents a significant advance for nuclear safeguards instrumentation with increased speed and accuracy of detection and identification of special nuclear materials. Other significant applications are foreseen for a gamma-ray detector that delivers high energy resolution (1keV FWHM noise) at high count rate (1 Mcps), especially in the areas of physics research and materials analysis.

  7. IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY

    E-Print Network [OSTI]

    IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY Jens , Ruediger Meyer 3 1) Fraunhofer Institute for Electron Beam and Plasma Technology (FEP), Winterbergstr. 28 Through (RISE EWT) solar cells by electron beam high-rate evaporation of aluminum. In stationary

  8. Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

  9. 398 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 21, NO. 2, APRIL 2012 High-Range Angular Rate Sensor Based on

    E-Print Network [OSTI]

    Chen, Zhongping

    398 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 21, NO. 2, APRIL 2012 High-Range Angular Rate- bration in a microelectromechanical systems Coriolis vibratory gyroscope to produce a frequency-based measurement of the input angular rate. The system is enabled by a combination of a MEMS vibratory high

  10. High Rate and Stable Cycling of Lithium Metal Anode (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article)SciTech Connect High Rate and Stable

  11. Enhancing DNA binding rate using optical trapping of high-density gold nanodisks

    SciTech Connect (OSTI)

    Lin, En-Hung; Pan, Ming-Yang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China) [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Lee, Ming-Chang [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China)] [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan 30013 (China); Wei, Pei-Kuen, E-mail: pkwei@sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China) [Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 11529 (China); Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan (China)

    2014-03-15

    We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 ?m. Dark-field illumination showed ?15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ?10 fN under 3.58 × 10{sup 3} W/m{sup 2} illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10{sup 3} s{sup ?1} (I = 0.7 × 10{sup 3} W/m{sup 2}) to 1.15 × 10{sup 5} s{sup ?1} (I = 3.58 × 10{sup 3} W/m{sup 2}). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays.

  12. Opportunities and Challenges for Higher Renewable Penetration in

    E-Print Network [OSTI]

    California at Davis, University of

    's Current and Expected Renewable Energy Achievements On track to meet or exceed 33% RPS by 2020 · 50 it to the finish line due to high costs 3. Renewables · Current default option in American West #12;7 Example USOpportunities and Challenges for Higher Renewable Penetration in California Beyond 33%: UC Davis

  13. Development of scintillating fiber detector technology for high rate particle tracking

    E-Print Network [OSTI]

    E. C. Aschenauer; J. Baehr; V. Gapienko; B. Hoffmann; A. Kharchilava; H. Luedecke; R. Nahnhauer; R. Shanidze

    1997-10-02

    The performance of a scintillating fiber detector prototype for tracking under high rate conditions is investigated. A spatial resolution of about100 micron is aimed for the detector. Further demands are low occupancy and radiation hardness up to 1 Mrad/year. Fibers with different radii and different wavelengths of the scintillation light from different producers have been extensively tested concerning light output, attenuation length and radiation hardness, with and without coupling them to light guides of different length and diameter. In a testrun at a 3 GeV electron beam the space dependent efficiency and spatial resolution of fiber bundels were measured by means of two external reference detectors with a precision of 50 micron. The light output profile across fiber roads has been determined with the same accuracy. Different technologies were adopted for the construction of tracker modules consisting of 14 layers of 0.5 mm fibers and 0.7 mm pitch. A winding technology provides reliable results to produce later fiber modules of about 25 cm x 25 cm area. We conclude that on the basis of these results a fiber tracker for high rate conditions can be built.

  14. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect (OSTI)

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  15. Pathway Controlled Penetration (PcP)

    SciTech Connect (OSTI)

    Knight, Earl E. [Los Alamos National Laboratory; Rougier, Esteban [Los Alamos National Laboratory; Zubelewicz, Aleksander [Los Alamos National Laboratory

    2012-08-29

    The technical approach employs advanced computational simulation tools to demonstrate how current assets can destroy RWK-RFI-12-0001's HDBT, a tunnel complex with two portals built into the base of a granite mountain. The granite over layer is assumed to be 60 meters thick over both portals and 80 meters over the facility's mission space. Key S&T is the completed development of a highly innovative viscoplastic fracture material model, 3D parallel gas-fracture capabilities into FDEM, and a stochastic handling of the material properties. Phase I - Develop and validate code simulation tools: (1) develop, incorporate and validate AZ-Frac material model for granite; and (2) Develop and incorporate gas-driven-fracture modeling into LANL's FDEM MUNROU code; (3) Develop and incorporate stochastic features into FDEM modeling. Phase II - Conduct PcP analysis on above HDBT: (1) Acquire HDBT design data, develop simulation model; and (2) Evaluate and select most promising defeat alternative. Phase III - Deliver code, train Service target analysts, and conduct simulations against real world HDBTs. PcP uses advanced computer simulations to enhance HDBT functional defeat efforts. Newly developed material models that account for fractural energy coupled with the finite discrete element methodology (FDEM) will provide targeting packages that will create penetration avenues for current or future lethality options. This novel computational approach requires full 3D geologic and structure characterization as well as significant high performance computing capabilities. The goal is to distinctively alter the targeting paradigm by leveraging critical DoD assets along with insitu geologic strata. In other words, assets will utilize underground rock structure to their benefit by creating rubbilization zones that will allow pathway controlled penetration.

  16. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  17. Microcalorimeter Spectroscopy at High Pulse Rates: a Multi-Pulse Fitting Technique

    E-Print Network [OSTI]

    Fowler, J W; Doriese, W B; Fischer, D A; Jaye, C; Joe, Y I; O'Neil, G C; Swetz, D S; Ullom, J N

    2015-01-01

    Transition edge sensor microcalorimeters can measure x-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future x-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current "optimal filtering" approaches to achieve the best possible energy resolution work only for photons well isolated in time, a requirement in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to the standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render multi-pulse fitting computationally viable even for very long data records. The technique is employed to analyze x-ray emission spectra at 600 eV and 6 keV at r...

  18. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect (OSTI)

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  19. Long-range Cooper pair splitter with high entanglement production rate

    E-Print Network [OSTI]

    Wei Chen; D. N. Shi; D. Y. Xing

    2015-01-05

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal.

  20. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making thismore »a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  1. Limits of survivability and damage for optical components used in a high repetition rate visible laser

    SciTech Connect (OSTI)

    Taylor, J.R.; Stolz, C.J.; Sarginson, T.G.

    1991-10-01

    An effort is being made to understand the limits of survivability and damage for optical components exposed to a visible laser operating continuously at a high repetition rate over 4 kHz. Results of this work are reported and related to the materials and manufacturing conditions for coatings and substrates as well as defects seen at the surface under laser illumination. These results were obtained for a variety of optical coatings and conditions using lasers from the Laser Demonstration Facility, part of the Atomic Vapor Laser Isotope Separation (AVLIS) Program at LLNL. Better understanding of the reliability of optical components in this environment could lead to improvements in design and manufacture that would result in reduced size for the laser optical system and correspondingly lower costs for the facilities that can use this technology.

  2. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect (OSTI)

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p-n junctions was developed by Isaque et al. They used a more complete ambipolar transport equation, which included the dependencies of the transport parameters (ambipolar diffusion constant, mobility, and recombination rate) on the excess minority carrier concentration. The expression used for the recombination rate was that of Shockley-Reed-Hall (SRH) recombination which is dominant for low to mid-level radiation intensities. However, at higher intensities, Auger recombination becomes important eventually dominant. The complete ambipolar transport equation including the complicated dependence of transport parameters on the radiation intensity, cannot be solved analytically. This solution is obtained for each of the regimes where a given recombination mechanism dominates, and then by joining these solutions using appropriate smoothing functions. This approach allows them to develop a BJT model accounting for the photoelectric effect of the ionizing radiation that can be implemented in SPICE.

  3. Evolution of microstructure and crystalline texture in aluminum sheet metal subjected to high strain rate biaxial deformation

    E-Print Network [OSTI]

    Feitler, Isaac Benjamin

    2005-01-01

    Electrohydraulic forming was used to biaxially stretch commercial Aluminum 5052 sheet metal workpieces at a high strain rate. Annealed and unannealed workpieces were formed. Specimens were taken from unformed metal and ...

  4. Effect Of False Alarm Rate On Pilot Use And Trust Of Automation Under Conditions Of Simulated High Risk

    E-Print Network [OSTI]

    Cafarelli, Deborah

    2010-11-05

    An experimental study was conducted to investigate the relationships between automation false alarm rate, human trust in automation, and human use of automation, specifically under conditions of simulated high risk. The ...

  5. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect (OSTI)

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  6. Is the Use of a Surrogate Urethra an Option in Prostate High-Dose-Rate Brachytherapy?

    SciTech Connect (OSTI)

    Nilsson, Josef Kaelkner, Karl Mikael; Berg, Lars; Levitt, Seymour; Holmberg, Carina; Nilsson, Sten; Lundell, Marie

    2008-05-01

    Purpose: To investigate the accuracy and the dosimetric consequences of substituting a surrogate urethra assumed to be at the geometric center of the prostate, in place of the true urethra when using high-dose-rate (HDR) brachytherapy for the treatment of prostate cancer. Methods and Materials: One hundred prostate cancer patients treated with HDR brachytherapy constituted the study group. A pre-plan was made with the urethra visualized. The true urethra was defined, and a surrogate urethra was placed at the geometric center of the prostate. The distance between the two urethras was measured. The deviation was evaluated at the base, middle, and apex. To evaluate the dosimetric consequences for the true urethra when using a surrogate urethra, two different dose plans were made: one based on the true urethra and one based on the surrogate urethra. The dose-volume histograms for the true urethra were analyzed. Results: The deviation between the true urethra and the surrogate urethra was greatest at the base of the prostate. A statistically significant difference was seen between the dosimetric parameters for the true and the surrogate urethra when the dose plan was made using the surrogate urethra. In this situation the dose to the true urethra was increased above our defined maximum tolerance limit. Conclusions: When using dose plans made according to a surrogate urethra the dose to the true urethra might be too high to be acceptable. If the true urethra is not visualized, severe damage could easily develop in a significant number of patients.

  7. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  8. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates

    DOE Patents [OSTI]

    Mahan, Archie Harvin (Golden, CO); Molenbroek, Edith C. (Rotterdam, NL); Gallagher, Alan C. (Louisville, CO); Nelson, Brent P. (Golden, CO); Iwaniczko, Eugene (Lafayette, CO); Xu, Yueqin (Golden, CO)

    2002-01-01

    A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

  9. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect (OSTI)

    Friedman, Lois C., E-mail: Lois.Friedman@UHhospitals.org [Department of Psychiatry, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Abdallah, Rita [Ireland Cancer Center, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (Ireland); Schluchter, Mark; Panneerselvam, Ashok [Department of Epidemiology and Biostatistics, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Kunos, Charles A. [Department of Radiation Oncology, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States)

    2011-07-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  10. Large-scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations

    E-Print Network [OSTI]

    Dmitriev, A V

    2015-01-01

    THEMIS multi-point observation of the plasma and magnetic fields, conducted simultaneously in the dayside magnetosheath and magnetosphere, were used to collect 646 large-scale magnetosheath plasma jets interacting with the magnetopause. The jets were identified as dense and fast streams of the magnetosheath plasma whose energy density is higher than that of the upstream solar wind. The jet interaction with the magnetopause was revealed from sudden inward motion of the magnetopause and an enhancement in the geomagnetic field. The penetration was determined as appearance of the magnetosheath plasma against the background of the hot magnetospheric particle population. We found that almost 60% of the jets penetrated through the magnetopause. Vast majority of the penetrating jets was characterized by high velocities V > 220 km/s and kinetic bk > 1 that corresponded to a combination of finite Larmor radius effect with a mechanisms of impulsive penetration. The average plasma flux in the penetrating jets was found t...

  11. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  12. Low-coke rate operation under high PCI at Kobe No. 3 BF

    SciTech Connect (OSTI)

    Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro [Kobe Steel Ltd. (Japan). Kobe Works

    1997-12-31

    Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

  13. Ureteral stent insertion for gynecologic interstitial high-dose-rate brachytherapy

    E-Print Network [OSTI]

    2015-01-01

    gynecologic interstitial brachytherapy. Int J Radiat OncolBrachytherapy Ureteral stent insertion forhigh-dose-rate brachytherapy D. Jeffrey Demanes*, Robyn

  14. U.S. National Report on CPT Proceedings, International Symposium on Cone Penetration Testing, Vol. 1 (CPT'95), Swedish Geotechnical Society

    E-Print Network [OSTI]

    Mayne, Paul W.

    include the standard penetration test (SPT) and cone penetration test (CPT). In some regions, the flatU.S. National Report on CPT Proceedings, International Symposium on Cone Penetration Testing, Vol projects and remote locations. Research on CPT testing and analysis continues to have high priority within

  15. High-rate x-ray spectroscopy in mammography with a CdTe detector: A digital pulse processing approach

    SciTech Connect (OSTI)

    Abbene, L.; Gerardi, G.; Principato, F.; Del Sordo, S.; Ienzi, R.; Raso, G. [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy) and INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo (Italy); Istituto di Radiologia, Policlinico, 90100 Palermo (Italy); Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2010-12-15

    Purpose:Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. Methods: The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. Results: The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. Conclusions: These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  16. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    SciTech Connect (OSTI)

    Ciniculk, M.K. (California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  17. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect (OSTI)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  18. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect (OSTI)

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to be achieved.

  19. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect (OSTI)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-03-15

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  20. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  1. High-Rate Quantum Key Distribution with Superconducting Nanowire Single Photon Detectors

    E-Print Network [OSTI]

    Spellmeyer, Neal W.

    We demonstrate the potential for 1.85 Mbit/s secure key rates over 101 km of fiber, >100 times faster than previously demonstrated, using the differential phase shift quantum key distribution protocol and superconducting ...

  2. Low to high strain rate deformation of amorphous polymers : experiments and modeling

    E-Print Network [OSTI]

    Mulliken, Adam Dustin, 1979-

    2004-01-01

    A combined experimental and analytical investigation has been performed to understand the mechanical behavior of two amorphous polymers--polycarbonate and poly(methvl methacrylate)--at strain rates ranging from 10?? to 10? ...

  3. Generation of high-stability solitons at microwave rates on a silicon chip

    E-Print Network [OSTI]

    Yi, Xu; Yang, Ki Youl; Suh, Myoung-Gyun; Vahala, Kerry

    2015-01-01

    Because they coherently link radio/microwave-rate electrical signals with optical-rate signals derived from lasers and atomic transitions, frequency combs are having a remarkably broad impact on science and technology. Integrating these systems on a photonic chip would revolutionize instrumentation, time keeping, spectroscopy, navigation and potentially create new mass-market applications. A key element of such a system-on-a-chip will be a mode-locked comb that can be self-referenced. The recent demonstration of soliton pulses from a microresonator has placed this goal within reach. However, to provide the requisite link between microwave and optical rate signals soliton generation must occur within the bandwidth of electronic devices. So far this is possible in crytalline devices, but not chip-based devices. Here, a monolithic comb that generates electronic-rate soliton pulses is demonstrated.

  4. Aggregation Protocols for High Rate, Low Delay Data Collection in Sensor Networks

    E-Print Network [OSTI]

    Saskatchewan, University of

    of transmitted packets, aggregation can reduce energy usage, increase the achievable data collection rate numbers of packets, as To appear in Proc. IFIP/TC6 Networking 2009, Aachen, Germany, May 2009. This work

  5. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    E-Print Network [OSTI]

    2007-01-01

    performance, based on a number of FEL configurations, fed byREPETITION RATE VUV-SOFT X-RAY FEL CONCEPT* J. Corlett # ,will be switched into each FEL in the array, in a time-

  6. Stabilization techniques and silicon-germanium saturable absorbers for high repetition rate mode-locked lasers

    E-Print Network [OSTI]

    Grawert, Felix Jan

    2005-01-01

    The monolithic integration of passively mode-locked solid-state lasers at highest repetition rates has been prevented by Q-switching instabilities and the lack of integrable saturable absorbers to date. In this thesis we ...

  7. Optical channel waveguides written by high repetition rate femtosecond laser irradiation in Li-Zn fluoroborate glass

    E-Print Network [OSTI]

    Thomas, Sunil; Solis, Javier; Biju, P R; Unnikrishnan, N V

    2015-01-01

    Low loss, optical channel waveguides have been successfully produced by high repetition rate, femtosecond laser inscription in a Li-Zn fluoroborate glass (64.9B2O3 + 25Li2O + 10ZnF2 + 0.1Er2O3). High quality waveguides were produced at 500 kHz, 1 MHz and 2 MHz laser repetition rates, showing a refractive index contrast in the range of 3-6 x 10-3 depending on various fluences. Dependence of experimental parameters such as average laser power, pulse repetition rate and writing speed on the properties of fabricated waveguides has been discussed. The comparison of optical and compositional characterization techniques evidences an enrichment of B and Zn in the guiding region, while F migrates to the heat diffused region of the written structure.

  8. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond 2002 We have conducted experiments exploring pulsed laser deposition of thin films using the high average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination

  9. JTu5A.40.pdf Advanced Photonics Congress 2012 OSA High-repetition-rate ultrashort pulse generation in nonlinear

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    JTu5A.40.pdf Advanced Photonics Congress © 2012 OSA High-repetition-rate ultrashort pulse Polytechnic University, Hong Kong School of Engineering, Fraser Noble Building, King's College, University A is the slowly varying envelop, z is the distance variable, t is the time variable, 2(z) and are the dispersion

  10. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells

    E-Print Network [OSTI]

    Reducing pumping energy by using different flow rates of high and low concentration solutions Keywords: Salinity gradient energy RED Renewable energy production a b s t r a c t Energy use for pumping to reduce the energy needed for pumping, electrical performance and hydrodynamic power losses in a RED stack

  11. High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia)

    E-Print Network [OSTI]

    Vigny, Christophe

    High slip rate for a low seismicity along the Palu-Koro active fault in central Sulawesi (Indonesia, Indonesia Introduction Sulawesi Island, eastern Indonesia, is at the triple junction of the Paci®c (through- ABSTRACT In eastern Indonesia, the Central Sulawesi fault system consists of complex left-lateral strike

  12. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH

    E-Print Network [OSTI]

    Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH Terje microalgae, especially oceanic forms from stable pH environments (ca. pH 8.1 Æ 0.5) and large species et al., 2007). Because microalgae have species-specific differences in their upper pH tolerance

  13. Towards High-Rate Fabrication of Photonic Devices Utilizing a Combination of Roll-To-Roll Compatible Imprint

    E-Print Network [OSTI]

    Chen, Ray

    Towards High-Rate Fabrication of Photonic Devices Utilizing a Combination of Roll-To-Roll-optic modulator. Compared to spin-coating method, the use of print-on-demand method greatly reduces material consumption and process complexity. Every step involved has the potential to be fully compatible with roll

  14. IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 3, MARCH 2009 977 High-Rate Interpolation of Random Signals

    E-Print Network [OSTI]

    Eldar, Yonina

    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 3, MARCH 2009 977 High-Rate Interpolation of Random Signals From Nonideal Samples Tomer Michaeli and Yonina C. Eldar, Senior Member, IEEE Abstract--We address the problem of reconstructing a random signal from samples of its filtered version using a given

  15. Penetrative internally heated convection in two and three dimensions

    E-Print Network [OSTI]

    Goluskin, David

    2015-01-01

    Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.

  16. Variable firing rate power burner for high efficiency gas furnaces. Final report

    SciTech Connect (OSTI)

    Fuller, H.H.; Demler, R.L.; Poulin, E.

    1980-02-01

    One method for increasing the efficiency of residential furnaces and boilers is to retrofit a burner capable of firing rate (FR) modulation. While maximum FR is still attainable, the average FR is significantly lower, resulting in more effective heat exchanger performance. Equally important is the capability for continuous firing at a very low rate (simmering) which eliminates off-cycle loss, a heavy contributor to inefficiency. Additional performance can be gained by reducing the excess air required by a burner. Based on its previous experience, Foster-Miller Associates, Inc. has designed and tested a low excess air (about 15%) variable firing rate (VFR) burner. The theory of operation and the construction of the test burner are described. Test results are given along with a conclusion/recommendation. A Phase II plan is outlined which suggests methods and steps for fabrication and field testing of a number of prototype units.

  17. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect (OSTI)

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  18. Neutron diffraction measurements of dislocation density in copper crystals deformed at high strain rate

    SciTech Connect (OSTI)

    Rao, Mala N.; Chaplot, S. L.; Rawat, S.

    2013-02-05

    Neutron diffraction measurements of the rocking curves were carried out for single crystals of copper subjected to dynamic compression at 10{sup 3}/s strain rate. The line broadening is expected to be produced by dislocations, and an analysis of this broadening gives the dislocation density. Dislocation density is found to increase with increase of pressure.

  19. High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

    E-Print Network [OSTI]

    D. Stucki; N. Walenta; F. Vannel; R. T. Thew; N. Gisin; H. Zbinden; S. Gray; C. R. Towery; S. Ten

    2009-03-23

    We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km.

  20. Characteristics of high-rate energy spectroscopy systems using HPGe coaxial detectors and time-variant filters

    SciTech Connect (OSTI)

    Britton, C.L.; Becker, T.H.; Paulus, T.J.; Trammell, R.C.

    1984-02-01

    A high-rate, high-resolution gamma spectrometer system is described. The system consists of a reverse electrode HPGe coaxial detector, a transistor reset preamplifier, an active, semi-Gaussian prefilter, a gated integrator, and a unique data acquisition system consisting of a 10 ..mu..s, 13 bit ADC, fast FIFO memory, 8k by 23 bit data memory, and computer interface circuitry under the control of a Z-80A ..mu..P. The effects of the various components on the throughput are described and throughput data is presented. The resolution and peak shift for various shaping times are presented for count rates up to 1 Mcps input rate using a mixed /sup 22/Na and /sup 60/Co source. The low rate resolutions of /sup 57/Co and /sup 60/Co for various shaping times using either the semi-Gaussian or gated integrator output are discussed as well as the low energy resolution and peak shifts in the presence of high energy events.

  1. Evaluation of a Low Power, High Repetition-Rate Laser for MALDI M. Bromirski, A. Loboda, W. Ens, and K.G. Standing

    E-Print Network [OSTI]

    Ens, Werner

    Evaluation of a Low Power, High Repetition-Rate Laser for MALDI M. Bromirski, A. Loboda, W. Ens A compact, low-power, high repetition rate (10 kHz) laser has been tested for use in MALDI in a conventional rate produces detector saturation. The use of a lower power laser focused to a smaller spot may

  2. Scalable computations in penetration mechanics

    SciTech Connect (OSTI)

    Kimsey, K.D.; Schraml, S.J.; Hertel, E.S.

    1998-01-01

    This paper presents an overview of an explicit message passing paradigm for an Eulerian finite volume method for modeling solid dynamics problems involving shock wave propagation, multiple materials, and large deformations. Three-dimensional simulations of high-velocity impact were conducted on the IBM SP2, the SGI Power challenge Array, and the SGI Origin 2000. The scalability of the message-passing code on distributed-memory and symmetric multiprocessor architectures is presented and compared to the ideal linear performance.

  3. Optical penetration sensor for pulsed laser welding

    DOE Patents [OSTI]

    Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  4. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect (OSTI)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  5. An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift

    E-Print Network [OSTI]

    Mashian, Natalie; Loeb, Abraham

    2015-01-01

    Using the most recent measurements of the ultraviolet (UV) luminosity functions (LFs) and dust estimates of early galaxies, we derive updated dust-corrected star-formation rate functions (SFRFs) at z~4-8, which we model to predict the evolution to higher redshifts, z>8. We employ abundance matching techniques to calibrate a relation between galaxy star formation rate (SFR) and host halo mass M{_h} by mapping the shape of the observed SFRFs at z~4-8 to that of the halo mass function. The resulting scaling law remains roughly constant over this redshift range. We apply the average SFR-M{_h} relation to reproduce the observed SFR functions at 4 10 indicate that JWST will be able to detect galaxies out to z~15 with an extensive treasury sized program. We also derive the redshift evolution of the star formation rate density and associated reionization history by galaxies for which we find that the inclusion of galaxies with SFRs well below the current detection limit leads to a fully reionized universe by z~6.5 an...

  6. A sector-based dosimetric analysis of dose heterogeneity in high-dose-rate prostate brachytherapy

    E-Print Network [OSTI]

    Mesko, S; Park, SJ; Kishan, AU; Demanes, DJ; Kamrava, M

    2015-01-01

    Rogers RL, et al. High dose brachytherapy as monotherapy forcomparison with HDR brachytherapy and preliminary clinicalS. Mesko et al. / Brachytherapy 14 (2015) 173e178 [2] Fukuda

  7. Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay

    E-Print Network [OSTI]

    Bungau, Adriana

    This paper introduces an experimental probe of the sterile neutrino with a novel, high-intensity source of electron antineutrinos from the production and subsequent decay of [superscript 8]Li. When paired with an existing ...

  8. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions

    E-Print Network [OSTI]

    Agarwal, Alekh

    We analyze a class of estimators based on convex relaxation for solving high-dimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation [bar through "X" symbol] of the sum ...

  9. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect (OSTI)

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  10. The impact of school facilities on student achievement, attendance, behavior, completion rate and teacher turnover rate in selected Texas high schools 

    E-Print Network [OSTI]

    McGowen, Robert Scott

    2009-05-15

    The purpose of this study was to explore the possible relationship between school facility conditions and school outcomes such as student academic achievement, attendance, discipline, completion rate and teacher turnover rate. School facility...

  11. Moisture Penetration Through Optical Fiber Coatings

    E-Print Network [OSTI]

    Matthewson, M. John

    Moisture Penetration Through Optical Fiber Coatings J. L. Armstrong, M. J. Matthewson and C. R Fiber Coatings Janet L. Armstrong, 1 M. John Matthewson, 1 Charles R. Kurkjian 2 1 Rutgers University for measuring the diffusion coefficients of water vapor through optical fiber polymer coatings has been

  12. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOE Patents [OSTI]

    Carlisle, John A. (Plainfield, IL); Gruen, Dieter M. (Downers Grove, IL); Auciello, Orlando (Bolingbrook, IL); Xiao, Xingcheng (Woodridge, IL)

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  13. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    SciTech Connect (OSTI)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R. [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. H. [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-01-17

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  14. Directions and Issues for High Data Rate Wide Area Network Environments

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -speed, network based, data intensive computing experiments between Lawrence Berkeley National Lab (LBNL) and the Stanford Linear Accelerator (SLAC) facility. These experiments demonstrated the feasibility of very high and congestion in the middleware and infrastructure, responding to human interaction, etc. The technologies

  15. The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

    E-Print Network [OSTI]

    The Dependence of the Proton-Triton Nuclear Reaction Rate on the Temperature and Energy Content of the High-Energy Proton Distribution Function

  16. Impact of increased penetration of wind and PV solar resources on the

    E-Print Network [OSTI]

    Stoltz, Brian M.

    Impact of increased penetration of wind and PV solar resources on the bulk power system Vijay;Wind and PV solar grid interface · Modern wind turbine generators are typically rated between 1.5 MW through a power electronic converter 3 #12;Wind and PV solar grid interface 4 Schematic of Type 3 wind

  17. Nature of high-energy ions in the cathode plasma jet of a vacuum arc with high rate of current rise

    SciTech Connect (OSTI)

    Beilis, I.I.

    2004-10-04

    The production mechanism of extremely high-energy (up to 10 keV) ions observed in vacuum arcs having only a few tens of volts of arc voltage was considered. A model was developed for the plasma acceleration in a high-current ({>=}1 kA) short pulsed (<1 {mu}s) vacuum arc, taking into account the high rate of rise of the spot current (dI/dt>100 MA/s). A system of equations, including equations for the cathode spot and the plasma jet, was solved self-consistently with dI/dt in the range of 0.1-10 GA/s. It was shown that the plasma could be accelerated to the measured energy in the near spot region due to a gas dynamic mechanism and that the ion energy depends on the ratio of the ion flux to the electron flux. This ratio is determined by the cathode erosion rate. The calculated cathode erosion rate varies from 200 to 10 {mu}g/C when the ion energy increases from 0.1 to 10 keV and well agrees with measurements.

  18. High rate buffer layer for IBAD MgO coated conductors

    DOE Patents [OSTI]

    Foltyn, Stephen R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  19. Remotely-interrogated high data rate free space laser communications link

    DOE Patents [OSTI]

    Ruggiero, Anthony J. (Livermore, CA)

    2007-05-29

    A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

  20. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  1. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H. (Bangor, ME)

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  2. Is there a maximum star formation rate in high-redshift galaxies? , , ,

    SciTech Connect (OSTI)

    Barger, A. J. [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Cowie, L. L.; Chen, C.-C.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Owen, F. N. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Wang, W.-H. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-03-20

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin{sup 2} area surrounding the GOODS-N field. The 850 ?m rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 ?m source catalog to 2 mJy containing 49 sources detected above the 4? level. We use an ultradeep (11.5 ?Jy at 5?) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K – z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M {sub ?} yr{sup –1} to z ? 6. We find galaxies with SFRs up to ?6000 M {sub ?} yr{sup –1} over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M {sub ?} yr{sup –1}.

  3. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  4. Market penetration of new energy technologies

    SciTech Connect (OSTI)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  5. Imaging wave-penetrable objects in a finite depth ocean

    E-Print Network [OSTI]

    Zou, Jun

    Imaging wave-penetrable objects in a finite depth ocean Keji Liu Yongzhi Xu Jun Zou Abstract. We- penetrable inhomogeneous medium in a 3D finite depth ocean. The method is based on a scat- tering analysis extend the direct sampling method proposed in [13] to image a wave- penetrable inhomogeneous medium

  6. Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate brachytherapy of the prostate cancer

    E-Print Network [OSTI]

    Pouliot, Jean

    brachytherapy of the prostate cancer Yongbok Kim,a) I-Chow Joe Hsu, Etienne Lessard, and Jean Pouliot Department tomography CT -based high dose rate HDR brachytherapy, the uncertainty in the localization in Medicine. DOI: 10.1118/1.1785454 Key words: high dose rate brachytherapy, computed tomography, prostate

  7. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  8. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect (OSTI)

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  9. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect (OSTI)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  10. The Effect of Diffusion Rates in Optical Fiber Polymer Coatings on Aging Janet L. Armstrong,a M. John Matthewson, Mayra G. Juarez, Catherine Y. Chou

    E-Print Network [OSTI]

    Matthewson, M. John

    The Effect of Diffusion Rates in Optical Fiber Polymer Coatings on Aging Janet L. Armstrong,a M found to be highly variable and is sensitive to the polymer buffer coating. In past work we have shown that moisture vapor penetrates most polymer coatings on the time scale of minutes, which implies

  11. Outcomes of High-Dose-Rate Interstitial Brachytherapy in the Treatment of Locally Advanced Cervical Cancer: Long-term Results

    SciTech Connect (OSTI)

    Pinn-Bingham, Melva; Puthawala, Ajmel A.; Syed, A.M. Nisar; Sharma, Anil; DiSaia, Philip; Berman, Michael; Tewari, Krishnansu S.; Randall-Whitis, Leslie; Mahmood, Usama; Ramsinghani, Nilam; Kuo, Jeffrey; Chen, Wen-Pin; McLaren, Christine E.

    2013-03-01

    Purpose: The purpose of this study was to determine locoregional control (LRC), disease-free survival (DFS), and toxicity of high-dose-rate interstitial brachytherapy (HDR-ISBT) in the treatment of locally advanced cervical cancer. Methods and Materials: Between March 1996 and May 2009, 116 patients with cervical cancer were treated. Of these, 106 (91%) patients had advanced disease (International Federation of Gynecology and Obstetrics stage IIB-IVA). Ten patients had stage IB, 48 had stage II, 51 had stage III, and 7 had stage IVA disease. All patients were treated with a combination of external beam radiation therapy (EBRT) to the pelvis (5040 cGy) and 2 applications of HDR-ISBT to a dose of 3600 cGy to the implanted volume. Sixty-one percent of patients also received interstitial hyperthermia, and 94 (81%) patients received chemotherapy. Results: Clinical LRC was achieved in 99 (85.3%) patients. Three-year DFS rates were 59%, 67%, 71%, and 57% for patients with stage IB, II, III, and IVA disease, respectively. The 5-year DFS and overall survival rates for the entire group were 60% and 44%, respectively. Acute and late toxicities were within acceptable limits. Conclusions: Locally advanced cervical cancer patients for whom intracavitary BT is unsuitable can achieve excellent LRC and OS with a combination of EBRT and HDR-ISBT.

  12. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    E-Print Network [OSTI]

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  13. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  14. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    SciTech Connect (OSTI)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/?m on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.

  15. Hydrates detection by cone penetration testing: cone penetration tests through ice layers 

    E-Print Network [OSTI]

    Jeanjean, Philippe Henri

    1991-01-01

    for one Diatneter of Cone in Materials of Different Compactness. . . . . 124 . . . . , I 2 6 Fig. 6. 3. Failure Pattern Associated With Cone Penetration. . . . . . . . . . . . . . 127 Fig. 6. 4. Penetration of Fugro Type Cone Through Loose to Dense... strain gage cone designs have a layout simi- lar to the one shown in Fig. 3. 2. The cone load cell (c) is put in com- pression by the end bearing and the sleeve load cell (s) is put into tension by the friction. These penetrometers are called tension...

  16. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  17. Micromachined contact fuses for earth penetrator applications. LDRD final report

    SciTech Connect (OSTI)

    Davies, B.R.; Montague, S.; Smith, J.H.; Rimkus, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes preliminary work in MEMS contact fuse development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS devices on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. This design could be readily modified to create a high-g switching device suitable for a contact fuse. A potential design for a low-g acceleration measurement device (suitable for such fusing operations as path length measurement device of both whole path length or safe separation distance) for artillery rounds and earth penetrator devices will also be discussed in this document (where 1 g {approx} 9.81 m/s{sup 2}).

  18. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect (OSTI)

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Netzer, Hagai; Kaspi, Shai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Bai, Jin-Ming; Wang, Fang [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  19. Assessing the capabilities of ground penetrating radar for applications in geologic and engineering subsurface studies 

    E-Print Network [OSTI]

    Servos, Stacia Lynn

    1998-01-01

    relative electric permittivity is high (&,=8 1), will cause the relative electric pen-permittivity of soils and rocks to increase. A contrast in electric pen-permittivity between two media gives rise to a reflection in the radar profile. Ground penetrating...

  20. NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER

    E-Print Network [OSTI]

    NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER E. P. GOGOL of a highly deuterated phospholipid. Small-angle neutron diffraction patterns were collected in a series of H to lipid vesicles using neutron small-angle scattering methods. To increase scat- tering contrast between

  1. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    SciTech Connect (OSTI)

    Ben-Itzhak, Itzik (Itzhak) [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Carnes, Kevin D. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Cocke, C. Lew [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Fehrenbach, Charles W. [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Kumarappan, Vinod [PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University; Rudenko, Artem [J.R. Macdonald Laboratory, Physics Department, Kansas State University; Trallero, Carlos [J.R. Macdonald Laboratory, Physics Department, Kansas State University

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  2. Campbell penetration depth in Fe-based superconductors

    SciTech Connect (OSTI)

    Prommapan, Plegchart

    2011-08-15

    A 'true' critical current density, j{sub c}, as opposite to commonly measured relaxed persistent (Bean) current, j{sub B}, was extracted from the Campbell penetration depth, {lambda}{sub c}(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter {alpha}. At the equilibrium (upon field - cooling), {alpha}(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j{sub c}(2 K) {approx_equal} 1.22 x 10{sup 6} A/cm{sup 2} provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe{sub 2}As{sub 2} based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j{sub c}(2K) {approx_equal} 3.3 x 10{sup 6} A/cm{sup 2}. The magnetic-dependent feature was observed near the transition temperature in FeTe{sub 0.53}Se{sub 0.47} and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} (BaK122) and isovalent doped BaFe{sub 2}(As{sub 0.7}P{sub 0.3}){sub 2} (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.

  3. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.

  4. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  5. Automatic control of oscillatory penetration apparatus

    DOE Patents [OSTI]

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  6. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  7. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  8. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  9. Penetration equations Young, C.W. [Applied Research Associates...

    Office of Scientific and Technical Information (OSTI)

    45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; EARTH PENETRATORS; EQUATIONS; NUCLEAR WEAPONS; SOILS; ICE; ROCKS; CONCRETES; PERMAFROST; SCALING LAWS In 1967, Sandia...

  10. Air pollutant penetration through airflow leaks into buildings

    E-Print Network [OSTI]

    Liu, De-Ling

    2002-01-01

    leaks in the building envelope was advanced by performingadvanced our knowledge, they have not fully elucidated the extent to which particles penetrate building envelopes.

  11. Redshift of photons penetrating a hot plasma

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2005-10-07

    A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

  12. Why and how should innovative industries with high consumer switching costs be re-regulated?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). While most of the contributions on the subject focus on wholesale markets, retail price control and North (1986). Empirical and econometric evidence in retail markets of several network industries opened of the low penetration rate of cable in France possibly due to the high cost to retail consumers to switch

  13. The B61-based "Robust Nuclear Earth Penetrator:" Clever retrofit or headway towards fourth-generation nuclear weapons?

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01

    It is scientifically and technically possible to build an earth penetrating device that could bury a B61-7 warhead 30 meters into concrete, or 150 meters into earth, before detonating it. The device (based on knowledge and technology that is available since 50 years) would however by large and cumbersome. Better penetrator materials, components able to withstand larger stresses, higher impact velocities, and/or high-explosive driven penetration aids, can only marginally improve the device. It is conclude that the robust nuclear earth penetrator (RNEP) program may be as much motivated by the development of new technology directly applicable to next generation nuclear weapons, and by the political necessity to periodically reasses the role and utility of nuclear weapons, then by the perceived military need of a weapon able to destroy deeply buried targets.

  14. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    SciTech Connect (OSTI)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  15. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, John P. (Los Alamos, NM)

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  16. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  17. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  18. Production Cost Modeling for High Levels of Photovoltaics Penetration

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Milford, J.

    2008-02-01

    The goal of this report is to evaluate the likely avoided generation, fuels, and emissions resulting from photovoltaics (PV) deployment in several U.S. locations and identify new tools, methods, and analysis to improve understanding of PV impacts at the grid level.

  19. Primary and Secondary Control for High Penetration Renewables

    E-Print Network [OSTI]

    and stabilize the grid has been primarily implemented through the action of synchronous generator sets directly-static control action on slower time scales). When compared to traditional turbine-driven synchronous generators facing the electric power industry and educating the next generation of power engineers. More information

  20. Primary and Secondary Control for High Penetration Renewables

    E-Print Network [OSTI]

    , contact: Power Systems Engineering Research Center Arizona State University 527 Engineering Research Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System, WI 53706 demarco@engr.wisc.edu; (608) 262-5546 Power Systems Engineering Research Center The Power

  1. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  2. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Summary Report, NREL (National Renewable Energy Laboratory) Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Energy Transition Initiative: Islands Playbook...

  3. Advancing System Flexibility for High Penetration Renewable Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E R N A NA LY S I S WORKSHOP S

  4. Electron capture and beta-decay rates for sd-shell nuclei in stellar environments relevant to high density O-Ne-Mg cores

    E-Print Network [OSTI]

    Toshio Suzuki; Hiroshi Toki; Ken'ichi Nomoto

    2015-12-01

    Electron capture and beta-decay rates for nuclear pairs in sd-shell are evaluated at high densities and high temperatures relevant to the final evolution of electron-degenerate O-Ne-Mg cores of stars with the initial masses of 8-10 solar mass. Electron capture induces a rapid contraction of the electron-degenerate O-Ne-Mg core. The outcome of rapid contraction depends on the evolutionary changes in the central density and temperature, which are determined by the competing processes of contraction, cooling, and heating. The fate of the stars are determined by these competitions, whether they end up with electron-capture supernovae or Fe core-collapse supernovae. Since the competing processes are induced by electron capture and beta-decay, the accurate weak rates are crucially important. The rates are obtained for pairs with A=20, 23, 24, 25 and 27 by shell-model calculations in sd-shell with the USDB Hamiltonian. Effects of Coulomb corrections on the rates are evaluated. The rates for pairs with A=23 and 25 are important for nuclear URCA processes that determine the cooling rate of O-Ne-Mg core, while those for pairs with A=20 and 24 are important for the core-contraction and heat generation rates in the core. We provide these nuclear rates at stellar environments in tables with fine enough meshes at various densities and temperatures for the studies of astrophysical processes sensitive to the rates. In particular, the accurate rate tables are crucially important for the final fates of not only O-Ne-Mg cores but also a wider range of stars such as C-O cores of lower mass stars.

  5. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.

  6. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Li, Ning [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Wu, Borong [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials (China); Xu, Hongliang [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Wang, Lei [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment; Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Wu, Feng [Beijing Inst. of Technology (China). Key Lab. of Environmental Science and Engineering, School of Chemical Engineering and the Environment

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  7. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore »around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  8. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-05-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  9. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-01-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  10. The Penetrant System Monitoring (PSM) panel: Its use and limitations

    SciTech Connect (OSTI)

    Robinson, S.J. [Sherwin Inc., South Gate, CA (United States)

    1996-12-31

    In the last several years, the Penetrant System Monitoring (PSM) panel has been increasingly used for purposes for which it was never intended. Intended originally for use by penetrant system operators, the PSM panel is increasingly being used by material control departments and by process engineering departments. This paper`s purpose is to describe and give guidance concerning the proper use and maintenance of PSM panels. It recounts the evolution of penetrant system test panels, and compares how the different types of panels are made. It discusses the limitations of the PSM panel as used by the material control department, the process engineering department, and the production line.

  11. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect (OSTI)

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR brachytherapy planning.

  12. Interfacial Microstructure Formed by Reactive Metal Penetration of Al into Mullite

    SciTech Connect (OSTI)

    Du, T.B.; Ewsuk, K.G.; Fahrenholtz, W.G.; Loehman, R.E.; Lu, P.

    1999-04-27

    Microstructure in the reaction interface between molten Al and dense mullite have been studied by transmission electron microscopy to provide insight into mechanisms for forming ceramic-metal composites by reactive metal penetration. The reactions, which have the overall stoichiometry, 3Al#iz01~ + (8+ x)A1 + 13 AlzO~ + xA1 + 6Si, were carried out at temperatures of 900, 1100, and 1200oC for 5 minutes and 60 minutes, and 1400oC for 15 minutes. Observed phases generally were those given in the above reaction, although their proportions and interracial rnicrostructures differed strongly with reaction temperature. After reaction at 900oC, a thin Al layer separated unreacted mullite from the cx-AlzO~ and Al reaction products. No Si phase was found near the reaction front. After 5 minutes at 1100"C, the nxtction front contained Si, ct-A120~, and an aluminum oxide phase with a high concentration of Si. After 60 minutes at 11O(YC many of the cx-A120g particles were needle-shaped with a preferred orientation. After reaction at 1200oC, the reaction front contained a high density of Si particles that formed a continuous layer over many of the mullite grains. The sample reacted at 140VC for 15 minutes had a dense ct-A120J reaction layer less than 2~m thick. Some isolated Si particles were present between the a-AlzO~ layer and the unreacted mullite. Using previously measured reaction kinetics data, the observed temperature dependence of the interracial microstructure have been modeled as three sequential steps, each one of which is rate-limiting in a different temperature range.

  13. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  14. Abstract --Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for

    E-Print Network [OSTI]

    Havinga, Paul J.M.

    Abstract -- Since high error rates are inevitable to the wireless environment, energy mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated energy consumption is a key issue for portable wireless network devices like computers like PDAs

  15. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  16. Radial penetration of flux surface shaping in tokamaks

    E-Print Network [OSTI]

    Ball, Justin

    2014-01-01

    Using analytic calculations, the effects of the edge flux surface shape and the toroidal current profile on the penetration of flux surface shaping are investigated in a tokamak. It is shown that the penetration of shaping is determined by the poloidal variation of the poloidal magnetic field on the surface. This fact is used to show that, in the limit of a strongly shaped edge flux surface, only elongation can penetrate unaffected. Then, a technique to separate the effects of magnetic pressure and tension in the Grad-Shafranov equation is presented and used to calculate radial profiles of elongation for nearly constant current profiles. Lastly, it is shown that the effect of the toroidal current profile on shaping penetration can significantly change the on-axis elongation.

  17. Setting the Stage for Greater Renewable Energy Penetration |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Penetration January 10, 2013 - 2:27pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. With the advent of...

  18. A spatial display for Ground-Penetrating Radar change detection

    E-Print Network [OSTI]

    Quimby, Paul W

    2013-01-01

    Ground-Penetrating Radar (GPR) enables the exploration and mapping of subterranean volumes for applications such as construction, humanitarian demining, archeology, and environmental science. In each of these applications, ...

  19. An experimental investigation of mine burial penetration in soft sediments 

    E-Print Network [OSTI]

    Munim, Mohammed Abdul

    2003-01-01

    An experimental program was conducted to study the penetration behavior of mines in soft sediment. Model tests were conducted on sediments collected from the Gulf of Mexico seabed. The size of the model mine was approximately one third...

  20. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  1. A HIGH-FREQUENCY INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC AND ACOUSTIC SCATTERING SIMULATIONS : RATE OF CONVERGENCE OF MULTIPLE SCATTERING ITERATIONS

    E-Print Network [OSTI]

    Ecevit, Fatih

    A HIGH-FREQUENCY INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC AND ACOUSTIC SCATTERING SIMULATIONS an analysis of a recently proposed integral equation method for the solution of high-frequency elec properties of this series in the high-frequency regime depend solely on geometrical characteristics. Moreover

  2. Fiber optic penetrator for offshore oil well exploration and production

    SciTech Connect (OSTI)

    Collins, J.C.; Warner, C.P.; Henkener, J.A.; Glauser, R.

    1986-07-01

    A fiber optic penetrator arrangement is described for an undersea wall structure of offshore oil well production apparatus, comprising: a. a generally cylindrical housing; b. a cofferdam associated with the undersea production apparatus and defining a generally cylindrical entrance port into which the penetrator is designed to be inserted and mounted; c. a sealing means for sealing the penetrator relative to the entrance port after insertion of the penetrator therein; d. an external bulkhead; e. a second bulkhead positioned internally of the external bulkead; f. a compression spring normally retaining the second bulkhead in a sealed position with the penetrator, the compressing spring being compressed between the second bulkhead and the external bulkhead; g. a breakaway connection affixed to the external bulkhead for coupling an optical fiber transmission cable to the external bulkhead, such that if the transmission cable is snagged or pulled, the external bulkhead will sever along with the breakaway connection so that the penetrator is not pulled from the cofferdam entrance port, the second bulkhead being held in position by ambient water pressure to become the primary bulkhead after the external bulkhead is severed.

  3. H6: Fingerprint Image Processing The banking industry reports that false acceptance rates at ATMs are as high as 30%,

    E-Print Network [OSTI]

    Chen, Chaur-Chin

    H6: Fingerprint Image Processing The banking industry reports that false acceptance rates at ATMs inspectors at US ports-of-entry intercepted and denied admission to almost 800,000 people for several best matches. The research on fingerprint analysis generally strives to solve part of or all

  4. Design and implementation of a high data rate wireless system using Low-Density Parity-Check codes 

    E-Print Network [OSTI]

    Bhatt, Tejas Maheshbhai

    2000-01-01

    . Various decoding algorithms for LDPC codes are implemented and complexity v/s bit error rate (BER) trade off is studied. The goal is to evaluate LDPC codes as a suitable candidate for the forward error correction in the next generation wireless systems...

  5. A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    E-Print Network [OSTI]

    2008-01-01

    Schmidt, B. P. , 2003, in Supernovae and Gamma Ray Bursts,for identifying Type Ia supernovae (although spectroscopicfor future high-statistics supernovae searches in which

  6. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  7. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  8. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    SciTech Connect (OSTI)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.

  9. Mechanisms of projectile penetration in Dyneema encapsulated

    E-Print Network [OSTI]

    Wadley, Haydn

    a b s t r a c t Polymer composites comprising ultra-high molecular weight polyethylene (UHWMPE) fibers with controlled momentum transfer to the target, and spall shield capture of partially defeated projectile or composites are used for spall shields to catch debris. In a well-designed protection concept, synergies

  10. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect (OSTI)

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  11. Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    SciTech Connect (OSTI)

    Nicuesa Guelbenzu, A.; Klose, S.; Kann, D. A.; Rossi, A.; Schmidl, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Micha?owski, M. J.; McKenzie, M. R. G. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Savaglio, S.; Greiner, J. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Gorosabel, J. [Instituto de Astrofísica de Andalucía, Consejo Superior de Investigaciones Científicas (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Palazzi, E. [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-07-01

    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z = 0.381) with the Australia Telescope Compact Array. We detect the galaxy in the 5.5 GHz band with an integrated flux density of F {sub ?} = 43 ± 11 ?Jy, corresponding to an unobscured star-formation rate of about 24 M {sub ?} yr{sup –1}, 40 times higher than what was found from optical emission lines. Among the ?30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger timescale.

  12. hal-00144330,version1-3May2007 An OFDM-CDMA scheme for High Data Rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (FCC) regulated UWB systems by imposing a spectral mask to limit the transmission power [1]. According- edged as high potential solutions for Wireless Personal Area Networks (WPAN). The novelty of these systems lies in the possibility of non regulated access to the spectral resource leading to a flexible use

  13. Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems

    E-Print Network [OSTI]

    Chen, Ray

    in order to realize true implementation of roll-to-roll manufacturing of flexible electronic systems-to-roll manufacturing system for flexible electronic systems opens limitless possibilities for the deployment of high performance flexible electronic components in a variety of applications including communication, sensing

  14. Cite this: RSC Advances, 2013, 3, Cathodic ALD V2O5 thin films for high-rate

    E-Print Network [OSTI]

    Ghodssi, Reza

    storage come into sight. Introduction Electrochemical energy storage devices with simultaneously high nanostructures.5 As a result, there has been fast growing interest in using ALD materials for energy storage energy storage3 Received 23rd November 2012, Accepted 21st January 2013 DOI: 10.1039/c3ra23031g www

  15. A Foliage Penetration Imaging Radar System

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    with properly scaled materials Metallics --> high reflectivity metal coatings (Al, Cu, etc.) Non Beam Profile #12;Horizontal Pol. Vertical Pol. Freq. (GHz) BW (°) Spot Size (inches) Mag. Roll-off (dB) Spot Size (inches) Mag. Roll-off (dB) 8.2 6.88 9.45 .23 9.25 .43 10.3 5.48 8.11 .52 8.18 .46 12.4 4

  16. Multi-well sample plate cover penetration system

    DOE Patents [OSTI]

    Beer, Neil Reginald (Pleasanton, CA)

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  17. Cosmic ray penetration in diffuse clouds

    E-Print Network [OSTI]

    Morlino, G; Krause, J

    2015-01-01

    Cosmic rays are a fundamental source of ionization for molecular and diffuse clouds, influencing their chemical, thermal, and dynamical evolution. The amount of cosmic rays inside a cloud also determines the $\\gamma$-ray flux produced by hadronic collisions between cosmic rays and cloud material. We study the spectrum of cosmic rays inside and outside of a diffuse cloud, by solving the stationary transport equation for cosmic rays including diffusion, advection and energy losses due to ionization of neutral hydrogen atoms. We found that the cosmic ray spectrum inside a diffuse cloud differs from the one in the interstellar medium (ISM) for energies smaller than $E_{br}\\approx 100$ MeV, irrespective of the model details. Below $E_{br}$, the spectrum is harder (softer) than that in the ISM if the latter is a power law $\\propto p^{-s}$ with $s$ larger (smaller) than $\\sim0.42$. As a consequence also the ionization rate due to CRs is strongly affected. Assuming an average Galactic spectrum similar to the one infe...

  18. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    SciTech Connect (OSTI)

    Jafari Salim, A. Eftekharian, A.; Hamed Majedi, A.

    2014-02-07

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potential barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.

  19. Sexual Functioning Among Endometrial Cancer Patients Treated With Adjuvant High-Dose-Rate Intra-Vaginal Radiation Therapy

    SciTech Connect (OSTI)

    Damast, Shari; Alektiar, Kaled M.; Goldfarb, Shari; Eaton, Anne; Patil, Sujata; Mosenkis, Jeffrey; Bennett, Antonia; Atkinson, Thomas; Jewell, Elizabeth; Leitao, Mario; Barakat, Richard; Carter, Jeanne; Basch, Ethan

    2012-10-01

    Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, based on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.

  20. Clinical Studies MLH1 Founder Mutations with Moderate Penetrance in

    E-Print Network [OSTI]

    Rosenberg, Noah

    Clinical Studies MLH1 Founder Mutations with Moderate Penetrance in Spanish Lynch Syndrome Families>A and c.1865T>A (p.Leu622His) of the DNA repair gene MLH1 occur frequently in Spanish Lynch syndrome estimated for other path- ogenic Spanish MLH1 mutations. A common haplotype was associated with each

  1. Renewable Energy Penetration on the power Grid Fall / 2010

    E-Print Network [OSTI]

    Stuart, Steven J.

    ECE 420 Renewable Energy Penetration on the power Grid Fall / 2010 Instructor: Dr. E. B. Makram: TBA Text: Renewable Energy Systems M. Godoy Simoes and Felix A. Farret Attendance: Test attendance): Principles of Renewable Sources of Energy and Electric Power: basic definitions of electrical power

  2. TECHNICAL NOTE Centrifuge cone penetration tests in sand

    E-Print Network [OSTI]

    Bolton, Malcolm

    TECHNICAL NOTE Centrifuge cone penetration tests in sand M. D. BOLTON,Ã M. W. GUI,Ã J. GARNIER,{ J. F. CORTE,{ G. BAGGE,{ J. LAUE} and R. RENZIk KEYWORDS: centrifuge modelling; in-situ testing; laboratory tests; piles; sands. INTRODUCTION Centrifuges have been widely adopted in modelling geotechnical

  3. Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration

    E-Print Network [OSTI]

    Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 billion in costs [1]. 275,000 of those injured annually are hospitalized and 52,000 will eventually die is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated

  4. Subsurface Ambient Thermoelectric Power for Moles and Penetrators1

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    1 Subsurface Ambient Thermoelectric Power for Moles and Penetrators1 Ralph D. Lorenz, Lunar for electrical power generation for planetary exploration applications using thermoelectric conversion of the vehicle. Proof-of-concept experiments are described using off-the-shelf thermoelectric CPU cooling plates

  5. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  6. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  7. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  8. Fast penetration of megagauss fields into metallic conductors

    SciTech Connect (OSTI)

    Schnitzer, Ory

    2014-08-15

    Megagauss magnetic-field penetration into a conducting material is studied via a simplified but representative model, wherein the magnetic-diffusion equation is coupled with a thermal-energy balance. The specific scenario considered is that of a prescribed magnetic field rising (in proportion to an arbitrary power r of time) at the surface of a conducting half-space whose electric conductivity is assumed proportional to an arbitrary inverse power ? of temperature. We employ a systematic asymptotic scheme in which the case of a strong surface field corresponds to a singular asymptotic limit. In this limit, the highly magnetized and hot “skin” terminates at a distinct propagating wave-front. Employing the method of matched asymptotic expansions, we find self-similar solutions of the magnetized region which match a narrow boundary-layer region about the advancing wave front. The rapidly decaying magnetic-field profile in the latter region is also self similar; when scaled by the instantaneous propagation speed, its shape is time-invariant, depending only on the parameter ?. The analysis furnishes a simple asymptotic formula for the skin-depth (i.e., the wave-front position), which substantially generalizes existing approximations. It scales with the power ?r + 1?2 of time and the power ? of field strength, and is much larger than the field-independent skin depth predicted by an athermal model. The formula further involves a dimensionless O(1) pre-factor which depends on r and ?. It is determined by solving a nonlinear eigenvalue problem governing the magnetized region. Another main result of the analysis, apparently unprecedented, is an asymptotic formula for the magnitude of the current-density peak characterizing the wave-front region. Complementary to these systematic results, we provide a closed-form but ad hoc generalization of the theory approximately applicable to arbitrary monotonically rising surface fields. Our results are in excellent agreement with numerical simulations of the model, and compare favourably with detailed magnetohydrodynamic simulations reported in the literature.

  9. DUST ATTENUATION IN UV-SELECTED STARBURSTS AT HIGH REDSHIFT AND THEIR LOCAL COUNTERPARTS: IMPLICATIONS FOR THE COSMIC STAR FORMATION RATE DENSITY

    SciTech Connect (OSTI)

    Overzier, Roderik A.; Wang Jing [Max-Planck-Institut for Astrophysics, D-85748 Garching (Germany); Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Armus, Lee; Howell, Justin [Spitzer Science Center, Caltech, MS 220-6, Pasadena, CA 91125 (United States); Buat, Veronique [Laboratoire d'Astrophysique de Marseille, OAMP, Universite Aix-marseille, CNRS, 38 rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Meurer, Gerhardt [ICRAR/University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Seibert, Mark [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Siana, Brian; Goncalves, Thiago S.; Martin, D. Christopher; Neill, James D. [California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Basu-Zych, Antara [NASA Goddard Space Flight Center, Laboratory for X-ray Astrophysics, Greenbelt, MD 20771 (United States); Charlot, Stephane [PMC Univ Paris 06, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France); Rich, R. Michael [Department of Physics and Astronomy, Division of Astronomy and Astrophysics, University of California, Los Angeles, CA 90095-1562 (United States); Salim, Samir [National Optical Astronomical Observatories, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Schiminovich, David, E-mail: overzier@mpa-garching.mpg.de [Department of Astronomy, Columbia University, MC 2457, 550 West 120th Street, New York, NY 10027 (United States)

    2011-01-01

    We present a new analysis of the dust obscuration in starburst galaxies at low and high redshifts. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z < 0.3), found to be good analogs of high-redshift Lyman break galaxies (LBGs) in most of their physical properties. We find that the dust properties of the Lyman break analogs (LBAs) are consistent with the relation derived previously by Meurer et al. (M99) that is commonly used to dust-correct star formation rate (SFR) measurements at a very wide range of redshifts. We directly compare our results with high-redshift samples (LBGs, 'BzK', and submillimeter galaxies at z {approx} 2-3) having IR data either from Spitzer or Herschel. The attenuation in typical LBGs at z {approx} 2-3 and LBAs is very similar. Because LBAs are much better analogs to LBGs compared to previous local star-forming samples, including M99, the practice of dust-correcting the SFRs of high-redshift galaxies based on the local calibration is now placed on a much more solid ground. We illustrate the importance of this result by showing how the locally calibrated relation between UV measurements and extinction is used to estimate the integrated, dust-corrected SFR density at z {approx_equal} 2-6.

  10. Fact #886: August 17, 2015 New Light-Vehicle Leasing Penetration...

    Energy Savers [EERE]

    Fact 886: August 17, 2015 New Light-Vehicle Leasing Penetration for 2014 SUBSCRIBE to the Fact of the Week States in the Northeast had the highest penetration of leases in 2014....

  11. Transient pressure analysis for partially-penetrating wells in naturally-fractured reservoirs 

    E-Print Network [OSTI]

    Bui, Thang Dinh

    1998-01-01

    -penetrating wells. An analytical solution has been developed that describes transient pressure behavior of the partially-penetrating wells in naturally-fractured reservoirs. The solution is obtained by combining the pseudo steady state model for naturally...

  12. Numerical simulations and predictive models of undrained penetration in soft soils 

    E-Print Network [OSTI]

    Shi, Han

    2005-11-01

    and measurements. The XBP studies follow the same methodology in investigating the soil shearing resistance as a function of penetration depth and velocity by finite element analyses. With the measurements of time decelerations during penetration of the XBP...

  13. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOE Patents [OSTI]

    Jones, Donald E. (Idaho Falls, ID); Parker, DeRay (Idaho Falls, ID); Boren, Paul R. (Idaho Falls, ID)

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  14. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    SciTech Connect (OSTI)

    Khor, Richard; Duchesne, Gillian; Monash University, Melbourne ; Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret; Williams, Scott

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against an increased risk of urethral toxicity.

  15. Prediction of burn-on and mould penetration in steel casting using simulation

    E-Print Network [OSTI]

    Beckermann, Christoph

    Prediction of burn-on and mould penetration in steel casting using simulation B. E. Brooks1 , C. Beckermann*1 and V. L. Richards2 Burn-on and penetration defects in steel casting are principally caused burn-on and penetration defect locations as part of a standard casting simulation. The method relies

  16. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold

  17. PREDICTION OF BURN-ON AND MOLD PENETRATION IN STEEL CASTING USING SIMULATION

    E-Print Network [OSTI]

    Beckermann, Christoph

    in the mold are above the critical temperature, burn-on and penetration defects can be predicted. The method1 PREDICTION OF BURN-ON AND MOLD PENETRATION IN STEEL CASTING USING SIMULATION Brandon E. Brooks1 Engineering, The University of Iowa, Iowa City, Iowa 52242, USA Abstract Burn-on and penetration defects

  18. Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport COLM independent parameter- izations that use ocean color to estimate the penetration depth of shortwave radiation. This study offers a way to evaluate the changes in irradiance penetration depths in coupled ocean

  19. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters

    E-Print Network [OSTI]

    Lee, Zhongping

    Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters (2005), Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal; Siegel et al., 1995] have demonstrated that the penetration of EVIS in the upper layer of the ocean plays

  20. TLD skin dose measurements and acute and late effects after lumpectomy and high-dose-rate brachytherapy only for early breast cancer

    SciTech Connect (OSTI)

    Perera, Francisco [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada)]. E-mail: francisco.perera@lrcc.on.ca; Chisela, Frank [Department of Radiation Oncology, Columbia St. Mary's Hospital, Milwaukee, WI (United States); Stitt, Larry [Department of Clinical Research Program, University of Western Ontario, London, Ontario (Canada); Engel, Jay [Department of Surgical Oncology, London Health Sciences Centre, London Regional Cancer Program, London, Ontario (Canada); Venkatesan, Varagur [Department of Radiation Oncology, London Regional Cancer Program, London, Ontario (Canada)

    2005-08-01

    Purpose: This report examines the relationships between measured skin doses and the acute and late skin and soft tissue changes in a pilot study of lumpectomy and high-dose-rate brachytherapy only for breast cancer. Methods and Materials: Thirty-seven of 39 women enrolled in this pilot study of high-dose-rate brachytherapy (37.2 Gy in 10 fractions b.i.d.) each had thermoluminescent dosimetry (TLD) at 5 points on the skin of the breast overlying the implant volume. Skin changes at TLD dose points and fibrosis at the lumpectomy site were documented every 6 to 12 months posttreatment using a standardized physician-rated cosmesis questionnaire. The relationships between TLD dose and acute skin reaction, pigmentation, or telangiectasia at 5 years were analyzed using the GEE algorithm and the GENMOD procedure in the SAS statistical package. Fisher's exact test was used to determine whether there were any significant associations between acute skin reaction and late pigmentation or telangiectasia or between the volumes encompassed by various isodoses and fibrosis or fat necrosis. Results: The median TLD dose per fraction (185 dose points) multiplied by 10 was 9.2 Gy. In all 37 patients, acute skin reaction Grade 1 or higher was observed at 5.9% (6 of 102) of dose points receiving 10 Gy or less vs. 44.6% (37 of 83) of dose points receiving more than 10 Gy (p < 0.0001). In 25 patients at 60 months, 1.5% telangiectasia was seen at dose points receiving 10 Gy or less (1 of 69) vs. 18% (10 of 56) telangiectasia at dose points receiving more than 10 Gy (p 0.004). Grade 1 or more pigmentation developed at 1.5% (1 of 69) of dose points receiving less than 10 Gy vs. 25% (14 of 56) of dose points receiving more than 10 Gy (p < 0.001). A Grade 1 or more acute skin reaction was also significantly associated with development of Grade 1 or more pigmentation or telangiectasia at 60 months. This association was most significant for acute reaction and telangiectasia directly over the lumpectomy site (p < 0.001). Grade 1 or more fibrosis, in 25 patients with a 60-month follow-up, occurred in 47.4% (9 of 19) of patients with a volume of 45 cm{sup 3} or less covered by the 100% isodose vs. 83.3% (5 of 6) of patients with a larger volume (p 0.180). Asymptomatic and biopsy-proven fat necrosis occurred in 5 patients. No significant differences in fat necrosis rates according to volume were detected. Conclusions: For high-dose-rate brachytherapy to the lumpectomy site, TLD skin dose was significantly related to acute skin reaction and to pigmentation and telangiectasia at 60 months. An acute skin reaction was also significantly associated with the development of telangiectasia at 60 months. TLD skin dose measurement may allow modification of the brachytherapy implant geometry (dwell times and position) to minimize late skin toxicity.

  1. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    SciTech Connect (OSTI)

    Erickson, Beth A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Demanes, D. Jeffrey [Department of Radiation Oncology , University of California, Los Angeles, CA (United States); Ibbott, Geoffrey S. [Radiological Physics Center, MD Anderson Cancer Center, Houston, TX (United States); Hayes, John K. [Gamma West Brachytherapy, Salt Lake City, UT (United States); Hsu, I-Chow J. [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Morris, David E. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States); Rabinovitch, Rachel A. [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Tward, Jonathan D. [Department of Radiation Oncology, Huntsman Cancer Institute, Salt Lake City, UT (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States)

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  2. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Darghouth, Naim

    2014-01-01

    Impact of Increased Renewable Energy Penetration Levels onof Energy Efficiency and Renewable Energy (Solar EnergyImpact of Increased Renewable Energy Penetration Levels on

  3. Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang

    E-Print Network [OSTI]

    Gao, Hongjun

    Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507://apl.aip.org/about/rights_and_permissions #12;Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang,1,2 Y

  4. Deep optical penetration dynamics in photo-bending

    E-Print Network [OSTI]

    Daniel Corbett; Chen Xuan; Mark Warner

    2015-07-07

    We model both the photo-stationary state and dynamics of an illuminated, photo-sensitive, glassy liquid crystalline sheet. To illustrate the interplay between local tilt $\\theta$ of the sheet, effective incident intensity, curvature and dynamics, we adopt the simplest variation of local incident light intensity with angle, that is $\\cos\\theta$. The tilt in the stationary state never overshoots the vertical, but maximum curvature could be seen in the middle of the sheet for intense light. In dynamics, overshoot and self-eclipsing arise, revealing how important moving fronts of light penetration are. Eclipsing is qualitatively as in the experiments of Ikeda and Yu (2003).

  5. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect (OSTI)

    Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  6. Modified Debye-Huckel Electron Shielding and Penetration Factor

    E-Print Network [OSTI]

    P. Quarati; A. M. Scarfone

    2007-09-24

    Screened potential, modified by non standard electron cloud distributions responsible for the shielding effect on fusion of reacting nuclei in astrophysical plasmas, is derived. The case of clouds with depleted tails in space coordinates is discussed. The modified screened potential is obtained both from statistical mechanics arguments based on fluctuations of the inverse of the Debye-Huckel radius and from the solution of a Bernoulli equation used in generalized statistical mechanics. Plots and tables useful in evaluating penetration probability at any energy are provided.

  7. Dual Phase Li4 Ti5O12–TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12–TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12–TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  8. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  9. New Report Says Western Grid Can Weather Disturbances with High...

    Broader source: Energy.gov (indexed) [DOE]

    finds that with high penetrations of wind and solar on the grid, together with good system planning, sound engineering practices, and commercially available technologies, the...

  10. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  11. Observation of 511 keV peak high count rate in studying (n,x) and (g,x) reactions on terbium

    E-Print Network [OSTI]

    I. Kadenko; N. Dzysiuk

    2011-01-26

    Experimental investigation of (n, x) and (g, x) reactions on Tb-159 with activation technique was carried out. Tb specimens of natural composition were irradiated with (d-d) and (d-t) neutrons using NG-300 neutron generator. Additionally the series of experiments were performed with application of M-30 microtrone as a source of electrons for bremsstrahlung spectra production with end point energies 7.5, 9.5, 11, 11.5, 12, 12.5, 16.5, and 18.5 MeV. Instrumental spectra of Tb specimens were measured with HPGe and Ge(Li) spectrometers. Within the main scope of nuclear reactions research and accurate {\\gamma}-spectrometry of Tb specimens a high count rate in 511 keV {\\gamma}-line peak was observed. The first-priority analysis of Tb specimen impurities was done with further attempts to explain a result of observations with reference to the specific nuclear properties of Tb which could appear due to complex GDR structure. The energy threshold of the process detected was determined around 12.2 MeV. The lower estimate of cross section value for this process was assumed and calculated.

  12. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  13. Penetrative turbulence associated with mesoscale surface heat flux variations

    E-Print Network [OSTI]

    Alam, Jahrul M

    2015-01-01

    This article investigates penetrative turbulence in the atmospheric boundary layer. Using a large eddy simulation approach, we study characteristics of the mixed layer with respect to surface heat flux variations in the range from 231.48 W/m$^2$ to 925.92 W/m$^2$, and observe that the surface heterogeneity on a spatial scale of $20$ km leads to downscale turbulent kinetic energy cascade. Coherent fluctuations of mesoscale horizontal wind is observed at 100m above the ground. Such a surface induced temporal oscillations in the horizontal wind suggest a rapid jump in mesocale wind forecasts, which is difficult to parameterize using traditional one-dimensional ensemble-mean models. Although the present work is idealized at a typical scale (20km) of surface heterogeneity, the results help develop effective subgrid scale parameterization schemes for classical weather forecasting mesoscale models.

  14. Error field penetration and locking to the backward propagating wave

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.

    2015-12-30

    In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies wr in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = wr/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including the effects ofmore »pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less

  15. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.; Kamei, Daniel T.; Wong, Gerard C.L.; Deming, Timothy J.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess lowmore »cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.« less

  16. Determination of p-y Curves by Direct Use of Cone Penetration Test (CPT) Data

    E-Print Network [OSTI]

    ARIANNIA, SHAWN SHAHRIAR

    2015-01-01

    Penetration Test; History…………………………………..……………….5110 vi 4. Description of Field Test Data and AnalysisPile Properties and Load Test Description ………………………………………133

  17. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  18. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    San Francisco, CA, 2010 (6) National Renewable EnergyLaboratory (NREL), Renewable Resource Data Center, Website:Impact of Increased Renewable Energy Penetrations on

  19. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    SciTech Connect (OSTI)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A.; Deshields, Teresa L.; Margenthaler, Julie A.; Cyr, Amy E.; Naughton, Michael; Aft, Rebecca; Gillanders, William E.; Eberlein, Timothy; Matesa, Melissa A.; Ochoa, Laura L.; Zoberi, Imran

    2013-12-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ?3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.

  20. Slepian-Wolf coded nested quantization (SEC-NQ) for Wyner-Ziv coding: high-rate performance analysis, code design, and application to cooperative networks 

    E-Print Network [OSTI]

    Liu, Zhixin

    2009-05-15

    The upper capacity bound (4.6), the lower rate bound achievable with DF, the lower rate bound (4.14) achievable with CF, and the rate bound of multi-hop transmission, as functions of c 2 sr when P r = P s = 5 dB, c 2 sd = 0 dB, and c 2 rd = 10 d....r.t. e and y d1 , with d =9m, c 2 sr =1.4? 10 ?7 ,andP s1 =69.4dB. ................... 78 24 The additive noise upper bound of WZC rate and distortion, both as functions of ? 2 n ,wherec 2 sr =1.4 ? 10 ?7 (i.e., the relay is 9m away from the source...

  1. Technology push or market pull success factors for the penetration of

    E-Print Network [OSTI]

    Noé, Reinhold

    Technology push or market pull ­ success factors for the penetration of decentralized and smart grids #12;Technology push or market pull ­ success factors for the penetration of decentralized Director, 100% erneuerbar Stiftung Technology push or market pull. Why we ask this question. Classical

  2. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave] Ground-penetrating radar (GPR) ground wave techniques were applied to estimate soil water content travel time measurements using 900 and 450 MHz antennas and analyzed these data to estimate water content

  3. Capability of the penetrator seismometer system for lunar seismic event observation

    E-Print Network [OSTI]

    Takeuchi, Nozomu

    Capability of the penetrator seismometer system for lunar seismic event observation R. Yamada a of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara Penetrator Moonquake Lunar exploration Planetary seismology a b s t r a c t We developed a seismometer system

  4. Long-Term Monitoring Using Deep Seafloor Boreholes Penetrating the Seismogenic Zone

    E-Print Network [OSTI]

    Tsunogai, Urumu

    Long-Term Monitoring Using Deep Seafloor Boreholes Penetrating the Seismogenic Zone Masanao, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in ,**-, plans to drill boreholes beneath the ocean

  5. Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework

    E-Print Network [OSTI]

    Guzina, Bojan

    Elastic-wave identification of penetrable obstacles using shape-material sensitivity framework Marc a c t This study deals with elastic-wave identification of discrete heterogeneities (inclusions Elsevier Inc. All rights reserved. 1. Introduction Elastic-wave sensing of penetrable (i.e. deformable

  6. A New Bulk Shallow-Cumulus Model and Implications for Penetrative Entrainment Feedback on Updraft Buoyancy

    E-Print Network [OSTI]

    Bretherton, Chris

    A New Bulk Shallow-Cumulus Model and Implications for Penetrative Entrainment Feedback on Updraft than prognosing, the cumulus-layer gradients and introducing a penetrative entrainment closure assumptions about lateral cumulus entrainment and detrainment and a simplified sub-cloud-layer entrainment

  7. WORLD RECREATIONAL FISHING CONFERENCE. 21-24 MAY 2002. NORTHERN TERRITORY, AUSTRALIA. PAGE 83 The quality of many recreational fisheries depends on high survival rates of fishes that are captured and released by anglers.

    E-Print Network [OSTI]

    Wilde, Gene

    3rd WORLD RECREATIONAL FISHING CONFERENCE. 21-24 MAY 2002. NORTHERN TERRITORY, AUSTRALIA. PAGE 83 Abstract The quality of many recreational fisheries depends on high survival rates of fishes that are captured and released by anglers. Catch and release of fishes may be voluntary or required by regulation (e

  8. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect (OSTI)

    Horton, W. [The University of Texas at Austin, Austin, Texas 78712 (United States) [The University of Texas at Austin, Austin, Texas 78712 (United States); Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille (France); Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)] [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  9. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  10. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    SciTech Connect (OSTI)

    Kim, Hyunsoo

    2013-05-15

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti#12;cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s#6; superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  11. consumption are critical. Using a variety of methods, we are discovering optimal nutritional conditions to achieve high rates of these behaviors.

    E-Print Network [OSTI]

    Ma, Lena

    , extensive sanitation, repeated applications of residual insecticides, steam or heat treatments, and often challenge of eradicating bed bugs in buildings is well documented. Treatments require intensive inspections stand-alone treatment at 3-fold the drywood termite dosage rate. In addition to whole structure

  12. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    E-Print Network [OSTI]

    Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote 2013. [1] Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd indicated that the penetration of the blue-green radiation for most oceanic waters is $30­40% deeper than

  13. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  14. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  15. ASSESSMENT OF 90SR AND 137CS PENETRATION INTO REINFORCED CONCRETE (EXTENT OF 'DEEPENING') UNDER NATURAL ATMOSPHERIC CONDITIONS

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    When assessing the feasibility of remediation following the detonation of a radiological dispersion device or improvised nuclear device in a large city, several issues should be considered including the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination, and the planned future use of the city's structures and buildings. Currently, little is known about radionuclide penetration into construction materials in an urban environment. Knowledge in this area would be useful when considering costs of a thorough decontamination of buildings, artificial structures, and roads in an affected urban environment. Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to assess the depth of {sup 90}Sr and {sup 137}Cs penetration into reinforced concrete structures in a highly contaminated urban environment under natural weather conditions. Thirteen reinforced concrete core samples were obtained from external surfaces of a contaminated building in Pripyat. The concrete cores were drilled to obtain sample layers of 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, and 40-50 mm. Both {sup 90}Sr and {sup 137}Cs were detected in the entire 0-50 mm profile of the reinforced cores sampled. In most of the cores, over 90% of the total {sup 137}Cs inventory and 70% of the total {sup 90}Sr inventory was found in the first 0-5 mm layer of the reinforced concrete. {sup 90}Sr had penetrated markedly deeper into the reinforced concrete structures than {sup 137}Cs.

  16. Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston

    E-Print Network [OSTI]

    LeFrançois, Suzanne O'Neil, 1980-

    2003-01-01

    Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

  17. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  18. Building strategy to penetrate deeper into the stagnant and unattractive contact lens market

    E-Print Network [OSTI]

    Toor, Tajinder (Tajinder Pal Singh)

    2013-01-01

    This thesis builds up important strategic elements to penetrate deeper into the stagnant and mature contact lens market by focusing on adolescents. First, contact lens adoption is studied to strategically generate awareness ...

  19. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling 

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01

    This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric...

  20. Fact #886: August 17, 2015 New Light-Vehicle Leasing Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    New Light-Vehicle Leasing Penetration for 2014 fotw886web.xlsx More Documents & Publications Fact 847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 -...

  1. A Transmission Problem in the Scattering of Electromagnetic Waves by a Penetrable Object

    E-Print Network [OSTI]

    Torres, Rodolfo H.

    1996-10-05

    Layer-potential techniques are used to study a transmission problem arising in the scattering of electromagnetic waves by a penetrable object. The method proposed does not involve the use of the calculus of pseudodifferential operators and hence...

  2. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term 

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01

    : Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities in the past, turbines have provided...

  3. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    E-Print Network [OSTI]

    Mills, Andrew

    2014-01-01

    role mass market demand response could play in contributingmix with short-term demand response and wind penetration.design of traditional demand-response programs and even some

  4. Penetration of buoyancy driven current due to a wind forced river plume 

    E-Print Network [OSTI]

    Baek, Seong-Ho

    2009-05-15

    The long term response of a plume associated with freshwater penetration into ambient, ocean water under upwelling favorable winds is studied using the Regional Ocean Modeling System (ROMS) in an idealized domain. Three ...

  5. Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer

    E-Print Network [OSTI]

    Green, Todd

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors.1 To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we ...

  6. Ground penetrating radar technique to locate coal mining related features: case studies in Texas 

    E-Print Network [OSTI]

    Save, Neelambari R

    2006-04-12

    The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff ...

  7. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore »revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  8. Hierarchical nanosheet-constructed yolk–shell TiO? porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability

    E-Print Network [OSTI]

    Jin, Jun; Huang, Shao-Zhuan; Li, Yu; Tian, He; Wang, Hong-En; Yu, Yong; Chen, Li-Hua; Hasan, Tawfique; Su, Bao-Lian

    2015-06-26

    . Such a yolk–shell structure with a highly porous shell and dense mesoporous core is quite advantageous as an anode material for lithium ion batteries (LIBs). The outer, 2D nanosheet-based porous (15 nm) shell and the nanocrystal-based inner mesoporous (3...

  9. Microstructural Evolution of Alloy 718 at High Helium and Hydrogen Generation Rates during Irradiation with 600-800 MeV protons

    SciTech Connect (OSTI)

    Sencer, Bulent H. (PNNL); Bond, G M. (PNNL); Garner, F.A. (Pacific Northwest National Laboratory); Hamilton, M L. (PNNL); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB)); Thomas, L E. (PNNL); Maloy, S A. (Los Alamos National Laboratory); Sommer, Walter F. (LOS ALAMOS NATL LAB); James, M R. (Los Alamos National Laboratory); Ferguson, P D. (Los Alamos National Laboratory)

    2000-12-01

    When precipitation hardened Alloy 718 is irradiated with high-energy protons (600?800 MeV) and spallation neutrons at temperatures below > 60 C, it quickly hardens and loses almost all uniform elongation. It later softens somewhat at higher exposures but does not regain any elongation. This behavior is explained in terms of the evolution of Frank loop formation, disordering and eventual dissolution of the?? and?? strengthening phases, and the steady accumulation of very large levels of helium and hydrogen. These gases must be dispersed on a very fine scale in the matrix since no cavities could be found.

  10. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    E-Print Network [OSTI]

    Chubar, Oleg; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2015-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6~meV and 0.25~nm$^{-1}$ spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1~meV and 0.02~nm$^{-1}$ are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about $7\\times 10^{12}$~ph/s in a $90$-$\\mu$e...

  11. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  12. Optimal Operation of Independent Storage Systems in Energy and Reserve Markets with High Wind Penetration

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    are particularly interested in the case where a significant portion of the power generated in the grid is from wind, energy and reserve markets, wind power integration, stochastic optimization. NOMENCLATURE h, t Indices study in [2] has shown that significant wind power curtailment may become inevitable if more renewable

  13. Power system balancing with high renewable penetration : the potential of demand response

    E-Print Network [OSTI]

    Critz, David Karl

    2012-01-01

    This study investigated the ability of responsive demand to stabilize the electrical grid when intermittent renewable resources are present. The WILMAR stochastic unit commitment model was used to represent a version of ...

  14. Distribution network use-of-system charges under high penetration of distributed energy resources

    E-Print Network [OSTI]

    Bharatkumar, Ashwini

    2015-01-01

    Growing integration of distributed energy resources (DER) presents the electric power sector with the potential for signicant changes to technical operations, business models, and industry structure. New physical components, ...

  15. Optimal Inverter VAR Control in Distribution Systems with High PV Penetration

    E-Print Network [OSTI]

    Low, Steven H.

    and the net benefits, taking into account the additional cost of inverter losses when operating at non the substation. Index Terms--Distribution systems, volt/var control, DC/AC inverter, optimal power flow

  16. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    P. E. (2008): Wind Power in the Danish liberalized powereconomics of large-scale wind power in a carbon constraineddifferences. Keywords: Wind power integration, temporal-

  17. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect (OSTI)

    Longrigg, P.

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  18. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    Impact of a 15-Percent Renewable Portfolio Standard, EnergyAlternatives for Competitive Renewable Energy Zones inU.S. Electric Supply, National Renewable Energy Laboratory.

  19. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    permitting the integrated study of retail and wholesale power markets operating over realistically rendered of strategic trading in restructured wholesale power markets with congestion managed by locational marginal appliances and equipment. The resulting integrated retail and wholesale power system test bed will enable us

  20. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    power prices and wind energy curtailment decisions, anin the market value of wind and wind energy curtailment arethe Grid Integration of Wind Energy in Germany Onshore and

  1. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    the Grid Integration of Wind Energy in Germany Onshore andEconomics, Vol. 30, pp. NREL (2008): 20% Wind Energy in2030 – Increasing Wind Energy’s Contribution to U.S.

  2. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  3. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    E-Print Network [OSTI]

    Nicolosi, Marco

    2011-01-01

    market prices in Germany, Energy Policy, Vol 36, pp.3086-Integration of Wind Energy in Germany Onshore and OffshoreEnergy Economics at the University of Cologne (EWI) Vogelsanger Str. 321 50827 Köln, Germany

  4. Results from the DOE-CPUC High Penetration Solar Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,Breakout SessionsEnergy ResponsesRestructuring

  5. Modeling and Analysis of High-Penetration PV in Florida | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F Wetlandsof Energy Model RepairCladdings:

  6. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJean SeibertJulieKathryn Grant About UsDepartment

  7. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergy Tools forEnergyofDepartment of Energy|

  8. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  9. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  10. FRN and Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-16 Rate Case OS-14 Rate Case FRN...

  11. FRN & Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-16 Rate Case OS-14 Rate Case FRN...

  12. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  13. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  14. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.; Day, Anthony R.; Farmer, Orville T.; Hossbach, Todd W.; McIntyre, Justin I.; Miley, Harry S.; Mintzer, Esther E.; Seifert, Allen; Smart, John E.; Warren, Glen A.

    2008-07-01

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.

  15. PHYSICAL REVIEW C 80, 014611 (2009) Nuclear fusion reaction rates for strongly coupled ionic mixtures

    E-Print Network [OSTI]

    2009-01-01

    PHYSICAL REVIEW C 80, 014611 (2009) Nuclear fusion reaction rates for strongly coupled ionic.014611 PACS number(s): 26.30.-k I. INTRODUCTION Nuclear fusion in dense stellar matter is most important the nuclear interaction. We will mostly focus on the Coulomb barrier penetration problem. Fusion reactions

  16. Method to Reduce Molten Salt Penetration into Bulk Vitrification Refractory Materials

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Hrma, P.R.; Kim, D.S.; Schweiger, M.J.; Matyas, J.; Rodriguez, C.P. [Pacific Northwest National Laboratory, Richland WA (United States); Witwer, K.S. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, WA (United States)

    2008-07-01

    Bulk vitrification (BV) is a process that heats a feed material consisting of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. However, the castable refractory block (CRB) portion of the refractory lining has sufficient porosity to allow the low-viscosity molten ionic salt (MIS), which contains technetium (Tc) in a soluble form, to penetrate the CRB. This limits the effectiveness of the final waste form. This paper describes tests conducted to develop a method aimed at reducing the quantities of soluble Tc in the CRB. Tests showed that MIS formed in significant quantities at temperatures above 300 deg. C, remained stable until roughly 550 deg. C where it began to thermally decompose, and was completely decomposed by 800 deg. C. The estimated volume fraction of MIS in the feed was greater than 40%, and the CRB material contained 11 to 15% open porosity, a combination allowing a large quantity of MIS to migrate through the feed and penetrate the open porosity of the CRB. If the MIS is decomposed at temperatures below 300 deg. C or can be contained in the feed until it fully decomposes by 800 deg. C, MIS migration into the CRB can be avoided. Laboratory and crucible-scale experiments showed that a variety of methods, individually or in combination, can decrease MIS penetration into the CRB. Modifying the CRB to block MIS penetration was not deemed practical as a method to prevent the large quantities of MIS penetration seen in the full-scale tests, but it may be useful to reduce the impacts of lower levels of MIS penetration. Modifying the BV feed materials to better contain the MIS proved to be more successful. A series of qualitative and quantitative crucible tests were developed that allowed screening of feed modifications that might be used to reduce MIS penetration. These tests showed that increasing the specific surface area of the soil (used as the primary glass-forming solid in the baseline process) by grinding stopped MIS penetration nearly entirely for feeds that contained waste simulants with lower quantities of nitrate salts. Grinding soil significantly reduced MIS penetration in feeds with higher nitrate quantities, but it was necessary to add carbohydrates (sucrose or cellulose) to destroy a portion of the nitrate at low temperatures to reach the same low levels of MIS penetration seen for the lower nitrate feeds. Developing feeds to reduce MIS penetration in full-scale BV applications resulted in two additional refinements. Soil-grinding to the necessary levels proved to be difficult and expensive, so the fine soil was replaced with readily available fine-grained glass-forming minerals. Cellulose was shown to have less impact on dryer operation than sucrose and was chosen as the carbohydrate source to use in subsequent engineering- and full-scale tests. (authors)

  17. On causality, apparent 'superluminality' and reshaping in barrier penetration

    E-Print Network [OSTI]

    Sokolovski, D

    2010-01-01

    We consider tunnelling of a non-relativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backwards relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac $\\delta$-function, the transmission amplitude is superoscillatory for finite momenta and tunnelling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the...

  18. Penetrating radiation impact on NIF final optic components

    SciTech Connect (OSTI)

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  19. Plasma parameter scaling of the error-field penetration threshold in tokamaks Richard Fitzpatrick

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    Plasma parameter scaling of the error-field penetration threshold in tokamaks Richard Fitzpatrick of a rotating tokamak plasma to a resonant error-field Phys. Plasmas 21, 092513 (2014); 10.1063/1.4896244 A nonideal error-field response model for strongly shaped tokamak plasmas Phys. Plasmas 17, 112502 (2010); 10

  20. Penetration of a transverse magnetic field by an accelerated field-reversed configuration

    E-Print Network [OSTI]

    Washington at Seattle, University of

    . Slough and A. L. Hoffman Redmond Plasma Physics Laboratory, University of Washington, Seattle, Washington 98102 Received 23 June 1998; accepted 14 October 1998 The field-reversed configuration FRC is a compact. The study of the acceleration and penetration physics of the FRC into a transverse magnetic field gradient

  1. Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding

    E-Print Network [OSTI]

    Psaltis, Demetri

    Matrix penetration in the bulk:In uence of humidity: Morphological analysis of wood welding.pichelin@b .ch Context: Wood can be welded using linear vibration welding tech- niques similar to the ones in plastic and metal industry[1] . Wood welding allows bonding strength similar to glued joints. However, due

  2. Journal of Superconductivity, Vol. 5, No. 4, 1992 Magnetic Penetration Depth Measurements in

    E-Print Network [OSTI]

    Anlage, Steven

    of superconductivity is the diamagnetic response of a superconductor below its transition temperature To. The abilityJournal of Superconductivity, Vol. 5, No. 4, 1992 Magnetic Penetration Depth Measurements in Cuprate Superconductors Steven M. AnlageI and Dong-Ho Wut Received 16 April 1992 We examine recent results

  3. CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS

    E-Print Network [OSTI]

    CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS the magnitude of earthquake- induced shear stresses in a natural soil deposit. These seismically-induced shear resistance for this purpose. The seismic shear stress ratio (SSR) is calculated as described by

  4. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics

    E-Print Network [OSTI]

    Nagle, John F.

    HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics Stephanie Tristram of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i

  5. 78 IAEI NEWS September.October 2006 www.iaei.org penetrating pv questions from inspectors

    E-Print Network [OSTI]

    Johnson, Eric E.

    78 IAEI NEWS September.October 2006 www.iaei.org penetrating pv questions from inspectors B ased several calls and e-mails a week and sometimes several calls a day from inspectors looking at PV plans or inspecting PV systems. The questions that they pose are always challenging because most of the inspectors

  6. Impact of Wind Turbine Penetration on the Dynamic Performance of Interconnected Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    to their limits using flexible AC transmission system devices (FACTS), and also due to the increased penetration, Australia and India, a large number of wind farms are currently interconnected into transmission networks far away from load centres and connected into relatively weak transmission networks [3]. The presence

  7. Freezing and clustering transitions for penetrable spheres C. N. Likos,1

    E-Print Network [OSTI]

    Likos, Christos N.

    Freezing and clustering transitions for penetrable spheres C. N. Likos,1 M. Watzlawek,2 and H. Lo are occupied by more than one particle, a property that we call ``clustering.'' We find that freezing from-functional treatment of the freezing tran- sition. Much less is known about interactions that are bounded; i

  8. Market penetration of wind turbine concepts over the years Anca D. Hansen1

    E-Print Network [OSTI]

    Market penetration of wind turbine concepts over the years Anca D. Hansen1 , Lars H. Hansen2 1 Risø wind turbine concepts over the years (1995-2005). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the suppliers

  9. Hydrodynamical simulations of penetrative convection and generation of internal gravity waves

    E-Print Network [OSTI]

    Stêpieñ, Kazimierz

    Hydrodynamical simulations of penetrative convection and generation of internal gravity waves M investigate the generation of internal gravity waves in the stable region below a convective layer by means of angular momentum from the place where the waves are generated to the region of their dissipation, which

  10. VEGETATION SUCCESSION AND ROOT PENETRATION ON THE LORRAINE COVER USED TO LIMIT ACID MINE DRAINAGE

    E-Print Network [OSTI]

    Aubertin, Michel

    1 VEGETATION SUCCESSION AND ROOT PENETRATION ON THE LORRAINE COVER USED TO LIMIT ACID MINE DRAINAGE to limit the generation of acid mine drainage. The CCBE is made up of three layers: a 0.3 m layer of sand (CCBE), biointrusion, long-term performance, vegetation succession, root depth, acid mine drainage

  11. Optimal Spacing in an Array of Fully Penetrating Ditches for Subsurface Drainage

    E-Print Network [OSTI]

    Chahar, B. R.

    Optimal Spacing in an Array of Fully Penetrating Ditches for Subsurface Drainage Bhagu R. Chahar1 courses, race courses, parks, and other amenities Chahar and Vadodaria 2008 . Subsurface drainage system 1995 . An extensive solu- tion has been obtained by Chahar and Vadodaria 2008 for drain- age from

  12. Hydrochemical evidence of the depth of penetration of anthropogenic recharge in sandstone aquifers underlying

    E-Print Network [OSTI]

    Sheffield, University of

    Hydrochemical evidence of the depth of penetration of anthropogenic recharge in sandstone aquifers of anthropogenic solutes (major ions, trace metals) in Permo-Triassic sandstone aquifers underlying two mature of anthropogenic solutes to depths of between 30 and 47 m below ground in the unconfined sandstone and confirm

  13. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques

    E-Print Network [OSTI]

    Hubbard, Susan

    Field-scale estimation of volumetric water content using ground- penetrating radar ground wave that the GPR estimates had a root mean square error of volumetric water content of the order of 0 agriculture Citation: Grote, K., S. Hubbard, and Y. Rubin, Field-scale estimation of volumetric water content

  14. Comparative analysis of broadband penetration and digital public services in South East Europe

    E-Print Network [OSTI]

    Comparative analysis of broadband penetration and digital public services in South East Europe the current state of affairs in broadband and digital public services in selected South East Europe countries Europe countries. Keywords--broadband; digital public services; strategy and policy planning; South East

  15. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  16. High Rate for Type IC Supernovae

    E-Print Network [OSTI]

    Muller, R.A.

    2008-01-01

    Experimental Issues, World Scientific, see chapter onB. Norman (Singapore: World Scientific), p. 188. Perlmutter,B. Norman (Singapore: World Scientific), p. 196. Porter, A.

  17. High Rate for Type IC Supernovae

    E-Print Network [OSTI]

    Muller, R.A.

    2008-01-01

    Wheeler, J. C. 1990, in Supernovae, ed. A. G. Petschek (New4959. Tamrnann, G. A. 1977, in Supernovae, ed. D. Schramm (Wheeler, J. C. 1990, in Supernovae, ed. J. C. Wheeler, T.

  18. High-energy rate forgings of wedges :

    SciTech Connect (OSTI)

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  19. On causality, apparent 'superluminality' and reshaping in barrier penetration

    E-Print Network [OSTI]

    D. Sokolovski

    2010-03-20

    We consider tunnelling of a non-relativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backwards relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac $\\delta$-function, the transmission amplitude is superoscillatory for finite momenta and tunnelling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the increase in its velocity. It is argued that analysing apparent 'superluminality' in terms of spacial displacements helps avoid contradiction associated with time parameters such as the phase time.

  20. Heating and Ionization of the Primordial Intergalactic Medium by High Mass X-ray Binaries

    E-Print Network [OSTI]

    Knevitt, Gillian; Power, Chris; Bolton, James

    2014-01-01

    We investigate the influence of High Mass X-ray Binaries on their high redshift environments. Using a one-dimensional radiative transfer code, we predict the ionization and temperature profiles surrounding a coeval stellar population, composed of main sequence stars and HMXBs, at various times after its formation. We consider both uniform density surroundings, and a cluster embedded in a 10^8 solar mass NFW halo. HMXBs in a constant density environment produce negligible enhanced ionization because of their high-energy SEDs and short lifetimes. In this case, HMXBs only marginally contribute to the local heating rate. For NFW profiles, radiation from main sequence stars cannot prevent the initially ionized volume from recombining since it is unable to penetrate the high density galactic core. However, HMXB photons stall recombinations behind the front, keeping it partially ionized for longer. The increased electron density in these partially ionized regions promotes further cooling, resulting in lower IGM temp...

  1. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  2. Confronting the Graduation Rate Crisis in Texas

    E-Print Network [OSTI]

    Losen, Daniel; Orfield, Gary; Balfanz, Robert

    2006-01-01

    of minority students in Texas attend these schools, comparedfourths of the high schools in Texas where graduation is notthe Graduation Rate Crisis in Texas By Daniel Losen, Gary

  3. Aalborg Universitet Effect of Energy Storage in Increasing the Penetration of RES in the Remote Island of

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Aalborg Universitet Effect of Energy Storage in Increasing the Penetration of RES in the Remote for published version (APA): Kyriakidis, I., Braun, P., & Chaudhary, S. (2012). Effect of Energy Storage from vbn.aau.dk on: juli 04, 2015 #12;Effect of Energy Storage in Increasing the Penetration of RES

  4. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance

    E-Print Network [OSTI]

    Babin, Marcel

    Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance, J. The algorithms are found to be valid both in coastal and oceanic waters, and largely insensitive to regional

  5. High power rechargeable batteries Paul V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery of rechargeable (second- ary) batteries, as this is critical for most applications. As the penetration

  6. 2004 Rate Adjustments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Transmission and Ancillary Services Federal Register Notice -- Rate Order WAPA-141: Notice of Extension of Formula Rates for Transmission and Ancillary Services If you have any...

  7. Rate Schedule CPP-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    points established by contract, in accordance with approved policies and procedures. Formula Rate: The formula rate for CPP includes three components: Component 1: The customer...

  8. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01

    1) Borenstein, S. , Electricity Rate Structures and thes underlying retail electricity rate through net metering.turn impact retail electricity rates, particularly as retail

  9. A Competitive Rate Allocation Game Yanting Wu1

    E-Print Network [OSTI]

    Krishnamachari, Bhaskar

    , the transmitter sends data at a low rate R1 over both channels. And when both receivers bid high, the transmitter splits its power to send data at a high rate R2 over both channels. When one of the receivers bids low and the other bids high, the transmitter sends data at a very high rate R3 over the latter channel. When

  10. The penetration barrier of water through graphynes' pores: first-principles predictions and force field optimization

    E-Print Network [OSTI]

    Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; Pirani, Fernando; Giorgi, Giacomo; Yamashita, Koichi

    2013-01-01

    Graphynes are novel two-dimensional carbon-based materials that -due to their nanoweb-like structure- have been proposed as molecular filters, especially for water purification technologies. In this work we carry out first principles electronic structure calculations at the MP2C level of theory to assess the interaction between water and graphyne, graphdiyne and graphtriyne pores. The computed penetration barriers suggest that water transport is unfeasible through graphyne while being unimpeded for graphtriyne. Nevertheless, for graphdiyne, which presents a pore size almost matching that of water, a low barrier is found which in turn disappears if an active hydrogen bond with an additional water molecule on the opposite side of the opening is taken into account. These results support the possibility of using graphtriyne as an efficient membrane for water filtration but, in contrast with previous determinations, they do not exclude graphdiyne. In fact, the related first principles penetration barrier leads to ...

  11. Dynamics of a rigid non-rotating projectile penetrating the earth media 

    E-Print Network [OSTI]

    Rohani-Najafabadi, Behzad

    1966-01-01

    (- a ( dv) H Gz 0 dv) jt V (4-7) 2. 2 (CRH) 160 9 4-I 4J 120 0 0 80 40 40 80 120 160 200 240 Impact Velocity (fps) Fig. 4-1 Impact Velocity Versus Critical Velocity. 34 or it is the ratio of deceleration at impact to impact velocity (Vo.... The solutions for maximum penetration are V 2 Robins-Euler: P 0 2c (2-5) Poncelet: 1 aV P = ? In[1 & ? ] 0 2a c (2-6) Resal: 2 1 aV P = ? Inf1 + ? ] 2a b (2-7) where P = maximum penetration depth V = impact velocity 0 a, b, c = constants In 1910...

  12. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    SciTech Connect (OSTI)

    Guo, Jiuling [Center for Educational Technology, Peking University, Beijing 100871 (China); State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao; Liu, Zhenxing [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  13. Variable rate CELP speech coding using widely variable parameter updates 

    E-Print Network [OSTI]

    Moodie, Myron L.

    1995-01-01

    Code-excited, linear prediction (CELP) has become an accepted method for low bit rate, high quality coding of digital speech. The success of fixed rate CELP schemes has led to increased interest in variable rate techniques ...

  14. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin

    SciTech Connect (OSTI)

    Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

    1996-01-01

    Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

  15. Using Satellite Ocean Color Data to Derive an Empirical Model for the Penetration Depth of Solar Radiation (Hp) in the Tropical Pacific Ocean

    E-Print Network [OSTI]

    Chen, .Dake

    the climate through the penetration depth of solar radiation in the upper ocean (Hp), a primary parameter on penetrative solar radiation in the tropical Pacific, demonstrating the dynamical implication of remotely in which incident solar radiation is absorbed in the mixed layer and the verti- cal penetration down

  16. High data-rate atom interferometers through high recapture efficiency

    DOE Patents [OSTI]

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  17. Lesson 22 Related Rates

    E-Print Network [OSTI]

    2013-10-11

    Oct 11, 2013 ... A spherical weather balloon is being inflated with helium at a rate of 82 cubic meters per minute. Find the rate at which its radius is increasing.

  18. Naughton's related rates problems

    E-Print Network [OSTI]

    dominic

    2013-02-25

    Related rates (1). (1) Oil spills from a rupture container in a circular pattern whose radius increases at a rate of 2 ft/s. How fast is the area of the oil spill increasing ...

  19. Investigation of active faulting at the Emigrant Peak fault in Nevada using shallow seismic reflection and ground penetrating radar

    E-Print Network [OSTI]

    Christie, Michael Wayne

    2007-12-18

    The objective of this study was to assess fault displacement, off-fault deformation, and alluvial fan stratigraphy at the Emigrant Peak fault zone (EPFZ) in Fish Lake Valley, Nevada utilizing shallow seismic reflection (SSR) and ground penetrating...

  20. Ground-penetrating-radar response to fracture-fluid salinity: Why lower frequencies are favorable for resolving salinity changes

    E-Print Network [OSTI]

    Tsoflias, Georgios P.; Becker, Matthew W.

    2008-08-26

    Time-lapse ground-penetrating-radar (GPR) surveys exploit signal-amplitude changes to monitor saline tracers in fractures and to identify groundwater flow paths. However, the relationships between GPR signal amplitude, phase, and frequency...