National Library of Energy BETA

Sample records for high penetration rate

  1. high renewable energy penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high renewable energy penetration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  2. Deploying High Penetration Photovoltaic Systems: A Case Study

    SciTech Connect (OSTI)

    Coddington, M. H.; Baca, D.; Kroposki, B. D.; Basso, T.

    2011-01-01

    Photovoltaic (PV) system capacity penetration, or simply 'penetration,' is often defined as the rated power output of the aggregate PV systems on a distribution circuit segment divided by the peak load of that circuit segment. Industry experts agree that a single value defining high penetration is not universally applicable. However, it is generally agreed that a conservative value to designate high penetration is the condition when the ratio of aggregate PV systems ratings to peak load exceeds 15%. This case study illustrates the case of a distribution feeder which is able to accommodate a traditional capacity penetration level of 47%, and perhaps more. New maximum penetration levels need to be defined and verified and enhanced definitions for penetration on a distribution circuit need to be developed. The new penetration definitions and studies will help utility engineers, system developers, and regulatory agencies better agree what levels of PV deployment can be attained without jeopardizing the reliability and power quality of a circuit.

  3. High Penetration Solar Deployment Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  4. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  5. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  6. High Penetration Solar Deployment Funding Opportunity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Deployment Funding Opportunity High Penetration Solar Deployment Funding Opportunity Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed distribution circuits in the electrical grid. The High Penetration Solar Deployment projects are working with teams that include utility partners to model, test, and evaluate solutions to

  7. PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Voltage Regulation (SuNLaMP) PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaics through the Optimization of Sub-Transmission Voltage Regulation (SuNLaMP) ...

  8. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  9. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    requirement, the island of Oahu constructed, calibrated, and validated a high penetration renewable generator distribution feeder circuit on its electricity grid to understand the ...

  10. Final Report- High Penetration Solar PV Deployment Sunshine State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation. High Penetration Solar PV Deployment ...

  11. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  12. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  13. High Penetration Photovoltaic Case Study Report

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.; Keller, J.; Coddington, M.

    2013-01-01

    Technical concerns with integrating higher penetrations of photovoltaic (PV) systems include grid stability, voltage regulation, power quality (voltage rise, sags, flicker, and frequency fluctuations), and protection and coordination. The current utility grid was designed to accommodate power flows from the central generation source to the transmission system and eventually to the distribution feeders. At the distribution level, the system was designed to carry power from the substation toward the load. Renewable distributed generation, particularly solar PV, provides power at the distribution level challenging this classical paradigm. As these resources become more commonplace the nature of the distribution network and its operation is changing to handle power flow in both directions. This report is focused on large PV installations in which penetration is significantly greater than 15% of maximum daytime feeder load. These case studies are intended to demonstrate success stories with integration of large PV plants at the distribution level as well as some of the solutions used by the utility to ensure safe, reliable operation of both the PV system and the distribution network.

  14. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  15. Transmission System Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Achilles, S.; Schramm, S.; Bebic, J.

    2008-02-01

    This study is an assessment of the potential impact of high levels of penetration of photovoltaic (PV) generation on transmission systems. The effort used stability simulations of a transmission system with different levels of PV generation and load.

  16. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable

  17. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  18. NREL: Photovoltaics Research - NREL Releases High-Penetration PV Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  19. PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through the Optimization of Sub-Transmission Voltage Regulation (SuNLaMP) | Department of Energy Enabling High Penetration of Distributed Photovoltaics through the Optimization of Sub-Transmission Voltage Regulation (SuNLaMP) PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaics through the Optimization of Sub-Transmission Voltage Regulation (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: Pacific Northwest National Laboratory, Richland,

  20. PENETRATION OF COAL SLAGS INTO HIGH-CHROMIA REFRACTORIES

    SciTech Connect (OSTI)

    Longanbach, Sara C.; Matyas, Josef; Sundaram, S. K.

    2009-10-05

    Slagging coal gasifiers are used for the production of electricity and synthetic gases, as well as chemicals. High temperatures in the reaction chamber, typically between 1250ºC and 1600ºC, high pressure, generally greater than 400 psi, and corrosive slag place severe demands on the refractory materials. Slag produced during the combustion of coal flows over the refractory surface and penetrates the porous material. Slag penetration is typically followed by spalling of a brick that significantly decreases the service life of gasifier refractories. Laboratory tests were conducted to determine the penetration depth of slags into high-chromia refractories as a function of time and temperature for various refractory-slag combinations.

  1. Southern California Edison High Penetration Photovoltaic Project - Year 1

    SciTech Connect (OSTI)

    Mather, B.; Kroposki, B.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-06-01

    This report discusses research efforts from the first year of a project analyzing the impacts of high penetration levels of photovoltaic (PV) resources interconnected onto Southern California Edison's (SCE's) distribution system. SCE will be interconnecting a total of 500 MW of commercial scale PV within their service territory by 2015. This Year 1 report describes the need for investigating high-penetration PV scenarios on the SCE distribution system; discusses the necessary PV system modeling and distribution system simulation advances; describes the available distribution circuit data for the two distribution circuits identified in the study; and discusses the additional inverter functionality that could be implemented in order to specifically mitigate some of the undesirable distribution system impacts caused by high-penetration PV installations.

  2. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  3. The Environmental and Public Health Benefits of Achieving High Penetration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Solar Energy in the United States | Department of Energy The Environmental and Public Health Benefits of Achieving High Penetration of Solar Energy in the United States The Environmental and Public Health Benefits of Achieving High Penetration of Solar Energy in the United States 1 of 4 2 of 4 3 of 4 4 of 4 Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation

  4. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  5. Evaluating Future Standards and Codes with a Focus on High Penetration Photovoltaic (HPPV) System Deployment (Poster)

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.

    2010-12-01

    Poster displaying solutions for evaluating future standards and codes for high penetration photovoltaic (HPPV) systems.

  6. High-Penetration PV Integration Handbook for Distribution Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 High-Penetration PV Integration Handbook for Distribution Engineers Rich Seguin, Jeremy Woyak, David Costyk, and Josh Hambrick Electrical Distribution Design Barry Mather National

  7. Impact of High Solar Penetration in the Western Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Technical Report NREL/TP-5500-49667 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  8. High Penetration PV: How High Can We Go?

    SciTech Connect (OSTI)

    2016-01-01

    Brochure highlighting NREL's partnership with SolarCity and Hawaiian Electric (HECO) to increase the penetration of solar photovoltaics on the electricity grid. To better understand the potential impact of transient overvoltages due to load rejection, NREL collaborated with SolarCity and HECO to run a series of tests measuring the magnitude and duration of load rejection overvoltage events and demonstrating the ability of advanced PV inverters to mitigate their impacts.

  9. Results from the DOE-CPUC High Penetration Solar Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the DOE-CPUC High Penetration Solar Forum DOE CPUC Forum  First held on March 1 st and 2 nd , 2011  Latest meeting February 13 th and 14 th , 2013  Kevin Lynn: DOE  Tina Eichner and Devonie McCamey: NREL  Molly Sterkel and Melicia Charles: CPUC  Ann Peterson: Itron  Smita Gupta: Itron  Format - Research needs from CA utilities - Presentation on DOE-CPUC research progress and findings - Discussion of remaining research gaps 2 Meeting Agenda 3 CSI RD&D Program  SB1

  10. Results from the DOE-CPUC High Penetration Solar Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Results from the DOE-CPUC High Penetration Solar Forum Results from the DOE-CPUC High Penetration Solar Forum This presentation provides information on the results of the second High Penetration Solar Forum that convened in February, including an overview of DOE's and CPUC's grid integration awards as well as future efforts. sunshot_webinar_20130515.pdf (4.29 MB) More Documents & Publications QER - Comment of Electric Power Research Institute 1 Final Report- High Penetration Solar

  11. Modeling and Analysis of High-Penetration PV in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in California Modeling and Analysis of High-Penetration PV in California NREL logo.jpg The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease high-penetration PV deployments. The team will develop and verify advanced modeling and simulation methods for distribution system planning and operations; define

  12. Verification of Sulfate Attack Penetration Rates for Saltstone Disposal Unit Modeling

    SciTech Connect (OSTI)

    Flach, G. P.

    2015-05-12

    Recent Special Analysis modeling of Saltstone Disposal Units consider sulfate attack on concrete and utilize degradation rates estimated from Cementitious Barriers Partnership software simulations. This study provides an independent verification of those simulation results using an alternative analysis method and an independent characterization data source. The sulfate penetration depths estimated herein are similar to the best-estimate values in SRNL-STI-2013-00118 Rev. 2 and well below the nominal values subsequently used to define Saltstone Special Analysis base cases.

  13. Advancing System Flexibility for High Penetration Renewable Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetrations of variable renewable electricity. China is actively contributing to this body of experience given the rapid growth in renewable electricity deployment there, while...

  14. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect (OSTI)

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  15. Final Technical Report: Distributed Controls for High Penetrations of Renewables

    SciTech Connect (OSTI)

    Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee J.; Trudnowski, Daniel J.; Wilson, David G.

    2015-12-01

    The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.

  16. Improved Modeling Tools Development for High Penetration Solar

    SciTech Connect (OSTI)

    Washom, Byron

    2014-12-11

    One of the significant objectives of the High Penetration solar research is to help the DOE understand, anticipate, and minimize grid operation impacts as more solar resources are added to the electric power system. For Task 2.2, an effective, reliable approach to predicting solar energy availability for energy generation forecasts using the University of California, San Diego (UCSD) Sky Imager technology has been demonstrated. Granular cloud and ramp forecasts for the next 5 to 20 minutes over an area of 10 square miles were developed. Sky images taken every 30 seconds are processed to determine cloud locations and cloud motion vectors yielding future cloud shadow locations respective to distributed generation or utility solar power plants in the area. The performance of the method depends on cloud characteristics. On days with more advective cloud conditions, the developed method outperforms persistence forecasts by up to 30% (based on mean absolute error). On days with dynamic conditions, the method performs worse than persistence. Sky Imagers hold promise for ramp forecasting and ramp mitigation in conjunction with inverter controls and energy storage. The pre-commercial Sky Imager solar forecasting algorithm was documented with licensing information and was a Sunshot website highlight

  17. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  18. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona aps-logo.gif --This project is inactive -- The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational modifications that could be deployed in future feeder designs. APPROACH Models

  19. Modeling and Analysis of High-Penetration PV in Florida | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in Florida Modeling and Analysis of High-Penetration PV in Florida caps-fsu-logo.jpg This project aims to leverage simulation-assisted research and development based on a wide variety of Florida feeders that already incorporate high levels of PV power. Working with utilities, the team at Florida State University's Center for Advanced Power Systems (FSU CAPS) will evaluate and model impacts of the effects of high-penetration PV on

  20. Policies and Programs to Integrate High Penetrations of Variable Renewable Energy (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2012-06-01

    The goals of this project are to highlight the diverse approaches for enabling high renewable energy penetration; synthesize lessons on effective policies and programs and present avenues for action to energy ministers and other stakeholders.

  1. Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Bebic, J.

    2008-02-01

    This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

  2. NREL: Solar Research - NREL Releases High-Penetration PV Handbook for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  3. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  4. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    SciTech Connect (OSTI)

    Mather, B. A.; Shah, S.; Norris, B. L.; Dise, J. H.; Yu, L.; Paradis, D.; Katiraei, F.; Seguin, R.; Costyk, D.; Woyak, J.; Jung, J.; Russell, K.; Broadwater, R.

    2014-06-01

    In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commission (CPUC). This report provides the findings of the research completed under the project to date.

  5. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2012-05-18

    storage is found to drop considerably (by more than \\$70/MWh) as the penetration of solar increases toward 30\\percent on an energy basis. This is due primarily to a steep drop in capacity value followed by a decrease in energy value. In contrast, the value of CSP with thermal storage drops much less dramatically as penetration increases. As a result, at solar penetration levels above 10\\percent, CSP with thermal storage is found to be considerably more valuable relative to PV and CSP without thermal storage. The marginal economic value of wind is found to be largely driven by energy value, and is lower than solar at low penetration. The marginal economic value of wind drops at a relatively slower rate with penetration, however. As a result, at high penetration, the value of wind can exceed the value of PV and CSP without thermal storage. Though some of these findings may be somewhat unique to the specific case study presented here, the results: (1) highlight the importance of an analysis framework that addresses long-term investment decisions as well as short-term dispatch and operational constraints, (2) can help inform long-term decisions about renewable energy procurement and supporting infrastructure, and (3) point to areas where further research is warranted.

  6. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect (OSTI)

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  7. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  8. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    SciTech Connect (OSTI)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  9. Final Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative

    Broader source: Energy.gov [DOE]

    Florida State University’s Center for Advanced Power Systems and partners in the Sunshine State Solar Grid Initiative (SUNGRIN) have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation.

  10. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  11. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect (OSTI)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  12. Strategies to Mitigate Declines in the Economic Value of Wind and Solar at High Penetration in California

    Broader source: Energy.gov [DOE]

    This resource evaluates several options to reduce and eliminate the decline in the value of wind and solar PV technology, as a previous study had quantified the decline as penetration levels increased. Researchers found that largest increase in the value of PV at high penetration levels comes from assuming that low-cost bulk power storage is an investment option. Other attractive options, particularly at more modest penetration levels, include real-time pricing and technology diversity.

  13. Ballistic penetration test results for Ductal and ultra-high performance concrete samples.

    SciTech Connect (OSTI)

    Reinhart, William Dodd; Thornhill, Tom Finley, III

    2010-03-01

    This document provides detailed test results of ballistic impact experiments performed on several types of high performance concrete. These tests were performed at the Sandia National Laboratories Shock Thermodynamic Applied Research Facility using a 50 caliber powder gun to study penetration resistance of concrete samples. This document provides test results for ballistic impact experiments performed on two types of concrete samples, (1) Ductal{reg_sign} concrete is a fiber reinforced high performance concrete patented by Lafarge Group and (2) ultra-high performance concrete (UHPC) produced in-house by DoD. These tests were performed as part of a research demonstration project overseen by USACE and ERDC, at the Sandia National Laboratories Shock Thermodynamic Applied Research (STAR) facility. Ballistic penetration tests were performed on a single stage research powder gun of 50 caliber bore using a full metal jacket M33 ball projectile with a nominal velocity of 914 m/s (3000 ft/s). Testing was observed by Beverly DiPaolo from ERDC-GSL. In all, 31 tests were performed to achieve the test objectives which were: (1) recovery of concrete test specimens for post mortem analysis and characterization at outside labs, (2) measurement of projectile impact velocity and post-penetration residual velocity from electronic and radiographic techniques and, (3) high-speed photography of the projectile prior to impact, impact and exit of the rear surface of the concrete construct, and (4) summarize the results.

  14. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  15. NREL/SCE High Penetration PV Integration Project: FY13 Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/SCE High Penetration PV Integration Project: FY13 Annual Report Barry A. Mather National Renewable Energy Laboratory Sunil Shah Southern California Edison Benjamin L. Norris and John H. Dise Clean Power Research Li Yu, Dominic Paradis, and Farid Katiraei Quanta Technology Richard Seguin, David Costyk, Jeremy Woyak, Jaesung Jung, Kevin Russell, and Robert Broadwater Electrical Distribution Design, Inc. Technical Report NREL/TP-5D00-61269 June 2014 NREL is a national laboratory of the U.S.

  16. Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations Gregory Brinkman National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64467 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  17. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    SciTech Connect (OSTI)

    Farrington, S.P.; Bratton, W.L.; Akard, M.L.

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  18. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  19. Analysis of High-Penetration Levels of Photovoltaics into the Distribution Grid on Oahu, Hawaii: Detailed Analysis of HECO Feeder WF1

    SciTech Connect (OSTI)

    Stewart, E.; MacPherson, J.; Vasilic, S.; Nakafuji, D.; Aukai, T.

    2013-05-01

    Renewable generation is growing at a rapid rate due to the incentives available and the aggressive renewable portfolio standard targets implemented by state governments. Distributed generation in particular is seeing the fastest growth among renewable energy projects, and is directly related to the incentives. Hawaii has the highest electricity costs in the country due to the high percentage of oil burning steam generation, and therefore has some of the highest penetration of distributed PV in the nation. The High Penetration PV project on Oahu aims to understand the effects of high penetration PV on the distribution level, to identify penetration levels creating disturbances on the circuit, and to offer mitigating solutions based on model results. Power flow models are validated using data collected from solar resources and load monitors deployed throughout the circuit. Existing interconnection methods and standards are evaluated in these emerging high penetration scenarios. A key finding is a shift in the level of detail to be considered and moving away from steady-state peak time analysis towards dynamic and time varying simulations. Each level of normal interconnection study is evaluated and enhanced to a new level of detail, allowing full understanding of each issue.

  20. Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning; Ma, Jian; Samaan, Nader A.; Diao, Ruisheng; Malhara, Sunita V.; Guttromson, Ross T.; Du, Pengwei; Sastry, Chellury

    2010-02-01

    With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability of power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.

  1. High Penetration PV: How High Can We Go? (Brochure), Energy Systems Integration (ESI), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Penetration PV: How High Can We Go? ENERGY SYSTEMS INTEGRATION ESI optimizes the design and performance of electrical, thermal, fuel, and water pathways at all scales. "We know how important the option of solar is for our customers. Solving these issues requires that everyone-utilities, the solar industry, and other leading technical experts like NREL-work together. That's what this work is all about. With the highest amount of solar in the nation, our utilities are facing potential

  2. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect (OSTI)

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  3. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  4. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  5. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  6. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    SciTech Connect (OSTI)

    Concepcion, Ricky James; Elliott, Ryan Thomas; Donnelly, Matt; Sanchez-Gasca, Juan

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  7. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  8. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renee Forney (Acting) About Us Renee Forney (Acting) - Deputy CIO for Cybersecurity

    Exploration of High-Penetration Renewable Electricity Futures Volume 1 of 4 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S.

  9. Renewable Electricity Futures: Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: Energy.gov [DOE]

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The High scenario had approximately 82% renewable generation after curtailment, which included 41% of its generation coming from variable generation (VG) sources like wind and solar photovoltaics (PV). The remaining renewable generation came from hydropower, geothermal, and concentrating solar power (CSP). The Higher Baseload scenario adds CSP and geothermal to the High scenario to make 88% renewable generation. This study also included a Higher VG scenario with added wind and solar PV generation to get to 86% renewable generation. Both Higher scenarios added the same amount of possible generation, but the Higher VG scenario showed more curtailment from the incremental generation, leading to lower penetration levels after curtailment. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  10. Renewable Electricity Futures:  Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    Broader source: Energy.gov [DOE]

    The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). The scenarios analyzed for this study included a variety of generation infrastructure buildouts and power system operational assumptions, with three different portfolios of renewable generators. The High scenario had approximately 82% renewable generation after curtailment, which included 41% of its generation coming from variable generation (VG) sources like wind and solar photovoltaics (PV). The remaining renewable generation came from hydropower, geothermal, and concentrating solar power (CSP). The Higher Baseload scenario adds CSP and geothermal to the High scenario to make 88% renewable generation. This study also included a Higher VG scenario with added wind and solar PV generation to get to 86% renewable generation. Both Higher scenarios added the same amount of possible generation, but the Higher VG scenario showed more curtailment from the incremental generation, leading to lower penetration levels after curtailment. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%. Dynamic studies will need to be done to understand any impacts on reliability during contingencies and transient events.

  11. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  12. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    SciTech Connect (OSTI)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F.

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  13. A high rate proportional chamber

    SciTech Connect (OSTI)

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  14. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  15. Reactive power planning under high penetration of wind energy using Benders decomposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less

  16. Reactive power planning under high penetration of wind energy using Benders decomposition

    SciTech Connect (OSTI)

    Xu, Yan; Wei, Yanli; Fang, Xin; Li, Fangxing; Azim, Riyasat

    2015-11-05

    This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition is modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.

  17. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    SciTech Connect (OSTI)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Given a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.

  18. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  19. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  20. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  1. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  2. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect (OSTI)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  3. Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

    2011-12-01

    This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

  4. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban ...

  5. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  6. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  7. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  8. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect (OSTI)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  9. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOE Patents [OSTI]

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  10. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban Zhuangchun Wu Anne Dillon National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 2 Outline  What is the technology  Why it is better than other technologies  How far away from market  Technical details  Market analysis National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 3

  11. Renewable Electricity Futures Study Volume 1: Exploration of High-Penetration Renewable Electrcity Futures

    Broader source: Energy.gov [DOE]

    The Renewable Electricity Futures Study (RE Futures) is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States1 over the next several decades. This study includes geographic and electric system operation resolution that is unprecedented for long-term studies of the U.S. electric sector. The analysis examines the implications and challenges of renewable electricity generation levels—from 30% up to 90%, with a focus on 80%, of all U.S. electricity generation from renewable technologies—in 2050. The study focuses on some key technical implications of this environment, exploring whether the U.S. power system can supply electricity to meet customer demand with high levels of renewable electricity, including variable wind and solar generation. The study also begins to address the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the United States.

  12. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  13. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect (OSTI)

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many ?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  14. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect (OSTI)

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  15. High-G accelerometer for earth-penetrator weapons applications. LDRD final report

    SciTech Connect (OSTI)

    Davies, B.R.; Montague, S.; Bateman, V.I.; Brown, F.A.; Chanchani, R.; Christenson, T.; Murray, J.R.; Rey, D.; Ryerson, D.

    1998-03-01

    Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).

  16. High Penetration Solar Deployment

    Broader source: Energy.gov [DOE]

    In October 2009, DOE announced $24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the...

  17. High Penetration Project Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Technologies Program Peer Review Sunshine State Solar Grid Initiative SUNGRIN Rick Meeker Florida State University Center for Advanced Power Systems (CAPS) meeker@caps.fsu.edu 850.645.1711 26 May 2010 FSU CAPS, UCF FSEC, USF PCUE FP&L, JEA, FMPA, GRU, OUC, Lakeland Electric Satcon Technologies, Sunpower Corp., AMEC "This presentation does not contain any proprietary, confidential, or otherwise restricted information" 2 | Solar Energy Technologies Program

  18. High Rate and Stable Cycling of Lithium Metal Anode (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: High Rate and Stable Cycling of Lithium Metal Anode Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited ...

  19. Figure 7. Projected Production for the High Development Rate...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  20. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect (OSTI)

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  1. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    SciTech Connect (OSTI)

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Catalini, David

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital image correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.

  2. Solidification at the High and Low Rate Extreme

    SciTech Connect (OSTI)

    Halim Meco

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  3. Using SiO Anodes for High Capacity, High Rate Electrodes for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion Batteries ... areal capacities and good capacity retention for application in lithium ion batteries. ...

  4. High Rate and Stable Cycling of Lithium Metal Anode

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  5. High rate and stable cycling of lithium metal anode

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  6. High rate and stable cycling of lithium metal anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  7. Monolithic ballasted penetrator

    DOE Patents [OSTI]

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  8. Semi-solid electrodes having high rate capability

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  9. High strain rate deformation of NiAl

    SciTech Connect (OSTI)

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  10. High removal rate laser-based coating removal system

    DOE Patents [OSTI]

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  11. Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the US Western Interconnection under High Wind and Solar Penetration

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Samaan, Nader A.; Jin, Chunlian

    2014-12-24

    This paper introduces a comprehensive analysis to quantify the potential savings in production cost due to consolidation of 32 US western interconnection Balancing Authorities (BAs). Three simulation scenarios are developed: current Western Electricity Coordinating Council (WECC) BAs structure, full copper-sheet consolidation, and full consolidation with transmission congestion considered. The study uses WECC Transmission Expansion Planning Policy Committee (TEPPC) model that was developed for the year 2020. The model assumes 8% wind and 3% solar energy penetration as percentage of total WECC demand in 2020. Sensitivity analyses are carried out to assess the impact of transmission hurdle rates between WECC BAs on potential benefits. The study shows savings that ranges from $400 Million (2.4% of total one year production cost) to $600 Million (3.2%) per year in thermal units production cost due to consolidation can be achieved. The copper sheet consolidation scenario shows an extra savings of $240 Million (1.4%) per year.

  12. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  13. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    SciTech Connect (OSTI)

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue Y.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; Wood, Brandon C.; Wang, Y. Morris; Shin, Swanee J.

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.

  14. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue Y.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; et al

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes inmore » graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  15. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect (OSTI)

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  16. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    /or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  17. High strain-rate model for fiber-reinforced composites

    SciTech Connect (OSTI)

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  18. The effect of welding parameters on penetration in GTA welds

    SciTech Connect (OSTI)

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  19. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  20. Use of phosphates to reduce slag penetration in Cr2O3-based refractories

    DOE Patents [OSTI]

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  1. Use of Phosphates to Reduce Slag Penetration in CR203-Based Refractories

    SciTech Connect (OSTI)

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorus oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  2. The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories

    SciTech Connect (OSTI)

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.

    2004-11-09

    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  3. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  4. In-place HEPA filter penetration test

    SciTech Connect (OSTI)

    Bergman, W.; Wilson, K.; Elliott, J.

    1997-08-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in-place penetration test is practical. 14 refs., 14 figs., 3 tabs.

  5. In-place HEPA filter penetration test

    SciTech Connect (OSTI)

    Bergman, W.; Wilson, kK.; Elliott, J.; Bettencourt, B.; Slawski, J.W.

    1997-01-01

    We have demonstrated the feasibility of conducting penetration tests on high efficiency particulate air (HEPA) filters as installed in nuclear ventilation systems. The in-place penetration test, which is designed to yield equivalent penetration measurements as the standard DOP efficiency test, is based on measuring the aerosol penetration of the filter installation as a function of particle size using a portable laser particle counter. This in-place penetration test is compared to the current in-place leak test using light scattering photometers for single HEPA filter installations and for HEPA filter plenums using the shroud method. Test results show the in-place penetration test is more sensitive than the in-place leak test, has a similar operating procedure, but takes longer to conduct. Additional tests are required to confirm that the in-place penetration test yields identical results as the standard dioctyl phthalate (DOP) penetration test for HEPA filters with controlled leaks in the filter and gasket and duct by-pass leaks. Further development of the procedure is also required to reduce the test time before the in- place penetration test is practical.

  6. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  7. Low resistance bakelite RPC study for high rate working capability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore » structure performs as efficiently as traditional RPCs.« less

  8. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect (OSTI)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  9. Multianode cylindrical proportional counter for high count rates

    DOE Patents [OSTI]

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  10. Multianode cylindrical proportional counter for high count rates

    DOE Patents [OSTI]

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  11. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  12. Picosecond to Nanosecond Measurements at High Repetition Rate | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Picosecond to Nanosecond Measurements at High Repetition Rate Since FY2012, SSRL is now scheduling three to four three-day periods each year dedicated to running SPEAR3 in hybrid low-alpha operation. In this mode the SPEAR3 ring has 1-4 camshaft pulses with very low current, and pulse duration of 5-20 picoseconds, for timing measurements. The rest of the buckets are filled to provide 100-200 mA current for other users not involved in timing experiments. The

  13. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect (OSTI)

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a

  14. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  15. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  16. Pressure enhanced penetration with shaped charge perforators

    DOE Patents [OSTI]

    Glenn, Lewis A.

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  17. Penetration resistant barrier

    DOE Patents [OSTI]

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  18. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  19. Substrate inhibition and control for high rate biogas production

    SciTech Connect (OSTI)

    Shin, H.S.

    1982-01-01

    This research addresses a critical aspect of the technical feasibility of biogas recovery with poultry manure using anaerobic digestion, namely, inhibition and toxicity factors limiting methane generation under high rate conditions. The research was designed to identify the limiting factors and to examine alternative pretreatment and in situ control methods for the anaerobic digestion of poultry manure as an energy producing system. Biogas production was indicated by the daily gas volume produced per unit digester capacity. Enhanced biogas generation from the anaerobic digester systems using poultry manure was studied in laboratory- and pilot-scale digester operations. It was found that ammonia nitrogen concentration above 4000 mg/l was inhibitory to biogas production. Pretreatment of the manure by elutriation was effective for decreasing inhibitory/toxic conditions. Increased gas production resulted without an indication of serious inhibition by increased volatile acids, indicating a limitation of available carbon sources. For poultry manure digestion, the optimum pH range was 7.1 to 7.6. Annual costs for pretreatment/biogas systems for 10,000, 30,000 and 50,000 birds were estimated and compared with annual surplus energy produced. The economic break-even point was achieved in digesters for greater than 30,000 birds. Capital cost of the digester system was estimated to be $18,300 with annual costs around $4000. It is anticipated that the digester system could be economically applied to smaller farms as energy costs increase.

  20. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOE Patents [OSTI]

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  1. High-order harmonic generation using a high-repetition-rate turnkey laser

    SciTech Connect (OSTI)

    Lorek, E. Larsen, E. W.; Heyl, C. M.; Carlström, S.; Mauritsson, J.; Paleček, D.; Zigmantas, D.

    2014-12-15

    We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10{sup 10} photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.

  2. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect (OSTI)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  3. High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications

    SciTech Connect (OSTI)

    Dillon, A. C.

    2012-01-01

    Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2

  4. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect (OSTI)

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  5. High heating rate thermal desorption for molecular surface sampling

    DOE Patents [OSTI]

    Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2016-03-29

    A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.

  6. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Titanium Alloy Production ADVANCED MANUFACTURING OFFICE Low-Cost Titanium Alloy Production Titanium for Energy Efficient Mechanical Systems. Titanium (Ti) is highly valued for its ...

  7. Electrochemical and rate performance study of high-voltagelithium...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: ... Citation Details In-Document Search Title: Electrochemical ... We report electrochemical studies of high voltage cathodes ...

  8. Penetration in GTA welding

    SciTech Connect (OSTI)

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction through the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.

  9. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov [DOE]

    The goal of the project is to develop an automated, ultrafast laser machining device that will be used to prototype GDI injectors. The platform will turn CAD drawings into high-precision prototypes.

  10. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 10 times higher than lithium-ion), using raw materials that are low cost or even free. ... that PLE-based batteries can be manufactured and scaled to high-volume production. ...

  11. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; et al

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  12. High frame-rate, large field wavefront sensor

    SciTech Connect (OSTI)

    Avicola, K.; Salmon, J.T.; Brase, J.; Waltjen, K.; Presta, R.; Balch, K.S.

    1992-03-01

    A two-stage intensified 192 {times} 239 pixel imager developed by Eastman Kodak for motion analysis was used to construct a 1 kHz frame-rate Hartmann wavefront sensor. The sensor uses a monolithic array of lenslets with a focal length that is adjusted by an index fluid between the convex surface and an optical flat. The accuracy of the calculated centroid position, which is related to wavefront measurement accuracy, was obtained as a function of spot power and spot size. The sensor was then dynamically tested at a 1 kHz frame-rate with a 9 {times} 9 lenslet array and a fast steering mirror, which swept a plane wavefront across the wavefront sensor. An 8 cm diameter subaperture will provide a return signal (589 nm) level of about 1000 photons/ms using the AVLIS 1 kW laser (stretched pulse) as guide star source, which is sufficient to yield a wavefront measurement of better than {gamma}/10 rms. If an area of 6 {times} 6 pixels per Hartmann spot were allocated, this wavefront sensor could support a 32 {times} 32, or 1024, element deformable mirror.

  13. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J.; Cappel, F.; Weisel, H.; Richter, G.

    1995-12-01

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  14. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOE Patents [OSTI]

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  15. Universal penetration test apparatus with fluid penetration sensor

    DOE Patents [OSTI]

    Johnson, P.W.; Stampfer, J.F.; Bradley, O.D.

    1999-02-02

    A universal penetration test apparatus is described for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material. 23 figs.

  16. Universal penetration test apparatus with fluid penetration sensor

    DOE Patents [OSTI]

    Johnson, Phillip W.; Stampfer, Joseph F.; Bradley, Orvil D.

    1999-01-01

    A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.

  17. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect (OSTI)

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  18. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  19. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  20. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  1. Fact #805: November 25, 2013 Vehicle Technology Penetration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5: November 25, 2013 Vehicle Technology Penetration Fact #805: November 25, 2013 Vehicle Technology Penetration As new vehicle technologies are introduced into the market their initial and overall adoption rate can vary widely. The figure below shows select technologies and their production share over time since first significant use. Fuel injection was adopted fairly quickly after its introduction nearly 40 years ago and reached 100% of the market share, completely replacing the

  2. Workshop: Time Resolved X-Ray Science at High Repetition Rate | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Time Resolved X-Ray Science at High Repetition Rate Saturday, October 22, 2011 - 8:30am SSRL Conference Room 137-322 In conjunction with the 2011 LCLS/SSRL User Meeting, SSRL and the APS will jointly host a two-day workshop focused on opportunities with short-pulse, high-repetition rate X-ray Science. The workshop will feature international speakers and panel experts presenting the scientific basis, preliminary results and future potential of high rep-rate

  3. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect (OSTI)

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  4. Centerra Earns High Performance Rating for Savannah River Site Security Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) security contractor Centerra received high performance ratings from DOE in fiscal year 2015, earning $5,280,546 of the available $5,739,724 fee.

  5. High strain rate method of producing optimized fracture networks in reservoirs

    DOE Patents [OSTI]

    Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.

    2015-06-23

    A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.

  6. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    SciTech Connect (OSTI)

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  7. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect (OSTI)

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  8. Implications of High Renewable Electricity Penetration in the U.S. for Water Use, Greenhouse Gas Emissions, Land-Use, and Materials Supply

    Office of Energy Efficiency and Renewable Energy (EERE)

    Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply are identified.

  9. High-order harmonic generation at a repetition rate of 100 kHz

    SciTech Connect (OSTI)

    Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.

    2003-07-01

    We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.

  10. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Dual-axis high-data-rate atom interferometer via cold ensemble exchange Citation Details In-Document Search Title: Dual-axis high-data-rate atom interferometer via cold ensemble exchange We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data

  11. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect (OSTI)

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  12. High Rate and Stable Cycling of Lithium Metal Anode - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research November 10, 2014, Research Highlights High Rate and Stable Cycling of Lithium Metal Anode Coulombic efficiency (CE) of Li plating/stripping is > 99.1% in concentrated LiFSI-DME electrolyte Scientific Achievement Lithium metal is an ideal battery anode. However, dendrite growth and limited CE during cycling have limited its practical applications. High CE (up to 99.1%) without dendrite growth is achieved by using highly concentrated electrolytes for lithium

  13. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  14. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    SciTech Connect (OSTI)

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  15. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect (OSTI)

    Comandar, L. C.; Patel, K. A.; Frhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50?km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  16. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect (OSTI)

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  17. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect (OSTI)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  18. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOE Patents [OSTI]

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  19. Design study of fiber-composite penetrator cases

    SciTech Connect (OSTI)

    Logan, R.W.; Groves, S.E.; Lyon, R.E.

    1993-10-22

    A design study was conducted to demonstrate the viability of carbon-fiber reinforced epoxy composites as structural case materials for penetrating warheads. The objective was to conduct well-instrumented experimental studies of composite-body penetrators perforating mild steel plates and quantitatively model these plate penetrations using two- and three-dimensional finite element codes over a wide range of velocities and impact conditions in order to develop predictive capability for composite design and for use in tradeoff studies with existing case materials. Understanding of the failure of composite-body penetrators would be demonstrated by a rational design iteration which significantly improved performance. Initial studies utilized existing 1-degree tapered cylindrical carbon fiber/epoxy composite cases fabricated by wet-filament winding. These sharp-tipped, steel-nose, composite penetrators were strain-gaged, piggy-backed with 57 kilograms, and impacted into steel plates in a velocity-boosted droptower at impact velocities ranging from 3 to 18 meters per second. Load, time, and position data were recorded during the impact event as well as the axial and hoop strains in the composite case. Monolithic 4340 hardened steel penetrators with both sharp- and flat-tip 3-caliber ogive noses were also impacted into mild steel plates. Data from the composite-case and steel penetrators were used to calibrate a multiaxial, rate-dependent, flow and failure model for the mild steel plates in NIKE2D. The authors were then able to successfully predict survival and failure of the composite-case penetrators in normal-incidence droptower tests for different target thickness and velocity combinations.

  20. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect (OSTI)

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  1. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect (OSTI)

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  2. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect (OSTI)

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  3. Low-mass, high-rate cylindrical MWPC's for the MEGA experiment

    SciTech Connect (OSTI)

    Mischke, R.E.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.W.; Hogan, G.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Stanislaus, S.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C. )

    1990-01-01

    The construction of MWPCs for the MEGA experiment at LAMPF are described. The chambers are cylindrical, low mass (3 {times} 10{sup {minus}4} radiation lengths), and are designed to operate at high rates (3 {times} 10{sup 4} /mm{sup 2}/s). Several novel construction techniques have been developed and custom electronics have been designed to help achieve the required performance, which corresponds to that needed at high luminosity colliders. 4 refs., 3 figs.

  4. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  5. A method to quench and recharge avalanche photo diodes for use in high rate situations

    SciTech Connect (OSTI)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI.

  6. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  7. TRANS4: a computer code calculation of solid fuel penetration of a concrete barrier. [LMFBR; GCFR

    SciTech Connect (OSTI)

    Ono, C. M.; Kumar, R.; Fink, J. K.

    1980-07-01

    The computer code, TRANS4, models the melting and penetration of a solid barrier by a solid disc of fuel following a core disruptive accident. This computer code has been used to model fuel debris penetration of basalt, limestone concrete, basaltic concrete, and magnetite concrete. Sensitivity studies were performed to assess the importance of various properties on the rate of penetration. Comparisons were made with results from the GROWS II code.

  8. High-Purity Germanium Spectroscopy at Rates in Excess of 10^{6} Events/s

    SciTech Connect (OSTI)

    VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.

    2014-10-01

    AbstractIn gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at rates up to and exceeding 106 events per second. We report the performance of an HPGe spectrometer adapted to run at such rates. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltagerail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-widthat- half-maximum energy resolution of less than 8 keV measured at 662 keV with 1:08*106 per second incoming event rate and 38% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of edge pileup that passes the first pileup cut, reducing throughput to 26%. While better resolution has been reported by other authors, our throughput is over an order of magnitude higher than any other reported HPGe system operated at such an event rate.

  9. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  10. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  11. Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation | Stanford Synchrotron Radiation Lightsource Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate Operation Wednesday, August 17, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Bo Yang, Department of Mechanical Engineering, University of Texas at Arlington Program Description The LCLS-II project seeks to increase the repetition rate of the LCLS X-ray Free-Electron Laser by many orders, up to 1 MHz from the current 120 Hz maximum. It calls into

  12. High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer in Patients at Moderate or High Risk of Biochemical Recurrence

    SciTech Connect (OSTI)

    Hoskin, Peter; Rojas, Ana; Lowe, Gerry; Bryant, Linda; Ostler, Peter; Hughes, Rob; Milner, Jessica; Cladd, Helen

    2012-03-15

    Purpose: To evaluate genitourinary (GU) and gastrointestinal (GI) morbidity and biochemical control of disease in patients with localized prostate adenocarcinoma treated with escalating doses per fraction of high-dose rate brachytherapy alone. Methods and Materials: A total of 197 patients were treated with 34 Gy in four fractions, 36 Gy in four fractions, 31.5 Gy in three fractions, or 26 Gy in two fractions. Median follow-up times were 60, 54, 36, and 6 months, respectively. Results: Incidence of early Grade {>=} 3 GU morbidity was 3% to 7%, and Grade 4 was 0% to 4%. During the first 12 weeks, the highest mean International Prostate Symptom Score (IPSS) value was 14, and between 6 months and 5 years it was 8. Grade 3 or 4 early GI morbidity was not observed. The 3-year actuarial rate of Grade 3 GU was 3% to 16%, and was 3% to 7% for strictures requiring surgery (4-year rate). An incidence of 1% Grade 3 GI events was seen at 3 years. Late Grade 4 GU or GI events were not observed. At 3 years, 99% of patients with intermediate-risk and 91% with high-risk disease were free of biochemical relapse (log-rank p = 0.02). Conclusions: There was no significant difference in urinary and rectal morbidity between schedules. Biochemical control of disease in patients with intermediate and high risk of relapse was good.

  13. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    SciTech Connect (OSTI)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  14. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  15. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding.

    SciTech Connect (OSTI)

    Loughry, Thomas A.

    2015-02-01

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to ten times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.

  16. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  17. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect (OSTI)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  18. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the

  19. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J.V.

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three

  20. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  1. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  2. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  3. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect (OSTI)

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  4. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  5. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect (OSTI)

    Srhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sren; Nyberg, Tomas [Department of Solid State Electronics, The ngstrm Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.510 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  6. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  7. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; Beidaghi, Majid; Joo Jeong, Yeon; Islam, Mohammad F.; Gogotsi, Yury

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  8. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals

    SciTech Connect (OSTI)

    Ganesh, Panchapakesan; Kent, P. R. C.; Sumpter, Bobby G; Lubimtsev, Andrew A

    2013-01-01

    Pseudocapacitors aim to maintain the high power density of supercapacitors while increasing the energy density towards those of energy dense storage systems such as lithium ion batteries. Recently discovered intercalation pseudocapacitors (e.g. Nb2O5) are particularly interesting because their performance is seemingly not limited by surface reactions or structures, but instead determined by the bulk crystalline structure of the material. We study ordered polymorphs of Nb2O5 and detail the mechanism for the intrinsic high rates and energy density observed for this class of materials. We find that the intercalating atom (lithium) forms a solid solution adsorbing at specific sites in a network of quasi-2D NbOx faces with x {1.3, 1.67, or 2}, donating electrons locally to its neighboring atoms, reducing niobium. Open channels in the structure have low diffusion barriers for ions to migrate between these sites (Eb 0.28 0.44 eV) comparable to high-performance solid electrolytes. Using a combination of complementary theoretical methods we rationalize this effect in LixNb2O5 for a wide range of compositions (x) and at finite temperatures. Multiple adsorption sites per unit-cell with similar adsorption energies and local charge transfer result in high capacity and energy density, while the interconnected open channels lead to low cost diffusion pathways between these sites, resulting in high power density. The nano-porous structure exhibiting local chemistry in a crystalline framework is the origin of high-rate pseudocapacitance in this new class of intercalation pseudocapacitor materials. This new insight provides guidance for improving the performance of this family of materials.

  9. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect (OSTI)

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  10. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect (OSTI)

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  11. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    SciTech Connect (OSTI)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  12. higher penetration of renewable energy sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher penetration of renewable energy sources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  13. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect (OSTI)

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  14. Supported plasma sputtering apparatus for high deposition rate over large area

    DOE Patents [OSTI]

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  15. High-repetition rate and mode-locked phosphate glass laser

    SciTech Connect (OSTI)

    He; Lu; Li; Qian; Gu

    1986-04-04

    High-repetition-rate operation of a picosecond glass laser up to 10 Hz was achieved by using a new kind of phosphate glass. The pulse duration is 24 ps, the spectral width is 0.84 A and the total energy of the pulse train is 6 mJ. The key to the operation of glass materials at high repetition rates lies not only in an improvement of their thermal conductivity, but also in an avoidance or elimination of the undesired optical-pumping-induced thermal effects, such as the optical path change due to change in the index of refraction with temperature, and the linear expansion coefficient. For silicate glass, both are positive. The new type of phosphate glass adopted in this study exhibits negative and positive linear expansion coefficient behavior, so that changes in the optical path resulting from both of them can be compensated by each other. As a result, such a change can reach a minimum value each time when light travels back and forth in a laser cavity.

  16. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  17. Slag Penetration into Refractory Lining of Slagging Coal Gasifier

    SciTech Connect (OSTI)

    Matyas, Josef; Sundaram, S. K.; Rodriguez, Carmen P.; Edmondson, Autumn B.; Arrigoni, Benjamin M.

    2008-10-25

    The impurities in coal are converted into molten slag typically containing SiO2, FeO, CaO, and Al2O3 when coal feedstock is burned in slagging gasifiers. The slag flows down the gasifier sidewalls, dissolves, and penetrates and reacts with the refractory lining that protects the stainless steel shell of the gasifier from elevated temperatures (1300–1600°C). Refractories composed primarily of Cr2O3 have been found most resistant to slag corrosion, but they continue to fail performance requirements because of low resistance to spalling. Post-mortem analysis of high-chromia refractory bricks collected from commercial gasifiers suggests that the spalling is affected by the depth of slag penetration that is in turn affected by the wettability and interconnected porosity of the refractory as well as the slag viscosity. Laboratory tests were conducted to measure the viscosity of slags (Wyoming Powder River Basin [PRB], Pocahontas #3, and Pittsburgh #8), their contact angle on refractories (chromia-alumina [Aurex 75SR] and high-chromia [Serv 95 and Aurex 95P]), and the apparent porosity of selected refractories. In addition, the depth of slag penetration as a function of time and temperature was determined for various refractory-slag combinations. The results of laboratory tests were used to develop a refractory material that has high resistance to penetration by molten slag and thus has a potential to have a substantially longer service life than the materials currently being used.

  18. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  19. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    SciTech Connect (OSTI)

    Loewen, Shaun K.; Halperin, Ross; Lefresne, Shilo; Trotter, Theresa; Stuckless, Teri; Brundage, Michael

    2015-10-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada.

  20. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  1. Limits of survivability and damage for optical components used in a high repetition rate visible laser

    SciTech Connect (OSTI)

    Taylor, J.R.; Stolz, C.J.; Sarginson, T.G.

    1991-10-01

    An effort is being made to understand the limits of survivability and damage for optical components exposed to a visible laser operating continuously at a high repetition rate over 4 kHz. Results of this work are reported and related to the materials and manufacturing conditions for coatings and substrates as well as defects seen at the surface under laser illumination. These results were obtained for a variety of optical coatings and conditions using lasers from the Laser Demonstration Facility, part of the Atomic Vapor Laser Isotope Separation (AVLIS) Program at LLNL. Better understanding of the reliability of optical components in this environment could lead to improvements in design and manufacture that would result in reduced size for the laser optical system and correspondingly lower costs for the facilities that can use this technology.

  2. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect (OSTI)

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  3. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  4. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  5. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOE Patents [OSTI]

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  6. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect (OSTI)

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  7. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect (OSTI)

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  8. Is the Use of a Surrogate Urethra an Option in Prostate High-Dose-Rate Brachytherapy?

    SciTech Connect (OSTI)

    Nilsson, Josef Kaelkner, Karl Mikael; Berg, Lars; Levitt, Seymour; Holmberg, Carina; Nilsson, Sten; Lundell, Marie

    2008-05-01

    Purpose: To investigate the accuracy and the dosimetric consequences of substituting a surrogate urethra assumed to be at the geometric center of the prostate, in place of the true urethra when using high-dose-rate (HDR) brachytherapy for the treatment of prostate cancer. Methods and Materials: One hundred prostate cancer patients treated with HDR brachytherapy constituted the study group. A pre-plan was made with the urethra visualized. The true urethra was defined, and a surrogate urethra was placed at the geometric center of the prostate. The distance between the two urethras was measured. The deviation was evaluated at the base, middle, and apex. To evaluate the dosimetric consequences for the true urethra when using a surrogate urethra, two different dose plans were made: one based on the true urethra and one based on the surrogate urethra. The dose-volume histograms for the true urethra were analyzed. Results: The deviation between the true urethra and the surrogate urethra was greatest at the base of the prostate. A statistically significant difference was seen between the dosimetric parameters for the true and the surrogate urethra when the dose plan was made using the surrogate urethra. In this situation the dose to the true urethra was increased above our defined maximum tolerance limit. Conclusions: When using dose plans made according to a surrogate urethra the dose to the true urethra might be too high to be acceptable. If the true urethra is not visualized, severe damage could easily develop in a significant number of patients.

  9. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect (OSTI)

    Friedman, Lois C., E-mail: Lois.Friedman@UHhospitals.org [Department of Psychiatry, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Abdallah, Rita [Ireland Cancer Center, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (Ireland); Schluchter, Mark; Panneerselvam, Ashok [Department of Epidemiology and Biostatistics, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Kunos, Charles A. [Department of Radiation Oncology, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States)

    2011-07-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  10. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates

    DOE Patents [OSTI]

    Mahan, Archie Harvin; Molenbroek, Edith C.; Gallagher, Alan C.; Nelson, Brent P.; Iwaniczko, Eugene; Xu, Yueqin

    2002-01-01

    A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

  11. Fleet-Car Market PENetration Simulator: CPEN user's guide

    SciTech Connect (OSTI)

    Weil, R.

    1980-08-01

    The purpose of this manual is to assist prospective users in the understanding and execution of Fleet-Car Market PENetration Simulator (CPEN). CPEN is an interactive FORTRAN program whose purpose is to produce estimates of fleet-market-penetration rates of alternative passenger cars that can be described in terms of specific physical and economic attributes. The data were derived from questionnaires distributed to fleet operators affiliated with National Association of Fleet Administrators (NAFA). Besides the NAFA data, CPEN uses 48 variables that are interactively inserted. Complete data-input descriptions are included in the manual along with algorithm and application flowcharts. Examples of complete successful simulator runs are included for alternative program paths. A listing of the computer program and a glossary for CPEN are included.

  12. Temporary fire sealing of penetrations on TFTR

    SciTech Connect (OSTI)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications.

  13. Low-coke rate operation under high PCI at Kobe No. 3 BF

    SciTech Connect (OSTI)

    Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro

    1997-12-31

    Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

  14. Adsorption of polymer chains at penetrable interfaces

    SciTech Connect (OSTI)

    Gerasimchuk, I. V.; Sommer, J.-U.; Gerasimchuk, V. S.

    2011-03-15

    We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.

  15. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect (OSTI)

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  16. Predictive Models for Target Response During Penetration (Technical...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models for Target Response During Penetration Citation Details In-Document Search Title: Predictive Models for Target Response During Penetration You are accessing a...

  17. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  18. a-Si:H Grown by Hot-Wire CVD at Ultra-High Deposition Rates

    SciTech Connect (OSTI)

    Xu, Y.; Nelson, B. P.; Mahan, A. H.; Williamson, D. L.; Crandall, R. S.; Iwaniczko, E.; Wang, Q.

    2000-01-01

    We increase the deposition rate of growing hydrogenated amorphous-silicon (a-Si:H) by the hot-wire chemical vapor depositon (HWCVD) technique by adding filaments (two) and decreasing the filament(s) to substrate distance.

  19. Bright high-repetition-rate source of narrowband extreme-ultraviolet...

    Office of Scientific and Technical Information (OSTI)

    femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ... Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz ...

  20. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  1. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  2. Scalable computations in penetration mechanics

    SciTech Connect (OSTI)

    Kimsey, K.D.; Schraml, S.J.; Hertel, E.S.

    1998-01-01

    This paper presents an overview of an explicit message passing paradigm for an Eulerian finite volume method for modeling solid dynamics problems involving shock wave propagation, multiple materials, and large deformations. Three-dimensional simulations of high-velocity impact were conducted on the IBM SP2, the SGI Power challenge Array, and the SGI Origin 2000. The scalability of the message-passing code on distributed-memory and symmetric multiprocessor architectures is presented and compared to the ideal linear performance.

  3. High rate, long cycle life battery electrode materials with an open framework structure

    DOE Patents [OSTI]

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  4. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    SciTech Connect (OSTI)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc; Létourneau, Mélanie; Fenster, Aaron; Pouliot, Jean

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  5. Neutron diffraction measurements of dislocation density in copper crystals deformed at high strain rate

    SciTech Connect (OSTI)

    Rao, Mala N.; Chaplot, S. L.; Rawat, S.

    2013-02-05

    Neutron diffraction measurements of the rocking curves were carried out for single crystals of copper subjected to dynamic compression at 10{sup 3}/s strain rate. The line broadening is expected to be produced by dislocations, and an analysis of this broadening gives the dislocation density. Dislocation density is found to increase with increase of pressure.

  6. Damping rate and Lyapunov exponent of a Higgs field at high temperature

    SciTech Connect (OSTI)

    Biro, T.S.; Thoma, M.H.

    1996-09-01

    The damping rate of a Higgs field at zero momentum is calculated using the Braaten-Pisarski method and compared to the Lyapunov exponent of the classical SU(2) Yang-Mills Higgs system. {copyright} {ital 1996 The American Physical Society.}

  7. Optical penetration sensor for pulsed laser welding

    DOE Patents [OSTI]

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  8. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  9. New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar September 16, 2015 - 6:36pm Addthis A new study published by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) found that the U.S. Eastern Interconnection-one of the largest power systems in the world-can reliably support up to a 30% penetration of wind and solar power. Using high-performance

  10. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    SciTech Connect (OSTI)

    Hessler, J.P.

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  11. INTERNATIONAL STUDIES OF ENHANCED WASTE LOADING AND IMPROVED MELT RATE FOR HIGH ALUMINA CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K; David Peeler, D; James Marra, J

    2008-09-11

    The goal of this study was to determine the impacts of glass compositions with high aluminum concentrations on melter performance, crystallization and chemical durability for Savannah River Site (SRS) and Hanford waste streams. Glass compositions for Hanford targeted both high aluminum concentrations in waste sludge and a high waste loading in the glass. Compositions for SRS targeted Sludge Batch 5, the next sludge batch to be processed in the Defense Waste Processing Facility (DWPF), which also has a relatively high aluminum concentration. Three frits were selected for combination with the SRS waste to evaluate their impact on melt rate. The glasses were melted in two small-scale test melters at the V. G. Khlopin Radium Institute. The results showed varying degrees of spinel formation in each of the glasses. Some improvements in melt rate were made by tailoring the frit composition for the SRS feeds. All of the Hanford and SRS compositions had acceptable chemical durability.

  12. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOE Patents [OSTI]

    Carlisle, John A.; Gruen, Dieter M.; Auciello, Orlando; Xiao, Xingcheng

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  13. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect (OSTI)

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  14. Characteristics of high-rate energy spectroscopy systems using HPGe coaxial detectors and time-variant filters

    SciTech Connect (OSTI)

    Britton, C.L.; Becker, T.H.; Paulus, T.J.; Trammell, R.C.

    1984-02-01

    A high-rate, high-resolution gamma spectrometer system is described. The system consists of a reverse electrode HPGe coaxial detector, a transistor reset preamplifier, an active, semi-Gaussian prefilter, a gated integrator, and a unique data acquisition system consisting of a 10 ..mu..s, 13 bit ADC, fast FIFO memory, 8k by 23 bit data memory, and computer interface circuitry under the control of a Z-80A ..mu..P. The effects of the various components on the throughput are described and throughput data is presented. The resolution and peak shift for various shaping times are presented for count rates up to 1 Mcps input rate using a mixed /sup 22/Na and /sup 60/Co source. The low rate resolutions of /sup 57/Co and /sup 60/Co for various shaping times using either the semi-Gaussian or gated integrator output are discussed as well as the low energy resolution and peak shifts in the presence of high energy events.

  15. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    SciTech Connect (OSTI)

    Freund, L.B.; Soerensen, N.J.

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  16. Remotely-interrogated high data rate free space laser communications link

    DOE Patents [OSTI]

    Ruggiero, Anthony J.

    2007-05-29

    A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.

  17. High rate buffer layer for IBAD MgO coated conductors

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.

    2007-08-21

    Articles are provided including a base substrate having a layer of an oriented material thereon, and, a layer of hafnium oxide upon the layer of an oriented material. The layer of hafnium oxide can further include a secondary oxide such as cerium oxide, yttrium oxide, lanthanum oxide, scandium oxide, calcium oxide and magnesium oxide. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of hafnium oxide or layer of hafnium oxide and secondary oxide.

  18. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  19. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  20. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect (OSTI)

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  1. The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water

    SciTech Connect (OSTI)

    George A. Young; Nathan Lewis

    2003-04-05

    Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

  2. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  3. Market penetration of new energy technologies

    SciTech Connect (OSTI)

    Packey, D.J.

    1993-02-01

    This report examines the characteristics, advantages, disadvantages, and, for some, the mathematical formulas of forecasting methods that can be used to forecast the market penetration of renewable energy technologies. Among the methods studied are subjective estimation, market surveys, historical analogy models, cost models, diffusion models, time-series models, and econometric models. Some of these forecasting methods are more effective than others at different developmental stages of new technologies.

  4. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    SciTech Connect (OSTI)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R. [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Seyedkashi, S. M. H. [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-01-17

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  5. Size control, quantum confinement, and oxidation kinetics of silicon nanocrystals synthesized at a high rate by expanding thermal plasma

    SciTech Connect (OSTI)

    Han, Lihao E-mail: A.H.M.Smets@tudelft.nl; Zeman, Miro; Smets, Arno H. M. E-mail: A.H.M.Smets@tudelft.nl

    2015-05-25

    The growth mechanism of silicon nanocrystals (Si NCs) synthesized at a high rate by means of expanding thermal plasma chemical vapor deposition technique are studied in this letter. A bimodal Gaussian size distribution is revealed from the high-resolution transmission electron microscopy images, and routes to reduce the unwanted large Si NCs are discussed. Photoluminescence and Raman spectroscopies are employed to study the size-dependent quantum confinement effect, from which the average diameters of the small Si NCs are determined. The surface oxidation kinetics of Si NCs are studied using Fourier transform infrared spectroscopy and the importance of post-deposition passivation treatments of hydrogenated crystalline silicon surfaces are demonstrated.

  6. Intense x-ray machine for penetrating radiography

    SciTech Connect (OSTI)

    Lucht, R.A.; Eckhouse, S.

    1989-01-01

    Penetrating radiography has been used for many years in the nuclear weapons research programs. In frequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low-density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash x-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low-inductance Marx generator that charges up a 7.4-/Omega/, 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-/Omega/ water line that rings up the voltage into the high-impendance x-ray diode. A long (233-cm) vacuum drift tube is used to separate the large-diameter oil-insulated diode region from the x-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is self-focused at the target area using a low-pressure background gas. 15 refs., 11 figs.

  7. Nature of high-energy ions in the cathode plasma jet of a vacuum arc with high rate of current rise

    SciTech Connect (OSTI)

    Beilis, I.I.

    2004-10-04

    The production mechanism of extremely high-energy (up to 10 keV) ions observed in vacuum arcs having only a few tens of volts of arc voltage was considered. A model was developed for the plasma acceleration in a high-current ({>=}1 kA) short pulsed (<1 {mu}s) vacuum arc, taking into account the high rate of rise of the spot current (dI/dt>100 MA/s). A system of equations, including equations for the cathode spot and the plasma jet, was solved self-consistently with dI/dt in the range of 0.1-10 GA/s. It was shown that the plasma could be accelerated to the measured energy in the near spot region due to a gas dynamic mechanism and that the ion energy depends on the ratio of the ion flux to the electron flux. This ratio is determined by the cathode erosion rate. The calculated cathode erosion rate varies from 200 to 10 {mu}g/C when the ion energy increases from 0.1 to 10 keV and well agrees with measurements.

  8. Extremely high-rate, uniform dissolution of alloy C-22 in anhydrous organic solutions at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schindelholz, Eric J.; Christie, Michael A.; Allwein, Shawn P.; Kelly, Robert G.

    2016-06-21

    During routine pharmaceutical development and scale-up work, severe corrosion of a Hastelloy Alloy C-22 filter dryer was observed after single, short (several hours) contact with the product slurry at room temperature. Initial investigations showed that the presence of both 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HCl was sufficient in an acetonitrile solution to cause rapid corrosion of C-22. More detailed mass loss studies showed initial corrosion rates exceeding25 mm/year that then decreased over several hours to steady state rates of 3-5 mm/year. The corrosion was highly uniform. Electrochemical measurements demonstrated that although C-22 is spontaneously passive in acetonitrile solution, the presence of HClmore » leads to the development of a transpassive region. Furthermore, DDQ is a sufficiently strong oxidizer, particularly in acidic solutions, to polarize the C-22 well into the transpassive region, leading to the observed high corrosion rates.« less

  9. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shownmore » that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  10. Synthesis and processing of composites by reactive metal penetration

    SciTech Connect (OSTI)

    Loehman, R.E.; Ewsuk, K.G.; Tomsia, A.P.

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  11. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  12. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  13. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect (OSTI)

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  14. Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy

    SciTech Connect (OSTI)

    Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

    2009-06-15

    In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

  15. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    SciTech Connect (OSTI)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y.

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  16. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    SciTech Connect (OSTI)

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  17. Outcomes of High-Dose-Rate Interstitial Brachytherapy in the Treatment of Locally Advanced Cervical Cancer: Long-term Results

    SciTech Connect (OSTI)

    Pinn-Bingham, Melva; Puthawala, Ajmel A.; Syed, A.M. Nisar; Sharma, Anil; DiSaia, Philip; Berman, Michael; Tewari, Krishnansu S.; Randall-Whitis, Leslie; Mahmood, Usama; Ramsinghani, Nilam; Kuo, Jeffrey; Chen, Wen-Pin; McLaren, Christine E.

    2013-03-01

    Purpose: The purpose of this study was to determine locoregional control (LRC), disease-free survival (DFS), and toxicity of high-dose-rate interstitial brachytherapy (HDR-ISBT) in the treatment of locally advanced cervical cancer. Methods and Materials: Between March 1996 and May 2009, 116 patients with cervical cancer were treated. Of these, 106 (91%) patients had advanced disease (International Federation of Gynecology and Obstetrics stage IIB-IVA). Ten patients had stage IB, 48 had stage II, 51 had stage III, and 7 had stage IVA disease. All patients were treated with a combination of external beam radiation therapy (EBRT) to the pelvis (5040 cGy) and 2 applications of HDR-ISBT to a dose of 3600 cGy to the implanted volume. Sixty-one percent of patients also received interstitial hyperthermia, and 94 (81%) patients received chemotherapy. Results: Clinical LRC was achieved in 99 (85.3%) patients. Three-year DFS rates were 59%, 67%, 71%, and 57% for patients with stage IB, II, III, and IVA disease, respectively. The 5-year DFS and overall survival rates for the entire group were 60% and 44%, respectively. Acute and late toxicities were within acceptable limits. Conclusions: Locally advanced cervical cancer patients for whom intracavitary BT is unsuitable can achieve excellent LRC and OS with a combination of EBRT and HDR-ISBT.

  18. An investigation of penetrant techniques for detection of machining-induced surface-breaking cracks on monolithic ceramics

    SciTech Connect (OSTI)

    Forster, G.A.; Ellingson, W.A.

    1996-02-01

    The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.

  19. High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system

    SciTech Connect (OSTI)

    Tappan, Bryce C; Mason, Benjamin A

    2009-01-01

    The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

  20. Stress corrosion cracking of welded Alloy 600 penetration mockups

    SciTech Connect (OSTI)

    Sarver, J.M.; Pathania, R.S.; Stuckey, K.; Fyfitch, S.; Gelpi, A.; Foucault, M.; Hunt, E.S.

    1995-12-31

    The primary water stress corrosion cracking (PWSCC) of Alloy 600 in components other than steam generators is a problem of increasing concern for nuclear power plants. Of greatest concern at the present time is the PWSCC of Alloy 600 vessel head penetrations. The common elements of these components are threefold: (1) the Alloy 600 material has a susceptible microstructure, (2) the Alloy 600 material is either a thick-walled tube or a bar which has been machined into a thick-walled tube, and (3) the Alloy 600 material has been welded into a structure such that high residual welding stresses exist in the postwelded Alloy 600 material. The objectives of the present program were to evaluate the PWSCC behavior of various configurations of welded Alloy 600 penetrations, and possible remedial measures which would prevent or retard PWSCC in these components. Mockups were instrumented to permit instantaneous remote sensing of through-wall cracking and were autoclave tested along with control C-rings in a doped steam environment. Following the test exposures, the mockups were split and examined to characterize the cracking morphology and the material microstructure. A Weibull distribution was used to analyze the time-to-failure results, and the observed cracking locations were compared to residual stress levels predicted by an elastic-plastic finite element analysis of the mockups.

  1. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    SciTech Connect (OSTI)

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M.; Guo, X.; Li, D. Z.; Chen, Y. P.; Zhang, J.

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  2. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    SciTech Connect (OSTI)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/?m on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  3. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    SciTech Connect (OSTI)

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  4. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  5. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  6. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  7. First principles cable braid electromagnetic penetration model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  8. First principles cable braid electromagnetic penetration model

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  9. Automatic control of oscillatory penetration apparatus

    SciTech Connect (OSTI)

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  10. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect (OSTI)

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Netzer, Hagai; Kaspi, Shai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Bai, Jin-Ming; Wang, Fang [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  11. High-Dose-Rate Brachytherapy for Non-Small-Cell Lung Carcinoma: A Retrospective Study of 226 Patients

    SciTech Connect (OSTI)

    Aumont-le Guilcher, Maud; Prevost, Bernard; Sunyach, Marie Pierre; Peiffert, Didier; Maingon, Philippe; Thomas, Laurence; Williaume, Daniele; Begue, Mickael; Lerouge, Delphine; Campion, Loic; Mahe, Marc-Andre

    2011-03-15

    Purpose: To evaluate the efficacy and toxicity of high-dose-rate (HDR) brachytherapy in patients with inoperable endobronchial carcinoma. Methods and Materials: We retrospectively reviewed the records (April 1991-May 2004) of patients with non-small-cell carcinoma, with no extrabronchial spread on computed tomography scans, who underwent HDR brachytherapy because of contraindications to surgery and external beam radiation therapy. Kaplan-Meier survival curves were compared by the log-rank test. Prognostic factors were analyzed by multivariate analysis. Results: 226 patients (223 men, 3 women, mean age: 62.2 years (range, 40-84)) were included. Of those, 217 (97%) had squamous cell carcinoma (Tis/T1/T2/Tx: 60/153/9/4). Dose was prescribed at 1 cm from the radius (24-35 Gy in 4-6 fractions). Mean follow-up was 30.4 months (range, 9-116). Complete endoscopic response rate was 93.6% at 3 months. One hundred twenty-eight patients (56%) died of intercurrent disease (n = 45), local failure (n = 36), metastasis (n = 10), local failure and metastasis (n = 11), complications (n = 13), and other causes (n = 12). The 2-year and 5-year survival rates were, respectively, 57% and 29% (overall) (median, 28.6 months), 81% and 56% (cancer-specific), and 68% and 50% (local disease-free). Acute toxicity included pneumothorax (1.5%) and mucosal inflammation (10%). Late complications were hemoptysis (6.6% with 5% of fatalities), bronchitis (19.5%), and necrosis (3.5%). In multivariate analysis, a distal tumor location and the use of two catheters were associated with improved local disease-free survival (p = 0.003 and p = 0.007, respectively) and a distal tumor location with improved overall survival (p = 0.0001). Conclusions: This large retrospective study confirms that HDR brachytherapy is an efficient and safe treatment in patients with inoperable endobronchial carcinoma.

  12. A model for plasticity kinetics and its role in simulating the dynamic behavior of Fe at high strain rates

    SciTech Connect (OSTI)

    Colvin, J D; Minich, R W; Kalantar, D H

    2007-03-29

    The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 10{sup 7} s{sup -1} has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model's implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the {alpha}-to-{var_epsilon} phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.

  13. Campbell penetration depth in Fe-based superconductors

    SciTech Connect (OSTI)

    Prommapan, Plegchart

    2011-08-15

    A 'true' critical current density, j{sub c}, as opposite to commonly measured relaxed persistent (Bean) current, j{sub B}, was extracted from the Campbell penetration depth, {lambda}{sub c}(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter {alpha}. At the equilibrium (upon field - cooling), {alpha}(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j{sub c}(2 K) {approx_equal} 1.22 x 10{sup 6} A/cm{sup 2} provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe{sub 2}As{sub 2} based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j{sub c}(2K) {approx_equal} 3.3 x 10{sup 6} A/cm{sup 2}. The magnetic-dependent feature was observed near the transition temperature in FeTe{sub 0.53}Se{sub 0.47} and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and

  14. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect (OSTI)

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile

  15. NREL: Wind Research - New Study Reveals Potential 30% Penetration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Study Reveals Potential 30% Penetration of Wind and Solar for the Eastern Interconnection An illustrated map of the U.S. northeast and midwest showing transmission lines...

  16. New Study Reveals Multiple Pathways to 30% Penetration of Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ERGIS simulations show that annual variable-generation penetrations of 30% decrease coal, combined-cycle, and combustion turbine capacity factors by about 50%. Learn more about ...

  17. Penetration equations Young, C.W. [Applied Research Associates...

    Office of Scientific and Technical Information (OSTI)

    45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; EARTH PENETRATORS; EQUATIONS; NUCLEAR WEAPONS; SOILS; ICE; ROCKS; CONCRETES; PERMAFROST; SCALING LAWS In 1967, Sandia...

  18. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  19. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    SciTech Connect (OSTI)

    Ben-Itzhak, Itzik; Carnes, Kevin D.; Cocke, C. Lew; Fehrenbach, Charles W.; Kumarappan, Vinod; Rudenko, Artem; Trallero, Carlos

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  20. Method of dispensing droplets to penetration-resistive mediums. [Patent application

    DOE Patents [OSTI]

    Fowler, V.L.; Ryon, A.D.; Haas, P.A.

    1982-06-10

    Uniform, monosized microspheroids are produced in a gelation medium characterized by a high resistance to surface penetration by reducing the effect of impact on entry of the droplets into the medium by contacting the droplet with a stream of medium and by introducing the resulting stream into a gelation column.

  1. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  2. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    SciTech Connect (OSTI)

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  3. Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Liu, E.; Bebic, J.

    2008-02-01

    This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

  4. Advancing System Flexibility for High Penetration Renewable Integration

    SciTech Connect (OSTI)

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  5. High-Penetration PV with Advanced Power Conditioning Systems...

    Broader source: Energy.gov (indexed) [DOE]

    electrolytic capacitors for reduced cost and improved reliability for faster return on investment Evaluate a simplified tool for forecasting cloud cover to assist management of ...

  6. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  7. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  8. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Study and the Hawai'i Solar Integration Study, a technical review committee (TRC) was developed. TRC members were regional, national, and international technical experts with ...

  9. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    SciTech Connect (OSTI)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  10. Integrated exploration strategy for locating areas capable of high gas rate cavity completion in coalbed methane reservoirs

    SciTech Connect (OSTI)

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    1995-10-01

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequential reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.

  11. The Penetrant System Monitoring (PSM) panel: Its use and limitations

    SciTech Connect (OSTI)

    Robinson, S.J. [Sherwin Inc., South Gate, CA (United States)

    1996-12-31

    In the last several years, the Penetrant System Monitoring (PSM) panel has been increasingly used for purposes for which it was never intended. Intended originally for use by penetrant system operators, the PSM panel is increasingly being used by material control departments and by process engineering departments. This paper`s purpose is to describe and give guidance concerning the proper use and maintenance of PSM panels. It recounts the evolution of penetrant system test panels, and compares how the different types of panels are made. It discusses the limitations of the PSM panel as used by the material control department, the process engineering department, and the production line.

  12. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  13. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect (OSTI)

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  14. A Phase II Study of High-Dose-Rate Afterloading Brachytherapy as Monotherapy for the Treatment of Localized Prostate Cancer

    SciTech Connect (OSTI)

    Corner, Carie Rojas, Ana Maria; Bryant, Linda; Ostler, Peter; Hoskin, Peter

    2008-10-01

    Purpose: A Phase II dose escalation study has been undertaken to evaluate high-dose-rate brachytherapy (HDRBT) monotherapy for prostate cancer. Methods and Materials: A total of 110 patients have been entered, all with locally advanced cancer. Three dose levels have been used; 34 Gy in four fractions, 36 Gy in four fractions, and 31.5 Gy in three fractions. These equate to 226Gy{sub 1.5}, 252Gy{sub 1.5}, and 252Gy{sub 1.5}, respectively. Thirty patients have received 34 Gy, 25 received 36 Gy, and 55 patients received 31.5 Gy. Acute and late toxicity was analyzed using the International Prostate Symptom Score, and urologic and rectal events were scored using the Radiation Therapy Oncology Group/Common Terminology Criteria scoring systems. Results: Seven patients required urethral catheterization at 2 weeks; 3 receiving 34 Gy, 1 receiving 36 Gy, and 3 receiving 31.5 Gy. Only 3 patients remained catheterized at 12 weeks. Radiation Therapy Oncology Group 1 and 2 gastrointestinal toxicity at 2 weeks was seen in 61%, 68%, and 77%, respectively. Grade 3 bladder toxicity was seen in 2 patients at 6 months, 1 each from the 36 Gy and 31.5 Gy arms. One patient from the 31.5-Gy cohort reported Grade 2 bowel toxicity at 6 months. Prostate-specific antigen (PSA), stratified for androgen deprivation therapy (ADT) and no-ADT patients ranged from 16.1-22.9 {mu}g/L and 11.1-12.5 {mu}g/L, respectively. This fell at 12 months to 0.2-0.6 {mu}g/L and 0.5-1.4 {mu}g/L, respectively. No PSA relapses have yet been seen with a median follow-up of 30 months (34 Gy), 18 months (36 Gy), and 11.8 months (31.5 Gy). Conclusions: Early results suggest an excellent biochemical response with no differences seen in acute and late toxicity between doses of 34 Gy/four fractions, 36 Gy/four fractions, or 31.5 Gy/three fractions.

  15. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  16. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  17. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    SciTech Connect (OSTI)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-02-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society.

  18. Fiber optic penetrator for offshore oil well exploration and production

    SciTech Connect (OSTI)

    Collins, J.C.; Warner, C.P.; Henkener, J.A.; Glauser, R.

    1986-07-01

    A fiber optic penetrator arrangement is described for an undersea wall structure of offshore oil well production apparatus, comprising: a. a generally cylindrical housing; b. a cofferdam associated with the undersea production apparatus and defining a generally cylindrical entrance port into which the penetrator is designed to be inserted and mounted; c. a sealing means for sealing the penetrator relative to the entrance port after insertion of the penetrator therein; d. an external bulkhead; e. a second bulkhead positioned internally of the external bulkead; f. a compression spring normally retaining the second bulkhead in a sealed position with the penetrator, the compressing spring being compressed between the second bulkhead and the external bulkhead; g. a breakaway connection affixed to the external bulkhead for coupling an optical fiber transmission cable to the external bulkhead, such that if the transmission cable is snagged or pulled, the external bulkhead will sever along with the breakaway connection so that the penetrator is not pulled from the cofferdam entrance port, the second bulkhead being held in position by ambient water pressure to become the primary bulkhead after the external bulkhead is severed.

  19. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    SciTech Connect (OSTI)

    Bolgar, A.S.; Verkhoglyadova, T.S.; Samsonov, G.V.

    1985-02-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  20. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  1. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  2. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore » around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  3. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  4. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect (OSTI)

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  5. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  6. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  7. Another short-burst host galaxy with an optically obscured high star formation rate: The case of GRB 071227

    SciTech Connect (OSTI)

    Nicuesa Guelbenzu, A.; Klose, S.; Kann, D. A.; Rossi, A.; Schmidl, S. [Thringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Micha?owski, M. J.; McKenzie, M. R. G. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Savaglio, S.; Greiner, J. [Max-Planck-Institut fr Extraterrestrische Physik, Giessenbachstrae, D-85748 Garching (Germany); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Gorosabel, J. [Instituto de Astrofsica de Andaluca, Consejo Superior de Investigaciones Cientficas (IAA-CSIC), Glorieta de la Astronoma s/n, E-18008 Granada (Spain); Palazzi, E. [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-07-01

    We report on radio continuum observations of the host galaxy of the short gamma-ray burst 071227 (z = 0.381) with the Australia Telescope Compact Array. We detect the galaxy in the 5.5 GHz band with an integrated flux density of F {sub ?} = 43 11 ?Jy, corresponding to an unobscured star-formation rate of about 24 M {sub ?} yr{sup 1}, 40 times higher than what was found from optical emission lines. Among the ?30 well-identified and studied host galaxies of short bursts this is the third case where the host is found to undergo an episode of intense star formation. This suggests that a fraction of all short-burst progenitors hosted in star-forming galaxies could be physically related to recent star formation activity, implying a relatively short merger timescale.

  8. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect (OSTI)

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  9. Multi-well sample plate cover penetration system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  10. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    SciTech Connect (OSTI)

    Jafari Salim, A. Eftekharian, A.; Hamed Majedi, A.

    2014-02-07

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potential barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.

  11. Low-level measuring techniques for neutrons: High accuracy neutron source strength determination and fluence rate measurement at an underground laboratory

    SciTech Connect (OSTI)

    Zimbal, Andreas; Reginatto, Marcel; Schuhmacher, Helmut; Wiegel, Burkhard; Degering, Detlev; Zuber, Kai

    2013-08-08

    We report on measuring techniques for neutrons that have been developed at the Physikalisch-Technische Bundesanstalt (PTB), the German National Metrology Institute. PTB has characterized radioactive sources used in the BOREXINO and XENON100 experiments. For the BOREXINO experiment, a {sup 228}Th gamma radiation source was required which would not emit more than 10 neutrons per second. The determination of the neutron emission rate of this specially designed {sup 228}Th source was challenging due to the low neutron emission rate and because the ratio of neutron to gamma radiation was expected to be extremely low, of the order of 10{sup −6}. For the XENON100 detector, PTB carried out a high accuracy measurement of the neutron emission rate of an AmBe source. PTB has also done measurements in underground laboratories. A two month measurement campaign with a set of {sup 3}He-filled proportional counters was carried out in PTB's former UDO underground laboratory at the Asse salt mine. The aim of the campaign was to determine the intrinsic background of detectors, which is needed for the analysis of data taken in lowintensity neutron fields. At a later time, PTB did a preliminary measurement of the neutron fluence rate at the underground laboratory Felsenkeller operated by VKTA. By taking into account data from UDO, Felsenkeller, and detector calibrations made at the PTB facility, it was possible to estimate the neutron fluence rate at the Felsenkeller underground laboratory.

  12. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect (OSTI)

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNLs advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  13. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  14. Influence of sulfur and welding conditions on penetration in thin strip stainless steel

    SciTech Connect (OSTI)

    Scheller, P.R. ); Brooks, R.F.; Mills, K.C. . Division of Materials Metrology)

    1995-02-01

    Welding trials and surface tension measurements have been carried out on 304 stainless steels with sulfur (S) contents between 20 and 100 ppm. Surface tension measurements, determined by the levitated drop method, indicated that the temperature coefficient of surface tension (d[gamma]/dT) changed from negative to positive values at S contents exceeding approximately 50 ppm. Strips with a thickness of approximately 1 mm were GTA welded on both single-electrode, small-scale and multi-electrode industrial-scale units. Welding speeds of 1 to 2 m min[sup [minus]1] were used on the small-scale unit and up to 5 m min[sup [minus]1] on the industrial unit. The weld penetration was found to increase, for both full and partial penetration welds, with (1) increasing sulfur contents; and (2) increasing linear energy. On the small scale-unit markedly higher penetration was observed in heats with S contents > 60 ppm. But the influence of S contents was only of minor importance for welds obtained on the industrial unit. It was found that the similar weld geometry could be obtained for both low ([<=] 60 ppm) and high (> 60 ppm) sulfur contents by careful adjustment of welding parameters. The observed changes in weld geometry are consistent with the proposition that the fluid flow in the weld pool is dominated by thermo-capillary (Marangoni) forces during the GTA welding of thin strips.

  15. A versatile electrical penetration design qualified to IEEE Std. 317-1983

    SciTech Connect (OSTI)

    Lankenau, W.; Wetherill, T.M.

    1994-12-31

    Although worldwide demand for new construction of nuclear power stations has been on a decline, the available opportunities for the design and construction of qualified electrical penetrations continues to offer challenges, requiring a highly versatile design. Versatility is necessary in order to meet unique customer requirements within the constraints of a design basis qualified to IEEE Std. 317-1983. This paper summarizes such a versatile electrical penetration designed, built and tested to IEEE Std. 317-1983. The principal features are described including major materials of construction. Some of the design constraints such as sealing requirements, and conductor density (including numerical example) are discussed. The requirements for qualification testing of the penetration assembly to IEEE Std. 317-1983 are delineated in a general sense, and some typical test ranges for preconditioning, radiation exposure, and LOCA are provided. The paper concludes by describing ways in which this versatile design has been adapted to meet unique customer requirements in a variety of nuclear power plants.

  16. Sexual Functioning Among Endometrial Cancer Patients Treated With Adjuvant High-Dose-Rate Intra-Vaginal Radiation Therapy

    SciTech Connect (OSTI)

    Damast, Shari; Alektiar, Kaled M.; Goldfarb, Shari; Eaton, Anne; Patil, Sujata; Mosenkis, Jeffrey; Bennett, Antonia; Atkinson, Thomas; Jewell, Elizabeth; Leitao, Mario; Barakat, Richard; Carter, Jeanne; Basch, Ethan

    2012-10-01

    Purpose: We used the Female Sexual Function Index (FSFI) to investigate the prevalence of sexual dysfunction (SD) and factors associated with diminished sexual functioning in early stage endometrial cancer (EC) patients treated with simple hysterectomy and adjuvant brachytherapy. Methods and Materials: A cohort of 104 patients followed in a radiation oncology clinic completed questionnaires to quantify current levels of sexual functioning. The time interval between hysterectomy and questionnaire completion ranged from <6 months to >5 years. Multivariate regression was performed using the FSFI as a continuous variable (score range, 1.2-35.4). SD was defined as an FSFI score of <26, based on the published validation study. Results: SD was reported by 81% of respondents. The mean ({+-} standard deviation) domain scores in order of highest-to-lowest functioning were: satisfaction, 2.9 ({+-}2.0); orgasm, 2.5 ({+-}2.4); desire, 2.4 ({+-}1.3); arousal, 2.2 ({+-}2.0); dryness, 2.1 ({+-}2.1); and pain, 1.9 ({+-}2.3). Compared to the index population in which the FSFI cut-score was validated (healthy women ages 18-74), all scores were low. Compared to published scores of a postmenopausal population, scores were not statistically different. Multivariate analysis isolated factors associated with lower FSFI scores, including having laparotomy as opposed to minimally invasive surgery (effect size, -7.1 points; 95% CI, -11.2 to -3.1; P<.001), lack of vaginal lubricant use (effect size, -4.4 points; 95% CI, -8.7 to -0.2, P=.040), and short time interval (<6 months) from hysterectomy to questionnaire completion (effect size, -4.6 points; 95% CI, -9.3-0.2; P=.059). Conclusions: The rate of SD, as defined by an FSFI score <26, was prevalent. The postmenopausal status of EC patients alone is a known risk factor for SD. Additional factors associated with poor sexual functioning following treatment for EC included receipt of laparotomy and lack of vaginal lubricant use.

  17. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    SciTech Connect (OSTI)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter, conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases

  18. High-Rate Fabrication of a-Si-Based Thin-Film Solar Cells Using Large-Area VHF PECVD Processes

    SciTech Connect (OSTI)

    Deng, Xunming; Fan, Qi Hua

    2011-12-31

    The University of Toledo (UT), working in concert with it’s a-Si-based PV industry partner Xunlight Corporation (Xunlight), has conducted a comprehensive study to develop a large-area (3ft x 3ft) VHF PECVD system for high rate uniform fabrication of silicon absorber layers, and the large-area VHF PECVD processes to achieve high performance a-Si/a-SiGe or a-Si/nc-Si tandem junction solar cells during the period of July 1, 2008 to Dec. 31, 2011, under DOE Award No. DE-FG36-08GO18073. The project had two primary goals: (i) to develop and improve a large area (3 ft × 3 ft) VHF PECVD system for high rate fabrication of > = 8 Å/s a-Si and >= 20 Å/s nc-Si or 4 Å/s a-SiGe absorber layers with high uniformity in film thicknesses and in material structures. (ii) to develop and optimize the large-area VHF PECVD processes to achieve high-performance a-Si/nc-Si or a-Si/a-SiGe tandem-junction solar cells with >= 10% stable efficiency. Our work has met the goals and is summarized in “Accomplishments versus goals and objectives”.

  19. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    SciTech Connect (OSTI)

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A.

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  20. Long-Term Efficacy and Toxicity of Low-Dose-Rate {sup 125}I Prostate Brachytherapy as Monotherapy in Low-, Intermediate-, and High-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Kittel, Jeffrey A.; Reddy, Chandana A.; Smith, Kristin L.; Stephans, Kevin L.; Tendulkar, Rahul D.; Ulchaker, James; Angermeier, Kenneth; Campbell, Steven; Stephenson, Andrew; Klein, Eric A.; Wilkinson, D. Allan; Ciezki, Jay P.

    2015-07-15

    Purpose/Objectives: To report long-term efficacy and toxicity for a single-institution cohort of patients treated with low-dose-rate prostate brachytherapy permanent implant (PI) monotherapy. Methods and Materials: From 1996 to 2007, 1989 patients with low-risk (61.3%), intermediate-risk (29.8%), high-intermediate-risk (4.5%), and high-risk prostate cancer (4.4%) were treated with PI and followed up prospectively in a registry. All patients were treated with {sup 125}I monotherapy to 144 Gy. Late toxicity was coded retrospectively according to a modified Common Terminology Criteria for Adverse Events 4.0 scale. The rates of biochemical relapse-free survival (bRFS), distant metastasis-free survival (DMFS), overall survival (OS), and prostate cancer–specific mortality (PCSM) were calculated. We identified factors associated with late grade ≥3 genitourinary (GU) and gastrointestinal (GI) toxicity, bRFS, DMFS, OS, PCSM, and incontinence. Results: The median age of the patients was 67 years, and the median overall and prostate-specific antigen follow-up times were 6.8 years and 5.8 years, respectively. The overall 5-year rates for bRFS, DMFS, OS, and PCSM were 91.9%, 97.8%, 93.7%, and 0.71%, respectively. The 10-year rates were 81.5%, 91.5%, 76.1%, and 2.5%, respectively. The overall rates of late grade ≥3 GU and GI toxicity were 7.6% and 0.8%, respectively. On multivariable analysis, age and prostate length were significantly associated with increased risk of late grade ≥3 GU toxicity. The risk of incontinence was highly correlated with both pre-PI and post-PI transurethral resection of the prostate. Conclusions: Prostate brachytherapy as monotherapy is an effective treatment for low-risk and low-intermediate-risk prostate cancer and appears promising as a treatment for high-intermediate-risk and high-risk prostate cancer. Significant long-term toxicities are rare when brachytherapy is performed as monotherapy.

  1. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri; Sutter, John

    2016-02-12

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seedingmore » and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  2. Analysis of the cracking behavior of Alloy 600 RVH penetrations. Part 1: Stress analysis and K computation

    SciTech Connect (OSTI)

    Bhandari, S.; Vagner, J.; Garriga-Majo, D.; Amzallag, C.; Faidy, C.

    1996-12-01

    The study presented here concerns the analysis of crack propagation behavior in the Alloy 600 RVH penetrations used in the French 900 and 1300 MWe PWR series. The damage mechanism identified is clearly the SCC in primary water environment. Consequently the analysis presented here is based on: (1) the stress analysis carried out on the RVH penetrations, (2) the SCC model developed in primary water environment and at the operating temperatures, and (3) the fracture mechanics concepts. The different steps involved in the study are: (1) Evaluation of the stress state for the case of the peripheral configuration of RVH penetrations; the case retained here is that of a conic tube with stress analysis conducted using multi-pass welding. (2) Computation of the influence functions (IF) for a polynomial stress distribution in case of a tube of Ri/t ratio (internal diameter/thickness) corresponding to that of an RVH penetration. (3) Establishment of a propagation law based on study and review of data available in the literature. (4) Conduction of a parametric study of crack propagation using several initial defects. (5) Analysis of crack propagation of defects observed in various reactors and comparison with measured propagation rates. This paper (Part 1) deals with the first two steps namely Stress Analysis and K Computation.

  3. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    SciTech Connect (OSTI)

    Daily, Charles R.

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  4. Fast penetration of megagauss fields into metallic conductors

    SciTech Connect (OSTI)

    Schnitzer, Ory

    2014-08-15

    Megagauss magnetic-field penetration into a conducting material is studied via a simplified but representative model, wherein the magnetic-diffusion equation is coupled with a thermal-energy balance. The specific scenario considered is that of a prescribed magnetic field rising (in proportion to an arbitrary power r of time) at the surface of a conducting half-space whose electric conductivity is assumed proportional to an arbitrary inverse power ? of temperature. We employ a systematic asymptotic scheme in which the case of a strong surface field corresponds to a singular asymptotic limit. In this limit, the highly magnetized and hot skin terminates at a distinct propagating wave-front. Employing the method of matched asymptotic expansions, we find self-similar solutions of the magnetized region which match a narrow boundary-layer region about the advancing wave front. The rapidly decaying magnetic-field profile in the latter region is also self similar; when scaled by the instantaneous propagation speed, its shape is time-invariant, depending only on the parameter ?. The analysis furnishes a simple asymptotic formula for the skin-depth (i.e., the wave-front position), which substantially generalizes existing approximations. It scales with the power ?r + 1?2 of time and the power ? of field strength, and is much larger than the field-independent skin depth predicted by an athermal model. The formula further involves a dimensionless O(1) pre-factor which depends on r and ?. It is determined by solving a nonlinear eigenvalue problem governing the magnetized region. Another main result of the analysis, apparently unprecedented, is an asymptotic formula for the magnitude of the current-density peak characterizing the wave-front region. Complementary to these systematic results, we provide a closed-form but ad hoc generalization of the theory approximately applicable to arbitrary monotonically rising surface fields. Our results are in excellent agreement with

  5. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    Energy Science and Technology Software Center (OSTI)

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  6. Significant Increase in Hydrogen Photoproduction Rates and Yields by Wild-Type Algae is Detected at High Photobioreactor Gas Phase Volume (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how hydrogen photoproduction activity in algal cultures can be improved dramatically by increasing the gas-phase to liquid-phase volume ratio of the photobioreactor. NREL, in partnership with subcontractors from the Institute of Basic Biological Problems in Pushchino, Russia, demonstrated that the hydrogen photoproduction rate in algal cultures always decreases exponentially with increasing hydrogen partial pressure above the culture. The inhibitory effect of high hydrogen concentrations in the photobioreactor gas phase on hydrogen photoproduction by algae is significant and comparable to the effect observed with some anaerobic bacteria.

  7. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOE Patents [OSTI]

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  8. Enabling Greater Penetration of Solar Power via the Use of CSP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage ... DE-AC36-08GO28308 Enabling Greater Penetration of Solar Power via the Use of CSP with ...

  9. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Dataset | Department of Energy 5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 - Dataset Excel file and dataset for Hybrid Electric Vehicle Penetration by State, 2014 fotw#875_web.xlsx (202.83 KB) More Documents & Publications Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 - Dataset Fact #936: August 1, 2016 California Had the Highest Concentration of

  10. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  11. Phenomenon analysis of stress corrosion cracking in the vessel head penetrations of French PWR`s

    SciTech Connect (OSTI)

    Pichon, C.; Buisine, D.; Faidy, C.; Gelpi, A.; Vaindirlis, M.

    1995-12-31

    During a hydrotest in 1991, a leak was detected on,a reactor vessel head (RVH) penetration of a French PWR. This leak was due to a phenomenon of Primary Water Stress Corrosion Cracking (PWSCC) affecting these penetrations in Alloy 600. The destructive and non-destructive examinations undertaken during the following months highlighted the generic nature of the degradations. In order to well understand this phenomenon and implement the most suitable maintenance policy, a large scale scientific program was decided and performed jointly by Electricite de France and FRAMATOME. The paper will present all the results obtained in this program concerning the parameters governing the PWSCC. In particular the following fields will be developed: (1) the material, its microstructure in line with the manufacturing and its susceptibility to PWSCC; (2) the stresses and their evaluations by measurements, mock up corrosion tests and Finite Element Analysis (FEA); (3) the effect of surface finish on crack initiation; and (4) the crack growth rate. This phenomenon analysis will be useful for evaluating the risk of PWSCC on other Alloy 600 areas in PWR`s primary system.

  12. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  13. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    SciTech Connect (OSTI)

    Khor, Richard; Duchesne, Gillian; Monash University, Melbourne ; Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret; Williams, Scott

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against

  14. Assessment of High Rates of Precocious Male Maturation in a Spring Chinook Salmon Supplementation Hatchery Program, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Larsen, Donald; Beckman, Brian; Cooper, Kathleen

    2003-08-01

    The Yakima River Spring Chinook Salmon Supplementation Project in Washington State is currently one of the most ambitious efforts to enhance a natural salmon population in the United States. Over the past five years we have conducted research to characterize the developmental physiology of naturally- and hatchery-reared wild progeny spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River basin. Fish were sampled at the main hatchery in Cle Elum, at remote acclimation sites and, during smolt migration, at downstream dams. Throughout these studies the maturational state of all fish was characterized using combinations of visual and histological analysis of testes, gonadosomatic index (GSI), and measurement of plasma 11-ketotestosterone (11-KT). We established that a plasma 11-KT threshold of 0.8 ng/ml could be used to designate male fish as either immature or precociously maturing approximately 8 months prior to final maturation (1-2 months prior to release as 'smolts'). Our analyses revealed that 37-49% of the hatchery-reared males from this program undergo precocious maturation at 2 years of age and a proportion of these fish appear to residualize in the upper Yakima River basin throughout the summer. An unnaturally high incidence of precocious male maturation may result in loss of potential returning anadromous adults, skewing of female: male sex ratios, ecological, and genetic impacts on wild populations and other native species. Precocious male maturation is significantly influenced by growth rate at specific times of year and future studies will be conducted to alter maturation rates through seasonal growth rate manipulations.

  15. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    SciTech Connect (OSTI)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A.

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  16. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect (OSTI)

    Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  17. The effect of TDC temperature and density on the liquid-phase fuel penetration in a D.I. Diesel engine

    SciTech Connect (OSTI)

    Espey, C.; Dec, J.E.

    1995-12-01

    A parametric study of the liquid-phase fuel penetration of evaporating Diesel fuel jets has been conducted in a directinjection Diesel engine using laser elastic-scatter imaging. The experiments were conducted in an optically accessible Diesel engine of the ``heavy-duty`` size class at a representative medium speed (1200 rpm) operating condition. The density and temperature at TDC were varied systematically by adjusting the intake temperature and pressure. At all operating conditions the measurements show that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum length. Then, the liquid-fuel penetration length remains fairly constant although fuel injection continues. At a TDC density of 16.6 kg/m{sup 3} and a temperature of about 1000 K the maximum penetration length is approximately 23 mm. However, it varies significantly as TDC conditions are changed, with the liquid-length being less at higher temperatures and at higher densities. The corresponding apparent heat release rate plots are presented and the results of the liquid-phase fuel penetration are discussed with respect to the ignition delay and premixed bum fraction.

  18. Characterization of nuclear reactor containment penetrations. Final report

    SciTech Connect (OSTI)

    Shackelford, M.H.; Bump, T.R.; Seidensticker, R.W.

    1985-02-01

    This report concludes a preliminary report prepared by ANL for Sandia, published as NUREG/CR-3855, in June 1984. The preliminary report, NUREG/CR-3855, presented the results of a survey of nuclear reactor containment penetrations, covering the number of plants surveyed at that time (22 total). Since that time, an additional 26 plants have been included in the survey. This final report serves two purposes: (1) to add the summary data sheets and penetration details for the additional plants now included in the survey; and (2) to confirm, revise, or add to analyses and discussions presented in the first report which, of course, were based solely on the earlier sample of 22 plants. This final report follows the outline and format of the preliminary survey report. In general, changes and additions to the preliminary report are implied, rather than stated as such to avoid repeated reference to that report. If no changes have been made in a section the title of the section of the previous report is simply repeated followed by ''No Changes''. Some repetition is used for continuity and clarity.

  19. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G.

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  20. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  1. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  2. Shielding gas selection for increased weld penetration and productivity in GTA welding

    SciTech Connect (OSTI)

    Leinonen, J.I.

    1996-12-31

    The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases the depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.

  3. A generic high-dose rate {sup 192}Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism

    SciTech Connect (OSTI)

    Ballester, Facundo; Carlsson Tedgren, sa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Rivard, Mark J.; Siebert, Frank-Andr; Sloboda, Ron S.; and others

    2015-06-15

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup } Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by

  4. Dual Phase Li4 Ti5O12TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  5. SU-C-16A-02: A Beryllium Oxide (BeO) Fibre-Coupled Luminescence Dosimeter for High Dose Rate Brachytherapy

    SciTech Connect (OSTI)

    Santos, A; Mohammadi, M; Afshar, V.S.

    2014-06-15

    Purpose: Beryllium oxide (BeO) ceramics have an effective atomic number, zeff ∼7.1, closely matched to water, zeff ∼7.4. The purpose of this study was to evaluate the use of a beryllium oxide (BeO) ceramic fibrecoupled luminescence dosimeter, named RL/OSL BeO FOD, for high dose rate (HDR) brachytherapy dosimetry. In our dosimetry system the radioluminescence (RL) of BeO ceramics is utilized for dose-rate measurements, and the optically stimulated luminescence (OSL) can be read post exposure for accumulated dose measurements. Methods: The RL/OSL BeO FOD consists of a 1 mm diameter × 1 mm long cylinder of BeO ceramic coupled to a 15 m long silica-silica optical fibre. The optical fibre is connected to a custom developed portable RL and OSL reader, located outside of the treatment suite. The x-ray energy response was evaluated using superficial x-rays, an Ir-192 source and high energy linear accelerators. The RL/OSL BeO FOD was then characterised for an Ir-192 source, investigating the dose response and angular dependency. A depth dose curve for the Ir-192 source was also measured. Results: The RL/OSL BeO FOD shows an under-response at low energy x-rays as expected. Though at higher x-ray energies, the OSL response continued to increase, while the RL response remained relatively constant. The dose response for the RL is found to be linear up to doses of 15 Gy, while the OSL response becomes more supralinear to doses above 15 Gy. Little angular dependency is observed and the depth dose curve measured agreed within 4% of that calculated based on TG-43. Conclusion: This works shows that the RL/OSL BeO FOD can be useful in HDR dosimetry. With the RL/OSL BeO FODs current size, it is capable of being inserted into intraluminal catheters and interstitial needles to verify HDR treatments.

  6. New Report Says Western Grid Can Weather Disturbances with High Wind, Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penetrations | Department of Energy Says Western Grid Can Weather Disturbances with High Wind, Solar Penetrations New Report Says Western Grid Can Weather Disturbances with High Wind, Solar Penetrations May 18, 2015 - 4:05pm Addthis A new report finds that with high penetrations of wind and solar on the grid, together with good system planning, sound engineering practices, and commercially available technologies, the Western Interconnection can withstand the crucial first minute after large

  7. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    SciTech Connect (OSTI)

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.; Kamei, Daniel T.; Wong, Gerard C.L.; Deming, Timothy J.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.

  8. Error field penetration and locking to the backward propagating wave

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.

    2015-12-30

    In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies wr in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = wr/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including the effects ofmore » pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less

  9. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.; Kamei, Daniel T.; Wong, Gerard C.L.; Deming, Timothy J.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess lowmore » cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.« less

  10. Photovoltaic array with minimally penetrating rooftop support system

    DOE Patents [OSTI]

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  11. Error field penetration and locking to the backward propagating wave

    SciTech Connect (OSTI)

    Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.

    2015-12-30

    In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies wr in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = wr/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including the effects of pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.

  12. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  13. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect (OSTI)

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  14. Direct injection of natural gas in blast furnaces at high rates: Preliminary statistical analysis of blast furnace carbon balance at Armco-Middletown. Topical report, January 1990-September 1992

    SciTech Connect (OSTI)

    Neels, J.K.; Brown, F.C.

    1992-09-01

    The economic benefits of supplemental fuel injections depend, in part, on the coke replacement ratio. An assessment of the accuracy with which blast furnace coke rate may be measured and a determination of the key drivers of coke rate uncertainty are offered, to provide guidance for experiments in high-rate gas injection. Using statistical analysis tools, an expression for the measurement error associated with the various terms of blast furnace carbon balance is developed. Coke rate calculations based on the material balance are most sensitive to coke carbon content and to proper tracking of hot metal tapping schedule.

  15. A Prospective Longitudinal Clinical Trial Evaluating Quality of Life After Breast-Conserving Surgery and High-Dose-Rate Interstitial Brachytherapy for Early-Stage Breast Cancer

    SciTech Connect (OSTI)

    Garsa, Adam A.; Ferraro, Daniel J.; DeWees, Todd A.; Deshields, Teresa L.; Margenthaler, Julie A.; Cyr, Amy E.; Naughton, Michael; Aft, Rebecca; Gillanders, William E.; Eberlein, Timothy; Matesa, Melissa A.; Ochoa, Laura L.; Zoberi, Imran

    2013-12-01

    Purpose: To prospectively examine quality of life (QOL) of patients with early stage breast cancer treated with accelerated partial breast irradiation (APBI) using high-dose-rate (HDR) interstitial brachytherapy. Methods and Materials: Between March 2004 and December 2008, 151 patients with early stage breast cancer were enrolled in a phase 2 prospective clinical trial. Eligible patients included those with Tis-T2 tumors measuring ?3 cm excised with negative surgical margins and with no nodal involvement. Patients received 3.4 Gy twice daily to a total dose of 34 Gy. QOL was measured using European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, version 3.0, and QLQ-BR23 questionnaires. The QLQ-C30 and QLQ-BR23 questionnaires were evaluated during pretreatment and then at 6 to 8 weeks, 3 to 4 months, 6 to 8 months, and 1 and 2 years after treatment. Results: The median follow-up was 55 months. Breast symptom scores remained stable in the months after treatment, and they significantly improved 6 to 8 months after treatment. Scores for emotional functioning, social functioning, and future perspective showed significant improvement 2 years after treatment. Symptomatic fat necrosis was associated with several changes in QOL, including increased pain, breast symptoms, systemic treatment side effects, dyspnea, and fatigue, as well as decreased role functioning, emotional functioning, and social functioning. Conclusions: HDR multicatheter interstitial brachytherapy was well tolerated, with no significant detrimental effect on measured QOL scales/items through 2 years of follow-up. Compared to pretreatment scores, there was improvement in breast symptoms, emotional functioning, social functioning, and future perspective 2 years after treatment.

  16. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors

    SciTech Connect (OSTI)

    Kirchheiner, Kathrin; Czajka-Pepl, Agnieszka; Scharbert, Gisela; Wetzel, Léonore; Sturdza, Alina; Dörr, Wolfgang; Pötter, Richard

    2014-06-01

    Purpose: To investigate the psychological consequences of high-dose-rate brachytherapy with 2 fractions in 1 application under spinal/epidural anesthesia in the treatment of locally advanced cervical cancer. Methods and Materials: In 50 patients with locally advanced cervical cancer, validated questionnaires were used for prospective assessment of acute and posttraumatic stress disorder (ASD/PTSD) (Impact of Event Scale–Revision), anxiety/depression (Hospital Anxiety and Depression Scale), quality of life (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30/Cervical Cancer 24), physical functioning (World Health Organization performance status), and pain (visual analogue scale), before and during treatment and 1 week and 3 months after treatment. Qualitative interviews were recorded in open format for content analysis. Results: Symptoms of ASD occurred in 30% of patients 1 week after treatment; and of PTSD in 41% 3 months after treatment in association with this specific brachytherapy procedure. Pretreatment predictive variables explain 82% of the variance of PTSD symptoms. Helpful experiences were the support of the treatment team, psychological support, and a positive attitude. Stressful factors were pain, organizational problems during treatment, and immobility between brachytherapy fractions. Conclusions: The specific brachytherapy procedure, as performed in the investigated mono-institutional setting with 2 fractions in 1 application under spinal/epidural anesthesia, bears a considerable risk of traumatization. The source of stress seems to be not the brachytherapy application itself but the maintenance of the applicator under epidural anesthesia in the time between fractions. Patients at risk may be identified before treatment, to offer targeted psycho-social support. The patients' open reports regarding helpful experiences are an encouraging feedback for the treatment team; the reported stressful factors

  17. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  18. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: A preliminary performance study

    SciTech Connect (OSTI)

    Zhou Jun; Sebastian, Evelyn; Mangona, Victor; Yan Di

    2013-02-15

    Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For the static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and 0

  19. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect (OSTI)

    Horton, W.; Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille ; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  20. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    SciTech Connect (OSTI)

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  1. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscopes Plate Boundary Observatory (PBO) and Central Washington Universitys Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the splines in tension method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  2. Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect (OSTI)

    Russo, James K.; Armeson, Kent E.; Richardson, Susan

    2012-05-01

    Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address

  3. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    SciTech Connect (OSTI)

    Kim, Hyunsoo

    2013-05-15

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti#12;cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s#6; superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  4. Measurement of in-situ strength using projectile penetration: Tests of a new launching system

    SciTech Connect (OSTI)

    Hearst, J.R.; Newmark, R.L.; Charest, J.A.; Lynch, C.S.

    1987-10-01

    The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher system that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.

  5. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  6. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  7. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Dataset | Department of Energy 6: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 - Dataset Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 - Dataset Excel file and dataset for 2015 Plug-in Electric Vehicle Penetration by State, 2014 fotw#876_web_revised.xlsx (207.96 KB) More Documents & Publications Fact #936: August 1, 2016 California Had the Highest Concentration of Plug-in Vehicles Relative to Population in 2015 Fact #878: June 22, 2015

  8. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Dataset | Department of Energy 8: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 - Dataset Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014 - Dataset Excel file and dataset for Plug-in Vehicle Penetration in Selected Countries, 2014 fotw#878_web.xlsx (21.78 KB) More Documents & Publications Fact #892: September 28, 2015 Over One-Million in Plug-in Vehicle Sales Worldwide - Dataset Fact #876: June 8, 2015 Plug-in Electric

  9. Fact #886: August 17, 2015 New Light-Vehicle Leasing Penetration for 2014 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 6: August 17, 2015 New Light-Vehicle Leasing Penetration for 2014 - Dataset Fact #886: August 17, 2015 New Light-Vehicle Leasing Penetration for 2014 - Dataset Excel file and dataset for New Light-Vehicle Leasing Penetration for 2014 fotw#886_web.xlsx (289.38 KB) More Documents & Publications Vehicle Technologies Office Fall 2015 Quarterly Analysis Review Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 - Dataset Fact #853

  10. Operational Simulation Tools and Long Term Strategic Planning for High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penetrations of PV in the Southeastern U.S. | Department of Energy Operational Simulation Tools and Long Term Strategic Planning for High Penetrations of PV in the Southeastern U.S. Operational Simulation Tools and Long Term Strategic Planning for High Penetrations of PV in the Southeastern U.S. EPRI logo.jpg In collaboration with the Tennessee Valley Authority Southern Company, the Sacramento Municipal Utility District, the California Independent System Operator, and other partners,

  11. PROJECT PROFILE: Dynamic Building Load Control to Facilitate High

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penetration of Solar Photovoltaic Generation (SuNLaMP) | Department of Energy Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation (SuNLaMP) PROJECT PROFILE: Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: Oak Ridge National Laboratory, Oak Ridge, TN SunShot Award Amount: $3,000,000 This project aims to develop,

  12. Practical and cost effective solution to the need for shielding penetrations against photons and neutrons from normal and accident losses

    SciTech Connect (OSTI)

    S. Schwahn

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) houses a 4 GeV, 200 {micro}A continuous wave (CW) recirculating electron accelerator. This underground accelerator is made up of two superconducting linear accelerators (linacs), two arcs, a beam switch yard (BSY), and three end stations. Each linac has the capability of accelerating electrons to a kinetic energy of 400 MeV. The arcs contain four (on the west) and five (on the east) beamlines to transport the beams of differing energies back into the linacs. The BSY steers the desired beams into the end stations as needed for nuclear physics experiments. The accelerator is connected to the control and diagnostic electronics in the above-ground service buildings via 30 cm and 51 cm diameter penetrations that travel through 4.6 m of soil and concrete. As a result, there exists the potential for personnel exposure to radiation scattering up the penetrations. It was desired that some of these buildings become Uncontrolled Areas, so that persons in the buildings would not require dosimetry. The Jefferson Lab Beam Containment Policy also requires that effective dose rates to workers be limited to 150 mSv in one hour if a maximum beam power loss accident was to continue unabated.

  13. Injection of natural gas in the blast furnace at high rates: Field experiments at Armco Steel Company. Topical technical report, January 1990-September 1992

    SciTech Connect (OSTI)

    Agarwall, J.C.; Brown, F.C.; Chin, D.L.; Frydenlund, A.R.

    1993-04-01

    A study of the benefits of the injection of natural gas as a supplemental fuel for commercial blast furnaces is presented. Tests were carried out for sustained periods at natural gas injection levels of 150 and 200 pounds per therm (lb/thm). Average coke replacement ratios of 1.30 pounds of coke per pound of natural gas injected and productivity increases of about 10% were achieved at a gas injection rate of 200 lb/thm. The results were obtained without adverse effects on hot metal chemistry or furnace operability. The ability of natural gas to effectively replace an appreciable amount of coke should enable a decrease in coke production levels.

  14. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  15. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  16. Use of the slow-strain-rate technique for the evaluation of structural materials for application in high-temperature gaseous environments

    SciTech Connect (OSTI)

    Johnson, C.E.; Ugiansky, G.M.

    1981-01-01

    Types 309, 310, 310S, 347 and 446 stainless steels, Incoloy 800, and Inconel 671 were tested at temperatures from 370 to 1040/sup 0/C at strain rates from 10/sup -4/ to 10/sup -7//s in H/sub 2/S plus water, gaseous mixtures of CO, CO/sub 2/, H/sub 2/, CH/sub 4/, H/sub 2/S, and H/sub 2/O, and in nominally inert environments of He and Ar. Type 310 steel showed a marked reduction in mechanical properties at low strain rates (< 10/sup -5//s) in H/sub 2/S/H/sub 2/O at 540/sup 0/C, and this was associated with the occurrence of a large degree of secondary intergranular cracking in addition to the main ductile fracture mode. The occurrence of the secondary cracking was taken as the primary indication of embrittlement in subsequent tests. It occurred to some degree in all alloys tested in the simulated coal-gasification environments at 600/sup 0/C. The mechanism(s) of the embrittlement phenomena remain uncertain; a number of possible causes including creep and several environmentally-induced fracture processes are outlined. It is shown that the overall results of the test program are in good agreement with in-plant experience.

  17. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  18. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  19. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics

    SciTech Connect (OSTI)

    Denholm, Paul; Diakov, Victor; Margolis, Robert

    2015-09-01

    Batteries with several hours of capacity provide an alternative to combustion turbines for meeting peak capacity requirements. Even when compared to state-of-the-art highly flexible combustion turbines, batteries can provide a greater operational value, which is reflected in a lower system-wide production cost. By shifting load and providing operating reserves, batteries can reduce the cost of operating the power system to a traditional electric utility. This added value means that, depending on battery life, batteries can have a higher cost than a combustion turbine of equal capacity and still produce a system with equal or lower overall life-cycle cost. For a utility considering investing in new capacity, the cost premium for batteries is highly sensitive to a variety of factors, including lifetime, natural gas costs, PV penetration, and grid generation mix. In addition, as PV penetration increases, the net electricity demand profile changes, which may reduce the amount of battery energy capacity needed to reliably meet peak demand.

  2. ASSESSMENT OF 90SR AND 137CS PENETRATION INTO REINFORCED CONCRETE (EXTENT OF 'DEEPENING') UNDER NATURAL ATMOSPHERIC CONDITIONS

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    When assessing the feasibility of remediation following the detonation of a radiological dispersion device or improvised nuclear device in a large city, several issues should be considered including the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination, and the planned future use of the city's structures and buildings. Currently, little is known about radionuclide penetration into construction materials in an urban environment. Knowledge in this area would be useful when considering costs of a thorough decontamination of buildings, artificial structures, and roads in an affected urban environment. Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to assess the depth of {sup 90}Sr and {sup 137}Cs penetration into reinforced concrete structures in a highly contaminated urban environment under natural weather conditions. Thirteen reinforced concrete core samples were obtained from external surfaces of a contaminated building in Pripyat. The concrete cores were drilled to obtain sample layers of 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, and 40-50 mm. Both {sup 90}Sr and {sup 137}Cs were detected in the entire 0-50 mm profile of the reinforced cores sampled. In most of the cores, over 90% of the total {sup 137}Cs inventory and 70% of the total {sup 90}Sr inventory was found in the first 0-5 mm layer of the reinforced concrete. {sup 90}Sr had penetrated markedly deeper into the reinforced concrete structures than {sup 137}Cs.

  3. Terminal ballistics of a reduced-mass penetrator. Final report, January 1990--December 1995

    SciTech Connect (OSTI)

    Silsby, G.F.

    1996-07-01

    This report presents the results of an experimental program to examine the performance of a reduced-mass concept penetrator impacting semi-infinite rolled homogeneous armor (RHA) at normal incidence. The reduced-mass penetrator used in this program is a solid tungsten alloy rod with eight holes drilled parallel to its axis, equally spaced on a circle, with axes parallel to the rod axis. Its performance was contrasted with baseline data for length-to- diameter ratios (L/D) 4 and 5 solid tungsten alloy penetrators. Striking velocity was nominally 1.6 km/s. A determined effort to reduce the scatter in the data by analysis of collateral data from the US Army Research Laboratory (ARL) and literature sources suggested only a rather weak influence of L/D on penetration even at L/Ds approaching 1 and provided a tentative relationship to remove the influence of target lateral edge effects. It tightened up the holed-out rod data enough to be able to conclude with a moderate degree of certainty that there was no improvement in penetration as suggested by a simplistic density law model. A companion work by Kimsey of ARL examines the performance of this novel penetrator concept computationally, using the Eulerian code CTH. His work explains the possible causes of reduced performance suggested by analysis by Zook and Frank of ARL, though with some relative improvement in performance at higher velocities.

  4. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  5. Effects of pH and stress intensity on crack growth rate in Alloy 600 in lithiated + borated water at high temperatures

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z.; McIlree, A.R.

    1992-12-31

    Primary water stress corrosion cracking studies were performed on Alloy 600. Constant load tests were conducted at 330 and 350{degrees}C in solutions containing dissolved hydrogen, boric acid (0 < B < 1200 ppm) and lithium hydroxide (0 < Li < 10 ppm). In the PWR working conditions range, that is, 6.9 < pH < 7.4 (or 0.5 ppm < Li < 3.5), there is little effect of the solution pH on the intergranular crack growth rate (IGSCC). However, there is a strong influence of the stress intensity on the IGSCC. K{sub ISCC} {approx} 5-10 MPa{radical}m. Dissolution plays an important role in the IGSCC process.

  6. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect (OSTI)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  7. WE-A-17A-03: Catheter Digitization in High-Dose-Rate Brachytherapy with the Assistance of An Electromagnetic (EM) Tracking System

    SciTech Connect (OSTI)

    Damato, AL; Bhagwat, MS; Buzurovic, I; Devlin, PM; Friesen, S; Hansen, JL; Kapur, T; Lee, LJ; Mehrtash, A; Nguyen, PL; O'Farrell, D; Wang, W; Viswanathan, AN; Cormack, RA

    2014-06-15

    Purpose: To investigate the use of a system using EM tracking, postprocessing and error-detection algorithms for measuring brachytherapy catheter locations and for detecting errors and resolving uncertainties in treatment-planning catheter digitization. Methods: An EM tracker was used to localize 13 catheters in a clinical surface applicator (A) and 15 catheters inserted into a phantom (B). Two pairs of catheters in (B) crossed paths at a distance <2 mm, producing an undistinguishable catheter artifact in that location. EM data was post-processed for noise reduction and reformatted to provide the dwell location configuration. CT-based digitization was automatically extracted from the brachytherapy plan DICOM files (CT). EM dwell digitization error was characterized in terms of the average and maximum distance between corresponding EM and CT dwells per catheter. The error detection rate (detected errors / all errors) was calculated for 3 types of errors: swap of two catheter numbers; incorrect catheter number identification superior to the closest position between two catheters (mix); and catheter-tip shift. Results: The averages ± 1 standard deviation of the average and maximum registration error per catheter were 1.9±0.7 mm and 3.0±1.1 mm for (A) and 1.6±0.6 mm and 2.7±0.8 mm for (B). The error detection rate was 100% (A and B) for swap errors, mix errors, and shift >4.5 mm (A) and >5.5 mm (B); errors were detected for shifts on average >2.0 mm (A) and >2.4 mm (B). Both mix errors associated with undistinguishable catheter artifacts were detected and at least one of the involved catheters was identified. Conclusion: We demonstrated the use of an EM tracking system for localization of brachytherapy catheters, detection of digitization errors and resolution of undistinguishable catheter artifacts. Automatic digitization may be possible with a registration between the imaging and the EM frame of reference. Research funded by the Kaye Family Award 2012.

  8. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  9. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  10. Probing nuclei by deeply penetrating and peripherally interacting Hadron: Bridging low and high-energy processes

    SciTech Connect (OSTI)

    Eliseev, S. M.

    2013-08-15

    The search for signals of new phenomenon is an important trend in the contemporary strong interaction physics. The nuclear J/{psi} suppressions are considered as like candidates for the signals of unusual events, e.g. quark-gluon plasma. They were explained in the framework of Glauber approximation. On the contrary, we show that new experimental data on the total cross section of K{sup +}-nucleus interaction at intermediate energies cannot be described by the novel well-elaborated Glauber model. This may indicate a unique event in ground state nuclei (in-medium effect)

  11. Capacity Payments in Restructured Markets under Low and High Penetration Levels of Renewable Energy

    Broader source: Energy.gov [DOE]

    Growing levels of variable renewable energy resources arguably create new challenges for capacity market designs, because variable renewable energy suppresses wholesale energy prices while...

  12. R&D Efforts for Enabling High Penetration Photovoltaics in U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW US PV Market - Historic 4 Source: GTM Research Solar Executive Briefing, JAN14 Global PV Demand Forecast 5 * 300GW by 2018, 1TW not before 2030. * Much too slow given the...

  13. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    SciTech Connect (OSTI)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  14. Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries

    SciTech Connect (OSTI)

    Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley

    2015-10-15

    The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.

  15. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    SciTech Connect (OSTI)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.

  16. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore » revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  17. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring

    SciTech Connect (OSTI)

    Kurz, Christopher Bauer, Julia; Conti, Maurizio; Guérin, Laura; Eriksson, Lars; Parodi, Katia

    2015-07-15

    Purpose: External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β{sup +}-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small number of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. Methods: The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the recommended

  18. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  19. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  20. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  1. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  2. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  3. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

    SciTech Connect (OSTI)

    Warren, T.L.; Tabbara, M.R.

    1997-05-01

    In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

  4. Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 5: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Fact #875: June 1, 2015 Hybrid Electric Vehicle Penetration by State, 2014 Hybrid electric vehicles (HEVs) are conventional hybrid vehicles that use a gasoline engine with a hybrid electric drive for superior efficiency; they do not plug-in. This type of hybrid vehicle was introduced to the U.S. market in 1999 with the Honda Insight and followed by the Toyota Prius in 2000. After about 15 years of

  5. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration by State, 2014 Plug-in electric vehicles (PEVs) include battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). The first mass marketed PEVs were introduced in 2010 with the Nissan Leaf, which is a BEV, and the Chevrolet Volt, which is a PHEV. After four years of sales, California had the most PEV registrations of any

  6. Method to Reduce Molten Salt Penetration into Bulk Vitrification Refractory Materials

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Hrma, P.R.; Kim, D.S.; Schweiger, M.J.; Matyas, J.; Rodriguez, C.P. [Pacific Northwest National Laboratory, Richland WA (United States); Witwer, K.S. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, WA (United States)

    2008-07-01

    Bulk vitrification (BV) is a process that heats a feed material consisting of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. However, the castable refractory block (CRB) portion of the refractory lining has sufficient porosity to allow the low-viscosity molten ionic salt (MIS), which contains technetium (Tc) in a soluble form, to penetrate the CRB. This limits the effectiveness of the final waste form. This paper describes tests conducted to develop a method aimed at reducing the quantities of soluble Tc in the CRB. Tests showed that MIS formed in significant quantities at temperatures above 300 deg. C, remained stable until roughly 550 deg. C where it began to thermally decompose, and was completely decomposed by 800 deg. C. The estimated volume fraction of MIS in the feed was greater than 40%, and the CRB material contained 11 to 15% open porosity, a combination allowing a large quantity of MIS to migrate through the feed and penetrate the open porosity of the CRB. If the MIS is decomposed at temperatures below 300 deg. C or can be contained in the feed until it fully decomposes by 800 deg. C, MIS migration into the CRB can be avoided. Laboratory and crucible-scale experiments showed that a variety of methods, individually or in combination, can decrease MIS penetration into the CRB. Modifying the CRB to block MIS penetration was not deemed practical as a method to prevent the large quantities of MIS penetration seen in the full-scale tests, but it may be useful to reduce the impacts of lower levels of MIS penetration. Modifying the BV feed materials to better contain the MIS proved to be more successful. A series of qualitative and quantitative crucible tests were developed that allowed screening of feed modifications that might be

  7. High Performance Colloidal Nanocrystals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed distribution circuits in the electrical grid. The High Penetration Solar Deployment projects are working with teams that include utility partners to model, test, and evaluate solutions to mitigate the impact of large amounts of PV-generated electricity on the reliability and stability of the

  8. MICROMEGAS: High rate and radiation hardness results

    SciTech Connect (OSTI)

    Puill, G.; Derre, J.; Giomataris, Y.; Rebourgeard, P.

    1999-12-01

    In this report, the authors present results of gain studies using various gas mixtures in a novel structure of gaseous detector called MICROMEGAS which is under development at Saclay. The authors in particular studied the maximum of gain achievable with MICROMEGAS before the discharge. They tried various gas mixtures (Argon, Neon, CF{sub 4}) with various proportions of quencher (Isobutane, Cyclohexane, DME). They also studied the radiation hardness of MICROMEGAS using Argon-Isobutane and CF{sub 4}-Isobutane mixtures.

  9. High-discharge-rate lithium ion battery

    DOE Patents [OSTI]

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  10. High-energy rate forgings of wedges :

    SciTech Connect (OSTI)

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  11. High data rate atom interferometric device

    SciTech Connect (OSTI)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  12. Geothermal direct heat use: market potential/penetration analysis for Federal Region IX (Arizona, California, Hawaii, Nevada)

    SciTech Connect (OSTI)

    Powell, W.; Tang, K.

    1980-05-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates, capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.

  13. Partially penetrating fractures: Pressure transient analysis of an infinite conductivity fracture

    SciTech Connect (OSTI)

    Rodriguez, F.; Cinco-Ley, H.; Horne, R.N.

    1984-04-01

    The effect of the partial penetration of an infinite conductivity fracture on the transient pressure behavior of a vertically fractured well is investigated. Analysis of results shows that the pressure behavior of a well intersected by a partially-penetrating infinite conductivity vertical fracture can be divided into three flow periods: 1) the early time flow period which is characterized by a formation linear flow as in the case of a fully-penetrating infinite-conductivity vertical fracture, 2) the infinite-acting flow period and 3) the pseudoradial flow period which develops after the effects of the vertical boundaries of the reservoir are felt in the pressure behavior of the well. A log-log graph of log(h /SUB f/ /h)p /SUB wD/ versus log t /SUB Dxf/ shows a slope of one half during the early time flow period of a well with an infinite-conductivity partially penetrating fracture. The time for the end of the early time flow period is directly related to the square of the dimensionless height of the fracture, h /SUB fD/, which is defined as the ratio between the height of the fracture and its half length.

  14. Modeling Slag Penetration and Refractory Degradation Using the Finite Element Method

    SciTech Connect (OSTI)

    Johnson, Kenneth I.; Williford, Ralph E.; Matyas, Josef; Pilli, Siva Prasad; Sundaram, S. K.; Korolev, Vladimir N.

    2008-09-01

    Refractory degradation due to slag penetration can significantly reduce the service life of gasifier refractory linings. This paper describes a modeling approach that was developed to predict refractory spalling as a function of operating temperature, coal feedstock and refractory type. The model simulates the coupled thermal, diffusion, and mechanical interactions of coal slag with refractory ceramics. The heat transfer and slag diffusion solutions are directly coupled through a temperature-dependent effective diffusivity for slag penetration. The effective diffusivity is defined from slag penetration tests conducted in our laboratories on specific coal slag and refractory combinations. Chemically-induced swelling of the refractory and the build-up of mechanical stresses are functions of the slag penetration. The model results are compared with analytical spalling models and validated by experimental data in order to develop an efficient refractory degradation model for implementation in a systems level gasifier model. The ultimate goal of our research is to provide a tool that will help optimize gasifier performance by balancing conversion efficiency with refractory life.

  15. Light Water Reactor Sustainability Program BWR High-Fluence Material Project: Assessment of the Role of High-Fluence on the Efficiency of HWC Mitigation on SCC Crack Growth Rates

    SciTech Connect (OSTI)

    Sebastien Teysseyre

    2014-04-01

    As nuclear power plants age, the increasing neutron fluence experienced by stainless steels components affects the materials resistance to stress corrosion cracking and fracture toughness. The purpose of this report is to identify any new issues that are expected to rise as boiling water reactor power plants reach the end of their initial life and to propose a path forward to study such issues. It has been identified that the efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report summarizes the data available to support this hypothesis and describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. This program plan includes acquisition of irradiated materials, generation of material via irradiation in a test reactor, and description of the test plan. This plan offers three approaches, each with an estimated timetable and budget.

  16. A general correlation of MPPS penetration as a function of face velocity with the model 8140 using the certitest 8160

    SciTech Connect (OSTI)

    Lifshutz, N.; Pierce, M.

    1997-08-01

    The CertiTest 8160 is a Condensation Nucleus Counter (CNC) based filtration test stand which permits measurement of penetration as a function of particle size. The Model 8140 is also a CNC based filtration test stand which provides a single penetration measurement for a fixed particle distribution aerosol challenge. A study was carried out measuring DOP penetration on a broad range of flat filtration media at various face velocities to compare these two instruments. The tests done on the CertiTest 8160 incorporated a range of particle sizes which encompassed the most penetrating particle size (MPPS). In this paper we present a correlation between the MPPS penetration as measured by the CertiTest 8160 and the penetration values obtained on the Model 8140. We observed that at the lowest air face velocities of the study the Model 8140 tended to overpredict the MPPS penetration as measured by the CertiTest 8160. We also present a correlation of MPPS penetration with face velocity which may be of use for extrapolation purposes. 5 refs., 8 figs.

  17. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  18. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  19. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  20. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  1. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  2. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  3. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  4. PULSE RATE DIVIDER

    DOE Patents [OSTI]

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  5. Computed Tomography–Guided Interstitial High-Dose-Rate Brachytherapy in Combination With Regional Positive Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non–Small Cell Lung Cancer: A Phase 1 Clinical Trial

    SciTech Connect (OSTI)

    Xiang, Li; Zhang, Jian-wen; Lin, Sheng; Luo, Hui-Qun; Wen, Qing-Lian; He, Li-Jia; Shang, Chang-Ling; Ren, Pei-Rong; Yang, Hong-Ru; Pang, Hao-Wen; Yang, Bo; He, Huai-Lin; Chen, Yue; Wu, Jing-Bo

    2015-08-01

    Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planning target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.

  6. Simulation of interplanetary magnetic field B{sub y} penetration into the magnetotail

    SciTech Connect (OSTI)

    Guo, Jiuling; Shen, Chao; Liu, Zhenxing

    2014-07-15

    Based on our global 3D magnetospheric MHD simulation model, we investigate the phenomena and physical mechanism of the B{sub y} component of the interplanetary magnetic field (IMF) penetrating into the magnetotail. We find that the dayside reconnected magnetic field lines move to the magnetotail, get added to the lobe fields, and are dragged in the IMF direction. However, the B{sub y} component in the plasma sheet mainly originates from the tilt and relative slippage of the south and north lobes caused by plasma convection, which results in the original B{sub z} component in the plasma sheet rotating into a B{sub y} component. Our research also shows that the penetration effect of plasma sheet B{sub y} from the IMF B{sub y} during periods of northward IMF is larger than that during periods of southward IMF.

  7. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California Paul Denholm and Robert Margolis National Renewable Energy Laboratory Technical Report NREL/TP-6A20-66595 August 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  8. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  9. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect (OSTI)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  10. A Unified Equation for the Reaction Rate in Dense Matter Stars

    SciTech Connect (OSTI)

    Gasques, L. R.; Wiescher, M.; Yakovlev, D. G.

    2007-10-26

    We analyze thermonuclear and pycnonuclear reaction rates in multi-component dense stellar plasma. First we describe calculations of the astrophysical S-factor at low energies using the Sao Paulo potential on the basis of the barrier penetration model. Then we present a simple phenomenological expression for a reaction rate. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature.

  11. High data-rate atom interferometers through high recapture efficiency

    SciTech Connect (OSTI)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  12. High resolution, high rate X-ray spectrometer

    DOE Patents [OSTI]

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  13. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin

    SciTech Connect (OSTI)

    Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

    1996-01-01

    Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

  14. Final Report - National Database of Utility Rates and Rate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Database of Utility Rates and Rate Structure Final Report - National Database of Utility Rates and Rate Structure Awardee: Illinois State University Location: Normal, IL ...

  15. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing: Supplemental Report on Penetration Software Algorithms

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2005-03-01

    This report supplements the July 2003 report ''Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing'' (NREL/SR-560-33909). The original report presented methods for calculating penetration limits for distributed energy resources interconnected with distribution circuits of utility-owned electric power systems. This report describes the algorithms required to develop application software to calculate penetration limits. The original report can be found at http://www.nrel.gov/docs/fy03osti/33909.pdf.

  16. Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns

    SciTech Connect (OSTI)

    Gordon, J.L.; Jones, D.P.; Holliday, J.E.

    2000-03-01

    This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness.

  17. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  18. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  19. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  20. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  1. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  2. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  3. SU-E-T-223: Investigation of the Accuracy of Two-Dimensional Dose Distributions Measurement From High-Dose-Rate Brachytherapy Ir-192 Source Using Multiple-Diode-Array Detector (MapCheck2)

    SciTech Connect (OSTI)

    Taguenang, J; De La Fuente, T Herman; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical model was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and

  4. LINEAR COUNT-RATE METER

    DOE Patents [OSTI]

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  5. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect (OSTI)

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  6. Penetration of gas delivery systems in the United States: A state-level data analysis

    SciTech Connect (OSTI)

    Guldmann, J.M. . Environmental Assessment and Information Sciences Div. Ohio State Univ., Columbus, OH )

    1990-02-01

    The purpose of this study is to assess the degree to which the gas delivery infrastructure penetrates US regions and states and to pinpoint those areas in which the lack of a sufficient infrastructure impedes the expansion of the natural gas market. Regions and states are ranked according to several indicators developed with data published by the American Gas Association, the US Department of Energy/Energy Information Administration, and the US Bureau of the Census. These include the numbers of gas customers and gas deliveries by sector, mileages of distribution and transmission pipelines, underground storage capacities and operating characteristics, heating degree-days, populations and numbers of households, and areal measures of states and metropolitan areas. The market penetration of gas distribution systems is measured by two indicators: (1) the ratio of the number of residential gas customers to the number of households in 1985 and (2) the distribution pipeline density, measured by the ratio of the 1985 distribution mileage divided by the number of households, while accounting for the effect of urban population density (using earlier econometric results). 11 refs., 1 fig., 27 tabs.

  7. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    SciTech Connect (OSTI)

    Miao, Yugang; Han, Duanfeng Xu, Xiangfang; Wu, Bintao

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of the complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.

  8. Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models

    SciTech Connect (OSTI)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko

    2013-02-28

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.

  9. Evidence for ubiquitous high-equivalent-width nebular emission in z ∼ 7 galaxies: toward a clean measurement of the specific star-formation rate using a sample of bright, magnified galaxies

    SciTech Connect (OSTI)

    Smit, R.; Bouwens, R. J.; Labbé, I.; Zheng, W.; Lemze, D.; Ford, H.; Bradley, L.; Coe, D.; Postman, M.; Donahue, M.; Moustakas, J.; Umetsu, K.; Zitrin, A.; Bartelmann, M.; Gonzalez, V.; Benítez, N.; Jimenez-Teja, Y.; Grillo, C.; Infante, L.; and others

    2014-03-20

    Growing observational evidence indicates that nebular line emission has a significant impact on the rest-frame optical fluxes of z ∼ 5-7 galaxies. This line emission makes z ∼ 5-7 galaxies appear more massive, with lower specific star-formation rates (sSFRs). However, corrections for this line emission have been difficult to perform reliably because of huge uncertainties on the strength of such emission at z ≳ 5.5. In this paper, we present the most direct observational evidence thus far for ubiquitous high-equivalent-width (EW) [O III] + Hβ line emission in Lyman-break galaxies at z ∼ 7, and we present a strategy for an improved measurement of the sSFR at z ∼ 7. We accomplish this through the selection of bright galaxies in the narrow redshift window z ∼ 6.6-7.0 where the Spitzer/Infrared Array Camera (IRAC) 4.5 μm flux provides a clean measurement of the stellar continuum light, in contrast with the 3.6 μm flux, which is contaminated by the prominent [O III] + Hβ lines. To ensure a high signal-to-noise ratio for our IRAC flux measurements, we consider only the brightest (H {sub 160} < 26 mag) magnified galaxies we have identified behind galaxy clusters. It is remarkable that the mean rest-frame optical color for our bright seven-source sample is very blue, [3.6]-[4.5] = –0.9 ± 0.3. Such blue colors cannot be explained by the stellar continuum light and require that the rest-frame EW of [O III] + Hβ is greater than 637 Å for the average source. The four bluest sources from our seven-source sample require an even more extreme EW of 1582 Å. We can also set a robust lower limit of ≳ 4 Gyr{sup –1} on the sSFR of our sample based on the mean spectral energy distribution.

  10. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect (OSTI)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  11. Best Practices: Escalation Rates

    Office of Environmental Management (EM)

    Best Practices Escalation Rates Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Best Practices: Escalation Rate Value of future energy savings * Provides purchasing power for implementing a robust, comprehensive and customized ECM set * Provides an option for paying back financing in the shortest possible

  12. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  13. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  14. Communication: Rate coefficients of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction from ring polymer molecular dynamics on a highly accurate potential energy surface

    SciTech Connect (OSTI)

    Meng, Qingyong Chen, Jun Zhang, Dong H.

    2015-09-14

    The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ T ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.

  15. Construction, Qualification, and Low Rate Production Start-up...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ... Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High ...

  16. Penetrator reliability investigation and design exploration : from conventional design processes to innovative uncertainty-capturing algorithms.

    SciTech Connect (OSTI)

    Martinez-Canales, Monica L.; Heaphy, Robert; Gramacy, Robert B.; Taddy, Matt; Chiesa, Michael L.; Thomas, Stephen W.; Swiler, Laura Painton; Hough, Patricia Diane; Lee, Herbert K. H.; Trucano, Timothy Guy; Gray, Genetha Anne

    2006-11-01

    This project focused on research and algorithmic development in optimization under uncertainty (OUU) problems driven by earth penetrator (EP) designs. While taking into account uncertainty, we addressed three challenges in current simulation-based engineering design and analysis processes. The first challenge required leveraging small local samples, already constructed by optimization algorithms, to build effective surrogate models. We used Gaussian Process (GP) models to construct these surrogates. We developed two OUU algorithms using 'local' GPs (OUU-LGP) and one OUU algorithm using 'global' GPs (OUU-GGP) that appear competitive or better than current methods. The second challenge was to develop a methodical design process based on multi-resolution, multi-fidelity models. We developed a Multi-Fidelity Bayesian Auto-regressive process (MF-BAP). The third challenge involved the development of tools that are computational feasible and accessible. We created MATLAB{reg_sign} and initial DAKOTA implementations of our algorithms.

  17. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2012-10-23

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

  18. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-12-31

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assempbled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting regions of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized slidably receive the male fastener, with all of the connector heads being identical.

  19. The role of cone penetration testing in expedited site characterization: A case history

    SciTech Connect (OSTI)

    Stenback, G.A.; Kjartanson, B.H.; Bevolo, A.; Wonder, D.; Older, K.

    1995-12-31

    Expedited site characterization (ESC) utilizes nonintrusive and minimally intrusive investigation techniques to efficiently and effectively characterize hazardous waste sites. Rapid data collection, interpretation and visualization technologies are used to update the conceptual site model on-site as the investigation proceeds. This paper describes the role that cone penetration testing played in the ESC demonstration at a former manufactured gas plant site in the midwestern US. Stratigraphic profiling information allowed development and assessment of the site geologic model as the investigation progressed and also allowed stratigraphic contouring of a lower confining unit on which the DNAPL coal tar residue tends to pool. A laser induced fluorescence sensor was very effective in delineating subsurface hydrocarbon contamination, including regions where it appears to have pooled on the lower confining unit. The availability of the data in real time allowed for effective integration into the ESC process.

  20. Photovoltaic module kit including connector assembly for non-penetrating array installation

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2011-11-22

    A PV module kit for non-penetrating rooftop installation, including a plurality of PV modules and a plurality of connectors. Each of the PV modules includes a PV laminate and a frame forming a mounting region assembled thereto. The connectors include a male connector having a male fastener extending from a head, and a female connector having a female fastener assembled within a head. The heads are entirely formed of plastic. The kit provides a mounted array state including a junction at which the mounting region of at least two of the PV modules are aligned and interconnected by engagement of the male connector with the female connector. The so-formed junction is substantially electrically insulated. The plurality of connectors can further include a spacer connector including a head forming a bore sized to slidably receive the male fastener, with all of the connector heads being identical.

  1. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  2. Design of UMTRA covers to mitigate the effect of frost penetration

    SciTech Connect (OSTI)

    Banani, A.M.; Claire, R.F.

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project, contracted by the US Department of Energy (DOE), requires construction of disposal cells for residual radioactive materials from abandoned uranium mill tailings. A disposal cell consists of contaminated material placed within a stabilized embankment with a top cover. The embankment and cover should be effective for up to 1000 years, to the extent reasonably achievable, and in any case for at least 200 years. The embankment cover usually consists of a radon/infiltration barrier, a frost barrier and erosion protection layer consisting of bedding and riprap layers. The radon/infiltration barrier and frost barrier are two important elements of the cover systems. A radon/infiltration barrier is designed to reduce the radon emissions from the contaminated materials and to limit the surface water infiltration into the contaminated material. However, a radon/infiltration barrier has to be protected from repeated freeze-thaw cycles to prevent an increase in permeability. Frost penetration depth is site specific and depends on local climatic conditions and soil properties of the cover system. However, placing a frost barrier is not only very costly but also reduces the disposal capacity of the embankment. Recent laboratory test results indicate that freeze-thaw cycles do not significantly effect the permeability of compacted sand-bentonite mixtures. Therefore, radon/infiltration barriers using sand-bentonite mixtures may not require frost barriers for protection against the effects of freeze-thaw. In this paper the design of UMTRA covers is briefly explained; the criteria to determine a 200 year freeze event, and the frost penetration depth are discussed. The results of freeze-thaw permeability tests on compacted clay and sand-bentonite mixtures are also presented.

  3. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  4. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  5. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    SciTech Connect (OSTI)

    Palmer, A. L.; Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D.; Nisbet, A.

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental

  6. Electric Field Penetration in Au/Nb:SrTiO3 Schottky Junctions Probed by Bias-Dependent Internal Photoemission

    SciTech Connect (OSTI)

    Hikita, Y.

    2011-08-15

    Electric field penetration into the metallic side of a Schottky junction is in principle a universal phenomenon, the magnitude of which increases with the semiconductor permittivity. Here, we quantitatively probe this effect using bias-dependent internal photoemission spectroscopy at the Schottky junction between a large dielectric permittivity semiconductor SrTiO{sub 3} and gold. A clear linear reduction of the barrier height with increasing interface electric field was observed, highlighting the importance of field penetration into the gold. The interfacial permittivity of SrTiO{sub 3} at the interface is reduced from the bulk value, reflecting intrinsic suppression at the interface.

  7. The Impact of Retail Rate Structures on the Economics ofCommercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-07-03

    , requiring the use of these tariffs would disadvantage some commercial PV installations. In particular, for PV systems that serve less than 25-50% of annual customer load, the characteristics of the customer's underlying load profile often determine the most favorable rate structure, and energy-focused rate structures may not be ideal for many commercial-customer load shapes. Regulators that wish to establish rates that are beneficial to a range of PV applications should therefore consider allowing customers to choose from among a number of different rate structures. {sm_bullet} Eliminating net metering can significantly degrade the economics of PV systems that serve a large percentage of building load. Under the assumptions stipulated in this report, we find that an elimination of net metering could, in some circumstances, result in more than a 25% loss in the rate-reduction value of commercial PV. As long as annual solar output is less than roughly 25% of customer load and excess PV production can be sold to the local utility at a rate above $0.05/kWh, however, elimination of net metering is found to rarely result in a financial loss of greater than 5% of the rate-reduction value of PV. More detailed conclusions on the rate-reduction value of commercial PV include: {sm_bullet} Commercial PV systems can sometimes greatly reduce demand charges. Though energy-focused retail rates often offer the greatest rate reduction value, commercial PV installations can generate significant reductions in demand charges, in some cases constituting 10-50% of the total rate savings derived from PV installations. These savings, however, depend highly on the size of the PV system relative to building load, on the customer's load shape, and on the design of the demand charge itself. {sm_bullet} The value of demand charge reductions declines with PV system size. At high levels of PV penetration, the value of PV-induced demand charge savings on a $/kWh basis can drop substantially. As a result

  8. Cavity closure arrangement for high pressure vessels

    DOE Patents [OSTI]

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  9. Potential Reductions in Variability with Alternative Approaches to Balancing Area Cooperation with High Penetrations of Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Beuning, S.

    2010-08-01

    The work described in this report was performed by the National Renewable Energy Laboratory (NREL) and funded by the Office of the Energy Efficiency and Renewable Energy, U.S. Department of Energy (EERE DOE). This project is a joint project with the Pacific Northwest National Laboratory. This report evaluates the physical characteristics that improve the ability of the power system to absorb variable generation. It then uses evidence from electricity markets in the Eastern Interconnection of the United States to show how large, fast energy markets can help with integration. The concept of Virtual Balancing Area is introduced, a concept that covers a broad range of cooperative measures that can be undertaken by balancing areas to help manage variability.

  10. NREL Analysis: Cost-Effective and Reliable Integration of High-Penetration Solar in the Western United States (Poster)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.; Lefton, S.; Kumar, N.; Agan, D.; Jordan, G.; Venkatataman, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  11. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  12. The Environmental and Public Health Benefits of Achieving High Penetration of Solar Energy in the United States

    Broader source: Energy.gov [DOE]

    Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation and public health impacts seem far removed from the apparent “sticker price” of electricity. Yet quantifying these impacts is essential to understanding the true costs and benefits of solar and conventional generating technologies. Compared with fossil fuel generators, PV and CSP produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). Achieving the SunShot-level solar deployment targets—14% of U.S. electricity demand met by solar in 2030 and 27% in 2050—could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238–$252 billion. This is equivalent to 2.0–2.2 cents per kilowatt-hour of solar installed (¢/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4¢/kWh-solar—while also preventing 25,000–59,000 premature deaths. To put this in perspective, the estimated 3.5¢/kWh-solar in benefits due to SunShot-level solar deployment is approximately equal to the additional LCOE reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, water savings from achieving the SunShot goals, could result in the 2015–2050 cumulative savings of 4% of total power-sector withdrawals and 9% of total power-sector consumption—a particularly important consideration for arid states where substantial solar will be deployed. Improving public health and the environment is but one aspect of solar’s many costs and benefits. Clearly, however, the assignment of value to such “external” impacts has potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.

  13. Nondestructive and Destructive Examination Studies on Removed-from-Service Control Rod Drive Mechanism Penetrations

    SciTech Connect (OSTI)

    Cumblidge, Stephen E.; Crawford, Susan L.; Doctor, Steven R.; Seffens, Rob J.; Schuster, George J.; Toloczko, Mychailo B.; Harris, Robert V.; Bruemmer, Stephen M.

    2007-06-07

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objectives of this work are to provide information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and then used in a series of NDE and destructive examination (DE) measurements; this report addresses the following questions: 1) What did each NDE technique detect? 2) What did each NDE technique miss? 3) How accurately did each NDE technique characterize the detected flaws? 4) Why did the NDE techniques perform or not perform? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This report focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing (ET), time-of-flight diffraction ultrasound, and penetrant testing. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal and visual testing via replicant material of the J-groove weld. The results from these NDE studies were used to

  14. Sequoia Messaging Rate Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-01-22

    The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8)more » with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.« less

  15. Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+? platelets

    SciTech Connect (OSTI)

    By: Curran, P. J.; Clem, J. R.; Bending, S. J.; Tsuchiya, Y.; Tamegai, T.

    2010-10-01

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation does not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.

  16. Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+? platelets

    SciTech Connect (OSTI)

    Curran, P. J.; Clem, J. R.; Bending, S. J.; Tsuchiya, Y.; Tamegai, T.

    2010-10-01

    Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation does not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.

  17. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rábago Rábago Energy LLC 1 The Ideal Residential Solar Tariff ‣ Fair to the utility and non-solar customers ‣ Fair compensation to the solar customer ‣ Decouple compensation from incentives ‣ Align public policy goals (decouple compensation from consumption) ‣ Intuitively sound and administratively simple 2 Historical Antecedents ‣ Externalities ‣ Price ≠ Cost ‣ Green Power ‣ Small Is Profitable (http://www.smallisprofitable.org/) ‣ Local

  18. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  19. Writing Effective Initial Summary Ratings Initial Summary Rating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has ...

  20. GTA weld penetration and the effects of deviations in machine variables

    SciTech Connect (OSTI)

    Giedt, W.H.

    1987-07-01

    Analytical models for predicting the temperature distribution during GTA welding are reviewed with the purpose of developing a procedure for investigating the effects of deviations in machine parameters. The objective was to determine the accuracy required in machine settings to obtain reproducible results. This review revealed a wide range of published values (21 to 90%) for the arc heating efficiency. Low values (21 to 65%) were associated with evaluation of efficiency using constant property conduction models. Values from 75 to 90% were determined from calorimetric type measurements and are applicable for more accurate numerical solution procedures. Although numerical solutions can yield better overall weld zone predictions, calculations are lengthy and complex. In view of this and the indication that acceptable agreement with experimental measurements can be achieved with the moving-point-source solution, it was utilized to investigate the effects of deviations or errors in voltage, current, and travel speed on GTA weld penetration. Variations resulting from welding within current goals for voltage (+-0.1 V), current (+-3.0 A), and travel speed (+-2.0%) were found to be +-2 to 4%, with voltage and current being more influential than travel speed.