Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

2

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

3

Unit costs of waste management operations  

SciTech Connect

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

4

DOE G 430.1-1 Chp 9, Operating Costs  

Directives, Delegations, and Requirements

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost ...

1997-03-28T23:59:59.000Z

5

LIFE Cost of Electricity, Capital and Operating Costs  

Science Conference Proceedings (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

6

Vehicle Investment and Operating Costs and Savings for Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Investment and Operating Costs and Savings for Greenhouse Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies Vehicle Investment and Operating Costs and Savings for Greenhouse Gas Mitigation Strategies October 7, 2013 - 1:17pm Addthis YOU ARE HERE: Step 4 To help estimate costs of implementing greenhouse gas (GHG) mitigation strategies for vehicles, the table below provides the initial investment, operating costs, and operating savings for each strategy. Table 1. Types and Ranges of Initial Investment Requirements and Annual Operating Costs and Savings. Strategies Initial Investment Operating Costs Operating Savings Consolidate trips Time to research & coordinate routes None Eliminate fleet vehicle trips; reduce cost & time (fuel, maintenance, etc) associated with fleet vehicle use. Could result in decreasing inventory & need for vehicles leading to long-term savings

7

Definition: Reduced T&D Operations Cost | Open Energy Information  

Open Energy Info (EERE)

Cost Jump to: navigation, search Dictionary.png Reduced T&D Operations Cost Automated or remote controlled operation of capacitor banks and feeder and line switches eliminates the...

8

Fundamental Drivers of the Cost and Price of Operating Reserves  

SciTech Connect

Operating reserves impose a cost on the electric power system by forcing system operators to keep partially loaded spinning generators available for responding to system contingencies variable demand. In many regions of the United States, thermal power plants provide a large fraction of the operating reserve requirement. Alternative sources of operating reserves, such as demand response and energy storage, may provide more efficient sources of these reserves. However, to estimate the potential value of these services, the cost of reserve services under various grid conditions must first be established. This analysis used a commercial grid simulation tool to evaluate the cost and price of several operating reserve services, including spinning contingency reserves and upward regulation reserves. These reserve products were evaluated in a utility system in the western United States, considering different system flexibilities, renewable energy penetration, and other sensitivities. The analysis demonstrates that the price of operating reserves depend highly on many assumptions regarding the operational flexibility of the generation fleet, including ramp rates and the fraction of fleet available to provide reserves.

Hummon, M. R.; Denholm, P.; Jorgenson, J.; Palchak, D.; Kirby, B.; Ma, O.

2013-07-01T23:59:59.000Z

9

Fundamental Drivers of the Cost and Price of Operating Reserves  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Drivers of the Cost and Price of Operating Reserves Marissa Hummon, Paul Denholm, Jennie Jorgenson, and David Palchak National Renewable Energy Laboratory Brendan Kirby...

10

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September 28, 2010 Next Release: Discontinued Excel Spreadsheet Model - 1994-2009 XLS (1,178 KB) Overview Oil and gas well equipment and operating costs, including coal bed methane costs, stopped their upward trend from the 1990s and fell sharply in 2009. The extremely high oil and gas prices during the first half of 2008 followed by an unprecedented drop to very low prices by the end of the year had a major impact on equipment demand. Operating costs tumbled also because fuel costs were reduced and well servicing rates fell in most areas. The exceptions were in California where electric rates continued to increase, causing a one (1) percent increase in annual operating costs for leases producing from 12,000 feet. Operating cost for coal bed methane wells in the Appalachian and Powder River areas increased because electric rates continued to climb. Due to the timing of the data collection, the cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other well completion costs, so the effect of the oil and gas prices on collected data may be lessened. Annual average electric rates and natural gas prices are used, which also helps to dampen cost variances.

11

Entanglement cost of implementing controlled-unitary operations  

E-Print Network (OSTI)

We investigate the minimum entanglement cost of the deterministic implementation of two-qubit controlled-unitary operations using local operations and classical communication (LOCC). We show that any such operation can be implemented by a three-turn LOCC protocol, which requires at least 1 ebit of entanglement when the resource is given by a bipartite entangled state with Schmidt number 2. Our result implies that there is a gap between the minimum entanglement cost and the entangling power of controlled-unitary operations. This gap arises due to the requirement of implementing the operations while oblivious to the identity of the inputs.

Akihito Soeda; Peter S. Turner; Mio Murao

2010-08-06T23:59:59.000Z

12

Reduce Operating Costs with an EnergySmart School Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Costs with an Operating Costs with an EnergySmart School Project Energy costs are a school district's second highest expenditure after personnel. Public schools currently spend more than $8 billion per year for energy. School ener- gy expenditures rose, on average, 20 percent per year between 2000 and 2002-and the costs continue to rise. Natural gas prices alone increased 14 percent annually between 2003 and 2006. Improving a school's energy efficiency doesn't have to cost millions. In fact, schools can cut their energy expenses by 5 to 20 percent simply by efficiently managing and operating physical plants. This holds true regardless of the age of a school building. A smart O&M program can improve an existing school's energy performance An O&M program can be a simple initiative or a

13

US nuclear power plant operating cost and experience summaries  

Science Conference Proceedings (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

14

Oil and Gas Lease Equipment and Operating Costs 1986 Through 2001  

U.S. Energy Information Administration (EIA)

Water handling costs are a major factor in coal bed methane operating costs and partially account for the difference in operating costs. Items tracked

15

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATI...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Coal Using Preliminary Assumptions 2-15 2.5.1 Approach to Cost Estimating 2-16 2.5.2 Production Costs (Operation and Maintenance) 2-16 2.5.3 Consumables 2-17 2.5.4 Byproduct...

16

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

17

A simulation approach to the evaluation of operational costs and performance in liner shipping operations  

Science Conference Proceedings (OSTI)

This paper presents a simulation model of the operation of a liner shipping network that considers multiple service routes and schedules. The objective is to evaluate the operational costs and performance associated with liner shipping, as well as the ...

Aldo A. McLean; William E. Biles

2008-12-01T23:59:59.000Z

18

CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CAPITAL AND OPERATING COST OF HYDROGEN CAPITAL AND OPERATING COST OF HYDROGEN PRODUCTION FROM COAL GASIFICATION Final Report April 2003 Prepared for: The United States Department of Energy National Energy Technology Laboratory (NETL) under: Contract No. DE-AM26-99FT40465 between the NETL and Concurrent Technologies Corporation (CTC) Subcontract No. 990700362 between CTC and Parsons Infrastructure & Technology Group Inc. Task 50611 DOE Task Managers: James R. Longanbach Gary J. Stiegel Parsons Project Manager: Michael D. Rutkowski Principal Investigators: Thomas L. Buchanan Michael G. Klett Ronald L. Schoff PARSONS Capital and Operating Cost of Hydrogen Production from Coal Gasification Page i April 2003 TABLE OF CONTENTS Section Title Page List of Tables iii List of Figures iii

19

A low cost high flux solar simulator  

E-Print Network (OSTI)

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

Codd, Daniel S.

20

Determining the Cost of Cycling and Varied Load Operations: Methodology  

Science Conference Proceedings (OSTI)

For many reasons—heightened wholesale electricity competition under deregulation, new market rules, growing capacity due to additions of new gas-fired capacity, environmental pressures on coal units—the power industry must operate power plants differently. In particular, many generating units that formerly ran around the clock must adjust operations to cycle or to follow load (demand). This report describes a new methodology for estimating the long-term wear and tear costs that inevitably acc...

2002-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low Cost, High Performance, 50-year Electrode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

this ARPA-E project, Primus Power will develop an this ARPA-E project, Primus Power will develop an extremely durable, highly active, conductive, and inexpensive electrode for flow batteries. Flow batteries offer one of the most exciting opportunities for affordable grid storage, however electrodes are costly and are the single largest cost component in a well integrated design. Grid storage can yield numerous benefits in utility and customer- owned applications:  renewable firming  peak load reduction  load shifting  capital deferral  frequency regulation By incorporating volume production practices from the chlorine, filter media, and electroplating industries, Primus Power will effectively reduce electrode costs to exceed GRIDS cost targets while providing the durability essential for widespread grid-scale adoption.

22

Remote implementation of partially unknown operations and its entanglement costs  

E-Print Network (OSTI)

We present the generalized version of Wang's protocol[A.M.Wang, Phys.Rev.A 74,032317 (2006)] for the remote implementation(sometimes referred to as quantum remote control) of partially unknown quantum operations. The protocol only requires no more than half of the entanglements used in Bidirectional Quantum State Teleportation. We also propose a protocol for another form of quantum remote control. It can remotely implement a unitary operation which is a combination of the projective representations of a group. Moreover, we prove that the Schmidt rank of the entanglements cannot not be less than the number of controlled parameters of the operations, which for the first time gives a lower bound on entanglement costs in remote implementation of quantum operations.

Shu-Hui Luo; An-Min Wang

2013-01-24T23:59:59.000Z

23

Today in Energy - High airline jet fuel costs prompt cost ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... and idling time. ... Delta stated that it anticipates cost savings of $300 million per year as a result of this ...

24

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

25

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

26

USDA - High Energy Cost Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Cost Grant Program USDA - High Energy Cost Grant Program Eligibility Commercial Industrial Institutional Local Government Municipal Utility Nonprofit Residential...

27

Low-Cost High-Pressure Hydrogen Generator  

DOE Green Energy (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

28

Properties of low cost, high volume glasses  

DOE Green Energy (OSTI)

The properties of new and weathered samples of low cost, high volume glasses have been studied to determine their usefulness for solar energy applications. Glasses of varying compositions produced by float, drawn, rolled fusion, and twin ground techniques were examined. Spectral transmittance and reflectance were measured and solar weighted values calculated. Laser raytrace techniques were used to evaluate surface parallelism and bulk homogeneity. Compositional changes were examined with scanning electron microscopy, x-ray fluorescence, and Auger electron spectroscopy. These techniques were used in conjunction with ellipsometry to study the surface effects associated with weathering.

Lind, M. A.; Hartman, J. S.; Buckwalter, C. Q.

1979-01-01T23:59:59.000Z

29

A multi-regression analysis of airline indirect operating costs  

E-Print Network (OSTI)

A multiple regression analysis of domestic and local airline indirect costs was carried out to formulate cost estimating equations for airline indirect costs. Data from CAB and FAA sources covering the years 1962-66 was ...

Taneja, Nawal K.

1968-01-01T23:59:59.000Z

30

Oil and Gas Lease Equipment and Operating Costs 1994 Through...  

Gasoline and Diesel Fuel Update (EIA)

cost reported here could be higher than the actual annual average for 2008. However, some production costs (labor and equipment) are not as volatile as drilling, pipe, and other...

31

Commissioning: A Highly Cost-Effective Building Energy Management Strategy  

E-Print Network (OSTI)

Commissioning: A Highly Cost-Effective Building Energypractice of building commissioning is a particularly potentefficiency. Although commissioning has earned increased

Mills, Evan

2012-01-01T23:59:59.000Z

32

An analysis of nuclear power plant operating costs: A 1995 update  

SciTech Connect

Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

1995-04-21T23:59:59.000Z

33

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

34

A HIGH PERFORMANCE/LOW COST ACCELERATOR CONTROL SYSTEM  

E-Print Network (OSTI)

LOW COST ACCELERATOR CONTROL SYSTEM S. Hagyary, J. Glat£» H.LOW COST ACCELERATOR CONTROL SYSTEM S. Magyary, J. Glatz, H.a high performance computer control system tailored to the

Magyary, S.

2010-01-01T23:59:59.000Z

35

PROGRAM OPPORTUNITY NOTICE Solicitation to Address High Purchase Costs  

E-Print Network (OSTI)

PROGRAM OPPORTUNITY NOTICE Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs PON-12-501 http://www.energy.ca.gov/contracts/index.html State of California California.......................................................................................... 19 COST OF DEVELOPING APPLICATION

36

GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process Step Description Associated task 1 Define estimate's purpose Determine estimate's purpose, required level of detail, and overall scope; Determine who will receive the estimate 2 Develop estimating plan Determine the cost estimating team and develop its master schedule; Determine who will do the independent cost estimate; Outline the cost estimating approach; Develop the estimate timeline 3 Define program characteristics In a technical baseline description document, identify the program's

37

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

DOE Green Energy (OSTI)

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

38

Evaluation of Truck and Bus Automation Scenarios: Operations Cost Analysis  

E-Print Network (OSTI)

Standards The design for this project assumes that the ABUS system will operate on a dedicated right- of-waystandards. Like the ABUS system, the BDL system operates on a dedicated right-of-way

Botha, Jan; Day, Jennifer E.; Adibhatla, Nagabhargavi

2004-01-01T23:59:59.000Z

39

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

40

Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An  

Reports and Publications (EIA)

This report provides an analysis of nuclear power plant operating costs. EIA published three reports on this subject during the period 1988-1995.

James G. Hewlett

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Preliminary estimates of cost savings for defense high level waste vitrification options  

SciTech Connect

The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion.

Merrill, R.A.; Chapman, C.C.

1993-09-01T23:59:59.000Z

42

Reduce Operating Costs with an EnergySmart School Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Project Reduce Operating Costs with an EnergySmart School Project EnergySmart Schools fact sheet on how school operations and maintenance (O&M) personnel can play a...

43

The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft  

E-Print Network (OSTI)

The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt ...

Faulkner, Henry B.

1976-01-01T23:59:59.000Z

44

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

45

ESS 2012 Peer Review - Low Cost and Highly Selective Composite...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey...

46

High Volume Method of Making Low Cost, Lightweight Solar Materials  

ORNL 2010-G00644/jcn UT-B ID 201002380 High Volume Method of Making Low Cost, Lightweight Solar Materials Technology Summary A critical challenge for ...

47

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... ••Power industry components such as boiler tubing and piping, pressure vessels, chemical

48

Lower power prices and high repair costs drive nuclear retirements ...  

U.S. Energy Information Administration (EIA)

However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors.

49

High Volume Method of Making Low Cost, Lightweight Solar Materials ...  

A critical challenge for solar energy is the high cost (>$1/W) of quality solar materials. Researchers at ORNL have invented an approach for producing large volumes ...

50

Reliability and Cost-Benefit-Based Standards for Transmission Network Operation and Design  

E-Print Network (OSTI)

...................................................................................................................... 143 Table C.3: Breakdown of transmission costs during t3 when considering all outages to single outages N-2 Deterministic security policy that refers to double outages O Operational cost #12. Probabilistic cost-benefit framework considered to replace historical deterministic N-k criteria. No changes

Catholic University of Chile (Universidad Católica de Chile)

51

Combustion Turbine/Combined-Cycle Operations and Maintenance Cost Analyzer, Version 8.61  

Science Conference Proceedings (OSTI)

The CTCC O&M Cost Analyzer is a spreadsheet software product that estimates operations and maintenance (O&M) costs for combustion turbine and combined-cycle plants for specific gas turbine models over the operating life of the asset The CTCC O&M Cost Analyzer software contains powerful capabilities to assist users in evaluating non-fuel O&M costs and in supporting a life-cycle cost evaluation perspective.  The software uses a "bottoms-up" approach for ...

2013-05-06T23:59:59.000Z

52

Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date; Preprint  

DOE Green Energy (OSTI)

Electric utility system planners and operators are concerned that variations in wind plant output may increase the operating costs of the system. This concern arises because the system must maintain an instantaneous balance between the aggregate demand for electric power and the total power generated by all power plants feeding the system. This is a highly sophisticated task that utility operators and automatic controls perform routinely, based on well-known operating characteristics for conventional power plants and a great deal of experience accumulated over many years. System operators are concerned that variations in wind plant output will force the conventional power plants to provide compensating variations to maintain system balance, thus causing the conventional power plants to deviate from operating points chosen to minimize the total cost of operating the system. The operators' concerns are compounded by the fact that conventional power plants are generally under their control and thus are dispatchable, whereas wind plants are controlled instead by nature. Although these are valid concerns, the key issue is not whether a system with a significant amount of wind capacity can be operated reliably, but rather to what extent the system operating costs are increased by the variability of the wind.

Smith, J. C.; DeMeo, E. A.; Parsons, B.; Milligan, M.

2004-03-01T23:59:59.000Z

53

Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit  

E-Print Network (OSTI)

Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a freeway median HOV lane into a guideway transit line. A full-cost model was developed to determine the cost effectiveness of converting an HOV lane into a rail transit line. The measure of cost-effectiveness used was the benefit-to-cost ratio. The full-cost model contained two cost categories (capital and operating costs) and two benefit categories (travel time and externality benefits). This fullcost model was adopted to conditions on the Katy Freeway in Houston Texas which served as a case study for this thesis. It was found that 29 percent of the person-miles of travel on the Katy Freeway under given conditions must utilize guideway transit for conversion to be cost-effective. It was also found that the model is sensitive to assumptions of the value of time, project soft costs (administrative, planning, and design costs) and the operating cost of the rail transit system. The model is also sensitive to assumptions regarding latent demand. It was concluded that conversion to rail guideway transit in the case study example is not cost-effective. It was reconunended that further investigation be taken into full-cost model components to allow more certain estimates of cost components. Also recommended was further consideration of the effects of latent demand on HOV to rail guideway transit conversions.

Best, Matthew Evans

1996-01-01T23:59:59.000Z

54

Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011  

DOE Green Energy (OSTI)

DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

2012-01-01T23:59:59.000Z

55

U.S. Nuclear Power Plant Operating Cost and Experience Summaries  

Science Conference Proceedings (OSTI)

The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

Reid, RL

2003-09-18T23:59:59.000Z

56

Table 1. Updated estimates of power plant capital and operating costs  

U.S. Energy Information Administration (EIA) Indexed Site

Updated estimates of power plant capital and operating costs" Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced PC",1300,8800,,2934,31.18,4.47,"Y" "Single Unit Advanced PC with CCS",650,12000,,5227,80.53,9.51,"Y" "Dual Unit Advanced PC with CCS",1300,12000,,4724,66.43,9.51,"N" "Single Unit IGCC ",600,8700,,4400,62.25,7.22,"N"

57

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

58

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

59

Geothermal Well Costs and their Sensitivities to Changes in Drilling and Completion Operations  

SciTech Connect

This paper presents a detailed analysis of the costs of drilling and completing geothermal wells. The basis for much of the analysis is a computer-simulation-based model which calculates and accrues operational costs involved in drilling and completing a well. Geothermal well costs are discussed in general, with special emphasis on variations among different geothermal areas in the United States, effects of escalation and inflation over the past few years, and comparisons of geothermal drilling costs with those for oil and gas wells. Cost differences between wells for direct use of geothermal energy and those for electric generation, are also indicated. In addition, a breakdown of total well cost into its components is presented. This provides an understanding of the relative contributions of different operations in drilling and completions. A major portion of the cost in many geothermal wells is from encountered troubles, such as lost circulation, cementing difficulties, and fishing. These trouble costs are considered through both specific examples and statistical treatment of drilling and completions problems. The sensitivities of well costs to variations in several drilling and completion parameters are presented. The mode1 makes it possible to easily vary parameters such as rates of penetration; bit lifetimes; bit rental, or rig costs; delay times; number of cement plugs; etc. are compared.

Carson, C. C.; Lin, Y.T.

1981-01-01T23:59:59.000Z

60

ORCED: A model to simulate the operations and costs of bulk-power markets  

SciTech Connect

Dramatic changes in the structure and operation of US bulk-power markets require new analytical tools. The authors developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to analyze a variety of public-policy issues related to the many changes underway in the US electricity industry. Such issues include: policy and technology options to reduce carbon emissions from electricity production; the effects of electricity trading between high- and low-cost regions on consumers and producers in both regions; the ability of the owners of certain generating units to exercise market power as functions of the transmission link between two regions and the characteristics of the generating units and loads in each region; and the market penetration of new energy-production and energy-use technologies and the effects of their adoption on fuel use, electricity use and costs, and carbon emissions. ORCED treats two electrical systems connected by a single transmission link ORCED uses two load-duration curves to represent the time-varying electricity consumption in each region. The two curves represent peak and offpeak seasons. User specification of demand elasticities permits ORCED to estimate the effects of changes in electricity price, both overall and hour by hour, on overall electricity use and load shapes. ORCED represents the electricity supply in each region with 26 generating units. The two regions are connected by a single transmission link. This link is characterized by its capacity (MW), cost ({cents}/kWh), and losses (%). This report explains the inputs to, outputs from, and operation of ORCED. It also presents four examples showing applications of the model to various public-policy issues related to restructuring of the US electricity industry.

Hadley, S.; Hirst, E.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

62

Battery-level material cost model facilitates high-power li-ion battery cost reductions.  

SciTech Connect

Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to reduce the cell winding material cost to <$10/kW, in order to allow >$10/kW for the cell and battery manufacturing costs, as well as profit for the industrial manufacturer. The material cost information is obtained directly from the industrial material suppliers, based on supplying the material quantities necessary to support an introductory market of 100,000 HEV batteries/year. Using its battery design model, ANL provides the material suppliers with estimates of the material quantities needed to meet this market, for both 25-kW and 40-kW power-assist HEV batteries. Also, ANL has funded a few volume-production material cost analyses, with industrial material suppliers, to obtain needed cost information. In a related project, ANL evaluates and develops low-cost advanced materials for use in high-power Li-Ion HEV batteries. [This work is the subject of one or more separate papers at this conference.] Cell chemistries are developed from the most promising low-cost materials. The performance characteristics of test cells that employ these cell chemistries are used as input to the cost model. Batteries, employing these cell chemistries, are designed to meet the FreedomCAR power, energy, weight, and volume requirements. The cost model then provides a battery-level material cost and material cost breakdown for each battery design. Two of these advanced cell chemistries show promise for significantly reducing the battery-level material costs (see Table 1), as well as enhancing calendar life and inherent safety. It is projected that these two advanced cell chemistries (A and B) could reduce the battery-level material costs by an estimated 24% and 43%, respectively. An additional cost advantage is realized with advanced chemistry B, due to the high rate capability of the 3-dimensional LiMn{sub 2}O{sub 4} spinel cathode. This means that a greater percentage of the total Ah capacity of the cell is usable and cells with reduced Ah capacity can be used. This allows for a reduction in the quantity of the anode, electrolyte, separator, and current collector materials needed f

Henriksen, G.; Chemical Engineering

2003-01-01T23:59:59.000Z

63

Property:EstimatedCostHighUSD | Open Energy Information  

Open Energy Info (EERE)

EstimatedCostHighUSD EstimatedCostHighUSD Jump to: navigation, search Property Name EstimatedCostHighUSD Property Type Quantity Description the high estimate of cost in USD Use this type to express a monetary value in US Dollars. The default unit is one US Dollar. http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: 100 cent USD,cents USD,Cent USD,Cents USD .001 k USD,thousand USD,Thousand USD .000001 M USD,million USD,Million USD .000000001 T USD,trillion USD,Trillion USD Pages using the property "EstimatedCostHighUSD" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + 50050,000 centUSD 0.5 kUSD 5.0e-4 MUSD 5.0e-7 TUSD + A Acoustic Logs + 161,600 centUSD 0.016 kUSD 1.6e-5 MUSD 1.6e-8 TUSD + Aerial Photography + 2,360236,000 centUSD

64

Reducing Operations and Maintenance Costs of Nuclear Power Plant Fire Protection Programs  

Science Conference Proceedings (OSTI)

This report discusses opportunities for utilities to reduce fire protection operations and maintenance (O&M) costs. A number of these opportunities have been implemented by some utilities and can be implemented now by others. Other opportunities can be implemented in the short term with some additional development. These other opportunities are amenable to cooperative projects with costs shared by multiple utilities. There is also a group of opportunities that are probably best developed on an industry w...

1997-01-08T23:59:59.000Z

65

Audit of health benefit costs at the Department`s Management and Operating Contractors  

SciTech Connect

The audit disclosed that the Department and certain of its contractors had initiated several positive actions to contain health benefit costs: improving data collection, increasing training, reviewing changes to health plans, improving the language in one contract, increasing the employees, share of health costs at one contractor, and initiating self-insurance at another contractor. Despite these actions, further improvements are needed in the administration of the contractor employee health benefit plans. It was found that the Department did not have the policies and procedures necessary to ensure that the health benefit costs met the tests for reasonableness. The audit of $95 million in health benefit costs incurred at six Management and Operating contractors showed that $15.4 million of these costs were excessive compared to national norms.

1994-06-23T23:59:59.000Z

66

Method for including operation and maintenance costs in the economic analysis of active solar energy systems  

DOE Green Energy (OSTI)

For a developing technology such as solar energy, the costs for operation and maintenance (O and M) can be substantial. In the past, most economic analyses included these costs by simply assuming that an annual cost will be incurred that is proportional to the initial cost of the system. However, in assessing the economics of new systems proposed for further research and development, such a simplification can obscure the issues. For example, when the typical method for including O and M costs in an economic analysis is used, the O and M costs associated with a newly developed, more reliable, and slightly more expensive controller will be assumed to increase - an obvious inconsistency. The method presented in this report replaces this simplistic approach with a representation of the O and M costs that explicitly accounts for the uncertainties and risks inherent in the operation of any equipment. A detailed description of the data inputs required by the method is included as well as a summary of data sources and an example of the method as applied to an active solar heating system.

Short, W.D.

1986-08-01T23:59:59.000Z

67

Cyclic Operation of Power Plant: Technical, Operational and Cost Issues -- An International Seminar: Proceedings: ''Two Shifting'' Seminar  

SciTech Connect

Because of changes in demand and competition within the power industry, fossil fuel plants in many countries are now subject to two-shift operation, that is, generating power for 10-15 hours during the day only, usually in combination with a complete shutdown on weekends. Other fossil-fueled units, although running around the clock, need to follow changes in electricity demand. This mode of functioning, in which temperatures and pressures are never stable for more than a few hours, is referred to as ''cyclic operation of plant.'' The aim of the seminar at which these papers were presented was to identify the basic causes of component and equipment problems in two-shift operation, and to begin to identify procedures that could minimize operating and maintenance costs. The papers cover the following topics: Session 1: Plant Operation Experience and Design Issues; Session 2: Materials Issues; Session 3: Cost, Manpower and Management Issues; Session 4: Plant Automation Issues; Session 5: Hot Section Gas Turbine Issues; and Session 6: HRSG [heat recovery steam generator] Issues.

None

2001-01-01T23:59:59.000Z

68

Operation and maintenance cost data for residential photovoltaic modules/panels  

DOE Green Energy (OSTI)

Burt Hill Kosar Rittelmann Associates has conducted a study to identify and estimate costs associated with the operation and maintenance of residential photovoltaic modules and arrays. Six basic topics related to operation and maintenance to photovoltaic arrays were investigated - General (Normal) Maintenance, Cleaning, Panel Replacement, Gasket Repair/Replacement, Wiring Repair/Replacement, and Termination Repair/Replacement. The effects of the mounting types - Rack Mount, Stand-Off Mount, Direct Mount, and Integral Mount - and the installation/replacement type - Sequential, Partial Interruption, and Independent - have been identified and described. Recommendation on methods of reducing maintenance costs are made.

None

1980-07-01T23:59:59.000Z

69

Low Cost Lithography Tool for High Brightness LED Manufacturing  

Science Conference Proceedings (OSTI)

The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

Andrew Hawryluk; Emily True

2012-06-30T23:59:59.000Z

70

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

71

DYNASTORE operating cost analysis of energy storage for a midwest utility  

DOE Green Energy (OSTI)

The objective of this project was to determine the savings in utility operating costs that could be obtained by installing a Battery Energy Storage System (BESS). The target utility was Kansas City Power and Light (KCPL), a typical Midwestern utility with a mix of generating plants and many interconnections. The following applications of battery energy storage were modeled using an Electric Power Research Institute (EPRI) developed and supported program called DYNASTORE: (1) Spinning Reserve Only (2) Load Leveling with Spinning Reserve (3) Load Leveling Only (4) Frequency Control DYNASTORE commits energy storage units along with generating units and calculates operating costs with and without energy storage, so that savings can be estimated. Typical weeks of hourly load data are used to make up a yearly load profile. For this study, the BESS power ranged from ``small`` to 300 MW (greater than the spinning reserve requirement). BESS storage time ranged from 1 to 8 hours duration (to cover the time-width of most peaks). Savings in operating costs were calculated for each of many sizes of MW capacity and duration. Graphs were plotted to enable the reader to readily see what size of BESS affords the greatest savings in operating costs.

Anderson, M.D. [Missouri Univ., Rolla, MO (United States). Dept. of Electrical Engineering; Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1996-10-01T23:59:59.000Z

72

Novel Low Cost, High Reliability Wind Turbine Drivetrain  

SciTech Connect

Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain�������¢����������������s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

2012-09-13T23:59:59.000Z

73

High Performance Metallic Materials for Cost Sensitive Applications  

Science Conference Proceedings (OSTI)

Cost Effective Synthesis, Processing and Applications of Light-Weight. Metallic Materials . ... Prospects for Cost Reduction of Titanium Via Electrolysis .

74

Low cost high performance generator technology program. Addendum report  

DOE Green Energy (OSTI)

The results of a system weight, efficiency, and size analysis which was performed on the 500 W(e) low cost high performance generator (LCHPG) are presented. The analysis was performed in an attempt to improve system efficiency and specific power over those presented in June 1975, System Design Study Report TES-SNSO-3-25. Heat source volume, configuration, and safety as related to the 500 W(e) LCHPG are also discussed. (RCK)

Not Available

1975-09-01T23:59:59.000Z

75

Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy  

DOE Green Energy (OSTI)

Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

2013-07-01T23:59:59.000Z

76

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices  

E-Print Network (OSTI)

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices

ECFA meeting

1966-01-01T23:59:59.000Z

77

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

2004-11-01T23:59:59.000Z

78

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

79

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate  

SciTech Connect

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

NONE

1995-09-01T23:59:59.000Z

80

Case studies of energy information systems and related technology: Operational practices, costs, and benefits  

SciTech Connect

Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

2003-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CRAD, Conduct of Operations - Oak Ridge National Laboratory High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Flux Isotope Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C...

82

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

SciTech Connect

This report addresses the results of detailed monitoring completed under Program Element 6 of Lawrence Berkeley National Laboratory's High Performance Commercial Building Systems (HPCBS) PIER program. The purpose of the Energy Simulations and Projected State-Wide Energy Savings project is to develop reasonable energy performance and cost models for high performance relocatable classrooms (RCs) across California climates. A key objective of the energy monitoring was to validate DOE2 simulations for comparison to initial DOE2 performance projections. The validated DOE2 model was then used to develop statewide savings projections by modeling base case and high performance RC operation in the 16 California climate zones. The primary objective of this phase of work was to utilize detailed field monitoring data to modify DOE2 inputs and generate performance projections based on a validated simulation model. Additional objectives include the following: (1) Obtain comparative performance data on base case and high performance HVAC systems to determine how they are operated, how they perform, and how the occupants respond to the advanced systems. This was accomplished by installing both HVAC systems side-by-side (i.e., one per module of a standard two module, 24 ft by 40 ft RC) on the study RCs and switching HVAC operating modes on a weekly basis. (2) Develop projected statewide energy and demand impacts based on the validated DOE2 model. (3) Develop cost effectiveness projections for the high performance HVAC system in the 16 California climate zones.

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, Wlliam J.

2003-12-01T23:59:59.000Z

83

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

84

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

85

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

Science Conference Proceedings (OSTI)

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

86

High Power Target Design and Operational Considerations  

E-Print Network (OSTI)

remote handling is a major driving requirement). #12;3 Managed by UT-Battelle for the U.S. Department systems: ­ Mercury loop operation. ­ Remote handling. · Nuclear data. #12;4 Managed by UT and Status Update Remote Handling System from SNS · SNS system ­ Robotic bridge crane ­ 20 ton capacity

McDonald, Kirk

87

High Temperature Line Focus Central Receiver System cost and performance objectives  

DOE Green Energy (OSTI)

DOE is currently funding a study to determine if recent advances in line focus technology provide this solar concept with an economic potential comparable to the first generation Point Focus central receiver system for generation of electricity. This report was prepared in support of this effort and has the following specific objectives: (1) Determine the High Temperature Line Focus System (HTLFS) performance and cost goals required for the system to be economically competitive with first generation PFS; (2) Identify HTLFS plant physical and operational characteristics; and (3) Determine HTLFS sensitivities to capital equipment cost and subsystem efficiencies. A simplified analytical model was developed to determine the annual electrical energy generating capabilities and the plant capacity factor while accounting for both the daily and annual variation in solar position. The PFS performance data were based on recent DOE studies, while the HTLFS performance was obtained from sources at the Jet Propulsion Laboratories and at the Stanford Research Institute. The performance models were combined with the standard DOE economic model to generate the annual cost of electricity in terms of mills/kWh. Both the PFS and HTLFS were analyzed with this model using identical performance, operational and economic ground rules. The performance and cost characteristics of both systems were determined and judgements are made on their comparative merits.

Coggi, J. V.

1978-11-16T23:59:59.000Z

88

SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP to someone by E-mail Share SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough System for...

89

The Development of low cost LiFePO4-based high power lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of low cost LiFePO4-based high power lithium-ion batteries Title The Development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal...

90

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

Science Conference Proceedings (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

91

Reducing Energy Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy expense is becoming increasingly dominant in the operating costs of high-performance computing (HPC) systems. At the same time, electricity prices vary significantly at...

92

SOLERAS - Solar-Powered Water Desalination Project at Yanbu: Forecasting models for operating and maintenance cost of the pilot plant  

Science Conference Proceedings (OSTI)

This study was conducted in cooperation with the Department of Industrial Engineering of King Abdulaziz University. The main objective of this study is to meet some of the goals of the Solar Energy Water Desalination Plant (SEWDP) plan in the area of economic evaluation. The first part of this project focused on describing the existing trend in the operation and maintenance (OandM) cost for the SOLERAS Solar Energy Water Desalination Plant in Yanbu. The second part used the information obtained on existing trends to find suitable forecasting models. These models, which are found here, are sensitive to changes in costs trends. Nevertheless, the study presented here has established the foundation for (OandM) costs estimating in the plant. The methodologies used in this study should continue as more data on operation and maintenance costs become available, because, in the long run, the trend in costs will help determine where cost effectiveness might be improved. 7 refs., 24 figs., 15 tabs.

Al-Idrisi, M.; Hamad, G.

1987-04-01T23:59:59.000Z

93

NNSA and Kazakhstan Complete Operation to Eliminate Highly Enriched...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flickr RSS Twitter YouTube NNSA and Kazakhstan Complete Operation to Eliminate Highly Enriched Uranium | National Nuclear Security Administration Our Mission Managing the Stockpile...

94

Homepage: Computing Operations & Support, HPC-2: High-Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Home SERVICES PRODUCTS Data Storage ES&H Management and Support High Performance Computing Operations Procurement Computer Support CONTACTS Group Leader (Acting) Cindy Martin...

95

Diagnostics and steady-state high power operation  

Science Conference Proceedings (OSTI)

TORE SUPRA has now been upgraded to handle high power plasmas for very long duration. It came back into operation in 2001

Clément Laviron; and the Tore Supra Team

2003-01-01T23:59:59.000Z

96

Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime  

SciTech Connect

The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost composite material that significantly improves luminaire efficiency, is able to withstand 50,000 hours or greater luminaire operation under expected LED system thermal and environmental operating extremes and meets the cost targets required to be an effective commercial solution for the Solid State Lighting industry. This project met most of the goals defined and contributed to the understanding of high reflectance, white coatings. Research under this program increased the understanding of coatings development using particle size reduction techniques and preparation of coating solutions with a broad range of particle types. The research explored scale-up of coating systems and generated understanding of processing required for high volume manufacturing applications. The work demonstrated how coating formulation and application technique can translate to material durability and LED system lifetime. The research also demonstrated improvements in lighting efficiency to be gained using high reflectance white coatings.

Teather, Eric

2013-02-15T23:59:59.000Z

97

Carbonate fuel cell monolith design for high power density and low cost  

SciTech Connect

Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

Allen, J.; Doyon, J.

1996-08-01T23:59:59.000Z

98

Inspection of the cost reduction incentive program at the Department of Energy`s Idaho Operations Office  

SciTech Connect

The purpose of this inspection was to review the economy and efficiency of Idaho`s Fiscal Year 1992 Cost Reduction Incentive Program, as well as to provide information to Departmental officials regarding any difficulties in administering these types of programs. The report is of the findings and recommendations. According to Idaho officials, their Cost Reduction Incentive Program was designed to motivate and provide incentives to management and operating contractors which would result in cost savings to the Department while increasing the efficiency and effectiveness of the contractors` operations. Idaho officials reported that over $22.5 million in costs were saved as a result of the Fiscal Year 1992 Cost Reduction Incentive Program. It was found that: (1) Idaho officials acknowledged that they did not attempt a full accounting records validation of the contractor`s submitted cost savings; (2) cost reduction incentive programs may result in conflicts of interest--contractors may defer work in order to receive an incentive fee; (3) the Department lacks written Department-wide policies and procedures--senior Procurement officials stated that the 1985 memorandum from the then-Assistant Secretary for Management and Administration was not the current policy of the Department; and (4) the Department already has the management and operating contract award fee provisions and value engineering program that can be used to provide financial rewards for contractors that operate cost effectively and efficiently.

Not Available

1994-07-07T23:59:59.000Z

99

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

DOE Green Energy (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

100

The Future Costs Less - High Temperature Materials from an ...  

Science Conference Proceedings (OSTI)

production of cheaper alloys with performance parity. Such cost reductions are important in a situation where raw materials account for approximately 30% of the  ...

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Comparison of high-speed rail and maglev system costs  

SciTech Connect

This paper compares the two modes of transportation, and notes important similarities and differences in the technologies and in how they can be implemented to their best advantage. Problems with making fair comparisons of the costs and benefits are discussed and cost breakdowns based on data reported in the literature are presented and discussed in detail. Cost data from proposed and actual construction projects around the world are summarized and discussed. Results from the National Maglev Initiative and the recently-published Commercial Feasibility Study are included in the discussion. Finally, estimates will be given of the expected cost differences between HSR and maglev systems implemented under simple and complex terrain conditions. The extent to which the added benefits of maglev technology offset the added costs is examined.

Rote, D.M.

1998-07-01T23:59:59.000Z

102

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.

Michael D. Durham

2004-10-01T23:59:59.000Z

103

Cost Quality Management Assessment for the Idaho Operations Office. Final report  

SciTech Connect

The Office of Engineering and Cost Management (EM-24) conducted a Cost Quality Management Assessment of EM-30 and EM-40 activities at the Idaho National Engineering Laboratory on Feb. 3--19, 1992 (Round I). The CQMA team assessed the cost and cost-related management activities at INEL. The Round II CQMA, conducted at INEL Sept. 19--29, 1994, reviewed EM-30, EM-40, EM-50, and EM-60 cost and cost-related management practices against performance objectives and criteria. Round II did not address indirect cost analysis. INEL has made measurable progress since Round I.

NONE

1995-06-01T23:59:59.000Z

104

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

105

Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost  

SciTech Connect

Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e.g., natural gas, coal, nuclear), preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation.

Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

2013-04-01T23:59:59.000Z

106

HIGH INTENSITY BEAM OPERATION OF THE BROOKHAVEN AGS  

SciTech Connect

For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. The intensity is presently limited by space charge effects at both Booster and AGS injection and transverse instabilities in the AGS.

ROSER,T.

1999-06-28T23:59:59.000Z

107

Low-Cost, High-Power Laser for Analytical and Other ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Low-Cost, High-Power Laser for Analytical and Other Applications. ...

108

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program...

109

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

110

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is...

111

Durability of Low Pt Fuel Cells Operating at High Power Density  

NLE Websites -- All DOE Office Websites (Extended Search)

SPIRE Program Kickoff SPIRE Program Kickoff Topic 3A. Cell Degradation Studies / Degradation Studies Durability of Low Pt Fuel Cells Operating at High Power Density US DOE Fuel Cell Projects Kickoff Meeting DOE Award: DE-EE0000469 October 1 st , 2009 Program Objectives The objective of this program is to study and identify strategies to assure durability of fuel cells designed to meet DOE cost targets. Technical Barriers Barrier Approach Strategy A. Durability Reinforced, Stabilized Membrane MEA Partner Durability-Enhanced Electrodes Electrocatalyst/MEA Partner Optimized Operating Conditions Parametric model & experimental studies B. Cost Low Pt Loadings (0.2 mg/cm 2 ) Electrocatalyst/MEA Partner High Power Density (>1.0W/cm 2 ) Open Flowfield Stack Metallic Stack Architecture Incumbent Derivative

112

CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

113

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

Michael D. Durham

2003-05-01T23:59:59.000Z

114

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS  

SciTech Connect

Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest that were varied included SO{sub 3} conditioning on/off, injection concentrations, and distribution spray patterns. The original test plan called for parametric testing of NORIT FGD carbon at 1, 3, and 10 lbs/MMacf. These injection concentrations were estimated based on results from the Pleasant Prairie tests that showed no additional mercury removal when injection concentrations were increased above 10 lbs/MMacf. The Brayton Point parametric test data indicated that higher injection concentrations would achieve higher removal efficiencies and should be tested. The test plan was altered to include testing at 20 lbs/MMacf. The first test at this higher rate showed very high removal across the second ESP (>80%). Unlike the ''ceiling'' phenomenon witnessed at Pleasant Prairie, increasing sorbent injection concentration resulted in further capture of vapor-phase mercury. The final phase of field-testing was a 10-day period of continuous injection of NORIT FGD carbon. During the first five days, the injection concentration was held at 10 lbs/MMacf, followed by nominally five days of testing at an injection concentration of 20 lbs/MMacf. The mercury removal, as measured by the semi-continuous emission monitors (S-CEM), varied between 78% and 95% during the 10 lbs/MMacf period and increased to >97% when the injection concentration was increased to 20 lbs/MMacf. During the long-term testing period, mercury measurements following EPA's draft Ontario Hydro method were conducted by TRC Environmental Corporation at both 10 and 20 lbs/MMacf test conditions. The Ontario Hydro data showed that the particulate mercury removal was similar between the two conditions of 10 or 20 lbs/MMacf and removal efficiencies were greater than 99%. Elemental mercury was not detected in any samples, so no conclusions as to its removal can be drawn. Removal of oxidized mercury, on the other hand, increased from 68% to 93% with the higher injection concentration. These removal rates agreed well with the S-CEM results.

Michael D. Durham

2005-03-17T23:59:59.000Z

115

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlling Capital Costs in Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers Preprint Shanti Pless and Paul Torcellini To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55264 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

116

Manufacturing Cost Analysis of Novel Steel/Concrete Composite Vessel for Stationary Storage of High-Pressure Hydrogen  

SciTech Connect

A novel, low-cost, high-pressure, steel/concrete composite vessel (SCCV) technology for stationary storage of compressed gaseous hydrogen (CGH2) is currently under development at Oak Ridge National Laboratory (ORNL) sponsored by DOE s Fuel Cell Technologies (FCT) Program. The SCCV technology uses commodity materials including structural steels and concretes for achieving cost, durability and safety requirements. In particular, the hydrogen embrittlement of high-strength low-alloy steels, a major safety and durability issue for current industry-standard pressure vessel technology, is mitigated through the use of a unique layered steel shell structure. This report presents the cost analysis results of the novel SCCV technology. A high-fidelity cost analysis tool is developed, based on a detailed, bottom-up approach which takes into account the material and labor costs involved in each of the vessel manufacturing steps. A thorough cost study is performed to understand the SCCV cost as a function of the key vessel design parameters, including hydrogen pressure, vessel dimensions, and load-carrying ratio. The major conclusions include: The SCCV technology can meet the technical/cost targets set forth by DOE s FCT Program for FY2015 and FY2020 for all three pressure levels (i.e., 160, 430 and 860 bar) relevant to the hydrogen production and delivery infrastructure. Further vessel cost reduction can benefit from the development of advanced vessel fabrication technologies such as the highly automated friction stir welding (FSW). The ORNL-patented multi-layer, multi-pass FSW can not only reduce the amount of labor needed for assembling and welding the layered steel vessel, but also make it possible to use even higher strength steels for further cost reductions and improvement of vessel structural integrity. It is noted the cost analysis results demonstrate the significant cost advantage attainable by the SCCV technology for different pressure levels when compared to the industry-standard pressure vessel technology. The real-world performance data of SCCV under actual operating conditions is imperative for this new technology to be adopted by the hydrogen industry for stationary storage of CGH2. Therefore, the key technology development effort in FY13 and subsequent years will be focused on the fabrication and testing of SCCV mock-ups. The static loading and fatigue data will be generated in rigorous testing of these mock-ups. Successful tests are crucial to enabling the near-term impact of the developed storage technology on the CGH2 storage market, a critical component of the hydrogen production and delivery infrastructure. In particular, the SCCV has high potential for widespread deployment in hydrogen fueling stations.

Feng, Zhili [ORNL; Zhang, Wei [ORNL; Wang, Jy-An John [ORNL; Ren, Fei [ORNL

2012-09-01T23:59:59.000Z

117

CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope

118

Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies  

E-Print Network (OSTI)

preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

Nixon, Hilary; Saphores, Jean-Daniel M

2007-01-01T23:59:59.000Z

119

Valuing Rail Transit: Comparing Capital and Operating Costs to Consumer Benefits  

E-Print Network (OSTI)

Estimating the effects of light rail transit on health caredesirability of urban rail transit systems. In Journal ofcapital costs : heavy rail and busway HOV lane. Federal

Guerra, Erick

2010-01-01T23:59:59.000Z

120

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Guide for Operating Lines at High Temperatures: 2013 Update  

Science Conference Proceedings (OSTI)

Faced with difficulties in acquiring rights-of-way and reduced capital budgets for new transmission lines, many electric energy companies are seeking ways to extract more capacity from existing systems. One option for increasing power flow is to operate overhead transmission lines at higher temperatures than originally designed, an inexpensive option that can be accomplished quickly. It is, however, important that utilities understand the short- and long-term effects of high operating temperatures ...

2013-12-09T23:59:59.000Z

122

ESS 2012 Peer Review - Low Cost, Manufacturable High Voltage Power Module for ESS - Brandon Passmore, APEI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 Design and Development of a Low Cost, Manufacturable High Voltage Power Module for Energy Storage Systems Phase I SBIR September 27, 2012 Brandon Passmore, PhD Sr. Electronics Packaging Research Engineer Email: bpassmo@apei.net Acknowledgements * I would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for technical support * I would also like to thank 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

123

HybridStore: A Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs  

SciTech Connect

Unlike the use of DRAM for caching or buffering, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into existing systems non-trivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given these trade-offs between HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the high-performance storage hierarchy. We design and evaluate such a hybrid system called HybridStore to provide: (a) HybridPlan: improved capacity planning technique to administrators with the overall goal of operating within cost-budgets and (b) HybridDyn: improved performance/lifetime guarantees during episodes of deviations from expected workloads through two novel mechanisms: write-regulation and fragmentation busting. As an illustrative example of HybridStore s ef cacy, HybridPlan is able to nd the most cost-effective storage con guration for a large scale workload of Microsoft Research and suggest one MLC SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM HDDs only. HybridDyn is able to reduce the average response time for an enterprise scale random-write dominant workload by about 71% as compared to a HDD-based system.

Kim, Youngjae [ORNL; Gupta, Aayush [Pennsylvania State University, University Park, PA; Urgaonkar, Bhuvan [Pennsylvania State University; Piotr, Berman [Pennsylvania State University, University Park, PA; Sivasubramaniam, Anand [Pennsylvania State University

2011-01-01T23:59:59.000Z

124

ESS 2012 Peer Review - Low Cost, High Performance and Long Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has...

125

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

Science Conference Proceedings (OSTI)

This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

Pless, S.; Torcellini, P.

2012-05-01T23:59:59.000Z

126

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

Wladek Walukiewicz, Joel Ager, and Kin Man Yu of Berkeley Lab have developed high-efficiency solar cells that leverage the well-established design and ...

127

High-Efficiency Photovoltaics at Thin Film Costs  

Time (Years) 0-+ 5. 10. 15. 20. 25. Opportunity. Technology. ... • 15 years renewable energy business development ... High-Efficiency Photovoltaics at ...

128

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-06-01T23:59:59.000Z

129

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-01-01T23:59:59.000Z

130

Low cost high power GaSB photovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a thermophotovoltaics (TPV) system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; She Hui; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

131

Low cost high power GaSb thermophotovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a TPV system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

132

Enabling multi-cation electrolyte usage in LMBs for lower cost and operating temperature  

E-Print Network (OSTI)

Alloy anodes form a promising path to the use of multi-cation electrolytes by increasing chemical stability. In this study, a lithium-magnesium alloy anode was developed such that lower cost and lower melting temperature ...

Blanchard, Allan (Allan B.)

2013-01-01T23:59:59.000Z

133

Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

2012-03-31T23:59:59.000Z

134

Novel High Capacity Oligomers for Low Cost CO2 Capture  

SciTech Connect

The novel concept of using a molecule possessing both physi-sorbing and chemi-sorbing properties for post-combustion CO2 capture was explored and mixtures of aminosilicones and hydroxyterminated polyethers had the best performance characteristics of materials examined. The optimal solvent composition was a 60/40 blend of GAP-1/TEG and a continuous bench-top absorption/desorption unit was constructed and operated. Plant and process models were developed for this new system based on an existing coal-fired power plant and data from the laboratory experiments were used to calculate an overall COE for a coal-fired power plant fitted with this capture technology. A reduction in energy penalty, from 30% to 18%, versus an optimized 30% MEA capture system was calculated with a concomitant COE decrease from 73% to 41% for the new aminosilicone solvent system.

Robert Perry; Teresa Grocela-Rocha; Michael O'Brien; Sarah Genovese; Benjamin Wood; Larry Lewis; Hubert Lam; Malgorzata Rubinsztajn; Grigorii Soleveichik; Sergei Kniajanski

2010-09-30T23:59:59.000Z

135

High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)  

DOE Green Energy (OSTI)

The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-12-01T23:59:59.000Z

136

Low cost routes to high purity silicon and derivatives thereof  

DOE Patents (OSTI)

The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

2013-07-02T23:59:59.000Z

137

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids UCLA logo University of California Berkeley logo Yale logo Four graphics in a grid that represent the sputtering technique being used in this project. Combinatorial screening and high throughput characterization of materials will be used to identify, develop, and demonstrate metal alloys that meet the MURI HOT Fluids targets suitable for CSP applications. The University of California, Los Angeles, the University of California, Berkeley, and Yale University The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

138

Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers  

SciTech Connect

Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

Evans, Neal D [ORNL; Maziasz, Philip J [ORNL; Shingledecker, John P [ORNL; Pint, Bruce A [ORNL; Yamamoto, Yukinori [ORNL

2007-01-01T23:59:59.000Z

139

The interplay between risk attitudes and low probability, high cost outcomes in climate policy analysis  

Science Conference Proceedings (OSTI)

Assessing the value of climate change mitigation requires an analysis framework that can account for society's attitude toward the risk of uncertain outcomes, especially those with low probability and high cost. For largely historical and computational ... Keywords: Cost-benefit analysis, DICE, Decision theory, Dismal theorem, Economic disaster, Integrated assessment model (IAM)

Michael D. Gerst; Richard B. Howarth; Mark E. Borsuk

2013-03-01T23:59:59.000Z

140

Operational Radiation Protection in High-Energy Physics Accelerators  

SciTech Connect

An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

2012-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors  

DOE Green Energy (OSTI)

The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

2003-09-26T23:59:59.000Z

142

Lifecycle Prognostics Architecture for Selected High-Cost Active Components  

Science Conference Proceedings (OSTI)

There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure, and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.

N. Lybeck; B. Pham; M. Tawfik; J. B. Coble; R. M. Meyer; P. Ramuhalli; L. J. Bond

2011-08-01T23:59:59.000Z

143

Coal flow aids reduce coke plant operating costs and improve production rates  

Science Conference Proceedings (OSTI)

Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

2005-06-01T23:59:59.000Z

144

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

145

The cost of agriculturally based greenhouse gas offsets in the Texas High Plains  

E-Print Network (OSTI)

The broad objective of this thesis involves investigation of the role agriculture might play in a society wide greenhouse gas emissions reduction effort. Specifically, the breakeven price for carbon emission offsets is calculated for agriculturally based emission reducing practices. The practices investigated in the Texas High Plains involve reduced tillage use, reduced fallow use, reduced crop fertilization, cropland conversion to grassland, feedlot enteric fermentation management and digester based dairy manure handling. Costs of emission reductions were calculated at the producer level. The calculated offset prices are classified into four cost categories. They are: negative cost, low cost (less than $20 per ton of carbon saved), moderate cost ($20 through $100 per ton of carbon saved), and high cost (over $100 for tons of carbon saved). Negative cost implies that farmers could make money and reduce emissions by moving to alternative practices even without any carbon payments. Alternatives in the positive cost categories need compensation to induce farmers to switch to practices that sequester more carbon. All fallow dryland crop practices, dryland and irrigated cotton zero tillage, dryland and irrigated wheat zero tillage, irrigated corn zero tillage, cotton irrigated nitrogen use reduction under minimum tillage and dryland pasture for all systems, and anaerobic lagoon complete mix and plug flow systems fall in the negative cost category. Dryland and irrigated wheat under minimum tillage are found to be in the low cost category. Cotton dryland under minimum tillage and cotton irrigated with nitrogen use reduction under zero tillage fell into the moderate cost class. Both corn and cotton irrigated minimum tillage are found to be in the high cost category. This study only considers the producer foregone net income less fixed costs as the only cost incurred in switching to an alternative sequestering practice. More costs such as learning and risk should probably be included. This limitation along with other constraints such as use of short run budget data, lack of availability and reliability of local budgets, overlooking any market effects, and lack of treatment of costs incurred in selling carbon offsets to buyers are limitations and portend future work.

Chandrasena, Rajapakshage Inoka Ilmi

2003-12-01T23:59:59.000Z

146

Low Cost High Performance Generator Technology Program. Volume 5. Heat Pipe Topical  

DOE Green Energy (OSTI)

Research progress towards the development of a heat pipe for use in the Low Cost High Performance Thermoelectric Generator Program is reported for the period May 15, 1975 through June 1975. (TFD)

Not Available

1975-07-01T23:59:59.000Z

147

NETL: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture Project No.: DE-FE0000469 TDA Research (TDA) is testing and validating the technical and economic...

148

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

149

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

150

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

151

Processes for producing low cost, high efficiency silicon solar cells  

SciTech Connect

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

152

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

153

Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators  

SciTech Connect

REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

None

2012-01-01T23:59:59.000Z

154

Energy and cost analysis of commercial building shell characteristics and operating schedules  

SciTech Connect

Eight prototypical commercial buildings were considered, and estimates of the energy savings realized from various conservation measures are presented. For each of four building types (hospital, office, educational, and retail) two building designs representative of both pre- and post-embargo construction were analyzed. The ongoing program at Oak Ridge National Laboratory aims to develop an engineering-economic model to forecast annual energy use in the US commercial sector. This particular study was undertaken to define relationships among energy-conservation measures, energy savings, and capital costs. Buildings were modeled and analyzed using NECAP (NASA Energy-Cost Analysis Program) based on hourly weather data in Kansas City (selected as typical of the entire country). Energy-conservation measures considered include night and weekend thermostat setback, reduction in ventilation, reduction in lighting, window alterations (shading, dual panes, and size reduction), economizer cycle, reset of supply temperature based on zone demand, and improvements in equipment efficiencies. Results indicate energy savings as a function of the capital cost of each energy-conservation measure for each of the eight buildings considered.

Johnson, W.S.; Pierce, F.E.

1980-04-01T23:59:59.000Z

155

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

156

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

157

Intermediate-scale high-solids anaerobic digestion system operational development  

DOE Green Energy (OSTI)

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

Rivard, C.J.

1995-02-01T23:59:59.000Z

158

Design and Operation of Membrane Microcalorimeters for Thermal Screening of Highly Energetic Materials  

E-Print Network (OSTI)

Following several terrorist attacks that have occurred during this decade, there is an urgent need to develop new technologies for the detection of highly energetic materials that can represent an explosive hazard. In an effort to contribute to the development of these new technologies, this work presents the design aspects of a chip-scale calorimeter that can be used to detect an explosive material by calorimetric methods. The aim of this work is to apply what has been done in the area of chip-scale calorimetry to the screening of highly energetic materials. The prototypes presented here were designed using computer assisted design and finite element analysis tools. The design parameters were set to satisfy the requirements of a sensor that can be integrated into a portable system (handheld) for field applications. The design approach consisted of developing a sensor with thick silicon membranes that can hold micro-size samples and that can operate at high temperatures, while keeping the cost of the sensor low. Contrary to other high resolution systems based on thin-film membranes, our prototypes exhibit a contribution from addenda that is comparable to that from the sample, and hence they have lower sensitivity. However, using thick membranes offers the advantage of producing sensors strong enough for this application and that have significantly lower cost. Once the prototypes were designed, the fabrication was performed using standard microfabrication techniques. Finally, the operation of our prototypes was demonstrated by conducting thermal analysis of different liquid and solid samples.

Carreto Vazquez, Victor 1976-

2010-12-01T23:59:59.000Z

159

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

160

TRANSFORMERLESS OPERATION OF DIII-D WITH HIGH BOOTSTRAP FRACTION  

SciTech Connect

OAK-B135 The authors have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges they have maintained stationary (or slowly improving) conditions for > 2.2 s at {beta}{sub N} {approx} {beta}{sub p} {approx} 2.8. Significant current overdrive, with dI/dt > 50 kA/s and zero or negative voltage, is sustained for over 0.7 s. The overdrive condition is usually ended with the appearance of MHD activity, which alters the profiles and reduces the bootstrap current. Characteristically these plasmas have 65%-80% bootstrap current, 25%-30% NBCD, and 5%-10% ECCD. Fully noninductive operation is essential for steady-state tokamaks. For efficient operation, the bootstrap current fraction must be close to 100%, allowing for a small additional ({approx} 10%) external current drive capability to be used for control. In such plasmas the current and pressure profiles are rightly coupled because J(r) is entirely determined by p(r) (or more accurately by the kinetic profiles). The pressure gradient in turn is determined by transport coefficients which depend on the poloidal field profile.

POLITZER,PA; HYATT,AW; LUCE,TC; MAHDAVI,MA; MURAKAMI,M; PERKINS,FW; PRATER,R; TURNBULL,AD; CASPER,TA; FERRON,JR; JAYAKUMAR,RJ; LAHAYE,RJ; LAZARUS,EA; PETTY,CC; WADE,MR

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated Chiller System Reduce Building Operation and Maintenance Costs in Cold Climates  

E-Print Network (OSTI)

Although water-cooled chillers are more energy efficient than air-cooled chillers, a majority of chilled water systems use air-cooled chillers. In cold weather climates, air-cooled chillers are capable of functioning in low ambient temperatures with few operational concerns, where as water-cooled chiller systems must be equipped to prevent cooling tower freezing. The integrated chiller system attempts to take advantage of each chiller's strengths and eliminate any cold weather operational concerns. An integrated chiller system includes a cooling tower and air-cooled condenser. During the summer, both the cooling tower and air condenser can be operated. In cold weather, the cooling tower is drained and the air condenser is used to dissipate the heat of the cooling system. The integrated chiller system eliminates the water storage tank and frequent charging and discharging of the cooling tower system. It reduces the size of the mechanical room and simplifies the operation of the system. The integrated chiller system is most suitable in climates where the mechanical cooling is required on a short-term basis during cold weather periods. This paper presents the system configuration, system design, optimal control, and energy impact. An example is used to demonstrate the design concepts of the integrated chiller systems.

Sheets, N.; Liu, M.

2003-01-01T23:59:59.000Z

162

High beta plasma operation in a toroidal plasma producing device  

DOE Patents (OSTI)

A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

Clarke, John F. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

163

16.2 - Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 16.2 (July 2012) Chapter 16.2 (July 2012) 1 Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non- Management and Operating Contracts [Reference: FAR 6, FAR 16, FAR 22, FAR 32, FAR 46, DEAR 915.404-4-72, DEAR 916.405-2, DEAR 970.1504-1, and Acquisition Guide Chapter 16.1] Overview The policy of the DOE is to maximize contractor performance and to align costs with performance through the use of performance-based management as a strategic contract management tool to plan for, manage, and evaluate contractor performance. An important function of contract administration is the ability, or the opportunity, to manage the environment within which the contracted effort is proceeding and, most importantly, to facilitate adjustments to that effort to meet the demand and changes as

164

Investigation of a Multiphase Twin-screw Pump Operating at High Gas Volume Fractions  

E-Print Network (OSTI)

The use of twin-screw pumps for moving fluids is not new technology but its application to wet gas compression (high gas volume fraction [GVF]) is still considered relatively new. There are many advantages for using twin-screw pumps for oil field applications; three of the immediate improvements include reducing hardware costs, reducing well bore pressure, and producing a pressure boost to move the product to a central collection facility. While there are many advantages to using twin-screw pumps in wet gas applications, there are some problems that have been encountered while operating at high GVFs. When operating at high GVF, over 95 percent twin-screw pumps experience a severe loss of efficiency and an increase of operating temperature. A common way to increase the efficiency while operating in the high GVF range includes adding a liquid recirculation system where a portion of liquid is stored downstream of the pump and is injected into the pump inlet. These systems lower the effective GVF of the multiphase fluid below 95 percent in order to increase the pump efficiency. The first objective is to characterize the performance of a twin-screw pump fitted with a liquid recirculation system while operating under high GVF conditions. The second objective is to investigate the transient heat rise associated with high GVF operation. While traditional twin-screw pumps can be fitted with a liquid recirculation system to allow them to operate under high GVF conditions the pumps themselves are not optimized for wet gas compression and still suffer performance penalties. The results of this investigation show that the liquid recirculation system can allow the pump to operate under high GVF but the heat added to the system reduces the systems efficiency. Without a method of removing the heat generated in the pumping process the pump will not run at its optimal efficiency. The following investigation provides recommendations for further research in area of multiphase pumping using twin-screw pumps based on the characterization and transient studies provided in this thesis.

Kroupa, Ryan Daniel

2011-05-01T23:59:59.000Z

165

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

166

An examination of the consequences in high consequence operations  

SciTech Connect

Traditional definitions of risk partition concern into the probability of occurrence and the consequence of the event. Most safety analyses focus on probabilistic assessment of an occurrence and the amount of some measurable result of the event, but the real meaning of the ``consequence`` partition is usually afforded less attention. In particular, acceptable social consequence (consequence accepted by the public) frequently differs significantly from the metrics commonly proposed by risk analysts. This paper addresses some of the important system development issues associated with consequences, focusing on ``high consequence operations safety.``

Spray, S.D.; Cooper, J.A.

1996-06-01T23:59:59.000Z

167

High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology  

Science Conference Proceedings (OSTI)

This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

Bernacki, Bruce E.

2012-10-05T23:59:59.000Z

168

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

be manufactured having cement replacement with Illinois coal ashes and their blends in the range of 0 to 60LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS Investigators technology for high-volume applications of Illinois coal combustion by-products generated by using both

Wisconsin-Milwaukee, University of

169

HPS replacement project drives garage costs down. [High-pressure sodium luminaires  

SciTech Connect

The high cost of energy had forced a four-story New York airport parking garage to turn off almost half its low bay lights, leaving it gloomy and vandal-prone. By replacing the original lamps with high-pressure sodium (HPS) luminaires, the garage brightened its image with 2400 fewer fixtures and netted an annual energy savings of $60,000.

Not Available

1985-09-01T23:59:59.000Z

170

The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks.  

E-Print Network (OSTI)

electrolyte reservoirs for increased long-term baseline stability, and larger integral batteries allowing operation for in excess of 3 months without intervention. In this case sensors were sealed with rubber O-rings on the bottom of the enclosure behind a... The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. M. I. Mead1*, O.A.M. Popoola1, G. B. Stewart1, P. Landshoff3, M. Calleja2, M. Hayes2, J. J. Baldovi1, T. F. Hodgson1, M. W. McLeod1, J. Dicks4...

Mead, M I; Popoola, O A M; Stewart, G B; Landshoff, P; Calleja, M; Hayes, M; Baldovi, J J; Hodgson, T F; McLeod, M W; Dicks, J; Lewis, A; Cohen, J; Baron, R; Saffell, J R; Jones, R L

171

Studies of Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

172

Operating high temperature (1000/sup 0/C) electrolysis demonstration unit  

SciTech Connect

Phase I of the BNL Fusion Synfuel Demonstration Program has been the successful construction and demonstration of a 100-W electrically-heated, high-temperature electrolysis unit operating at a temperature of 1000/sup 0/C. The high-temperature electrolyzer demonstration unit consists of 34 yttria-stabilized zirconia tubes contained in a 15-cm (od), 30-cm long INCONEL pressure vessel. The tubes are 25-cm long (active length), 0.64-cm (od), and coated on the inside with platinum to form the oxygen electrode and coated on the outside with nickel to form the hydrogen electrode. The 1000/sup 0/C steam is raised by electrically heating water. The system is designed to produce approx. 6 cc/s of hydrogen.

Horn, F.L.; Powell, J.R.; Fillo, J.A.

1981-01-01T23:59:59.000Z

173

R&D on an Ultra-Thin Composite Membrane for High-Temperature Operation in PEMFC. Final Report  

DOE Green Energy (OSTI)

FuelCell Energy developed a novel high-temperature proton exchange membrane for PEM fuel cells for building applications. The laboratory PEM fuel cell successfully operated at 100-400{supdegree}C and low relative humidity to improve CO tolerance, mitigate water and thermal management challenges, and reduce membrane cost. The developed high-temperature membrane has successfully completed 500h 120C endurance testing.

Yuh, C.-Y.

2003-10-06T23:59:59.000Z

174

Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

Rivard, C. J.

1995-02-01T23:59:59.000Z

175

Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines: July 2, 2004 -- June 30, 2008  

SciTech Connect

The report describes the operatons and maintenance cost model developed by Global Energy Concepts under contract to NREL to estimate the O&M costs for commercial wind turbine generator facilities.

Poore, R.

2008-01-01T23:59:59.000Z

176

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

177

Include in Column B cost of all composition produced by plant. Include in Column C cost of all operations not involving printing (Col. A)  

E-Print Network (OSTI)

occupied (whether Government-owned or rented), utilities, etc. (14.5 cents per month per square foot. Amount spent for rental of equipment Total cost (Use col.A total from this line to compute cost per 1 units produced in plant this fiscal quarter Total units produced in plant this fiscal year Cost per 1

US Army Corps of Engineers

178

Energy Efficiency in Multi-Hop CDMA Networks: a Game Theoretic Analysis Considering Operating Costs  

E-Print Network (OSTI)

A game-theoretic analysis is used to study the effects of receiver choice and transmit power on the energy efficiency of multi-hop networks in which the nodes communicate using Direct-Sequence Code Division Multiple Access (DS-CDMA). A Nash equilibrium of the game in which the network nodes can choose their receivers as well as their transmit powers to maximize the total number of bits they transmit per unit of energy spent (including both transmit and operating energy) is derived. The energy efficiencies resulting from the use of different linear multiuser receivers in this context are compared for the non-cooperative game. Significant gains in energy efficiency are observed when multiuser receivers, particularly the linear minimum mean-square error (MMSE) receiver, are used instead of conventional matched filter receivers.

Betz, Sharon

2008-01-01T23:59:59.000Z

179

Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider  

E-Print Network (OSTI)

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

Lebrun, Philippe

2010-01-01T23:59:59.000Z

180

Driving Down HB-LED Costs: Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth  

SciTech Connect

The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LEDâ??s into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield. Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

William Quinn

2012-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

182

Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity .  

E-Print Network (OSTI)

??The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to… (more)

Kang, Moon Hee

2013-01-01T23:59:59.000Z

183

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

184

Materials cost evaluation report for high-power Li-ion batteries.  

SciTech Connect

The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be seen from the results of this materials cost study, a cell chemistry based on the use of a LiMn{sub 2}O{sub 4} cathode material is lowest-cost and meets our battery-level material cost goal of <$250 for a 25-kW minimum-power-assist HEV battery. A major contributing factor is the high-rate capability of this material, which allows one to design a lower-capacity cell to meet the battery-level power and energy requirements. This reduces the quantities of the other materials needed to produce a 25-kW minimum-power-assist HEV battery. The same is true for the 40-kW maximum-power-assist HEV battery. Additionally, the LiMn{sub 2}O{sub 4} cathode is much more thermally and chemically stable than the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} type cathode, which should enhance inherent safety and extend calendar life (if the LiMn{sub 2}O{sub 4} cathode can be stabilized against dissolution via HF attack). Therefore, we recommend that the FreedomCAR Partnership focus its research and development efforts on developing this type of low-cost high-power lithium-ion cell chemistry. Details supporting this recommendation are provided in the body of this report.

Henriksen, G. L.; Amine, K.; Liu, J.

2003-01-10T23:59:59.000Z

185

Materials cost evaluation report for high-power Li-ion batteries.  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be seen from the results of this materials cost study, a cell chemistry based on the use of a LiMn{sub 2}O{sub 4} cathode material is lowest-cost and meets our battery-level material cost goal of battery. A major contributing factor is the high-rate capability of this material, which allows one to design a lower-capacity cell to meet the battery-level power and energy requirements. This reduces the quantities of the other materials needed to produce a 25-kW minimum-power-assist HEV battery. The same is true for the 40-kW maximum-power-assist HEV battery. Additionally, the LiMn{sub 2}O{sub 4} cathode is much more thermally and chemically stable than the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} type cathode, which should enhance inherent safety and extend calendar life (if the LiMn{sub 2}O{sub 4} cathode can be stabilized against dissolution via HF attack). Therefore, we recommend that the FreedomCAR Partnership focus its research and development efforts on developing this type of low-cost high-power lithium-ion cell chemistry. Details supporting this recommendation are provided in the body of this report.

Henriksen, G. L.; Amine, K.; Liu, J.

2003-01-10T23:59:59.000Z

186

An analysis of the impacts of economic incentive programs on commercial nuclear power plant operations and maintenance costs  

SciTech Connect

Operations and Maintenance (O and M) expenditures by nuclear power plant owner/operators possess a very logical and vital link in considerations relating to plant safety and reliability. Since the determinants of O and M outlays are considerable and varied, the potential linkages to plant safety, both directly and indirectly, can likewise be substantial. One significant issue before the US Nuclear Regulatory Commission is the impact, if any, on O and M spending from state programs that attempt to improve plant operating performance, and how and to what extent these programs may affect plant safety and pose public health risks. The purpose of this study is to examine the role and degree of impacts from state promulgated economic incentive programs (EIPs) on plant O and M spending. A multivariate regression framework is specified, and the model is estimated on industry data over a five-year period, 1986--1990. Explanatory variables for the O and M spending model include plant characteristics, regulatory effects, financial strength factors, replacement power costs, and the performance incentive programs. EIPs are found to have statistically significant effects on plant O and M outlays, albeit small in relation to other factors. Moreover, the results indicate that the relatively financially weaker firms are more sensitive in their O and M spending to the presence of such programs. Formulations for linking spending behavior and EIPs with plant safety performance remains for future analysis.

Kavanaugh, D.C.; Monroe, W.H. [Pacific Northwest Lab., Richland, WA (United States); Wood, R.S. [Nuclear Regulatory Commission, Washington, DC (United States)

1996-02-01T23:59:59.000Z

187

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs  

E-Print Network (OSTI)

Questions & Answers Solicitation to Address High Purchase Costs and Disposal Impacts of PEV Battery Packs PON12501 1. Relating to both Research Topic Areas, at what stage of the research does the Energ Commission envision a battery manufacturer needing to be involved? y The Energy

188

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

189

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

190

Proceedings of the High Consequence Operations Safety Symposium  

SciTech Connect

Many organizations face high consequence safety situations where unwanted stimuli due to accidents, catastrophes, or inadvertent human actions can cause disasters. In order to improve interaction among such organizations and to build on each others` experience, preventive approaches, and assessment techniques, the High Consequence Operations Safety Symposium was held July 12--14, 1994 at Sandia National Laboratories, Albuquerque, New Mexico. The symposium was conceived by Dick Schwoebel, Director of the SNL Surety Assessment Center. Stan Spray, Manager of the SNL System Studies Department, planned strategy and made many of the decisions necessary to bring the concept to fruition on a short time scale. Angela Campos and about 60 people worked on the nearly limitless implementation and administrative details. The initial symposium (future symposia are planned) was structured around 21 plenary presentations in five methodology-oriented sessions, along with a welcome address, a keynote address, and a banquet address. Poster papers addressing the individual session themes were available before and after the plenary sessions and during breaks.

Not Available

1994-12-01T23:59:59.000Z

191

Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies  

E-Print Network (OSTI)

oil and oil filter reimbursement checks, so check processing costsCosts of remediating underground storage tank leaks exceed benefits. Oil andOil Companies Pay US EPA to Settle Santa Monica MTBE Cleanup Costs,

Nixon, Hilary; Saphores, Jean-Daniel

2007-01-01T23:59:59.000Z

192

Operational streamlining in a high-throughput genome sequencing center  

E-Print Network (OSTI)

Advances in medicine rely on accurate data that is rapidly provided. It is therefore critical for the Genome Sequencing platform of the Broad Institute of MIT and Harvard to continually strive to reduce cost, improve ...

Person, Kerry P. (Kerry Patrick)

2006-01-01T23:59:59.000Z

193

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

194

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

195

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network (OSTI)

Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost. For small plants, it is quite possible that a decrease in labor could result in an increase in electric demand and cost or vice versa. In this paper two cases are presented which highlight the dependence of one on other.

Agrawal, S.; Jensen, R.

1998-04-01T23:59:59.000Z

196

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

197

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

E-Print Network (OSTI)

hybrid incremental cost estimates were developed based onsizing . Final incremental cost estimates ranged from $1,786Energy Savings Estimates and Cost Benefit Calculations for

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

2003-01-01T23:59:59.000Z

198

High-sensitivity, and cost-effective system for infrared imaging of concealed objects in dynamic mode.  

Science Conference Proceedings (OSTI)

Novel, cost-efficient, and highly-sensitive IR imaging systems play an important role in homeland security functions. Technical limitations in the areas of sensitivity, contrast ratio, bandwidth and cost continue to constrain imaging capabilities. We have designed and prototyped a compact computer-piloted high sensitivity infrared imaging system. The device consists of infrared optics, cryostat, low-noise pre-amplifier, Analog-to-Digital hardware, feedback electronics, and unique image processing software. Important advantages of the developed system are: (i) Eight electronic channels are available for simultaneous registration of IR and visible images in multiple spectral ranges, (ii) Capability of real-time analysis such as comparing the 'sensed' image with 'reference' images from a database, (iii) High accuracy temperature measurement of multiple points on the image by referencing the radiation intensity from the object to a black body model, (iv) Image generation by real-time integration of images from multiple sensors operating from the visible to the terahertz range. The device was tested with a liquid-nitrogen-cooled, single-pixel HgCdTe detector for imaging in 8-12 microns range. The demonstrated examples of infrared imaging of concealed objects in static and dynamic modes include a hammer (metal head and wooden handle), plastic imitator of handguns hidden under clothes, powder in an envelope, and revealing complex wall structures under decorative plaster.

Gordiyenko, E.; Yefremenko, V.; Pearson, J.; Bader, S.; Novosad, V.; Materials Science Division

2005-08-05T23:59:59.000Z

199

THE COST OF MAINTENANCE TRANSFER UNDER LOAD TAP OF THE TRANSFORMERS POWER OF EXTRA HIGH VOLTAGE THE ELETRONORTE.  

E-Print Network (OSTI)

??In this work a methodology for reduction of maintenance cost in the on-load tap changers (OLTC) of extra high voltage is proposed. The methodology is… (more)

RAIMUNDO NONATO ROSA FILHO

2005-01-01T23:59:59.000Z

200

SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

High Operating Temperature Liquid High Operating Temperature Liquid Metal Heat Transfer Fluids to someone by E-mail Share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Facebook Tweet about SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Twitter Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Google Bookmark SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Delicious Rank SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on Digg Find More places to share SunShot Initiative: High Operating Temperature Liquid Metal Heat Transfer Fluids on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.  

SciTech Connect

For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

202

Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems  

E-Print Network (OSTI)

Operator-splitting finite element algorithms for computations of high-dimensional parabolic t i c l e i n f o Keywords: Operator-splitting method Finite element method Parabolic equations High-dimensional problems a b s t r a c t An operator-splitting finite element method for solving high-dimensional parabolic

Ganesan, Sashikumaar

203

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

204

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

Contiguous Platinum Monolayer Oxygen Reduction Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory Yang Shao-Horn Massachusetts Institute of Technology Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells Radoslav Adzic Brookhaven National Laboratory DOE Projects Kickoff Meeting September 30 , 2009 2 Project Overview Project Overview 1. Objectives: Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer Pt monolayer on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and

205

Low Wind Speed Technology Phase II: Development of an Operations and Maintenance Cost Model for LWST; Global Energy Concepts  

SciTech Connect

This fact sheet describes a subcontract with Global Energy Concepts to evaluate real-world data on O&M costs and to develop a working model to describe these costs for low wind speed sites.

Not Available

2006-03-01T23:59:59.000Z

206

An anisotropic integral operator in high temperature superconductivity  

E-Print Network (OSTI)

A simplified model in superconductivity theory studied by P. Krotkov and A. Chubukov \\cite{KC1,KC2} led to an integral operator $K$ -- see (1), (2). They guessed that the equation $E_0(a,T)=1$ where $E_0$ is the largest eigenvalue of the operator $K$ has a solution $T(a)=1-\\tau(a)$ with $\\tau (a) \\sim a^{2/5}$ when $a$ goes to 0. $\\tau(a)$ imitates the shift of critical (instability) temperature. We give a rigorous analysis of an anisotropic integral operator $K$ and prove the asymptotic ($*$) -- see Theorem 8 and Proposition 10. Additive Uncertainty Principle (of Landau-Pollack-Slepian [SP], \\cite{LP1,LP2}) plays important role in this analysis.

Boris Mityagin

2008-03-21T23:59:59.000Z

207

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

E-Print Network (OSTI)

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner’s proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project’s process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, J.; Sutherland, K.; Chandra, S.; Schleith, K.

2010-08-01T23:59:59.000Z

208

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

209

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

SciTech Connect

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner's proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project's process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, Janet; Sutherland, Karen; Schleith, Kevin; Chandra, Subrato

2010-08-27T23:59:59.000Z

210

Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels  

SciTech Connect

This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

1994-11-01T23:59:59.000Z

211

High Speed Trains for California (Volume II: Detailed Segment Descriptions, Cost Estimates, and Travel Time Calculations)  

E-Print Network (OSTI)

~ o~ CalSpeed:Capital Cost Estimates OAKLAND-RICHMOND (SP r/minutes). CalSpeed:Capital Cost Estimates HERCULES-FAIRFIELDCalSpeed:Capital Cost Estimates GRAPEVINE:5.0% ALTERNATIVE

Hall, Peter; Leavitt, Dan; Vaca, Erin

1992-01-01T23:59:59.000Z

212

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

213

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

214

High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results  

SciTech Connect

A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.

J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

2012-09-01T23:59:59.000Z

215

Information on the cost of plutonium needed to operate the Clinch River Breeder Reactor for its 5-year demonstration  

SciTech Connect

Requested information is presented concerning the background on the CRBR Project and its plutonium requirements, and analysis of sources and cost of acquiring plutonium for CRBR fuel.

Not Available

1982-09-17T23:59:59.000Z

216

Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture  

Science Conference Proceedings (OSTI)

This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF-ternary catalyst materials for higher performance, documents enhanced durability under multiple types of accelerated tests by factors of 10x to 50x over conventional catalysts, & demonstrates their performance & durability in large area MEA FC stack tests. The PEMFC ion exchange membrane is the other key functioning FC component on which work was completed. While improvements have been made to standard PFSA type membranes, they still require humidification to achieve adequate proton conductivity & so their use at elevated temperatures & drier operating conditions is limited. Membranes with increased durability & conductivity under hotter, drier conditions allow the use of FC's in many applications, particularly automotive. Towards this goal, 2 approaches were pursued in the work reported here. The first part was designed for immediate application at drier conditions & operating temperatures between 85C and 120C, focused on the development of a membrane based on a low equivalent weight (EW), perfluorinated sulfonic acid (PFSA) ionomer for good ionic conductivity at low humidification, & the use of stabilizing additives for improved oxidative stability. The ionomer used was developed at 3M & has a shorter acid containing side-chain than the Nafion™ ionomer. This ionomer also has a higher T? & higher modulus than that of a Nafion™ membrane of the same EW, allowing lower EW ionomers to be prepared with very good mechanical properties. In addition, more than 50 stabilizing additives were evaluated in ex-situ, Fenton’s tests & more than 10 of these were incorporated into membranes & evaluated in accelerated FC tests. This work led to thin (25-30 micron) cast membranes with substantially improved conductivity & durability under simulated automotive conditions, compared to membranes currently available. The 2nd body of membrane work was focused on developing & characterizing 3 approaches for making new PEM's for operation under hot (>120C) & dry (dew point with enhanced proton conductivity, polymer matrices swollen with lo

Debe, Mark K.

2007-09-30T23:59:59.000Z

217

Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture  

SciTech Connect

This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF-ternary catalyst materials for higher performance, documents enhanced durability under multiple types of accelerated tests by factors of 10x to 50x over conventional catalysts, & demonstrates their performance & durability in large area MEA FC stack tests. The PEMFC ion exchange membrane is the other key functioning FC component on which work was completed. While improvements have been made to standard PFSA type membranes, they still require humidification to achieve adequate proton conductivity & so their use at elevated temperatures & drier operating conditions is limited. Membranes with increased durability & conductivity under hotter, drier conditions allow the use of FC's in many applications, particularly automotive. Towards this goal, 2 approaches were pursued in the work reported here. The first part was designed for immediate application at drier conditions & operating temperatures between 85C and 120C, focused on the development of a membrane based on a low equivalent weight (EW), perfluorinated sulfonic acid (PFSA) ionomer for good ionic conductivity at low humidification, & the use of stabilizing additives for improved oxidative stability. The ionomer used was developed at 3M & has a shorter acid containing side-chain than the Nafion™ ionomer. This ionomer also has a higher T? & higher modulus than that of a Nafion™ membrane of the same EW, allowing lower EW ionomers to be prepared with very good mechanical properties. In addition, more than 50 stabilizing additives were evaluated in ex-situ, Fenton’s tests & more than 10 of these were incorporated into membranes & evaluated in accelerated FC tests. This work led to thin (25-30 micron) cast membranes with substantially improved conductivity & durability under simulated automotive conditions, compared to membranes currently available. The 2nd body of membrane work was focused on developing & characterizing 3 approaches for making new PEM's for operation under hot (>120C) & dry (dew point <80C) FC conditions: inorganic materials with enhanced proton conductivity, polymer matrices swollen with lo

Debe, Mark K.

2007-09-30T23:59:59.000Z

218

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-05-06T23:59:59.000Z

219

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-03-21T23:59:59.000Z

220

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2002-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CH Packaging Operations for High Wattage Waste at LANL  

Science Conference Proceedings (OSTI)

This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

Washington TRU Solutions LLC

2003-08-28T23:59:59.000Z

222

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

223

Project Cost Management in the Israeli High-Tech Industry: State of the Practice and Perceived Needs*  

E-Print Network (OSTI)

Cost management is a topic of main interest in the area of project management. This paper reports on an exploratory study designed to ascertain the current state of the practice in the area of project cost management among Israeli high technology firms. Three main issues were examined: (1) the extent by which project managers implement various cost management tools and techniques; (2) project managers ’ perceptions of the contribution of various cost management tools to improvement of the organization's cost management system; (3) project managers ' perception of the usefulness of the organization's cost management tools and cost management system in promoting its needs. Data was collected with a structured questionnaire administered to a sample of 31 high-tech companies or divisions of large companies in Israel. The respondents were high-level senior project managers or managers of departments or units whose main activity is project management. Following the statistical analysis of the data we point out several directions for further development. Project Cost Management in the Israeli High-Tech Industry: 1.

Joseph Aharony; Dan Elnathan; Tzvi Raz; Joseph Aharony; Dan Elnathan; Tzvi Raz

2003-01-01T23:59:59.000Z

224

Operation Castle. Project 18. 3. High-resolution spectroscopy  

SciTech Connect

The high-resolution work undertaken at Castle with three spectrographs of relatively high dispersion is described and analyzed. Profitable results were obtained from the spectra taken with the JACO 21-foot Wadsworth-mount spectrograph, mainly the highest violet cutoff to date and a very predominant NO/sub 2/ spectrum in absorption. There is a definite indication that the NO/sub 2/ exists in a state of excitation above that observed at ordinary room temperature. The observation as a function of time of the formation NO/sub 2/, which conceivably can be formed in different ways during different intervals of the explosion, would be of great interest.

Beck, C.A.; Campbell, J.H.

1985-09-01T23:59:59.000Z

225

Wind energy and power system interconnection, control, and operation for high penetration of wind power .  

E-Print Network (OSTI)

??High penetration of wind energy requires innovations in different areas of power engineering. Methods for improving wind energy and power system interconnection, control, and operation… (more)

Liang, Jiaqi

2012-01-01T23:59:59.000Z

226

Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

227

The Impact of Energy Shortage and Cost on Irrigation for the High Plains and Trans Pecos Regions of Texas  

E-Print Network (OSTI)

The High Plains and Trans Pecos regions of Texas are semi-arid crop production regions located in the western part of the state. Relatively low levels of rainfall are supplemented by irrigation from groundwater supplies. These regions produced 51 percent of the cotton, 42 percent of the grain sorghum, and 48 percent of the wheat produced in Texas in 1974 (Texas Crop and Livestock Reporting Service). Considering only irrigated production these percentages were 75, 85, and 91 percent of Texas irrigated crop production for cotton, grain sorghum and wheat respectively. The importance of the High Plains and Trans Pecos regions to Texas crop production are not limited to these three crops, however, these statistics do serve to illustrate the significance of these regions in the Texas agricultural economy. While it is easily seen that the majority of irrigated production (for the crops mentioned) in Texas occurs in these regions, it should be noted that the importance of irrigation in the High Plains and Trans Pecos regional economies is much greater than these statistics show. On the High Plains 86 percent of the cotton, 90 percent of the grain sorghum, and 75 percent of the wheat produced in 1974 was harvested from irrigated acreage. Rainfall is somewhat less in the Trans Pecos region and 100 percent of the production of these crops was under irrigation (Texas Crop and Livestock Reporting Service). More than 60 percent of the value of agricultural crops in Texas is produced on irrigated land (Knutson, et.al.). Thus, the crop production of these regions is vitally important to the Texas and respective regional economies. Crop yields are heavily dependent on groundwater irrigation and extremely sensitive to any factor which may affect the availability or cost of irrigation water. Availability and price of fuel used in pumping groundwater are the critical factors which directly affect the availability and cost of irrigation water. About 39 percent of the energy used in Texas agriculture in 1973 was utilized in pumping water, compared to 18 percent used in machinery operations. Of this irrigation fuel, 76 percent was natural gas, the majority of which was consumed in the High Plains (Coble and LePori). Current supplies and reserves of natural gas have reached critically low levels in recent years and producers in the High Plains and Trans Pecos regions are faced with possible curtailments of, and certain price increases for their irrigation fuel (Patton and Lacewell). The threat of possible curtailment of fuel supplies during the irrigation season imposes greatly increased risk to irrigated crop production since curtailment of natural gas supplies during a critical water use period would significantly reduce yields (Lacewell). This threat would also increase financial risk and restrict availability of credit. Continued price increases for natural gas will increase costs of pumping irrigation water and hence the costs of irrigated crop production (Patton and Lacewell). The Ogalalla aquifer underlying the High Plains and many of the alluvium aquifers underlying the Trans Pecos are exhaustible; i.e., there is a negligible recharge from percolation and other sources. Therefore, even with unchanged natural gas prices, these groundwater supplies are being "economically" exhausted over time as pumping depth increases. Increases in fuel prices will lead to reduced groundwater pumpage and result in less groundwater being economically recoverable. Although life of the physical supply will be exhausted, a greater quantity of groundwater will be economically unrecoverable for irrigation without significant product price increases.

Lacewell, R. D.; Condra, G. D.; Hardin, D. C.; Zavaleta, L.; Petty, J. A.

1978-01-01T23:59:59.000Z

228

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network (OSTI)

United States crude slate is becoming heavier and generally higher in sulfur. At the same time demand of distillate products is increasing. Refiners are reworking their plans to include resid conversion via coking and approximately 230,000 BPD of new coking capacity is either under construction or announced. Even if 50 percent of the coke produced is exported, there will be an excess capacity of coke selling at less than $30/ton depending upon the sulfur content. This coke can be gasified effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per million Btu in 1990. The paper will discuss three gasifiers - Gesellschaft fur Kohle-Technologie Gmbh (GKT), Texaco and Westinghouse which may be used for the production of medium-Btu gas from coke. The design parameters, which for coke gasification may be different from coal gasification because of the difference in physical and chemical characteristics of coke and coal, will be evaluated. Conceptual design will be performed based upon normal fuel requirements of about 20 billion Btu per day for a typical 50,000 BPD refinery. Adaptability of coke derived gas to refinery fuel systems will be discussed in terms of flame temperatures, flue gas volumes, derating and required furnace modifications. Estimates of capital and operating costs will be obtained to calculate the gas cost using the new tax laws. Finally, the GKT gasifier will be compared to the developing Texaco and Westinghouse gasifiers to assess the effect of second generation gasifiers on the economics of coke gasification.

Patel, S. S.

1982-01-01T23:59:59.000Z

229

Guide for High Temperature Operation of Overhead Lines: 2012 Updates  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide has evolved from a collection of numerous EPRI reports published in the past, including Effect of High-Temperature Cycling on Conductor ...

2012-12-12T23:59:59.000Z

230

Thermal Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

Bare stranded overhead transmission line conductorsreferred to as aluminum conductor steel reinforced ACSRtypically consist of at least two layers of aluminum strands, helically stranded around a core consisting of steel wires. The current that flows through such conductors is located predominantly in the aluminum layers while the steel core provides mechanical strength and limits sag at high temperature. The lack of new line construction combined with the decoupling of transmission from power generatio...

2010-12-23T23:59:59.000Z

231

High frequency limit for single-electron pumping operations  

E-Print Network (OSTI)

In this Letter, we study the transient electron transfer phenomena of single-electron devices with alternating external gate voltages. We obtain a high frequency limit for pumping electrons one at a time in single-electron devices. Also, we find that in general the electrical current is not proportional to the frequency of the external signals in the single-electron devices, due to the strong quantum coherence tunneling effect.

Chuan-Yu Lin; Wei-Min Zhang

2010-12-04T23:59:59.000Z

232

Guide for Operating Overhead Lines at High Temperatures  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide evolved from a collection of numerous EPRI reports published in the past, for example, Effect of High-Temperature Cycling on Conductor Systems (EPRI...

2010-12-13T23:59:59.000Z

233

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network (OSTI)

Diesel engines operating the rig pose the problems of low efficiency and large amount of emissions. In addition the rig power requirements vary a lot with time and ongoing operation. Therefore it is in the best interest of operators to research on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations. There are various sources of alternate energy storage/reuse. A quantitative comparison of physical size and economics shows that rigs powered by the electrical grid can provide lower cost operations, emit fewer emissions, are quieter, and have a smaller surface footprint than conventional diesel powered drilling. This thesis describes a study to evaluate the feasibility of adopting technology to reduce the size of the power generating equipment on drilling rigs and to provide ?peak shaving? energy through the new energy generating and energy storage devices such as flywheels. An energy audit was conducted on a new generation light weight Huisman LOC 250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A study of emissions while drilling operation was also conducted during the audit. The data was analyzed using MATLAB and compared to a theoretical energy audit. The study showed that it is possible to remove peaks of rig power requirement by a flywheel kinetic energy recovery and storage (KERS) system and that linking to the electrical grid would supply sufficient power to operate the rig normally. Both the link to the grid and the KERS system would fit within a standard ISO container. A cost benefit analysis of the containerized system to transfer grid power to a rig, coupled with the KERS indicated that such a design had the potential to save more than $10,000 per week of drilling operations with significantly lower emissions, quieter operation, and smaller size well pad.

Verma, Ankit

2009-05-01T23:59:59.000Z

234

High Gradient Operation with the CEBAF Upgrade RF Control System  

SciTech Connect

The CEBAF Accelerator at Jefferson Lab is presently a 6 GeV five pass electron accelerator consisting of two superconducting linacs joined by independent magnetic transport arcs. Energy will be upgraded to 12 GeV with the addition of 10 new high gradient cryomodules (17+ MV/m). The higher gradients pose significant challenges beyond what the present analog low level RF (LLRF) control systems can handle reliably; therefore, a new LLRF control system is needed. A prototype system has been developed incorporating a large FPGA and using digital down and up conversion to minimize the need for analog components. The new system is more flexible and less susceptible to drifts and component nonlinearities. Because resonance control is critical to reach high gradients quickly, the new cryomodules will include a piezoelectric tuner for each cavity, and the LLRF controls must incorporate both feedback and feed-forward methods to achieve optimal resonance control performance. This paper discusses development of the new RF system, system performance for phase and amplitude stability and resonance control under Lorentz detuning measured during recent tests on a prototype cryomodule.

J. Hovater; G. Davis; Hai Dong; Alicia Hofler; Lawrence King; John Musson; Tomasz Plawski

2006-08-16T23:59:59.000Z

235

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

236

Low-Cost Substrates for High-Performance Nanorod Array LEDs  

SciTech Connect

The completed project, entitled â??Low-Cost Substrates for High-Performance Nanorod LEDs,â? targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: â?¢ Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. â?¢ Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. â?¢ Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. â?¢ Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

Sands, Timothy; Stach, Eric; Garcia, Edwin

2009-04-30T23:59:59.000Z

237

Low cost alternative of high speed visible light camera for tokamak experiments  

SciTech Connect

We present design, analysis, and performance evaluation of a new, low cost and high speed visible-light camera diagnostic system for tokamak experiments. The system is based on the camera Casio EX-F1, with the overall price of approximately a thousand USD. The achieved temporal resolution is up to 40 kHz. This new diagnostic was successfully implemented and tested at the university tokamak GOLEM (R = 0.4 m, a = 0.085 m, B{sub T} < 0.5 T, I{sub p} < 4 kA). One possible application of this new diagnostic at GOLEM is discussed in detail. This application is tomographic reconstruction for estimation of plasma position and emissivity.

Odstrcil, T.; Grover, O.; Svoboda, V. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Odstrcil, M.; Duran, I.; Mlynar, J. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Association Euratom-IPP.CR, Za Slovankou 3, CZ-182 00 Praha 8 (Czech Republic)

2012-10-15T23:59:59.000Z

238

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

239

Reducing Electricity Cost Through Virtual Machine Placement in High Performance Computing Clouds  

E-Print Network (OSTI)

of the data centers' energy consumptions, energy prices, and peak power prices, it becomes clear that we can two components: (1) the cost of energy consumed (energy price: $ per KWh), and (2) the cost. Unfortunately, these works did not consider energy prices, peak power costs, or any cooling issues

Bianchini, Ricardo

240

Evaluation of Connector Mitigation Measures for Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

Test results from a previous research conducted by the Electric Power Research Institute (EPRI) indicated that connectors on overhead lines operated above 100°C may fail from high temperatures. To allow an overhead line to operate at a temperature higher than the limit imposed by the connectors, research was initiated in 2009 to develop mitigation measures for the compression connectors that have a “high ...

2012-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

242

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

Science Conference Proceedings (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

243

High-pressure solvent extraction of methane from geopressured brines: technical evaluation and cost analysis  

DOE Green Energy (OSTI)

Solvent extraction is proposed as a means of recovering dissolved methane from geopressured-geothermal brines at high pressures. The assessment shows that additional investment in a high pressure solvent extraction plant preceding direct injection disposal of brines into isolated aquifers can be profitable. The technical and economic issues are discussed, and compared with other injection methods such as complete depressurization for methane recovery followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. For deep injection into the producing formation, it is concluded that methane extraction processes are not applicable, insofar as maintenance of high surface pressures provides no clear-cut energy benefits. As a first step in the evaluation of solvent extraction, the solubility of a promising solvent candidate, n-hexadecane, was measured in 15 wt % NaCl solutions at temperatures up to 150/sup 0/C. The solubility of a potential low cost solvent, No. 2 Diesel fuel, was also measured.

Quong, R.; Otsuki, H.H.; Locke, F.E.

1981-07-01T23:59:59.000Z

244

High-dimensional deterministic multiparty quantum secret sharing without unitary operations  

Science Conference Proceedings (OSTI)

A deterministic multiparty quantum secret sharing scheme is put forward, in which Bell states in high-dimensional Hilbert space are used. Only by preforming High-dimensional Bell measurements, all agents can recover the secret according to the dealer's ... Keywords: Entanglement swapping, High-dimensional Bell measurement, High-dimensional Bell state, Quantum secret sharing, Unitary operation

Zhi-Hao Liu; Han-Wu Chen; Juan Xu; Wen-Jie Liu; Zhi-Qiang Li

2012-12-01T23:59:59.000Z

245

Matrix multiplication operations with data pre-conditioning in a high performance computing architecture  

SciTech Connect

Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

2013-11-05T23:59:59.000Z

246

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies  

DOE Green Energy (OSTI)

Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

2013-09-20T23:59:59.000Z

247

State-Of-the-Art Boiler Design for High Reliability Under Cycling Operation  

Science Conference Proceedings (OSTI)

To remain competitive in today's market, utilities must meet multiple, sometimes conflicting, objectives. Plants must achieve cost reduction and increased revenue while working within reliability, safety, and emission constraints. Key in the competitive deregulated market is being able to meet consumer electricity demand when it is needed. Because electricity cannot be stored, power plants must operate in cycling mode in order to satisfy this on-demand requirement.

2004-12-22T23:59:59.000Z

248

Thermal and Corona Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

In order to provide electric power to a society that is continuously increasing its power consumption, without having to sustain huge capital expenditures for new infrastructure, the power industry is pushing more power through existing lines. Although this results in conductors operating at higher temperatures, which in turn results in higher thermal and mechanical losses, the industry is finding it to be a cost-effective approach when compared to alternatives. The demand for electric power over transmi...

2008-12-23T23:59:59.000Z

249

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

250

Impact of Cycling on the Operation and Maintenance Cost of Conventional and Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

The ongoing privatization of electricity generation across the world, competition and shareholder demand for higher profits, stricter regulations on environmental impacts, changes in fuel prices, and the increasing penetration of nondispatchable energy have resulted in an increasing need for larger energy generators to operate as non-baseload units. As a result, both conventional power plants and combined-cycle power plants are increasingly being subjected to load-following and cyclic operation. ...

2013-09-30T23:59:59.000Z

251

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)  

SciTech Connect

Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

Not Available

2002-02-01T23:59:59.000Z

252

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money  

DOE Green Energy (OSTI)

Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is $6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to school facilities managers and business officials, describes how schools can become more energy efficient.

Energy Smart Schools Team

2001-08-06T23:59:59.000Z

253

Method for producing low-cost, high volume hydrogen from hydrocarbon sources  

DOE Patents (OSTI)

A method is described for the conversion of naturally-occurring or biomass-derived lower to higher hydrocarbon (C{sub x}H{sub y},where x may vary from 1--3 and y may vary from 4--8) to low-cost, high-volume hydrogen. In one embodiment, methane, the major component of natural gas, is reacted in a single reaction zone of a mixed-conducting ceramic membrane reactor to form hydrogen via simultaneous partial oxidation and water gas shift reactions at temperatures required for thermal excitations of the mixed-conducting membranes. The hydrogen is produced by catalytically reacting the hydrocarbon with oxygen to form synthesis gas (a mixture of carbon monoxide and hydrogen), followed by a water gas shift (WGS) reaction with steam, wherein both reactions occur in a single reaction zone having a multi-functional catalyst or a combination of catalysts. The hydrogen is separated from other reaction products by membrane-assisted transport or by pressure-swing adsorption technique. Membrane-assisted transport may occur via proton transfer or molecular sieving mechanisms.

Bose, Arun C.; Balachandran, Uthamalinga; Kleerfisch, Mark S.; Udovich, Carl A.; Stiegel, Gary J.

1997-12-01T23:59:59.000Z

254

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report  

SciTech Connect

This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

Hauptman, H.M.; Petro, J.N.; Jacobi, O. [and others

1995-04-01T23:59:59.000Z

255

Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules  

DOE Green Energy (OSTI)

The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

Stuart Hellring; Jiping Shao; James Poole

2011-12-05T23:59:59.000Z

256

Operational improvements in a factory of low volume and high mixture  

E-Print Network (OSTI)

This thesis shows operational improvements for the assembly area of a semiconductor equipment manufacturer. High complexity and customization of machines and a low and fluctuating volume are typical challenges within the ...

Treis, Simon Michael Christian

2008-01-01T23:59:59.000Z

257

An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration ...

Changyong Cao; Kenneth Jarva; Pubu Ciren

2007-02-01T23:59:59.000Z

258

Aligning tool set metrics for operation in a Multi Technology High Mix Low Volume manufacturing environment  

E-Print Network (OSTI)

Ireland Fab Operations (IFO) is transitioning and leading the way within Intel to Multi- Technology High Mix Low Volume (MT-HMLV) manufacturing. To avoid errors in estimating metrics, specific capacity tool set metrics for ...

Naughton, Alyson B. (Alyson Bourne)

2005-01-01T23:59:59.000Z

259

The Full Cost Of Intercity Transportation - A Comparison Of High Speed Rail, Air And Highway Transportation In California  

E-Print Network (OSTI)

cost of transportation today, including the social costs ofIntercity Transportation Page 2-17 Social Costs - additionalsurrounding social costs and transportation, in particular

Levinson, David; Gillen, David; Kanafani, Adib; Mathieu, Jean-michel

1996-01-01T23:59:59.000Z

260

Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues  

DOE Green Energy (OSTI)

The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

Murphy, L.M.; May, E.K.

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Conceptual HALT (Hydrate Addition at Low Temperature) scaleup design: Capital and operating costs: Part 5. [Hydrate addition at low temperature for the removal of SO/sub 2/  

SciTech Connect

Hydrate addition at low temperature (or the HALT process) is a retrofit option for moderate SO/sub 2/ removal efficiency in coal burning utility plants. This dry FGD process involves injecting calcium based dry hydrate particles into flue gas ducting downstream of the air preheater where the flue gas temperature is typically in the range of 280-325/degree/F. This report is comprised of the conceptual scaleup design of the HALT process to a 180 MW and a 500 MW coal fired utility station followed by detailed capital and operating cost estimates. A cost sensitivity analysis of major process variables for the 500 MW unit is also included. 1 fig.

Babu, M.; Kerivan, D.; Hendrick, C.; Kosek, B.; Tackett, D.; Golightley, M.

1988-12-01T23:59:59.000Z

262

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

263

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

264

Development of low-cost, compact, reliable, high energy density ceramic nanocomposite capacitors.  

SciTech Connect

The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.

Cooley, Erika J.; Monson, Todd C.; DiAntonio, Christopher Brian; Huber, Dale L.; Fellows, Benjamin D.; Stevens, Tyler E.; Roesler, Alexander William; Chavez, Tom P.; Winter, Michael R.

2010-05-01T23:59:59.000Z

265

Building America Top Innovations Hall of Fame Profile … High Performance Without Increased Cost: Urbane Homes, Louiseville KY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urbane's first Urbane's first home, built for $36 per ft 2 in 2008, incorporated both energy efficiency and strategies to reduce building costs. The home won two EnergyValue Housing Awards, and homebuyers began seeking out the builder for energy-efficient, high-quality homes. Building America field projects that demonstrated minimal or cost-neutral impacts for high-performance homes have significantly influenced the housing industry to apply advanced technologies and best practices. In 2006, the U.S. Department of Energy's Building America program set a goal of proving that cost-neutral energy savings of 40% over code were possible at a production scale for new home builders in every U.S. climate zone. Between 2005 and 2010, Building America research partners worked with 34 builders to

266

HTGR Cost Model Users' Manual  

Science Conference Proceedings (OSTI)

The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

267

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network (OSTI)

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

268

Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH/sub 4/. Low cost silicon solar array project, Task I. Quarterly progress report, October 1, 1976--December 31, 1976  

DOE Green Energy (OSTI)

In the study of a process for the low cost, high volume production of silane (SiH/sub 4/) via redistribution of chlorohydrosilanes, the longevity and nature of the amine functional ion exchange resin catalyst was investigated. A modest decline in catalyst activity appears to be the result of loss of amine function during the initiallizing period. Long term activity remains quite high. In preparation for additional studies, deuterium labeled trichlorosilane is being prepared. The nominally 5 kg/day silane-from-dichlorosilane mini-plant has been constructed, leak tested and conditioned for start up. Approval for operation from a Pre-start Up Safety Review Team has been received in conjunction with an approved flameless method for venting silane. Laboratory studies of the hydrogenation of silicon tetrachloride co-product of the silane process are continuing along with the design of a mini-plant scale unit capable of pressurized operation. Preliminary design of a maxi-plant to integrate the entire process is also underway.

Breneman, W.C.; Mui, J.Y.P.

1977-01-01T23:59:59.000Z

269

ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes  

SciTech Connect

By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

David P. Norton; Stephen Pearton; Fan Ren

2007-09-30T23:59:59.000Z

270

High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results  

SciTech Connect

This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

2012-09-01T23:59:59.000Z

271

Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory  

E-Print Network (OSTI)

Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

2009-01-01T23:59:59.000Z

272

Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode  

SciTech Connect

GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

None

2010-09-01T23:59:59.000Z

273

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

274

Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL  

DOE Green Energy (OSTI)

An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

2008-06-01T23:59:59.000Z

275

Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)  

SciTech Connect

This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

Prasad Enjeti; J.W. Howze

2003-12-01T23:59:59.000Z

276

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-06-01T23:59:59.000Z

277

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-07-01T23:59:59.000Z

278

High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty  

SciTech Connect

High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

Charles Park

2006-12-01T23:59:59.000Z

279

Design and control of an high maneuverability remotely operated vehicle with multi-degree of freedom thrusters  

E-Print Network (OSTI)

This research involves the design, manufacture, and testing of a small, < lm³, < 1Okg, low cost, unmanned submersible. High maneuverability in the ROV as achieved through a high thrust-to- mass ratio in all directions. One ...

Walker, Daniel G. (Daniel George)

2005-01-01T23:59:59.000Z

280

Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions  

E-Print Network (OSTI)

papers cited are available through the Sandia National Laboratories website: www.sandia.gov/Renewable_Energy/wind_energy-year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 in and potential interactions between failure modes. Wind turbine design codes typically assume a Miner's rule

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

282

Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems  

DOE Green Energy (OSTI)

Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

Jifeng Zhang; Jean Yamanis

2007-09-30T23:59:59.000Z

283

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

284

High-Speed Rail in California: A Cost-Benefit Analysis  

E-Print Network (OSTI)

Specific Aspects of High-Speed Rail in Connection with A irEffects of High-Speed Rail Stations and Implications forTexas Triangle High Speed Rail Study. Houston, TX: Texas

Kockelman, Kara

1994-01-01T23:59:59.000Z

285

Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts  

SciTech Connect

This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U/sub 3/O/sub 8/ to UF/sub 6/ conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent /sup 235/U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent /sup 235/U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor.

Thomas, W.E.

1976-04-01T23:59:59.000Z

286

Low Cost High Performance Generator Technology Program. Volume 2. Design study  

DOE Green Energy (OSTI)

The systems studies directed towards up-rating the performance of an RTG using selenide thermoelectrics and a heat source with improved safety are reported. The resulting generator design, designated LCHPG, exhibits conversion efficiency of greater than 10 percent, a specific power of 3 W/lb., and a cost of $6,000/W(e). In the course of system analyses, the significant development activities required to achieve this performance by the 1980 time period are identified.

Not Available

1975-06-01T23:59:59.000Z

287

Operational, cost, and technical study of large windpower systems integrated with an existing electric utility. Final report  

DOE Green Energy (OSTI)

Detailed wind energy assessment from the available wind records, and evaluation of the application of wind energy systems to an existing electric utility were performed in an area known as the Texas Panhandle, on the Great Plains. The study area includes parts of Texas, eastern New Mexico, the Oklahoma Panhandle and southern Kansas. The region is shown to have uniformly distributed winds of relatively high velocity, with average wind power density of 0.53 kW/m/sup 2/ at 30 m height at Amarillo, Texas, a representative location. The annual period of calm is extremely low. Three separate compressed air storage systems with good potential were analyzed in detail, and two potential pumped-hydro facilities were identified and given preliminary consideration. Aquifer storage of compressed air is a promising possibility in the region.

Ligon, C.; Kirby, G.; Jordan, D.; Lawrence, J.H.; Wiesner, W.; Kosovec, A.; Swanson, R.K.; Smith, R.T.; Johnson, C.C.; Hodson, H.O.

1976-04-01T23:59:59.000Z

288

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

289

ESS 2012 Peer Review - Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries - Fei Wang, EIC Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey Street, Norwood, MA 02062. www.eiclabs.com Identification of the Problem and Technical Approach Redox flow batteries (RFB) hold great promise for large scale electrochemical energy storage. A critical component of RFB is the membrane which separates anode and cathode compartments. The current state-of-the-art membrane, NAFION is too expensive, lacks selectivity, permitting leakage between anode and cathode electrolyte compartments. EIC is developing a novel bilayer, interpenetrating network membrane. Thin Nafion layer for anode side protection providing oxidative stability. The bulk part of the membrane consists of a block

290

Optimizing the operating conditions in a high precision industrial process using soft computing techniques  

Science Conference Proceedings (OSTI)

This interdisciplinary research is based on the application of unsupervized connectionist architectures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new high precision industrial process known ... Keywords: exploratory projection pursuit, industrial applications, modelling systems, unsupervized learning

Emilio Corchado; Javier Sedano; Leticia Curiel; José R. Villar

2012-07-01T23:59:59.000Z

291

Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts  

E-Print Network (OSTI)

Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts Eisa Engineering at University of New South Wales. #12;1 Introduction Gas-to-liquid (GTL) compounds are clean fuels for converting natural gas to the liquid hydrocarbons [1]. However, the reaction is a complex network of many

New South Wales, University of

292

The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies  

E-Print Network (OSTI)

The scattering matrix of the Schrodinger operator with smooth short-range electric and magnetic potentials is considered. The asymptotic density of the eigenvalues of this scattering matrix in the high energy regime is determined. An explicit formula for this density is given. This formula involves only the magnetic vector-potential.

Daniel Bulger; Alexander Pushnitski

2012-08-21T23:59:59.000Z

293

A Remotely Operated Lidar for Aerosol, Temperature, and Water Vapor Profiling in the High Arctic  

Science Conference Proceedings (OSTI)

A Rayleigh–Mie–Raman lidar has been installed and is operating in the Polar Environment Atmospheric Research Laboratory at Eureka in the High Arctic (79°59?N, 85°56?W) as part of the Canadian Network for the Detection of Atmospheric Change. The ...

G. J. Nott; T. J. Duck; J. G. Doyle; M. E. W. Coffin; C. Perro; C. P. Thackray; J. R. Drummond; P. F. Fogal; E. McCullough; R. J. Sica

2012-02-01T23:59:59.000Z

294

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

295

Continuous Process for Low-Cost, High-Quality YSZ Powder  

DOE Green Energy (OSTI)

This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

2006-03-31T23:59:59.000Z

296

Effect of Highly Enriched/Highly Burnt UO2 Fuels on Fuel Cycle Costs, Radiotoxicity, and Nuclear Design Parameters  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

Robert Gregg; Andrew Worrall

297

Biomass Power Project Cost Analysis Database  

Science Conference Proceedings (OSTI)

The development of biomass power projects presents a variety of challenges that result in high capital costs associated with developing, engineering, procuring, constructing, and operating biomass power projects. Although projects that rely on more homogeneous fuels such as natural gas must still account for site-specific issues when estimating development and construction costs, the complexities are not comparable.Recognizing the difficulties in estimating the capital costs for ...

2012-12-21T23:59:59.000Z

298

Reducing electricity cost through virtual machine placement in high performance computing clouds  

Science Conference Proceedings (OSTI)

In this paper, we first study the impact of load placement policies on cooling and maximum data center temperatures in cloud service providers that operate multiple geographically distributed data centers. Based on this study, we then propose dynamic ... Keywords: computing cloud, cooling, energy, multi-data-center

Kien Le; Ricardo Bianchini; Jingru Zhang; Yogesh Jaluria; Jiandong Meng; Thu D. Nguyen

2011-11-01T23:59:59.000Z

299

A Scalable Methodology for Cost Estimation in a Transformational High-Level Design Space Exploration Environment  

E-Print Network (OSTI)

Objective of the methodology presented in this paper is to perform design space exploration on a high level of abstraction by applying high-level transformations. To realize a design loop which is close and settled on upper design levels, a high-level estimation step is integrated. In this paper, several estimation methodologies fixed on different states of the high-level synthesis process are examined with respect to their aptitude on controlling the transformational design space exploration process.

Gerlach

1998-01-01T23:59:59.000Z

300

Cost-efficient drilling using industrial robots with high-bandwidth force feedback  

Science Conference Proceedings (OSTI)

Here we present a method for high-precision drilling using an industrial robot with high-bandwidth force feedback, which is used for building up pressure to clamp-up an end-effector to the work-piece surface prior to drilling. The focus is to eliminate ... Keywords: Feedback, Force control, High-precision drilling, Industrial robotics, Motion control

Tomas Olsson; Mathias Haage; Henrik Kihlman; Rolf Johansson; Klas Nilsson; Anders Robertsson; Mats Björkman; Robert Isaksson; Gilbert Ossbahr; Torgny Brogårdh

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Operational Results of Pulse Shaping Techniques for the High Voltage Convertor Modulator  

Science Conference Proceedings (OSTI)

The High Voltage Converter Modulators (HVCMs) are used to power the RF klystrons used throughout the accelerator systems at Spallation Neutron Source (SNS). The output voltage of the HVCM has significant droop and ripple which, combined with low level RF (LLRF) system limitations, affect performance and efficiency of accelerator cavities. In conjunction with the progress in development of the new HVCM controller, different pulse modulation techniques were implemented and studied on the test modulator. This paper discusses the results of implementation of frequency modulation and phase modulation on output voltage. Operational data, including full average power operation, of test modulator is also discussed. Future plans for the new modulation scheme will be presented.

Patel, Gunjan P [ORNL; Anderson, David E [ORNL; Solley, Dennis J [ORNL; Wezensky, Mark W [ORNL

2012-01-01T23:59:59.000Z

302

Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky  

DOE Green Energy (OSTI)

This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

Not Available

1982-08-01T23:59:59.000Z

303

Low-cost flexible packaging for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

Jansen, A. N.; Amine, K.; Henriksen, G. L.

2004-06-18T23:59:59.000Z

304

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - NNSA Statement - November 24, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Facilities Safety Board Public Meeting on Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations Statement of Garrett Harencak, BRIG GEN, USAF Principal Assistant Deputy Administrator for Military Application Office of Defense Programs November 24, 2009 Good Morning, Mr. Vice-Chairman. I appreciate the opportunity to speak to the Board this morning regarding the Defense Programs approach to ensuring the safe management and operation of the nuclear security enterprise. Defense Programs Safety Approach and Safety Philosophy Consistent with the rest of the Department of Energy, the foundation of Defense Program's safety philosophy is Integrated Safety Management (ISM). Defense Programs and its Management and Operating Contractors continue to mature their implementation of ISM.

305

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

306

Development of a high average current polarized electron source with long cathode operational lifetime  

SciTech Connect

Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

2007-02-01T23:59:59.000Z

307

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - EM Statement - November 24, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Facilities Safety Board Public Meeting on Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex High Hazard Nuclear Operations Statement of Dr. Ines Triay Assistant Secretary, DOE Office of Environmental Management November 24, 2009 Good morning Mr. Vice Chairman and Members of the Defense Nuclear Facilities Safety Board. I appreciate the opportunity to be here today to represent the Department of Energy's Office of Environmental Management (EM) and address the actions our office has taken regarding oversight of complex high hazard nuclear operations. My remarks cover the six topics you provided to the Secretary in your letter dated August 25, 2009. Expectations of the senior Department of Energy (DOE) leadership with respect to safety philosophy and safety management approach.

308

Operational experience with a high speed video data acquisition system in Fermilab experiment E-687  

SciTech Connect

Operation of a high speed, triggerable, Video Data Acquisition System (VDAS) including a hardware data compactor and a 16 megabyte First-In-First-Out buffer memory (FIFO) will be discussed. Active target imaging techniques for High Energy Physics are described and preliminary experimental data is reported.. The hardware architecture for the imaging system and experiment will be discussed as well as other applications for the imaging system. Data rates for the compactor is over 30 megabytes/sec and the FIFO has been run at 100 megabytes/sec. The system can be operated at standard video rates or at any rate up to 30 million pixels/second. 7 refs., 3 figs.

Baumbaugh, A.E.; Knickerbocker, K.L.; Baumbaugh, B.; Ruchti, R.

1987-10-21T23:59:59.000Z

309

Operation and maintenance manual for the high resolution stereoscopic video camera system (HRSVS) system 6230  

SciTech Connect

The High Resolution Stereoscopic Video Cameral System (HRSVS),system 6230, is a stereoscopic camera system that will be used as an end effector on the LDUA to perform surveillance and inspection activities within Hanford waste tanks. It is attached to the LDUA by means of a Tool Interface Plate (TIP), which provides a feed through for all electrical and pneumatic utilities needed by the end effector to operate.

Pardini, A.F., Westinghouse Hanford

1996-07-16T23:59:59.000Z

310

OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS  

SciTech Connect

The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

LLOYD, E.R.

2006-11-02T23:59:59.000Z

311

The development of low cost LiFePO4-based high power lithium-ion batteries  

DOE Green Energy (OSTI)

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

312

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

313

New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes  

SciTech Connect

This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

Agrawal, Rakesh

2013-11-21T23:59:59.000Z

314

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

DOE Green Energy (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

315

Progress towards a low-cost high-speed real-time multi-rate simulator  

Science Conference Proceedings (OSTI)

Recent research has focused on developing techniques that use field-programmable gate arrays (FPGAs) to support real-time simulation with frame times of a few microseconds or less. These techniques can be used to simulate, for example, modern power electronic ... Keywords: FPGA, distributed, high-speed, multi-rate, real-time

John Zenor; Dale Word; Richard Bednar; Roy Crosbie; Narain Hingorani

2010-07-01T23:59:59.000Z

316

Emulation: using emulation to reduce commissioning costs on a high speed bottling line  

Science Conference Proceedings (OSTI)

E2M/Polytron builds high speed filling and packaging systems for Fortune 100 companies. In the last year we have developed a process to improve the quality of these systems that uses the new emulation technology in Brooks Automation's AutoMod ...

Geoff Mueller

2001-12-01T23:59:59.000Z

317

High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology  

Science Conference Proceedings (OSTI)

Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

Joe Williams

2010-12-31T23:59:59.000Z

318

PVMaT Cost Reductions in the EFG High-Volume PV Manufacturing Line: Annual Report, August 1998-December 2000  

DOE Green Energy (OSTI)

The PVMaT 5A2 program at ASE Americas is a three-year program that addresses topics in the development of manufacturing systems, low-cost processing approaches, and flexible manufacturing methods. The three-year objectives are as follows: (1) implementation of computer-aided manufacturing systems, including Statistical Process Control, to aid in electrical and mechanical yield improvements of 10%, (2) development and implementation of ISO 9000 and ISO 14000, (3) deployment of wafer production from large-diameter (up to 1 m) EFG cylinders and wafer thicknesses down to 95 microns, (4) development of low-damage, high-yield laser-cutting methods for thin wafers, (5) cell designs for >15% cell efficiencies on 100-micron-thick EFG wafers, (6) development of Rapid Thermal Anneal processing for thin high-efficiency EFG cells, and (7) deployment of flexible manufacturing methods for diversification in wafer size and module design. In the second year of this program, the significant accomplishments in each of three tasks that cover these areas are as follows: Task 4-Manufacturing systems, Task 5-Low-cost processes, and Task 6-Flexible manufacturing.

Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J., Mackintosh, B.; Ouellette, M.; Piwczyk, B., Rosenblum, M.; Southimath, B. (ASE Americas, Inc.)

2001-02-22T23:59:59.000Z

319

EFFECTIVE LIFETIME ESTIMATE OF CRIMPED POWERLINE SPLICE CONNECTOR OPERATED AT HIGH TEMPERATURE  

SciTech Connect

This paper addresses the thermal-mechanical properties and performance characteristics of full tension splice connectors under high temperature operation, in particular those used in overhead transmission and distribution lines. Due to the increase in power demand existing overhead power transmission lines often need to operate at temperatures higher than those originally considered for their design. This has led to the accelerated aging and degradation of splice connectors. The compressive residual stresses induced by the crimping process within the splice connector provide the clamping forces to secure the conductor and therefore, the determination of the state of compressive residual stresses in splice connectors is a necessary requirement to provide an accurate estimate of their service lifetime. This paper presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector assembly.

Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL; An, Ke [ORNL; Hubbard, Camden R [ORNL

2008-01-01T23:59:59.000Z

320

Cascode buffer for monolithic voltage conversion operating at high input supply voltages  

E-Print Network (OSTI)

A high-to-low switching DC-DC converter that operates at input supply voltages up to two times as high as the maximum voltage permitted in a nanometer CMOS technology is proposed in this paper. The circuit technique is based on a cascode bridge that maintains the steady-state voltage differences among the terminals of all of the transistors within a range imposed by a specific fabrication technology. The proposed circuit technique permits the full integration of active and passive devices of a switching DC-DC converter with a high voltage conversion ratio in a standard low voltage CMOS process. An efficiency of 87.8 % is achieved for 3.6 volts to 0.9 volts conversion assuming

Volkan Kursun; Gerhard Schrom; Vivek K. De; Eby G. Friedman; Siva G. Narendra

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

322

Development and extended operation of a high power radiation loaded heat pipe  

SciTech Connect

A high temperature, high power molybdenum-lithium heat pipe has been fabricated and tested at 1500 K for 1700 hours with radiant heat rejection. Power throughput during the test was approximately 14 kW, corresponding to an axial flux density of 11 kW/cm/sup 2/ for the 1.59 cm diameter heat pipe. Radial flux density was 70 W/cm/sup 2/ over an evaporator length of 40.0 cm. Condenser length was approximately 150 cm with radiant heat rejection from the condenser to a coaxial water cooled radiation calorimeter. A plasma sprayed, high emissivity coating was used on the condenser surface to increase the radiant heat rejection during the tests. The heat pipe was operated for 514 hours at steady state conditions before being damaged during a planned shutdown for test equipment maintenance. The damage was repaired and the initial 1000 hour test period completed without further incident. After physical examination of the heat pipe at 1000 hours the test was resumed and the heat pipe operated at the same conditions for an additional 700 hours before conclusion of this test phase.

Merrigan, M.A.; Keddy, E.S.; Runyan, J.R.; Martinez, H.E.

1984-06-01T23:59:59.000Z

323

A hardware and software computational platform for the HiPerDNO (high performance distribution network operation) project  

Science Conference Proceedings (OSTI)

The HiPerDNO project aims to develop new applications to enhance the operational capabilities of Distribution Network Operators (DNO). Their delivery requires an advanced computational strategy. This paper describes a High Performance Computing (HPC) ... Keywords: high performance computing applications, smart grid, systems design

Stefano Salvini; Piotr Lopatka; David Wallom

2011-11-01T23:59:59.000Z

324

Develop safe, low-cost method of manufacturing rechargeable, high conductivity lithium batteries. Final report  

DOE Green Energy (OSTI)

The focus of much of this work is the rechargeable lithium battery, because of its high energy density, and the use of solid polymer electrolytes (SPE`s) for ease of fabrication and lightness of weight. The classical solid polymer electrolyte is based on the use of salts such as lithium triflate dissolved in poly(ethylene oxide) (PEO) or poly(propylene oxide). This specific polymer electrolyte has severe limitations. Poly(ethylene oxide) is a microcrystalline polymer at 25 C, and ion migration occurs only in the 20--30% of the material that is amorphous. Useable conductivities (10{sup {minus}5} S/cm) can be achieved only when the material is heated above 80 C. Two approaches to generate higher electrolyte conductivities at ambient temperatures are being developed. In the first, organic solvents are added to the polymer to plasticize it and dissolve the microcrystallites. This increases the conductivity but raises the possibility of fires if the battery casing ruptures during high charge or discharge conditions or when the device is punctured by impact. The alternative is to design new polymers that are good solid electrolyte media but which are completely amorphous and have low glass transition temperatures. Such a polymer is MEEP (poly[bis(methoxyethoxy)phosphazene]), first synthesized in the author`s laboratories. The main objective was to develop crosslinking methods for MEEP which could be used on a mass production scale to produce thin film rechargeable lithium batteries. A further objective was to assemble working energy storage devices to investigate the feasibility that this system could be developed commercially.

Allcock, H.R.

1997-12-01T23:59:59.000Z

325

NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.  

Science Conference Proceedings (OSTI)

Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

VIlim, R.; Nuclear Engineering Division

2009-03-12T23:59:59.000Z

326

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter.

C. Jean Bustard

2001-10-01T23:59:59.000Z

327

FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS  

SciTech Connect

With the nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous systems of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of projected DOE/EPA early cost estimates. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000-2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that was tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology injects a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. PG&E National Energy Group provided two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company provided a third test site that burns Powder River Basin (PRB) coal and has an electrostatic precipitator for particulate control. Alabama Power Company hosted a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the fifteenth reporting quarter, progress was made on the project in the following areas: (1) Test Sites--Final Reports for the two remaining plants are being written (Salem Harbor and Brayton Point). (2) Technology Transfer--Technical information about the project was presented to a number of organizations during the quarter including members of congress, coal companies, architect/engineering firms, National Mining Association, the North Carolina Department of Air Quality, the National Coal Council and EPA.

Jean Bustard; Richard Schlager

2004-08-03T23:59:59.000Z

328

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

1999-01-01T23:59:59.000Z

329

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

330

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

Sopori, B.L.

1999-04-27T23:59:59.000Z

331

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

332

Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site  

SciTech Connect

The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

2010-10-01T23:59:59.000Z

333

Recent Studies Related to Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

334

Developing a next-generation community college curriculum forenergy-efficient high-performance building operations  

Science Conference Proceedings (OSTI)

The challenges of increased technological demands in today's workplace require virtually all workers to develop higher-order cognitive skills including problem solving and systems thinking in order to be productive. Such ''habits of mind'' are viewed as particularly critical for success in the information-based workplace, which values reduced hierarchy, greater worker independence, teamwork, communications skills, non-routine problem solving, and understanding of complex systems. The need is particularly compelling in the buildings arena. To scope the problem, this paper presents the results of interviews and focus groups--conducted by Oakland California's Peralta Community College District and Lawrence Berkeley National Laboratory--in which approximately 50 industry stakeholders discussed contemporary needs for building operator education at the community college level. Numerous gaps were identified between the education today received by building operators and technicians and current workplace needs. The participants concurred that many of the problems seen today in achieving and maintaining energy savings in buildings can be traced to inadequacies in building operation and lack of awareness and knowledge about how existing systems are to be used, monitored, and maintained. Participants and others we interviewed affirmed that while these issues are addressed in various graduate-level and continuing education programs, they are virtually absent at the community college level. Based on that assessment of industry needs, we present a new curriculum and innovative simulation-based learning tool to provide technicians with skills necessary to commission and operate high-performance buildings, with particular emphasis on energy efficiency and indoor environmental quality in the context of HVAC&R equipment and control systems.

Crabtree, Peter; Kyriakopedi, Nick; Mills, Evan; Haves, Philip; Otto, Roland J.; Piette, Mary Ann; Xu, Peng; Diamond, Rick; Frost, Chuck; Deringer, Joe

2004-05-01T23:59:59.000Z

335

Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and high out-year cost environmental management project descriptions. Volume 3 of 3 -- Appendix C  

SciTech Connect

The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix C provides details about each of the Department`s 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research.

NONE

1998-04-01T23:59:59.000Z

336

Wales, Alaska High Penetration Wind-Diesel Hybrid Power System: Theory of Operation  

Science Conference Proceedings (OSTI)

To reduce the cost of rural power generation and the environmental impact of diesel fuel usage, the Alaska Energy Authority (AEA), Kotzebue Electric Association (KEA, a rural Alaskan utility), and the National Renewable Energy Laboratory (NREL), began a collaboration in late 1995 to implement a high-penetration wind-diesel hybrid power system in a village in northwest Alaska. The project was intended to be both a technology demonstration and a pilot for commercial replication of the system in other Alaskan villages. During the first several years of the project, NREL focused on the design and development of the electronic controls, the system control software, and the ancillary components (power converters, energy storage, electric dump loads, communications links, etc.) that would be required to integrate new wind turbines with the existing diesels in a reliable highly automated system. Meanwhile, AEA and KEA focused on project development activities, including wind resource assessment, site selection and permitting, community relationship building, and logistical planning. Ultimately, the village of Wales, Alaska, was chosen as the project site. Wales is a native Inupiat village of approximately 160 inhabitants, with an average electric load of about 75 kW.

Drouilhet, S.; Shirazi, M.

2002-05-01T23:59:59.000Z

337

Defense waste transportation: cost and logistics studies  

SciTech Connect

Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport.

Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

1982-08-01T23:59:59.000Z

338

Transportation in the Balance: A Comparative Analysis of Costs, User Revenues, and Subsidies for Highway, Air, and High Speed Rail Systems  

E-Print Network (OSTI)

1994. Vaca, Erin. Intercity Rail Ridership Forecasting andImplementation of High-Speed Rail in California. UniversityOffice. Intercity Passenger Rail: Financial and Operating

Chan, Evelyn; Kanafani, Adib; Canetti, Thomas

1997-01-01T23:59:59.000Z

339

Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX  

Science Conference Proceedings (OSTI)

A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant. The mission of the pilot plant was set to encompass component test and fusion nuclear science missions yet produce net electricity with high availability in a device designed to be prototypical of the commercial device. The objective of the study was to evaluate three different magnetic configuration options, the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS) in an effort to establish component characteristics, maintenance features and the general arrangement of each candidate device. With the move to look beyond ITER the fusion community is now beginning to embark on DEMO reactor studies with an emphasis on defining configuration arrangements that can meet a high availability goal. This paper reviews the AT pilot plant design, detailing the selected maintenance approach, the device arrangement and sizing of the in-vessel components. Details of interfacing auxiliary systems and services that impact the ability to achieve high availability operations will also be discussed.

Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Scott, S; Titus, P; Waganer, L

2012-09-26T23:59:59.000Z

340

Aperture Test for Internal Target Operation in the JLAB High-current ERL  

SciTech Connect

A high current beam transmission test has been successfully completed at the JLAB FEL Facility, culminating in very low-loss transmission of a high current CW beam through a small aperture. The purpose of this test was to determine if an ERL is capable of meeting the stringent requirements imposed by the use of a 1018/cm3 internal gas target proposed for the DarkLight experiment*. Minimal beamline modifications were made to create a machine configuration that is substantially different from those used in routine UV or IR FEL operation. A sustained (8 hour) high power beam run was performed, with clean transmission through a 2 mm transverse aperture of 127 mm length simulating the target configuration. A beam size of 50 um (rms) was measured near the center of the aperture. Experimental data from a week-long test run consistently exhibited beam loss of only a few ppm on the aperture while running 4.5 mA current at 100 MeV -- or nearly 0.5 MW beam power. This surpassed the users? expectation and demonstrated a unique capability of an ERL for this type of experiments. This report presents a summary of the experiment, a brief overview of our activities, and outlines future plans.

Zhang, Shukui

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - HSS Statement draft, November 24, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

-20-09 -20-09 1 Defense Nuclear Facilities Safety Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations Statement of Mr. Glenn Podonsky Chief Health, Safety and Security Officer U. S. Department of Energy November 24, 2009 INTRODUCTION Mr. Vice Chairman and Members of the Defense Nuclear Facilities Safety Board (DNFSB or "Board"), I am pleased to have this opportunity to discuss the Department's actions in response to the Board's Recommendation 2004-1 and other significant recommendations, initiatives, and management actions affecting nuclear safety in the Department. As the Department's Chief Health, Safety and Security Officer, I am here to update you on what we are doing and where we stand on pertinent issues, including our commitment to programs and processes aimed at the safe

342

November 24, 2009, Board Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - Transcript  

NLE Websites -- All DOE Office Websites (Extended Search)

Neal R. Gross & Co., Inc. Neal R. Gross & Co., Inc. 202-234-4433 Page 1 UNITED STATES OF AMERICA + + + + + DEFENSE NUCLEAR FACILITIES SAFETY BOARD + + + + + OVERSIGHT OF COMPLEX, HIGH-HAZARD NUCLEAR OPERATIONS + + + + + TUESDAY NOVEMBER 24, 2009 + + + + + The Board met in the DNFSB Hearing Room at 625 Indiana Avenue, N.W., Suite 700, Washington, DC 20004, at 9:00 a.m., John E. Mansfield, Vice Chairman, presiding. UPRESENTU : JOHN E. MANSFIELD, Ph.D., Vice Chairman JOSEPH F. BADER, Board Member LARRY W. BROWN, Board Member PETER S. WINOKUR, Ph.D., Board Member USTAFF PRESENTU : RICHARD A. AZZARO, General Counsel TIMOTHY J. DWYER, Technical Director BRIAN GROSNER, General Manager RICHARD E. TONTODONATO, Deputy Technical Director Neal R. Gross & Co., Inc.

343

Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.  

SciTech Connect

Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

2009-09-01T23:59:59.000Z

344

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1996-07-16T23:59:59.000Z

345

Method of preparing thermal insulation for high temperature microwave sintering operations  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1996-01-01T23:59:59.000Z

346

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

1995-09-12T23:59:59.000Z

347

Thermal insulation for high temperature microwave sintering operations and method thereof  

DOE Patents (OSTI)

Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

1995-01-01T23:59:59.000Z

348

A cost analysis model for heavy equipment  

Science Conference Proceedings (OSTI)

Total cost is one of the most important factors for a heavy equipment product purchase decision. However, the different cost views and perspectives of performance expectations between the different involved stakeholders may cause customer relation problems ... Keywords: Cost responsibilities, Operating costs, Ownership costs, Post-Manufacturing Product Cost (PMPC), System life-cycle cost

Shibiao Chen; L. Ken Keys

2009-05-01T23:59:59.000Z

349

Operational effects of a paved shoulder in high speed curb sections  

E-Print Network (OSTI)

Right of Way for many suburban highways which require capacity expansion is restricted by adjoining commercial and residential development. This type of restriction sometimes necessitates the use of curb and gutter drainage facilities adjacent to high speed through traffic lanes, eliminating the need for parallel drainage ditches and thus reducing the right of way requirement for the project. These roadways are usually associated with high travel speeds and a high level of access. Currently, no design criteria exist for this type of situation. It was the purpose of this thesis to investigate operational effects of a paved shoulder in high speed curb and gutter sections, in order to establish design recommendations. The operational effects to be evaluated include conflict rates, lane distributions and free flow speeds. Sixteen sites were selected from various geographic locations in the state of Texas for study. These sites included locations both with and without paved shoulders. By observing traffic during the morning and evening peak periods, traffic volumes, conflict rates and lane distributions were determined. Data from sites without paved shoulders was then compared to data from sites with paved shoulders to determine whether the shoulder would have any effect on various measures of effectiveness. These measures included conflict rates, lane distributions and free flow speeds. The results of the thesis indicate a higher conflict rate in those sites without a paved shoulder. Conflict rates in these sites were also much more sensitive to increases in traffic volume than in those sites with a paved shoulder. The data also indicated, for the entire range of traffic volumes, a significantly higher proportion of vehicles in the right lane in those locations with a paved shoulder indicating that the shoulder might act as a buffer from obstructions. Finally, there was no significant difference in free flow speed from one type of cross section to the next. It was recommended that a paved shoulder be provided for average daily traffic volumes in excess of 5000 vehicles per day and that further study be conducted into design procedures as related to lane distributions.

Warren, Steven Paul

1993-01-01T23:59:59.000Z

350

NREL Analysis: Cost-Effective and Reliable Integration of High-Penetration Solar in the Western United States (Poster)  

DOE Green Energy (OSTI)

SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.; Lefton, S.; Kumar, N.; Agan, D.; Jordan, G.; Venkatataman, S.

2012-07-01T23:59:59.000Z

351

SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR  

Science Conference Proceedings (OSTI)

In response to on-going programs at Oak Ridge National Laboratory, two topics related to past operations of the High Flux Isotope Reactor (HFIR) are being reviewed and include determining whether HFIR fuel can be converted from high enriched uranium (HEU) to low enriched uranium (LEU) and determining whether HFIR beryllium reflectors are discharged as transuranic (TRU) waste. The LEU conversion and TRU waste studies are being performed in accordance with the Reduced Enrichment for Research and Test Reactors program and the Integrated Facility Disposition Project, respectively. While assessing data/analysis needs for LEU conversion such as the fuel cycle length and power needed to maintain the current level of reactor performance, a reduction of about 8% (~200 MWD) in the end-of-cycle exposure for HFIR fuel was observed over the lifetime of the reactor (43 years). The SCALE 6.0 computational system was used to evaluate discharged beryllium reflectors and it was discovered if the reflectors are procured according to the current HFIR standard, discharged reflectors would not be TRU waste, but the removable reflector (closest to core) would become TRU waste approximately 40 years after discharge. However, beryllium reflectors have been fabricated with a greater uranium content than that stipulated in the standard and these reflectors would be discharged as TRU waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

352

OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE  

SciTech Connect

The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

Caldwell, T.; Bhatt, P.

2009-12-07T23:59:59.000Z

353

Shutdown Margin for High Conversion BWRs Operating in Th-233U Fuel Cycle  

E-Print Network (OSTI)

Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-233U fuel cycle (Th-RBWR). The studied has an axially heterogeneous fuel assembly structure with a single fissile zone sandwiched between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Instead, an alternative assembly design, also relying on heterogeneous fuel zoning, is proposed for achieving fissile inventory ratio (FIR) above unity, adequate SDM and meeting minimum CPR limit at thermal core output matching the ABWR power. The new concept was modeled as a single 3-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

Yaniv Shaposhnik; Eugene Shwageraus; Ezra Elias

2013-09-27T23:59:59.000Z

354

Impact of Spatial Filtering on the Least Cost Path Method: Selecting a High-Speed Rail Route for Ohio's 3-C Corridor  

Science Conference Proceedings (OSTI)

In the face of renewed interest in High-Speed Rail (HSR) projects, Ohio is one of several states seeking federal funding to relieve pressure on aging, overburdened highway infrastructure by constructing passenger rail routes between major cities. This ... Keywords: 3-C Corridor, High-Speed Rail, Least Cost Path, Ohio Hub Project, Rail Routing

Amy E. Rock; Amanda Mullett; Saad Algharib; Jared Schaffer; Jay Lee

2010-10-01T23:59:59.000Z

355

Computer-Aided Design of Materials for High-Temperature Operating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Building College Station, TX 77843-3116 979-862-4552 krajagopal@tamu.edu Computer-Aided design of mAteriAls for HigH-temperAture operAting Conditions Description...

356

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

DOE Green Energy (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

357

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

DOE Green Energy (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

358

High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility  

SciTech Connect

Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and where appropriate, changes in Center metrics were introduced. This report covers CY 2010 and CY 2011 Year to Date (YTD) that unless otherwise specified, denotes January 1, 2011 through June 30, 2011. User Support remains an important element of the OLCF operations, with the philosophy 'whatever it takes' to enable successful research. Impact of this center-wide activity is reflected by the user survey results that show users are 'very satisfied.' The OLCF continues to aggressively pursue outreach and training activities to promote awareness - and effective use - of U.S. leadership-class resources (Reference Section 2). The OLCF continues to meet and in many cases exceed DOE metrics for capability usage (35% target in CY 2010, delivered 39%; 40% target in CY 2011, 54% January 1, 2011 through June 30, 2011). The Schedule Availability (SA) and Overall Availability (OA) for Jaguar were exceeded in CY2010. Given the solution to the VRM problem the SA and OA for Jaguar in CY 2011 are expected to exceed the target metrics of 95% and 90%, respectively (Reference Section 3). Numerous and wide-ranging research accomplishments, scientific support, and technological innovations are more fully described in Sections 4 and 6 and reflect OLCF leadership in enabling high-impact science solutions and vision in creating an exascale-ready center. Financial Management (Section 5) and Risk Management (Section 7) are carried out using best practices approved of by DOE. The OLCF has a valid cyber security plan and Authority to Operate (Section 8). The proposed metrics for 2012 are reflected in Section 9.

Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

2011-08-01T23:59:59.000Z

359

Cost-sensitive classifier evaluation using cost curves  

Science Conference Proceedings (OSTI)

The evaluation of classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2008-05-01T23:59:59.000Z

360

The design, construction, and operation of long-distance high-voltage electricity transmission technologies.  

SciTech Connect

This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

2008-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility  

SciTech Connect

Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

2010-08-01T23:59:59.000Z

362

High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility  

SciTech Connect

Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

2010-08-01T23:59:59.000Z

363

Investigating Operating System Noise in Extreme-Scale High-Performance Computing Systems using Simulation  

SciTech Connect

Hardware/software co-design for future-generation high-performance computing (HPC) systems aims at closing the gap between the peak capabilities of the hardware and the performance realized by applications (application-architecture performance gap). Performance profiling of architectures and applications is a crucial part of this iterative process. The work in this paper focuses on operating system (OS) noise as an additional factor to be considered for co-design. It represents the first step in including OS noise in HPC hardware/software co-design by adding a noise injection feature to an existing simulation-based co-design toolkit. It reuses an existing abstraction for OS noise with frequency (periodic recurrence) and period (duration of each occurrence) to enhance the processor model of the Extreme-scale Simulator (xSim) with synchronized and random OS noise simulation. The results demonstrate this capability by evaluating the impact of OS noise on MPI_Bcast() and MPI_Reduce() in a simulated future-generation HPC system with 2,097,152 compute nodes.

Engelmann, Christian [ORNL

2013-01-01T23:59:59.000Z

364

High power operation of the university of Maryland coaxial gyroklystron experiment  

SciTech Connect

We report the experimental studies of high power amplification in a coaxial three-cavity X-band gyroklystron. A single-anode magnetron injection gun (MIG) is used to produce a 520 A beam of 470 keV electrons with an average ratio of perpendicular-to-parallel velocity of about one. The voltage flat top is nearly 2 {mu}s. All cavities are designed to operate in the TE{sub 011} coaxial mode near 8.6 GHz. The input cavity is driven by a 150 kW, 3 {mu}s coaxial magnetron through a single slot in the radial wall. Peak powers of 75{endash}85 MW are measured with a conversion efficiency of nearly 32{percent} and a large signal gain of about 30 dB. This performance is in good agreement with simulations and represents approximately a tri-fold increase in the peak power capability of pulsed X-band gyroklystrons. We also report on the design of a three cavity second harmonic gyroklystron which is expected to produce 100 MW at 17.14 GHz. We close with a general discussion of scaling our designs to higher frequencies. {copyright} {ital 1999 American Institute of Physics.}

Lawson, W.; Arjona, M.; Castle, M.; Hogan, B.; Granatstein, V.; Reiser, M. [Institute for Plasma Research and Electrical Engineering Department, University of Maryland, College Park, Maryland 20742 (United States)

1999-07-01T23:59:59.000Z

365

High power operation of the university of Maryland coaxial gyroklystron experiment  

SciTech Connect

We report the experimental studies of high power amplification in a coaxial three-cavity X-band gyroklystron. A single-anode magnetron injection gun (MIG) is used to produce a 520 A beam of 470 keV electrons with an average ratio of perpendicular-to-parallel velocity of about one. The voltage flat top is nearly 2 {mu}s. All cavities are designed to operate in the TE{sub 011} coaxial mode near 8.6 GHz. The input cavity is driven by a 150 kW, 3 {mu}s coaxial magnetron through a single slot in the radial wall. Peak powers of 75-85 MW are measured with a conversion efficiency of nearly 32% and a large signal gain of about 30 dB. This performance is in good agreement with simulations and represents approximately a tri-fold increase in the peak power capability of pulsed X-band gyroklystrons. We also report on the design of a three cavity second harmonic gyroklystron which is expected to produce 100 MW at 17.14 GHz. We close with a general discussion of scaling our designs to higher frequencies.

Lawson, W.; Arjona, M.; Castle, M.; Hogan, B.; Granatstein, V.; Reiser, M. [Institute for Plasma Research and Electrical Engineering Department, University of Maryland, College Park, Maryland 20742 (United States)

1999-07-12T23:59:59.000Z

366

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Quarterly progress report, April--June 1978. Low cost silicon solar array project  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the feasibility and cost of manufacturing semiconductor grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free space reactor. The process design program is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 100 metric tons per year. The purpose of the capacitive fluid-bed heating program is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model was developed for use in the design of a fluid-bed pyrolysis scheme. Progress is reported in each of these areas. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

367

Wind Electrolysis: Hydrogen Cost Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

which needs to be 44% or better along with relatively high wind speeds. Along with low production costs, however, delivery and storage costs will also factor into the final cost...

368

Cost-sensitive classifier evaluation  

Science Conference Proceedings (OSTI)

Evaluating classifier performance in a cost-sensitive setting is straightforward if the operating conditions (misclassification costs and class distributions) are fixed and known. When this is not the case, evaluation requires a method of visualizing ...

Robert C. Holte; Chris Drummond

2005-08-01T23:59:59.000Z

369

A High Temperature Planar Solid Oxide Fuel Cell Operating on Phosphine Contaminated Coal Syngas.  

E-Print Network (OSTI)

??Solid oxide fuel cells that operate on phosphine contaminated coal syngas are subject to performance degradation due to alterations of the anode microstructure. Theoretical investigations… (more)

De Silva, Kandaudage Channa R.

2011-01-01T23:59:59.000Z

370

The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process  

Science Conference Proceedings (OSTI)

The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

2008-06-24T23:59:59.000Z

371

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce quantify the benefits of controlled charging of plug-in hybrid electric vehicles. Costs are determined expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c

McGaughey, Alan

372

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network (OSTI)

NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

Antypas, Katie

2013-01-01T23:59:59.000Z

373

Cost Affordable Titanium IV  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Enhancing the Cost Effectiveness of High Performance Titanium Alloy Component Production by Powder Metallurgy · Evolution of Texture in ...

374

PHENIX WBS notes. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

375

PHENIX Work Breakdown Structure. Cost and schedule review copy  

Science Conference Proceedings (OSTI)

The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

Not Available

1994-02-01T23:59:59.000Z

376

Highly Efficient Synchronization Based on Active Memory Operations Lixin Zhang Zhen Fang and John B. Carter  

E-Print Network (OSTI)

Austin, TX 78758 Salt Lake City, UT 84112 zhangl@us.ibm.com zfang, retrac@cs.utah.edu Abstract. In this paper, we present a mechanism that allows atomic synchronization operations to be executed on the home mem- ory controller of the synchronization variable. By perform- ing atomic operations near where

Carter, John B.

377

Electrolytic cell. [operation at 500,000 amperes  

SciTech Connect

A novel electrolytic cell of the vertical electrode type comprising a novel cathode busbar structure, novel cathode elements and a novel anode base structure which enable the novel electrolytic cell to be designed to operate at high current capacities upward to about 500,000 amperes while maintaining high operating efficiencies is claimed. These high current capacities provide for high production capacities which result in high production rates for given cell room floor areas and reduce capital investment and operating costs.

Mose, L.; Kramer, W.; Strewe, W.; Strasser, B.

1977-04-12T23:59:59.000Z

378

Accurate Liquid Water Path Retrieval from Low-Cost Microwave Radiometers Using Additional Information from a Lidar Ceilometer and Operational Forecast Models  

E-Print Network (OSTI)

, but their presence in the liquid rather than the ice phase can lead to shortwave flux changes of about 100 W m 2 (NWP). In most operational NWP models, production of rain by collision and coalescence is parameterized

Reading, University of

379

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007  

DOE Green Energy (OSTI)

Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

Tucker, R.

2008-04-01T23:59:59.000Z

380

Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report  

Science Conference Proceedings (OSTI)

In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

Harpman, D.A.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High fidelity gate operations within the coupled nuclear and electron spins of a nitrogen vacancy center in diamond  

E-Print Network (OSTI)

In this article we investigate the dynamics of a single negatively charged nitrogen-vacancy center (NV-) coupled to the spin of the nucleus of a 15-nitrogen atom and show that high fidelity gate operations are possible without the need for complicated composite pulse sequences. These operations include both the electron and nuclear spin rotations, as well as an entangling gate between them. These are experimentally realizable gates with current technology of sufficiently high fidelities that they can be used to build graph states for quantum information processing tasks.

Mark S. Everitt; Simon Devitt; W. J. Munro; Kae Nemoto

2013-09-12T23:59:59.000Z

382

Diagnosis and assessment of operations control interventions : framework and applications to a high frequency metro line  

E-Print Network (OSTI)

Service control, the task of implementing the timetable in daily operations on a metro line, plays a key role in service delivery, as it determines the quality of the service as provided to passengers. This thesis proposes ...

Carrel, André, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

383

The Operational Global Icosahedral–Hexagonal Gridpoint Model GME: Description and High-Resolution Tests  

Science Conference Proceedings (OSTI)

The German Weather Service (Deutscher Wetterdienst) has recently developed a new operational global numerical weather prediction model, named GME, based on an almost uniform icosahedral–hexagonal grid. The GME gridpoint approach avoids the ...

Detlev Majewski; Dörte Liermann; Peter Prohl; Bodo Ritter; Michael Buchhold; Thomas Hanisch; Gerhard Paul; Werner Wergen; John Baumgardner

2002-02-01T23:59:59.000Z

384

High Operating Temperature Quantum-Dot Infrared Photodetector Using Advanced Capping Techniques  

Science Conference Proceedings (OSTI)

We demonstrate an improvement in the operating temperature of a quantum dot-in-a-well (DWELL)-based infrared photodetector with spectral response observable till 250 K. This improvement was achieved through engineering the dot geometry and the quantum ...

Jiayi Shao; Thomas E. Vandervelde; Woo-Yong Jang; Andreas Stintz; Sanjay Krishna

2011-09-01T23:59:59.000Z

385

2013 Grid Stategy: Operating the Grid with High Penetration of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

Operating the distribution grid with an increasing amount of distributed energy resources (DER) is an area of focus for the electric utility industry and especially for the utilities within the Electric Power Research Institute’s (EPRI’s) multi-year Smart Grid Demonstration Initiative. This report provides a summary of the challenges and methods to overcome these challenges in planning for and operating the grid as the amount of DER increase and changes over time. In order to better ...

2013-12-23T23:59:59.000Z

386

EVMS Surveillance Standard Operating Procedure (ESSOP) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting System (PARS II) INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures ICR-ICE Standard Operating Procedures (Update Sept 2013)...

387

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low cost silicon solar array project. Quarterly progress report for July--September 1978  

DOE Green Energy (OSTI)

The project is divided into four tasks: silane production, silicon production, process design, and fluid-bed pyrolysis R and D. The purpose of the silane production task is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production task is to establish the feasibility and cost of manufacturing semi-conductor grade polycrystalline silicon through the pyrolysis of silane (SiH/sub 4/). The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free-space reactor. The process design task is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 1000 metric tons per year. The purpose of fluid-bed pyrolysis task is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane and to further explore the behavior of a fluid bed. These basic studies will form part of the information necessary to assess technical feasibility of the fluid-bed pyrolysis of silane. Status of these tasks are reported. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

388

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

Karner, D.; Francfort, J.E.

2003-01-22T23:59:59.000Z

389

High Performance Packaging Solutions for Low Cost, Reliable PV Modules: Final Subcontract Report, 26 May 2005 - 30 November 2008  

DOE Green Energy (OSTI)

During this research effort, Dow Corning Corporation has addressed the PV manufacturing goals of: (i) improving PV manufacturing processes and equipment; (ii) accelerating manufacturing cost reductions of PV modules; (iii) increasing commercial product performance and reliability; and (iv) scaling up U.S. manufacturing capacity.

Keotla, B. M.; Marinik, B. J.

2009-06-01T23:59:59.000Z

390

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network (OSTI)

Administration, 2008). A number of low- carbon power generation technologies are available today, but many-rated by their forced outage rates to represent the amount of power generation capacity that is available on average). Rather, it does so indirectly, by changing the relative costs of power generating technologies

Kammen, Daniel M.

391

Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode  

SciTech Connect

The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the /sup 235/U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg.

Foley, J.E.

1980-10-01T23:59:59.000Z

392

Effect of tax, financing, and operating-cost incentives on retiree homeowners' current and potential decisions to purchase energy-saving improvements  

SciTech Connect

This study focused on retiree homeowners to determine their level of participation, causes of non-participation and the effect of selected incentive modifications on investment decisions. A descriptive-elemental approach was taken to explore three research questions. Fifty semi-structured interviews selected through restricted probability were conducted in Sun City, California. Findings were keyed to sex, age, education and income and statistically analyzed using the chi-square test. Retiree homeowners had coped with rising utility costs through modified usage practice rather than through energy-saving investments. Concerns over access to funding, required initial payout, return on investment, future prices of energy and risk were highest among those of least education or income. A desire to retain an existing life style was important to those of higher education and income. Level of awareness of incentive features was also a major decision factor. The analysis indicated that energy-saving investments will increase if retiree homeowners are offered shared-cost obligation by the individual, government, and utility; exemption from sales tax for all energy-saving-item sales and service; state tax exemption for federal tax credits; exemption of energy-saving improvements from property tax; continued federal tax credit; investment loans sufficiently available to meet demand; energy-producing equipment available for rent or lease at reasonable rates.

Long, A.W. Jr.

1983-01-01T23:59:59.000Z

393

High speed hydraulically-actuated operating system for an electric circuit breaker  

Science Conference Proceedings (OSTI)

This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

Iman, Imdad (Colonie, NY)

1983-06-07T23:59:59.000Z

394

High speed hydraulically-actuated operating system for an electric circuit breaker  

DOE Patents (OSTI)

This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

Iman, I.

1983-06-07T23:59:59.000Z

395

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

Albrecht, G.; George, E.V.; Krupke, W. [and others

1994-12-31T23:59:59.000Z

396

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

397

Designing a highly-scalable operating system: the Blue Gene/L story  

Science Conference Proceedings (OSTI)

Blue Gene/L is currently the world's fastest and most scalable supercomputer. It has demonstrated essentially linear scaling all the way to 131,072 processors in several benchmarks and real applications. The operating systems for the compute and I/O ...

José Moreira; Michael Brutman; José Castaños; Thomas Engelsiepen; Mark Giampapa; Tom Gooding; Roger Haskin; Todd Inglett; Derek Lieber; Pat McCarthy; Mike Mundy; Jeff Parker; Brian Wallenfelt

2006-11-01T23:59:59.000Z

398

The cost of silage harvest and transport systems for herbaceous crops  

DOE Green Energy (OSTI)

Some of the highest yielding herbaceous biomass crops are thick- stemmed species. Their relatively high moisture content necessitates they be handled and stored as silage rather than hay bales or modules. This paper presents estimated costs of harvesting and transporting herbaceous crops as silage. Costs are based on an engineering- economic approach. Equipment costs are estimated by combining per hour costs with the hours required to complete the operation. Harvest includes severing, chopping, and blowing stalks into a wagon or truck.

Turhollow, A.; Downing, M. [Oak Ridge National Lab., TN (United States); Butler, J. [Butler (James), Tifton, GA (United States)

1996-12-31T23:59:59.000Z

399

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

DOE Green Energy (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

400

Operations-Based Planning for Placement and Sizing of Energy Storage in a Grid With a High Penetration of Renewables  

E-Print Network (OSTI)

As the penetration level of transmission-scale time-intermittent renewable generation resources increases, control of flexible resources will become important to mitigating the fluctuations due to these new renewable resources. Flexible resources may include new or existing synchronous generators as well as new energy storage devices. The addition of energy storage, if needed, should be done optimally to minimize the integration cost of renewable resources, however, optimal placement and sizing of energy storage is a difficult optimization problem. The fidelity of such results may be questionable because optimal planning procedures typically do not consider the effect of the time dynamics of operations and controls. Here, we use an optimal energy storage control algorithm to develop a heuristic procedure for energy storage placement and sizing. We generate many instances of intermittent generation time profiles and allow the control algorithm access to unlimited amounts of storage, both energy and power, at a...

Dvijotham, Krishnamurthy; Backhaus, Scott

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high operating costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High-energy lattice for first-beam operation of the SRF test accelerator at NML  

Science Conference Proceedings (OSTI)

The Superconducting Radio Frequency Test Accelerator, a linear electron accelerator currently in construction at Fermilab's New Muon Laboratory, will eventually reach energies of {approx} 900 MeV using four ILC-type superconducting accelerating cryomodules. The accelerator's construction is staged according to cryomodules availability. The first phase that will support first beam operation incorporates one cryomodule. In this Note, we summarize a possible design for the first-beam accelerator configuration.

Prokop, C.; /NICADD, DeKalb; Piot, P.; /NICADD, DeKalb /Fermilab; Church, M.; /Fermilab

2011-09-01T23:59:59.000Z

402

Thermal and Corona Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

In an attempt to meet increasing demand by pushing more power through existing lines, the power industry has frequently resorted to operating overhead transmission lines at higher temperatures than ever before. There is reason to believe that the empirical models developed in the past for determining conductor temperature and corona performance are in error at these elevated temperatures. In an effort to safely and reliably push more power, it will be important for utilities to understand the temperature...

2007-12-11T23:59:59.000Z

403

Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility  

SciTech Connect

This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

JANIN, L.F.

2000-08-30T23:59:59.000Z

404

Hanford high level waste (HLW) tank mixer pump safe operating envelope reliability assessment  

DOE Green Energy (OSTI)

The US Department of Energy and its contractor, Westinghouse Corp., are responsible for the management and safe storage of waste accumulated from processing defense reactor irradiated fuels for plutonium recovery at the Hanford Site. These wastes, which consist of liquids and precipitated solids, are stored in underground storage tanks pending final disposition. Currently, 23 waste tanks have been placed on a safety watch list because of their potential for generating, storing, and periodically releasing various quantities of hydrogen and other gases. Tank 101-SY in the Hanford SY Tank Farm has been found to release hydrogen concentrations greater than the lower flammable limit (LFL) during periodic gas release events. In the unlikely event that an ignition source is present during a hydrogen release, a hydrogen burn could occur with a potential to release nuclear waste materials. To mitigate the periodic gas releases occurring from Tank 101-SY, a large mixer pump currently is being installed in the tank to promote a sustained release of hydrogen gas to the tank dome space. An extensive safety analysis (SA) effort was undertaken and documented to ensure the safe operation of the mixer pump after it is installed in Tank 101-SY.1 The SA identified a need for detailed operating, alarm, and abort limits to ensure that analyzed safety limits were not exceeded during pump operations.

Fischer, S.R. [Los Alamos National Lab., NM (United States); Clark, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

405

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low Cost Silicon Solar Array Project. Quarterly progress report, January--March 1978  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the viability and economic feasibility of manufacturing semiconductor-grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and a free space reactor. The purpose of the process design program is to provide JPL with engineering and economic parameters for an experimental facility capable of producing 25 metric tons of silicon per year by the pyrolysis of silane gas. An ancillary purpose is to estimate the cost of silicon produced by the same process on a scale of 1000 metric tons per year. The capacitive fluid-bed heating program is exploring the feasibility of utilizing electrical capacitive heating to control the fluidized silicon bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model is being developed to be used in a design of a fluid-bed pyrolysis process scheme. Research progress is described in detail. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

406

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

407

Primer on Flexible Operations in Fossil Plants  

Science Conference Proceedings (OSTI)

This primer describes the significant changes that have occurred over the past decade in the duty cycles of fossil power plants and the implications for plant equipment and costs. These changes include the increasing shift in coal-fired and natural-gas-fired power plants from high-capacity-factor, baseloaded operation to various modes of flexible operation, including load-following and low-load operation. ...

2013-09-27T23:59:59.000Z

408

Design and Operation of a High Pressure Reaction Cell for in situ X-ray Absorption Spectroscopy  

DOE Green Energy (OSTI)

X-ray absorption spectroscopy measurements of catalytic reactions have been instrumental in advancing the understanding of catalytic processes. These measurements require an in situ catalysis reaction cell with unique properties. Here we describe the design and initial operation of an in situ/operando catalysis reaction cell for transmission X-ray absorption spectroscopy measurements. The cell is designed: to be an ideal catalytic reactor with no mass transfer effects; to give the same conversion and selectivity under similar space velocities as standard laboratory micro-reactors; to be operational temperatures up to 600 {sup o}C and pressures up to 14 bar; to be X-ray transparent allowing XAS measurement to be collected in transmission for all elements with Z {>=} 23 (vanadium K-edge at 5.5 keV); to measure the actual catalyst bed temperature; to not use o-ring seals, or water cooling; to be robust, compact, easy to assemble, and use, and relatively low cost to produce. The heart of the cell is fabricated from an X-ray transparent beryllium tube that forms a plug flow reactor. XAFS data recorded during the reduction of a Re/{gamma}-A{sub 2}O{sub 3} catalyst as a function of hydrogen pressure from 0.05 to 8 bar, and from a Pt-Sn/{gamma}-A{sub 2}O{sub 3} catalyst during n-heptane reforming are given as initial examples of the versatility of the reactor.

Bare,S.; Yang, N.; Kelly, S.; Mickelson, G.; Modica, F.

2007-01-01T23:59:59.000Z

409

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network (OSTI)

Inability to meet DOE IPv6 requirements Med High ImpactMitigation NERSC/DOE has a requirement for IPv6 andscale. Science Requirements Workshops In 2009 NERSC and DOE

Antypas, Katie

2013-01-01T23:59:59.000Z

410

Optimal handling of Highly Active Pharmaceutical Ingredients during milling and blending operations  

E-Print Network (OSTI)

This thesis investigates best practices for Highly Active Pharmaceutical Ingredient (HAPI) milling and blending. We utilize a qualitative analysis centering on a benchmarking study and quantitative analyses using a ...

Setty, Prashant (Prashant Neelappanavara)

2013-01-01T23:59:59.000Z

411

Toward Improved Prediction: High-Resolution and Ensemble Modeling Systems in Operations  

Science Conference Proceedings (OSTI)

A large gap in skill between forecasts of the atmospheric circulation (relatively high skill) and quantitative precipitation (low skill) has emerged over the past three decades. One common approach toward closing this gap has been to try to ...

Paul J. Roebber; David M. Schultz; Brian A. Colle; David J. Stensrud

2004-10-01T23:59:59.000Z

412

EPRI High-Voltage Direct Current (HVDC) Reference Book: Chapter 24 - Operation and Maintenance of HVDC Systems  

Science Conference Proceedings (OSTI)

This report contains descriptions of the operation and maintenance (O&M) activities of traditional high-voltage direct current (HVDC) line commutated (thyristor-based) and voltage-sourced converter (VSC) transmission systems. Both long-distance transmission schemesincluding the transmission linesand back-to-back schemes are included. The various tasks involved in the O&M of HVDC systems are described at some length, and a range of estimates is given for the staff requirements to carry out these activitie...

2010-01-19T23:59:59.000Z

413

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

414

FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste  

SciTech Connect

A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997.

Musick, C.A.

1997-11-01T23:59:59.000Z

415

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

416

Plasma and operational conditions in a high species filter bucket source  

DOE Green Energy (OSTI)

Experimental details of operation and plasma flow are presented for bucket ion sources having magnetic flux that bridges the source between the regions of electron injection and ion extraction. The basic goal is to increase the atomic fraction of hydrogen and deuterium by 15% and yet retain an ion-flux-density uniformity over the extraction region to within +- 7%. A rod structure containing permanent magnets produces a known bridging flux filter across a well-defined region. This provides an experimental apparatus useful for the study of the effect of magnetic flux on the source plasma flow. The parameters of filter position, filter strength, filter orientation, arc power, and gas pressure are related to species fractions, profile uniformity, and electrical efficiency. The option of having the bridging flux without a rod structure is presented, and experimental results of sources thought to contain this field configuration are discussed.

Pincosy, P.A.; Ehlers, K.W.; Lietzke, A.F.

1986-10-01T23:59:59.000Z

417

High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of fuel.

Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

2012-02-01T23:59:59.000Z

418

Disruptions, Disruptivity, and Safer Operating Windows in the High-? Spherical Torus NSTX  

SciTech Connect

This paper discusses disruption rates, disruption causes, and disruptivity statistics in the high- ?N National Spherical Torus Experiment (NSTX) [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While the overall disruption rate is rather high, configurations with high ?N , moderate q*, strong boundary shaping, sufficient rotation, and broad pressure and current profiles are found to have the lowest disruptivity; active n=1 control further reduces the disruptivity. The disruptivity increases rapidly for q*<2.7, which is substantially above the ideal MHD current limit. In quiescent conditions, qmin >1.25 is generally acceptable for avoiding the onset of core rotating n=1 kink/tearing modes; when EPM and ELM disturbances are present, the required qmin for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n=1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fueling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored energy disruptions are those that occur at high current when a plasma current rampdown is initiated incorrectly.

Gerhardt, S P; Diallo, A; Gates, D; LeBlanc, B P; Menard, J E; Mueller, D; Sabbagh, S A; Soukhanovskii, V; Tritz, K

2012-09-27T23:59:59.000Z

419

An "ageing" operator and its use in the highly constrained topological optimization of HVAC system design  

Science Conference Proceedings (OSTI)

The synthesis of novel heating, ventilating, and air-conditioning (HVAC), system configurations is a mixed-integer, non-linear, highly constrained, multi-modal, optimization problem, with many of the constraints being subject to time-varying boundary ... Keywords: HVAC, evolutionary algorithms, system design, topological optimization

Jonathan Wight; Yi Zhang

2005-06-01T23:59:59.000Z

420

Scalable and flat controls for reliable power grid operation with high renewable  

E-Print Network (OSTI)

a high percentage of single-phase air-conditioners, whereas during a winter evening it would have more of better models for wind turbines. Modeling and control via dynamic phasors Dynamic phasors are finding sources are inherently single phase (e.g., small rooftop photovoltaics), and their intermittency will lead

Nur, Amos