National Library of Energy BETA

Sample records for high neutron flux

  1. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  2. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  3. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Overholt, Andrew; Atri, Dimitra

    2013-01-01

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV...

  4. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Andrew Overholt; Adrian Melott; Dimitra Atri

    2013-06-05

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. Our results demonstrate that deducing the nature of primaries from ground level neutron enhancements would be very difficult.

  5. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect (OSTI)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  6. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE ButtonFSOWiki AppsAboutHigh

  7. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  8. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  9. Imaging of Diesel Particulate Filters using a High-Flux Neutron Source

    Broader source: Energy.gov [DOE]

    Detailed images of deposits identified inside automotive DPFs using neutrons show how the deposits of soot, ash, and washcoat occurs within the filter.

  10. Imaging of Diesel Particulate Filters using a High-Flux Neutron...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deposits identified inside automotive DPFs using neutrons show how the deposits of soot, ash, and washcoat occurs within the filter. p-14toops.pdf More Documents & Publications...

  11. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, John T. (Oak Ridge, TN); Simpson, Marc L. (Knoxville, TN); McElhaney, Stephanie A. (Oak Ridge, TN)

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  12. Modernization of the High Flux Isotope Reactor (HFIR) to Provide a Cold Neutron Source and Experimentation Facility

    SciTech Connect (OSTI)

    Rothrock, Benjamin G [ORNL] [ORNL; Farrar, Mike B [ORNL] [ORNL

    2009-01-01

    This paper discusses the installation of a cold neutron source at HFIR with respect to the project as a modernization of the facility. The paper focuses on why the project was required, the scope of the cold source project with specific emphasis on the design, and project management information.

  13. High flux reactor

    DOE Patents [OSTI]

    Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  14. Neutron and X-ray experiments at high temperature P. Aldebert (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    neutron scattering have appeared as power- ful tools to get information, mainly structural temperature scattering devices compared to X-rays. At the present time thermal neutron high flux reactors be investigated by neutron scattering.

  15. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  16. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Qiang Zhao; Zhiyong He; Lei Yang; Xueying Zhang; Wenjuan Cui; Zhiqiang Chen; Hushan Xu

    2015-08-09

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with the fission chamber (FC). The effective technique consists in establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for FC in the environment of ADS system. The results indicate that the proposed method functions very well when the neutron flux is below 10^{13} neutron/cm^2/second.

  17. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  18. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  19. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  20. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  1. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 2. External neutron- and gamma flux measurements by sample activation. Section 1

    SciTech Connect (OSTI)

    Biggers, W.A.; Brown, L.J.

    1985-09-01

    The Greenhouse operation consisted of a series of four shots conducted at Eniwetok during the Srping of 1951. The external neutron threshold measurements consisted of the use of good samples to measure integrated thermal neutron fluxes and sulfur, iodine, and zirconium samples to measure fluxes of higher-energy neutrons. The iodine also measured high-energy gamma-ray intensity. Measurements were also made on slow- and fast-neutron intensities as a function of time.

  2. HFBR handbook, 1992: High flux beam reactor

    SciTech Connect (OSTI)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

  3. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  6. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  7. Upgrading scientific capabilities at the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    West, C.D.; Farrar, M.B.

    1997-07-14

    Following termination of the Advanced Neutron Source (ANS) Project, a program of upgrades to the Department of Energy`s High Flux Isotope Reactor (HFIR) was devised by a team of researchers and reactor operators and has been proposed to the department. HFIR is a multipurpose research reactor, commissioned in 1965, with missions in four nationally important areas: isotope production, especially transuranic isotopes; neutron scattering; neutron activation analysis; and irradiation testing of materials. For neutron scattering, there are two major enhancements and several smaller ones. The first is the installation of a small, hydrogen cold neutron source in one of the four existing beam tubes: because of the high reactor power, and the use of new design concepts developed for ANS, the cold source will be as bright as, or brighter than, the Institute Laue Langevin liquid deuterium vertical cold source, although space limitations mean that there will be far fewer cold beams and instruments at HFIR. This project is underway, and the cold source is expected to come on line following an extended shutdown in 1999 to replace the reactor`s beryllium reflector. The second major change proposed would put five thermal neutron guides at an existing beam port and construct a new guide hall to accommodate instruments on these very intense beams.

  8. Upper limits on the solar-neutron flux at the Yangbajing neutron monitor from BATSE-detected solar flares

    E-Print Network [OSTI]

    H. Tsuchiya; H. Miyasaka; E. Takahashi; S. Shimoda; Y. Yamada; I. Kondo; K. Makishima; F. Zhu; Y. Tan; H. Hu; Y. Tang; J. Zhang; H. Lu; X. Meng

    2007-03-16

    The purpose of this work is to search the Yangbajing neutron monitor data obtained between 1998 October and 2000 June for solar neutrons associated with solar flares. Using the onset times of 166 BATSE-detected flares with the GOES peak flux (1 -- 8 \\AA) higher than $1.0 \\times 10^{-5}$ $\\mathrm{Wm^{-2}}$, we prepare for each flare a light curve of the Yangbajing neutron monitor, spanning $\\pm$ 1.5 hours from the BATSE onset time. Based on the light curves, a systematic search for solar neutrons in energies above 100 MeV from the 166 flares was performed. No statistically significant signals due to solar neutrons were found in the present work. Therefore, we put upper limits on the $>$ 100 MeV solar-neutron flux for 18 events consisting of 2 X and 16 M class flares. The calculation assumed a power-law shaped neutron energy spectrum and three types of neutron emission profiles at the Sun. Compared with the other positive neutron detections associated with X-class flares, typical 95% confidence level upper limits for the two X-class flares are found to be comparable to the lowest and second lowest neutron fluxes at the top of the atmosphere.In addition, the upper limits for M-class flares scatter in the range of $10^{-2}$ to 1 neutrons $\\mathrm{cm^{-2}s^{-1}}$. This provides the first upper limits on the solar-neutron flux from M-class solar flares, using space observatories as well as ground-based neutron monitors.

  9. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  10. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  11. NEUTRON FLUX DENSITY AND SECONDARY-PARTICLE ENERGY SPECTRA AT THE 184-INCH SYNCHROCYCLOTRON MEDICAL FACILITY

    E-Print Network [OSTI]

    Smith, A.R.

    2010-01-01

    Mischke, R. E. 1973a. Neutron-nucleus total and inelasticproduction of high-energy neutrons by stripping. Phys. Rev.1975. Dose rate due to neutrons around the alpha- Health

  12. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  13. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  14. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect (OSTI)

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  15. High Flux Ti Nanofiltration Membrane

    Broader source: Energy.gov (indexed) [DOE]

    heat exchangers. Success would lead to a US-manufactured high performance nano-ceramic coating that could be exported and contribute to the growth of the US manufacturing sector of...

  16. Neutron-flux profile monitor for use in a fission reactor

    DOE Patents [OSTI]

    Kopp, M.K.; Valentine, K.H.

    1981-09-15

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  17. An investigation of the elimination of detector perturbations in pure thermal neutron fluxes 

    E-Print Network [OSTI]

    Feltz, Donald Everett

    1963-01-01

    . INTRODUCTION II. THEORETICAL INVESTIGATION Elimination of Flux Perturbation Theoretically Predicted Flux Perturbations III. EXPERIMENTAL INVESTIGATION Introduction Test Section Positioning in Graphite Thermal Column Final Test Section Design... Thermal Column 3. Final Graphite Loading and Test Section Position 4, Test Section Assembly Thermal Neutron Flux Distribution m 4" x 4" x 4" Water Test Section Photograph of Thermal Column Shield Door, Test Section Assembly Positioned in Loading...

  18. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  19. A Balloon-borne Measurement of High Latitude Atmospheric Neutrons Using a LiCAF Neutron Detector

    E-Print Network [OSTI]

    Kole, Merlin; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mózsi; Moretti, Elena; Salinas, Maria Fernanda Muñoz; Pearce, Mark; Rydström, Stefan; Takahashi, Hiromitsu; Yanagida, Takayuki

    2013-01-01

    PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high rad...

  20. Fully portable, highly flexible dilution refrigerator systems for neutron scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    775 Fully portable, highly flexible dilution refrigerator systems for neutron scattering P. A systems developed specifically for neutron scattering environ- ments. The refrigerators are completely relatively recently however, the lowest temperatures available in almost all neutron scattering laboratories

  1. HFIR | High Flux Isotope Reactor | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HFIR User Office User Program Manager Laura Morris Edwards 865.574.2966 Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities |...

  2. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect (OSTI)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ?5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  3. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  4. MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS

    E-Print Network [OSTI]

    Liang, Shunlin

    Chapter 6 MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS: ALGORITHMS.1007/978-1-4419-0050-0_6, #12;142 Mapping Radiative Fluxes There are several global radiative flux data sets derived from either. For example, the CERES team uses the predefined albedo and emissivity maps to calculate surface radiative

  5. Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

  6. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  7. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora; Jones, Amy; Bailey, William Barton; Vandergriff, David H

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  8. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlationHigh flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford · Radiation Cooling · Forced Convection · Nucleate Boiling · Critical Heat Flux · Other ideas · Summary #12

  9. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energy neutron Computed Tomography developed High energy

  10. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    SciTech Connect (OSTI)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-07-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k{sub eff} this facility in the range of 0.75 to 0.975. (authors)

  11. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  12. Neutron scattering at high pressure D. B. McWhan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    715 Neutron scattering at high pressure D. B. McWhan Room 1D-234, Murray Hill, New Jersey 07974, U scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X

  13. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D. Title: Professor -|High energy neutron Computed

  14. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  15. The determination of neutron flux in the Texas A & M triga reactor during pulse and steady-state operations 

    E-Print Network [OSTI]

    O'Donnell, John Joseph

    1983-01-01

    THE DETERMINATION OF NEUTRON FLUX IN THE TEXAS A & M TRIGA REACTOR DURING PULSE AND STEADY-STATE OPERATIONS A Thesis by JOHN JOSEPH O'DONNELL Submitted to the Graduate College of Texas A 6 M University in partial fulfillment... of the requirements for t'ne degree of MASTER OF SCIENCE December 1983 Ma3 or Sub] ect: Nuclear Engineering THE DETERMINATION OF NEUTRON FLUX IN THE TEXAS A & M TRIGA REACTOR DURING PULSE AND STEADY-STATE OPERATIONS A Thesis by JOHN JOSEPH O'DONNELL Approved...

  16. Neutron burst form a high-voltage discharge between palladium electrodes in D sub 2 gas

    SciTech Connect (OSTI)

    Kim, Y.E. . Dept. of Physics)

    1990-12-01

    In this paper a recent experimental observation of a neutron flux burst at a rate of 2 {times} 10{sup 4} times the background rate during a high ac voltage stimulation between two deuterated palladium electrodes in D{sub 2} gas is explained in terms of the experimentally measured deuterium-deuterium (D-D) fusion cross sections. Theoretical criteria and experimental conditions for improving D-D fusion rates with the use of pulsed high-dc voltages are described.

  17. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01

    Neutrons." National Aero­ nautics and Space AdministrationAmes Research Center or the National Aero­ nautics and Space

  18. Heavy and superheavy elements production in high intensive fluxes of explosive process

    E-Print Network [OSTI]

    Lutostansky, Yu S; Panov, I V

    2015-01-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lower temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for Mike, Par and Barbel experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible in case of binary mixture of starting isotopes with the significant addit...

  19. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  20. High efficiency proportional neutron detector with solid liner internal structures

    DOE Patents [OSTI]

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  1. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  2. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  3. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  5. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  6. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  8. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  9. The Dynamics of Flux Tubes in a High Beta Plasma

    E-Print Network [OSTI]

    E. T. Vishniac

    1994-07-21

    We suggest a new model for the structure of a magnetic field embedded high $\\beta$ turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter the macroscopic properties of the fluid or the large scale magnetic field. In either case we show that the Sweet-Parker reconnection rate is much faster than an eddy turnover time. Realistic stellar plasmas are expected to either be in the ideal limit (e.g. the solar photosphere) or the resistive limit (most of the solar convection zone). All current numerical simulations of three dimensional MHD turbulence are in the viscous regime and are inapplicable to stars or accretion disks.

  10. Aspects of a high intensity neutron source

    E-Print Network [OSTI]

    Chapman, Peter H. (Peter Henry)

    2010-01-01

    A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

  11. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  12. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  13. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Betzler, Benjamin R; Ade, Brian J; Chandler, David; Ilas, Germina; Sunny, Eva E

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  14. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon Storage High-Pressure...

  15. Facilities and Capabilities | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHARE Facilities and Capabilities ORNL operates two of the world's most powerful neutron scattering user facilities: the High Flux Isotope Reactor and the Spallation...

  16. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  17. Production of high-energy ?neutrinos from young neutron stars

    E-Print Network [OSTI]

    G. F. Burgio; B. Link

    2006-09-20

    Young, rapidly rotating neutron stars could accelerate protons to energies of $\\sim 1$ PeV close to the stellar surface, which scatter with x-rays from the stellar surface through the $\\Delta$ resonance and produce pions. The pions subsequently decay to produce muon neutrinos. We find that the energy spectrum of muon neutrinos consists of a sharp rise at $\\sim 50$ TeV, corresponding to the onset of the resonance, above which the flux drops as $\\epsilon_\

  18. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing, and fracture toughness master curve issues.

  19. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    a Compact High-Yield Neutron Generator O. Waldmann 1 , B.Compact High-Yield Neutron Generator ? O. Waldmann a and B.yield compact neutron generator for active interrogation

  20. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  1. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  2. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  3. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    E-Print Network [OSTI]

    Dokania, N; Mathimalar, S; Garai, A; Nanal, V; Pillay, R G; Bhushan, K G

    2015-01-01

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  4. Estimation of low energy neutron flux ($E_n\\leq15$ MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    E-Print Network [OSTI]

    N. Dokania; V. Singh; S. Mathimalar; A. Garai; V. Nanal; R. G. Pillay; K. G. Bhushan

    2015-09-23

    The neutron flux at low energy ($E_n\\leq15$ MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of U, Th and ($\\alpha, n$) interactions in the rock is determined employing the actual rock composition. It has been demonstrated that the total flux is equivalent to a finite size cylindrical rock ($D=L=140$ cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) $\\times 10^{-6}\\rm~n ~cm^{-2}~s^{-1}$. The estimated neutron flux is of the same order ($\\sim10^{-6}\\rm~n ~cm^{-2}~s^{-1}$)~as measured in other underground laboratories.

  5. High Dose Neutron Irradiation Performance of Dielectric Mirrors

    SciTech Connect (OSTI)

    Nimishakavi, Anantha Phani Kiran Kumar; Leonard, Keith J; Jellison Jr, Gerald Earle; Snead, Lance Lewis

    2015-01-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. The ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  6. Observable Neutron-Anti-Neutron Oscillation, Baryogenesis and High Scale Seesaw

    E-Print Network [OSTI]

    R. N. Mohapatra

    2006-05-26

    Seesaw mechanism has been a dominant paradigm in the discussion of neutrino masses. I discuss how this idea can be tested via a baryon number violating process such as $N-\\bar{N}$ oscillation. Since the expected seesaw scale is high and the $N-\\bar{N}$ amplitude goes like $M^{-5}_{R}$, one might think that this process is not observable in realistic seesaw models for neutrino masses. In this talk I show that in supersymmetric models, the above conclusion is circumvented leading to an enhanced and observable rate for $N-\\bar{N}$ oscillation. I also discuss a new mechanism for baryogenesis in generic models for neutron-anti-neutron oscillation and show how the requirement of adequate baryogenesis can put an upper limit on the neutron-anti-neutron oscillation time.

  7. High sensitivity, solid state neutron detector

    DOE Patents [OSTI]

    Stradins, Pauls; Branz, Howard M; Wang, Qi; McHugh, Harold R

    2015-05-12

    An apparatus (200) for detecting slow or thermal neutrons (160). The apparatus (200) includes an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  8. High sensitivity, solid state neutron detector

    DOE Patents [OSTI]

    Stradins, Pauls; Branz, Howard M.; Wang, Qi; McHugh, Harold R.

    2013-10-29

    An apparatus (200) for detecting slow or thermal neutrons (160) including an alpha particle-detecting layer (240) that is a hydrogenated amorphous silicon p-i-n diode structure. The apparatus includes a bottom metal contact (220) and a top metal contact (250) with the diode structure (240) positioned between the two contacts (220, 250) to facilitate detection of alpha particles (170). The apparatus (200) includes a neutron conversion layer (230) formed of a material containing boron-10 isotopes. The top contact (250) is pixilated with each contact pixel extending to or proximate to an edge of the apparatus to facilitate electrical contacting. The contact pixels have elongated bodies to allow them to extend across the apparatus surface (242) with each pixel having a small surface area to match capacitance based upon a current spike detecting circuit or amplifier connected to each pixel. The neutron conversion layer (860) may be deposited on the contact pixels (830) such as with use of inkjet printing of nanoparticle ink.

  9. A high-flux BEC source for mobile atom interferometers

    E-Print Network [OSTI]

    Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel

    2015-06-16

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.

  10. High-flux solar photon processes: Opportunities for applications

    SciTech Connect (OSTI)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  11. Fusion neutron yield from high intensity laser-cluster interaction

    SciTech Connect (OSTI)

    Davis, J.; Petrov, G.M.; Velikovich, A.L. [Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-06-15

    The fusion neutron yield from a compact neutron source is studied. Laser-irradiated deuterium clusters serve as a precursor of high-energy deuterium ions, which react with the walls of a fusion reaction chamber and produce copious amounts of neutrons in fusion reactions. The explosion of deuterium clusters with initial radius of 50-200 A irradiated by a subpicosecond laser with intensity of 10{sup 16} W/cm{sup 2} is examined theoretically. We studied the conversion efficiency of laser energy to ion kinetic energy, the mean and maximum ion kinetic energy, and ion energy distribution function by a molecular dynamics model. A yield of {approx}10{sup 5}-10{sup 6} neutrons/J is obtainable for a peak laser intensity of 10{sup 16}-10{sup 17} W/cm{sup 2} and clusters with an initial radius of 200-400 A.

  12. High Intensity, Pulsed, D-D Neutron Generator

    E-Print Network [OSTI]

    Williams, D. L.

    2010-01-01

    application. Whether thermal activation (measuring prompt orthermal neutrons for both prompt and delayed gamma neutron activation

  13. Fast Neutron - Mirror Neutron Oscillation and Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Zurab Berezhiani; Luis Bento

    2006-02-24

    If there exists the mirror world, a parallel hidden sector of particles with exactly the same microphysics as that of the observable particles, then the primordial nucleosynthesis constraints require that the temperature of the cosmic background of mirror relic photons should be smaller than that of the ordinary relic photons, T'/T neutron - mirror neutron oscillation in vacuum, with an oscillation time $\\tau \\sim 1$ s, much smaller than the neutron lifetime. We show that this could provide a very efficient mechanism for transporting ultra high energy protons at large cosmological distances. The mechanism operates as follows: a super-GZK energy proton scatters a relic photon producing a neutron that oscillates into a mirror neutron which then decays into a mirror proton. The latter undergoes a symmetric process, scattering a mirror relic photon and producing back an ordinary nucleon, but only after traveling a distance $(T/T')^{3}$ times larger than ordinary protons. This may relax or completely remove the GZK-cutoff in the cosmic ray spectrum and also explain the correlation between the observed ultra high energy protons and far distant sources as are the BL Lacs.

  14. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  15. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  16. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  17. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01

    of High-Energy Accelerators, New York, April, 1957. USAECShielding of High-Energy Accelerators, New York, April 1957.Shielding of High-Energy Accelerators, New York, April 1957.

  18. Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

    2012-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

  19. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.

  20. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  1. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  2. Electron scattering from high-momentum neutrons in deuterium

    SciTech Connect (OSTI)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J. [Old Dominion University, Norfolk, Virginia 23529 (United States); Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H. [College of William and Mary, Williamsburg, Virginia 23187 (United States); Egiyan, K.S.; Asryan, G.; Dashyan, N.B. [Yerevan Physics Institute, 375036 Yerevan (Armenia)] (and others)

    2006-03-15

    We report results from an experiment measuring the semiinclusive reaction {sup 2}H(e,e{sup '}p{sub s}) in which the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p{sup {yields}}{sub s}, and momentum transfer Q{sup 2}. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p{sub s}>0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation.

  3. High photon flux table-top coherent extreme ultraviolet source

    E-Print Network [OSTI]

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  4. High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and...

  5. High x Structure Function of the Virtually Free Neutron

    E-Print Network [OSTI]

    Cosyn, Wim

    2015-01-01

    The pole extrapolation method is applied for the first time to data on semi-inclusive deep-inelastic scattering off the deuteron with tagged spectator protons to extract the high Bjorken x structure function of the neutron. This approach is based on the extrapolation of the measured cross sections at different momenta of the detected spectator proton to the non-physical pole of the bound neutron in the deuteron. The advantage of the method is that it makes it possible to suppress nuclear effects in a maximally model independent way. The neutron structure functions obtained in this way demonstrate surprising x dependence at x> 0.6, indicating the possibility of a rise in the neutron to proton structure function ratio. Such a rise may indicate new dynamics in the generation of high x quarks in the nucleon. One such mechanism we discuss is the possible dominance of short-range isosinglet quark-quark correlations that can enhance the d-quark distribution in the proton resulting in d/u -> 1.

  6. Electron Scattering From High-Momentum Neutrons in Deuterium

    E-Print Network [OSTI]

    A. V. Klimenko; S. E. Kuhn; for the CLAS collaboration

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' $F_{2n}^{eff}$ was extracted as a function of $W^{*}$ and the scaling variable $x^{*}$ at extreme backward kinematics, where effects of FSI appear to be smaller. For $p_{s}>400$ MeV/c, where the neutron is far off-shell, the model overestimates the value of $F_{2n}^{eff}$ in the region of $x^{*}$ between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  7. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect (OSTI)

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  8. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    permanent-magnet microwave ion source for the high-yield neutron generator.Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron GeneratorPermanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator ?

  9. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  10. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  11. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  12. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  13. The high-density Z-pinch as a pulsed fusion neutron source for fusion nuclear technology and materials testing

    SciTech Connect (OSTI)

    Krakowski, R.A.; Sethian, J.D.; Hagenson, R.L.

    1989-01-01

    The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s ..mu..m in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experiments. These encouraging results along with debt of a number of proof-of principle, high-current (1--2 MA in 10--100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (/dot S//sub N/ greater than or equal to 10/sup 19/ n/s) to provide uncollided neutron fluxes in excess of I/sub ..omega../ = 5--10 MW/m/sup 2/ over test volumes of 10--30 litre or greater. While this neutron source would be pulsed (100s ns pulse widths, 10--100 Hz pulse rate), giving flux time compressions in the range 10/sup 5/--10/sup 6/, its simplicity, near-time feasibility, low cost, high-Q operation, and relevance to fusion systems that may provide a pulsed commercial end-product (e.g., inertial confinement or the DZP itself) together create the impetus for preliminary considerations as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost versus performance analyses are presented. The DZP promises an expensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 10/sup 19/ n/s, with neutron currents I/sub ..omega../ /approx lt/ 10 MW/m/sup 2/ over volumes V/sub exp/ greater than or equal to 30 litre using single-pulse technologies that differ little from those being used in present-day experiments. 34 refs., 17 figs., 6 tabs.

  14. High Intensity, Pulsed, D-D Neutron Generator

    E-Print Network [OSTI]

    Williams, D. L.

    2010-01-01

    Pulsed, D-D Neutron Generator Authors: D. L. Williams, J. H.of Advanced Neutron/Gamma Generators for Imaging and ActiveN. K. -N. Leung, “D-D neutron generator development at LBNL”

  15. Discontinuous representation of the magnitude of the vector flux in monoenergetic neutron transport theory 

    E-Print Network [OSTI]

    Poulsen, Niel Bowman

    1963-01-01

    ' +1 a 2j'x' - j ax 2 -1' ' ' 2j'x' 2j-I'"' d d j 1, 2, . . . , n (3. 5) each of which governs neutron current conservation" over a specific interval p, to p, +l. j+la The discontinuous S method requires the simultaneous n solution of (3. 4) and 5... Pi 0j Pi 1 j+1 y cosg 1 - cosg y pi+1 P (sinljl + )d$ j dp are used. Pj The resulting equations are: c - b R X i+1 Pi J L j 3r 2m(2i-1)+2j ) j Zr 2m(2i-1)+2j-1 J b R 3 1+1Wi J 'L j 3r 2m(2i-2)+2j ) j Zr 2m(2i-2)+2j-1 J $2(1-Pi~lPi) 2 L )~a b I...

  16. Neutron stars, remnant cores following supernova explosions, are highly interesting astrophysical

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Neutron stars, remnant cores following supernova explosions, are highly interesting astrophysical environments In particular, accreting neutron stars presents a unique environment for nuclear reactions al., Phys. Rev. C 77, 045807 (2008) (4) Haensel et al., Neutron Stars 1, 2007 #12; One potential heat

  17. Neutron resonance in high-Tc superconductors is not the particle O. Tchernyshyov,1,2

    E-Print Network [OSTI]

    Chubukov, Andrey V.

    Neutron resonance in high-Tc superconductors is not the particle O. Tchernyshyov,1,2 M. R. Norman,2 that the energy of the resonance always exceeds 2 , twice the maximum d-wave gap, therefore the neutron resonance that the particle can exist at higher energies and might be observed in neutron scattering around 100 meV. DOI: 10

  18. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator O. Waldmanna-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable with an optimized magnetic field. Keywords: Neutron generator, Microwave ion source, Active interroga- tion PACS: 29

  19. High temperature furnaces for small and large angle neutron scattering of disordered materials

    E-Print Network [OSTI]

    Boyer, Edmond

    725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

  20. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    E-Print Network [OSTI]

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  1. Quantum Vacuum Friction in Highly Magnetized Neutron Stars

    E-Print Network [OSTI]

    Arnaud Dupays; Carlo Rizzo; Dimitar Bakalov; Giovanni F. Bignami

    2008-04-25

    In this letter we calculate the energy loss of highly magnetized neutron star due to friction with quantum vacuum, namely Quantum Vacuum Friction (QVF). Taking into account one-loop corrections in the effective Heisenberg-Euler Lagrangian of the light-light interaction, we derive an analytic expression for QVF allowing us to consider magnetic field at the surface of the star as high as $10^{11} $T. In the case of magnetars with high magnetic field above the QED critical field, we show that the energy loss by QVF dominates the energy loss process. This has important consequences, in particular on the inferred value of the magnetic field. This also indicates the need for independent measurements of magnetic field, energy loss rate, and of the braking index to fully characterize magnetars.

  2. Instrumentation development for neutron scattering at high pressure 

    E-Print Network [OSTI]

    Fang, Junwei

    2012-11-29

    Neutron scattering at extremes of pressure is a powerful tool for studying the response of structural and magnetic properties of materials on microscopic level to applied stresses. However, experimental neutron studies ...

  3. Project Profile: High-Flux Microchannel Solar Receiver | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receivers by applying microchannel heat-transfer technology to solar-receiver design. The extremely high heat-transfer rates afforded by microchannels...

  4. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    E-Print Network [OSTI]

    D. Habs; M. Gross; P. G. Thirolf; P. Böni

    2010-09-30

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

  5. Development of A Self Biased High Efficiency Solid-State Neutron...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Development of A Self Biased High Efficiency Solid-State Neutron Detector for MPACT Applications Citation Details In-Document Search Title: Development of A Self...

  6. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    E-Print Network [OSTI]

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  7. Design and optimization of a high thermal flux research reactor via Kriging-based algorithm

    E-Print Network [OSTI]

    Kempf, Stephanie Anne

    2011-01-01

    In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

  8. High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

    E-Print Network [OSTI]

    High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

  9. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  10. Characterization of an INVS Model IV Neutron Counter for High Precision ($?,n$) Cross-Section Measurements

    E-Print Network [OSTI]

    C. W. Arnold; T. B. Clegg; H. J Karwowski; G. C. Rich; J. R. Tompkins; C. R. Howell

    2011-01-17

    A neutron counter designed for assay of radioactive materials has been adapted for beam experiments at TUNL. The cylindrical geometry and 60% maximum efficiency make it well suited for ($\\gamma,n$) cross-section measurements near the neutron emission threshold. A high precision characterization of the counter has been made using neutrons from several sources. Using a combination of measurements and simulations, the absolute detection efficiency of the neutron counter was determined to an accuracy of $\\pm$ 3% in the neutron energy range between 0.1 and 1 MeV. It is shown that this efficiency characterization is generally valid for a wide range of targets.

  11. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    SciTech Connect (OSTI)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  12. Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)

    DOE Patents [OSTI]

    Nikolic, Rebecca J.; Conway, Adam M.; Heineck, Daniel; Voss, Lars F.; Wang, Tzu Fang; Shao, Qinghui

    2013-10-15

    Methods for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>10.sup.4) are provided. A structure is provided that includes a p+ region on a first side of an intrinsic region and an n+ region on a second side of the intrinsic region. The thickness of the intrinsic region is minimized to achieve a desired gamma discrimination factor of at least 1.0E+04. Material is removed from one of the p+ region or the n+ region and into the intrinsic layer to produce pillars with open space between each pillar. The open space is filed with a neutron sensitive material. An electrode is placed in contact with the pillars and another electrode is placed in contact with the side that is opposite of the intrinsic layer with respect to the first electrode.

  13. Search for neutrons from deuterated palladium subject to high electrical currents

    SciTech Connect (OSTI)

    Taylor, S.F. |; Claytor, T.N.; Tuggle, D.G.; Jones, S.E.

    1994-04-01

    Tritium has been detected evolving from samples of deuteriated palladium wires and powders subject to pulsed high voltage at Los Alamos. They wanted to measure whether these samples were emitting neutrons. The idea of pulsing current through the wires and powders was to drive the deuterium in and out by rapid electrical heating. With promising tritium results in hand, the experiments were prepared at Los Alamos, and then taken to BYU and run in the neutron detector located in a tunnel in Provo canyon under 35 m of rock and dirt overburden. The neutrons detector and sample setup are described. Results including total neutron counts, time distributions, and an indication of the energy distributions are discussed. The results do not provide compelling evidence of neutron production, but are not inconsistent with earlier measurements of neutrons and tritium. Difficulties in explaining the difference in tritium and neutron measurements are also discussed. Plans for further work are presented.

  14. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect (OSTI)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.

  15. A NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY

    E-Print Network [OSTI]

    Danon, Yaron

    Laboratory P.O. Box 1072, Schenectady, New York 12301-1072 A new high energy resolution modular neutronA NEW HIGH ENERGY RESOLUTION NEUTRON TRANSMISSION DETECTOR SYSTEM AT THE GAERTTNER LINAC LABORATORY capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 ke

  16. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    E-Print Network [OSTI]

    M. Lantz; D. Gorelov; A. Jokinen; V. S. Kolhinen; A. Mattera; H. Penttilä; S. Pomp; V. Rakopoulos; S. Rinta-Antila; A. Solders

    2013-04-09

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.

  17. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  18. High Heat Flux Thermoelectric Module Using Standard Bulk Material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOEFuel

  19. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  20. High-energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory

    E-Print Network [OSTI]

    Sukanta Panda; Sergei I. Sinegovsky

    2008-02-04

    We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behaviour of hadronic cross-sections relevant at very high energies.

  1. High resolution neutron imaging of water in PEM fuel cells

    SciTech Connect (OSTI)

    Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory

    2008-01-01

    Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.

  2. High-Energy Fuel Ion Diagnostics on ITER Derived from Neutron Emission Spectroscopy Measurements on JET DT Plasmas

    E-Print Network [OSTI]

    High-Energy Fuel Ion Diagnostics on ITER Derived from Neutron Emission Spectroscopy Measurements on JET DT Plasmas

  3. High Density Neutron Star Equation of State from 4U 1636-53 Observations

    E-Print Network [OSTI]

    T. S. Olson

    2002-01-07

    A bound on the compactness of the neutron star in the low mass x-ray binary 4U 1636-53 is used to estimate the equation of state of neutron star matter at high density. Observations of 580 Hz oscillations during the rising phase of x-ray bursts from this system appear to be due to two antipodal hot spots on the surface of an accreting neutron star rotating at 290 Hz, implying the compactness of the neutron star is less than 0.163 at the 90% confidence level. The equation of state of high density neutron star matter estimated from this compactness limit is significantly stiffer than extrapolations to high density of equations of state determined by fits of experimental nucleon-nucleon scattering data and properties of light nuclei to two- and three-body interaction potentials.

  4. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    magnetic flux expansion and partial detachment of the outer strike point at several D2 injection rates of acceptable divertor plate material erosion rates and heat fluxes to q 10 MW/m2 , a limit imposedDivertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus

  5. High-Yield D-T Neutron Generator

    E-Print Network [OSTI]

    Ludewigt, B.A.

    2008-01-01

    CRC Handbook of Fast Neutron Generators, ISBN 0-8493-2967-1,and can be pulsed. The generator is operated with a D/T gaslifetime target. Initial generator tests at reduce HV showed

  6. High-efficiency neutron detectors and methods of making same

    DOE Patents [OSTI]

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  7. A New Facility for High-Energy Neutron-Induced Fission Studies

    SciTech Connect (OSTI)

    Prokofiev, A.; Carlsson, M.; Einarsson, L.; Haag, N.; Pomp, S.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Tippawan, U.; Dangtip, S.

    2005-05-24

    A new facility is constructed for measurements of neutron-induced fission cross sections in the 20-180 MeV energy region versus the np scattering cross section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission-fragment detection and the neutron-flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to 'embedded' determination of effective solid angle of particle detectors using {alpha}-particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the 238U(n,f) reaction.

  8. Measurement of the flux of ultra high energy cosmic rays using data from very inclined air

    E-Print Network [OSTI]

    Hebbeker, Thomas

    Measurement of the flux of ultra high energy cosmic rays using data from very inclined air showers.1.2 Cosmic rays above 100 TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Extensive air-model of the hadronic cascade . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Very inclined air showers

  9. Dynamic Motor Parameter Identification for High Speed Flux Weakening Operation of Brushless Permanent Magnet Synchronous Machines

    E-Print Network [OSTI]

    Szabados, Barna

    Permanent Magnet Synchronous Machines Abstract: An experimental investigation is conducted to determine the behaviour of brushless PM synchronous machine parameters in the high speed flux weakening operating range synchronous machines. Special computer assisted measuring techniques are employed using an experimental vector

  10. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  11. Be7(p,gamma)B8 and the high-energy solar neutrino flux

    E-Print Network [OSTI]

    Attila Csoto

    1997-04-23

    The importance of the Be7(p,gamma)B8 reaction in predicting the high-energy solar neutrino flux is discussed. I present a microscopic eight-body model and a potential model for the calculation of the Be7(p,gamma)B8 cross section.

  12. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  14. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  16. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  19. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  20. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  2. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  5. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  6. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  8. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  9. EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

  10. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  11. NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS

    E-Print Network [OSTI]

    Morra, P.

    As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

  12. Exotic fission properties of highly neutron-rich Uranium isotopes

    E-Print Network [OSTI]

    L. Satpathy; S. K. Patra; R. K. Choudhury

    2007-03-05

    The series of Uranium isotopes with $N=154 \\sim 172$ around the magic number N=162/164 are identified to be thermally fissile. The thermal neutron fission of a typical representative $^{249}$U of this region amenable to synthesis in the radioactive ion beam facilities is considered here. Semiempirical study of fission barrier height and width shows this nucleus to be infinitely stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. Calculation of probability of fragment mass yields and microscopic study in relativistic mean field theory, show this nucleus to undergo a new mode of thermal fission decay termed {\\it multifragmentation fission} where a number of prompt scission neutrons are simultaneously released along with the two heavy fission fragments.

  13. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect (OSTI)

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  14. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  15. Computational neutronics analysis of TRIGA reactors during power pulsing

    E-Print Network [OSTI]

    Bean, Malcolm (Malcolm K.)

    2011-01-01

    Training, Research, Isotopes, General Atomics (TRIGA) reactors have the unique capability of generating high neutron flux environments with the removal of a transient control rod, creating conditions observed in fast fission ...

  16. Signal photon flux generated by high-frequency relic gravitational waves

    E-Print Network [OSTI]

    Xin Li; Sai Wang; Hao Wen

    2015-08-26

    The power spectrum of primordial tensor perturbations $\\mathcal{P}_t$ increases rapidly in high frequency region if the spectral index $n_t>0$. It is shown that the amplitude of relic gravitational wave $h_t$($5\\times10^9$Hz) varies from $10^{-36}$ to $10^{-25}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. High frequency gravitational waves detector that is proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between the relic gravitational waves and electromagnetic system. It is shown that the perturbative photon flux $N_x^1$($5\\times10^9$Hz) varies from $1.40\\times10^{-4}\\rm s^{-1}$ to $2.85\\times10^{7}\\rm s^{-1}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. Correspondingly, the ratio of the transverse perturbative photon flux $N_x^1$ to the background photon flux varies from $10^{-28}$ to $10^{-16}$.

  17. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect (OSTI)

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  18. An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About of Physics An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

  19. A new compact, high sensitivity neutron imaging system

    SciTech Connect (OSTI)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  20. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    E-Print Network [OSTI]

    Fangyu Li; Hao Wen; Zhenyun Fang

    2015-10-20

    Interaction of very low-frequency primordial(relic) gravitational waves(GWs) to cosmic microwave background(CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic(EM) response to high-frequency GWs(HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes, and study the duality and high complementarity between such two B-modes. Based on this quasi-B-mode in HFGWs, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  1. Boron filling of high aspect ratio holes by chemical vapor deposition for solid-state neutron detector applications

    E-Print Network [OSTI]

    Danon, Yaron

    . Helium-3 gas-filled tube has long been used as a neutron detector because of its high neu- tron detection was characterized for the thermal neutron detection efficiency. VC 2012 American Vacuum Society. [http, efficient solid-state neutron detectors based on silicon microstructures with large detecting surface area

  2. IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN L. G. KOCHAROV emissions to deduce spectra of high-energy ions interacting at the Sun (for a review see Mandzhavidze at the flare site is proved to be the most important parameter limiting anisotropy of high-energy secondary

  3. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    SciTech Connect (OSTI)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  4. Optical spectroscopy of the high-mass gamma-ray binary 1FGL J1018.6-5856: A probable neutron star primary

    E-Print Network [OSTI]

    Strader, Jay; Cheung, C C; Salinas, Ricardo; Peacock, Mark

    2015-01-01

    We present medium-resolution optical spectroscopy with the SOAR telescope of the O star secondary of the high-mass gamma-ray binary 1FGL J1018.6-5856 to help determine whether the primary is a neutron star or black hole. We find that the secondary has a low radial velocity semi-amplitude of 11-12 km/s, with consistent values obtained for H and He absorption lines. This low value strongly favors a neutron star primary: while a black hole cannot be excluded if the system is close to face on, such inclinations are disallowed by the observed rotation of the secondary. We also find the high-energy (X-ray and gamma-ray) flux maxima occur when the star is behind the compact object along our line of sight, inconsistent with a simple model of anisotropic inverse Compton scattering for the gamma-ray photons.

  5. Neutron source detection with high pressure capillary arrays. (Conference)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switch for| SciTech ConnectSciTechNeutron| SciTech

  6. Ultra-High Energy Cosmic Rays and Neutron-Decay Halos from Gamma Ray Bursts

    E-Print Network [OSTI]

    C. D. Dermer

    2001-03-20

    Simple arguments concerning power and acceleration efficiency show that ultra-high energy cosmic rays (UHECRS) with energies >~ 10^{19} eV could originate from GRBs. Neutrons formed through photo-pion production processes in GRB blast waves leave the acceleration site and travel through intergalactic space, where they decay and inject a very energetic proton and electron component into intergalactic space. The neutron-decay protons form a component of the UHECRs, whereas the neutron-decay electrons produce optical/X-ray synchrotron and gamma radiation from Compton-scattered background radiation. A significant fraction of galaxies with GRB activity should be surrounded by neutron-decay halos of characteristic size ~ 100 kpc.

  7. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect (OSTI)

    Crapo, A.D.; Lloyd, J.D. (Emerson Electric Co., St. Louis, MO (US))

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  8. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  9. Isolation of transport mechanisms in PEFCs using high resolution neutron imaging

    E-Print Network [OSTI]

    Mench, Matthew M.

    Isolation of transport mechanisms in PEFCs using high resolution neutron imaging Jacob M. La] demonstrated one of the first through- plane images of a PEFC in 2007 with a 25 mm microchannel detector this article in press as: LaManna JM, et al., Isolation of transport mechanisms in PEFCs using high resolution

  10. Steady-state, high-dose neutron generation and concentration apparatus and method for deuterium atoms

    SciTech Connect (OSTI)

    Uhm, H.S.; Lee, W.M.

    1991-01-01

    A steady-state source of neutrons is produced within an electrically grounded and temperature controlled chamber confining tritium or deuterium plasma at a predetermined density to effect implantation of ions in the surface of a palladium target rod coated with diffusion barrier material and immersed in such plasma. The rod is enriched with a high concentration of deuterium atoms after a prolonged plasma ion implantation. Collision of the deuterium atoms in the target by impinging ions of the plasma initiates fusion reactions causing emission of neutrons during negative voltage pulses applied to the rod through a high power modulator. The neutrons are so generated at a relatively high dose rate under optimized process conditions.

  11. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    SciTech Connect (OSTI)

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)] [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)] [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Issac, R. C. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom) [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Research Department of Physics, Mar Athanasius College, Kothamangalam 686666, Kerala (India); Lemos, N. R. C.; Dias, J. M. [GoLP/Instituto de Plasmas eFusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal)] [GoLP/Instituto de Plasmas eFusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Symes, D. R. [Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX Didcot (United Kingdom)] [Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX Didcot (United Kingdom); and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  12. Measurements with the high flux lead slowing-down spectrometer at LANL

    E-Print Network [OSTI]

    Danon, Yaron

    slow down by scattering interactions with the lead and thus enable measurements of neutron) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutronA, pulse widths of 0.05­0.25 ls and a repetition rate of 20­40 Hz. Spallation neutrons are created

  13. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect (OSTI)

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  14. Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects

    E-Print Network [OSTI]

    Fangyu Li; Robert M L Baker Jr.; Zhenyun Fang; Gary V. Stephenson; Zhenya Chen

    2008-06-12

    We consider the electromagnetic (EM) perturbative effects produced by the high-frequency gravitational waves (HFGWs) in the GHz band in a special EM resonance system, which consists of fractal membranes, a Gaussian beam (GB) passing through a static magnetic field. It is predicted, under the synchroresonance condition, coherence modulation of the HFGWs to the preexisting transverse components of the GB produces the transverse perturbative photon flux (PPF),which has three novel and important properties: (1)The PPF has maximum at a longitudinal symmetrical surface of the GB where the transverse background photon flux (BPF) vanishes; (2) the resonant effect will be high sensitive to the propagating directions of the HFGWs; (3) the PPF reflected or transmitted by the fractal membrane exhibits a very small decay compared with very large decay of the much stronger BPF. Such properties might provide a new way to distinguish and display the perturbative effects produced by the HFGWs. We also discuss the high-frequency asymptotic behavior of the relic GWs in the microwave band and the positive definite issues of their energy-momentum pseudo-tensor.

  15. TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-07-09

    5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

  16. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect (OSTI)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  17. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities.

  18. Nanofluid-based receivers for high-temperature, high-flux direct solar collectors

    E-Print Network [OSTI]

    Lenert, Andrej

    2010-01-01

    Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

  19. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    SciTech Connect (OSTI)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  20. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    SciTech Connect (OSTI)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); White, J. S. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland) [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rønnow, H. M.; Prša, K. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  1. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect (OSTI)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  2. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  3. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    SciTech Connect (OSTI)

    Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

    2010-04-02

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  4. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect (OSTI)

    James Simpson; David Chichester

    2011-06-01

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  5. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  6. High-efficiency scintillation detector for combined of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, Marion M. (Knoxville, TN); Mihalczo, John T. (Oak Ridge, TN); Blakeman, Edward D. (Oak Ridge, TN)

    1989-01-01

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation even count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  7. High-power liquid-lithium jet target for neutron production

    E-Print Network [OSTI]

    Halfon, S; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can diss...

  8. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  9. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  10. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  11. Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye

    E-Print Network [OSTI]

    of Physics and Nevis Laboratory, New York, New York, USA 6) University of New Mexico, Department of PhysicsMeasurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High of Utah, Department of Physics and High Energy Astrophysics Institute, Salt Lake City, Utah, USA 2

  12. Neutron Stars as Sources of High Energy Particles - the case of RPP

    E-Print Network [OSTI]

    B. Rudak

    2001-01-09

    Highly magnetised rapidly spinning neutron stars are widely considered to be natural sites for acceleration of charged particles. Powerful acceleration mechanism due to unipolar induction is thought to operate in the magnetospheres of isolated neutron stars, bringing the particles to ultrarelativistic energies at the expense of the neutron star rotational energy, with inevitable emission of high energy photons. The aim of this review is to present basic ingredients of modern models of magnetospheric activity of rotation powered pulsars in the context of high-energy radiation from these objects. Several aspects of pulsar activity are addressed and related to spectacular results of pulsar observations with two major satellite missions of the past - CGRO and ROSAT. It is then argued that high sensitivity experiments of the future - GLAST, VERITAS and MAGIC - will be vital for a progress in our understanding of pulsar magnetospheric processes. In a conservative approach rotation powered pulsars are not expected to be the sources of UHE Cosmic Rays. However, several scenarios have been proposed recently to explain the UHECR events above the GZK limit with the help of acceleration processes in the immediate surrounding of newly born pulsars. Major features of these scenarios are reviewed along with references to contemporary models of magnetospheric activity.

  13. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    SciTech Connect (OSTI)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  14. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOE Patents [OSTI]

    Friedrich, Stephan (San Jose, CA); , Niedermayr, Thomas R. (Oakland, CA); Labov, Simon E. (Berkeley, CA)

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  15. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  16. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements

    E-Print Network [OSTI]

    Burg, Brian R.

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions ...

  17. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    SciTech Connect (OSTI)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  18. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect (OSTI)

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  19. Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data

    E-Print Network [OSTI]

    D. Besson; S. Razzaque; J. Adams; P. Harris

    2006-07-24

    We present limits on ultra-high energy (UHE; E(nu)>1 PeV) neutrino fluxes from gamma-ray bursts (GRBs), based on recently presented data, limits, and simulations from the RICE experiment. We use data from five recorded transients with sufficient photon spectral shape and redshift information to derive an expected neutrino flux, assuming that the observed photons are linked to neutrino production through pion decay via the well-known 'Waxman-Bahcall' prescription. Knowing the declination of the observed burst, as well as the RICE sensitivity as a function of polar angle and the previously published non-observation of any neutrino events allows an estimate of the sensitivity to a given neutrino flux. Although several orders of magnitude weaker than the expected fluxes, our GRB neutrino flux limits are nevertheless the first in the PeV--EeV energy regime. For completeness, we also provide a listing of other bursts, recorded at times when the RICE experiment was active, but requiring some assumptions regarding luminosity and redshift to permit estimates of the neutrino flux.

  20. High-power liquid-lithium jet target for neutron production

    E-Print Network [OSTI]

    S. Halfon; A. Arenshtam; D. Kijel; M. Paul; D. Berkovits; I. Eliyahu; G. Feinberg; M. Friedman; N. Hazenshprung; I. Mardor; A. Nagler; G. Shimel; M. Tessler; I. Silverman

    2013-11-30

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.

  1. High-power liquid-lithium jet target for neutron production

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel) [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I. [Soreq NRC, Yavne 81800 (Israel)] [Soreq NRC, Yavne 81800 (Israel); Paul, M.; Friedman, M.; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ?200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ?2 MW/cm{sup 3} at a lithium flow of ?4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  2. High Resolution Quantitative Auto-Radiography to determine microscopic distributions of B-10 in neutron capture therapy

    E-Print Network [OSTI]

    Harris, Thomas C. (Thomas Cameron)

    2006-01-01

    The success of Boron Neutron Capture Therapy (BNCT) is heavily dependent on the microscopic distribution of B-10 in tissue. High Resolution Quantitative Auto-Radiography (HRQAR) is a potentially valuable analytical tool ...

  3. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  4. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  5. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect (OSTI)

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  6. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective

    E-Print Network [OSTI]

    McGuire, A. David

    Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4 dynamics (3309); 1890 Hydrology: Wetlands; KEYWORDS: methane emissions, methane oxidation, permafrost

  7. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect (OSTI)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States)] [ed.; Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)] [ed.; Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  8. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-12-15

    5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

  9. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-11-03

    5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

  10. Flux Conversion and Evidence of Relaxation in a High-Plasma Formed by High-Speed Injection into a Mirror Confinement Structure

    E-Print Network [OSTI]

    Washington at Seattle, University of

    -reversed configuration (FRC). This shows both the robustness of FRCs and their tendency to assume a preferred plasmaFlux Conversion and Evidence of Relaxation in a High-#12; Plasma Formed by High-Speed Injection into a Mirror Confinement Structure H.Y. Guo, A. L. Hoffman, K. E. Miller, and L. C. Steinhauer Redmond Plasma

  11. High-resolution quantification of groundwater flux using a heat tracer: laboratory sandbox tests

    E-Print Network [OSTI]

    Konetchy, Brant Evan

    2014-12-31

    and groundwater flux. In this work, we constructed a sandbox to simulate a sand aquifer and performed a series of heat tracer tests under different flow rates. By analyzing the temperature responses among different tests, we developed a quantitative temperature...

  12. Measurement of Neutron Background at the Pyhasalmi mine for CUPP Project, Finland

    E-Print Network [OSTI]

    J. N. Abdurashitov; V. N. Gavrin; V. L. Matushko; A. A. Shikhin; V. E. Yants; J. Peltoniemi; T. Keranen

    2006-07-20

    A natural neutron flux is one of significant kind of background in high-sensitive underground experiments. Therefore, when scheduling a delicate underground measurements one needs to measure neutron background. Deep underground the most significant source of neutrons are the U-Th natural radioactive chains giving a fission spectrum with the temperature of 2-3 MeV. Another source is the U-Th alpha-reactions on light nuclei of mine rock giving neutrons with different spectra in the 1-15 MeV energy region. Normal basalt mine rocks contain 1 ppm g/g of U-238 and less. Deep underground those rocks produce natural neutron fluxes of 10^{-7} - 10^{-6} cm^{-2}s^{-1} above 1 MeV. To measure such a background one needs a special techniques. In the Institute for Nuclear Research, Moscow, the neutron spectrometer was developed and built which is sensitive to such a low neutron fluxes. At the end of 2001 the collection of neutron data at the Pyhasalmi mine was started for the CUPP project. During 2002 the background and rough energy spectra of neutron at underground levels 410, 660, 990 and 1410 m were measured. The result of the measurement of the neutron background at different levels of the Pyhasalmi mine is presented and discussed. Data analysis is performed in different energy ranges from thermal neutrons up to 25 MeV and above.

  13. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    F. J. Fattoyev; J. Carvajal; W. G. Newton; Bao-An Li

    2012-10-12

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  14. Constraining the High-Density Behavior of Nuclear Symmetry Energy with the Tidal Polarizability of Neutron Stars

    E-Print Network [OSTI]

    Fattoyev, F J; Newton, W G; Li, Bao-An

    2012-01-01

    Using a set of model equations of state satisfying the latest constraints from both terrestrial nuclear experiments and astrophysical observations as well as state-of-the-art nuclear many-body calculations of the pure neutron matter equation of state, the tidal polarizability of canonical neutron stars in coalescing binaries is found to be a very sensitive probe of the high-density behavior of nuclear symmetry energy which is among the most uncertain properties of dense neutron-rich nucleonic matter. Moreover, it changes less than $\\pm 10%$ by varying various properties of symmetric nuclear matter and symmetry energy around the saturation density within their respective ranges of remaining uncertainty.

  15. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  16. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  17. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  18. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    E-Print Network [OSTI]

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  19. Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D. Huxley, and K. V. Kamenev

    E-Print Network [OSTI]

    Hall, Christopher

    Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D for inelastic neutron scattering measurements of quantum fluids and solids Rev. Sci. Instrum. 84, 015101 (2013) TOF-SEMSANS--Time-of-flight spin-echo modulated small-angle neutron scattering J. Appl. Phys. 112

  20. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOE Patents [OSTI]

    McGregor, Douglas S. (Riley, KS); Shultis, John K. (Manhattan, KS); Rice, Blake B. (Manhattan, KS); McNeil, Walter J. (Winnfield, KS); Solomon, Clell J. (Wichita, KS); Patterson, Eric L. (Manhattan, KS); Bellinger, Steven L. (Manhattan, KS)

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  1. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect (OSTI)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  2. High Mass X-ray Binaries: Progenitors of double neutron star systems

    E-Print Network [OSTI]

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  3. Preliminary Neutronic Study of D2O-cooled High Conversion PWRs

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2013-10-01

    This paper presents a preliminary neutronics analysis of tight-pitch D2O-cooled high-conversion PWRs loaded with MOX fuel aiming at high Pu conversion and negative void coefficient. SCALE6.1 has been exclusively utilized for this study. The analyses are performed in two separate parts. The first part of this paper investigates the performance of axial and internal blankets and seeks break-even or near-breeder core even without the presence of radial blankets. The second part of this paper performs sensitivity and uncertainty analyses of integral parameters (keff and void coefficient) for selected systems in order to analyze the characters of this high-conversion PWR from different aspects.

  4. Competition in rotation-alignment between high-j neutrons and protons in transfermium nuclei

    SciTech Connect (OSTI)

    Al-Khudair, Falih [Department of Physics, Tsinghua University, Beijing 100084 (China); Center of Nuclear Theory, Lanzhou National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Department of Physics, College of Education, Basrah University, Basrah (Iraq); Long Guilu [Department of Physics, Tsinghua University, Beijing 100084 (China); Center of Nuclear Theory, Lanzhou National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Sun Yang [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2009-03-15

    The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.

  5. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  6. Flux of upward high-energy muons at the multi-component primary energy spectrum

    E-Print Network [OSTI]

    S. V. Ter-Antonyan; P. L. Biermann

    2001-06-07

    The atmospheric neutrino-induced upward muon flux are calculated by using the multi-component primary energy spectrum, CORSIKA EAS simulation code for the reproduction of the atmospheric neutrino spectra and improved parton model for charged-current cross sections. The results are obtained at 0.1-1000 TeV muon energy range and 0-89 degrees zenith angular range.

  7. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A. [School of Physics and Technologies, V.N. Karazin Kharkiv National University, Kharkiv, 61022 (Ukraine); Gutkin, M. [Micron Surface Technologies, 5033 Dantes View Dr., Calabasas, California 91301 (United States); Sleptsov, V. [Moscow State Aviation Technological University, Moscow 121552 (Russian Federation)

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  8. Fast-Neutron Activation of Long-Lived Nuclides in Natural Pb

    E-Print Network [OSTI]

    V. E. Guiseppe; S. R. Elliott; N. E. Fields; D. Hixon

    2012-09-20

    We measured the production of the long-lived nuclides Bi-207, Pb-202, and Hg-194 in a sample of natural Pb due to high-energy neutron interactions using a neutron beam at the Los Alamos Neutron Science Center. The activated sample was counted by a HPGe detector to measure the amount of radioactive nuclides present. These nuclides are critical in understanding potential backgrounds in low background experiments utilizing large amounts of Pb shielding due to cosmogenic neutron interactions in the Pb while residing on the Earth's surface. By scaling the LANSCE neutron flux to a cosmic neutron flux, we measure the sea level cosmic ray production rates of 8.0 +/- 1.3 atoms/kg/day of Hg-194, 120 +/- 25 atoms/kg/day Pb-202, and 0.17 +/- 0.04 atoms/kg/day Bi-207.

  9. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 × 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 × 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  10. A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory

    E-Print Network [OSTI]

    Blumenhagen, Ralph; Fuchs, Michael; Herschmann, Daniela; Plauschinn, Erik; Sekiguchi, Yuta; Wolf, Florian

    2015-01-01

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi-Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  11. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  12. Sgr A East as a possible high energy neutron factory in the Galactic Centre

    E-Print Network [OSTI]

    Dario Grasso; Luca Maccione

    2005-07-28

    Sgr A East is a supernova remnant located within few parsecs from the Galactic Centre (GC). There are good reasons to believe that this object is the source of the gamma-ray excess detected by HESS in the direction of the GC meaning that Sgr A East is likely to be an efficient Cosmic Ray accelerator. Some observations suggest that strong magnetic fields may be present in that region allowing the acceleration of composite nuclei in Sgr A East beyond the EeV. We show that, if this is case, EeV neutrons should be effectively produced by the photo-disintegration of Ultra High Energy nuclei onto the IR photon background (with temperature $\\sim 40$ K) in which Sgr A East is embedded. Neutrons with such an energy can reach the Earth before decaying and may be detectable under the form of a CR point-like excess in the direction of the GC. We determine the expected energy spectrum and the amplitude of this signal showing that it may be measurable by the AUGER observatory.

  13. An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory

    E-Print Network [OSTI]

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muñiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Aranda, Victor Manuel; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Ave, Maximo; Avenier, Michel; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Barber, Kerri B; Bäuml, Julia; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Bleve, Carla; Blümer, Hans; Bohá?ová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bridgeman, Ariel; Brogueira, Pedro; Brown, William C; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceição, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dembinski, Hans; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fernandes, Mateus; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filip?i?, Andrej; Fox, Brendan; Fratu, Octavian; Freire, Martín Miguel; Fuchs, Benjamin; Fujii, Toshihiro; García, Beatriz; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; G?as, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guardincerri, Yann; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Kégl, Balazs; Keilhauer, Bianca; Keivani, Azadeh; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Krömer, Oliver; Kuempel, Daniel; Kunka, Norbert; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lu, Lu; Lucero, Agustin; Malacari, Max; Maldera, Simone; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mari?, Ioana; Marsella, Giovanni; Martello, Daniele; Martin, Lilian; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurel, Detlef; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultra-high energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time-structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins $60^\\circ-75^\\circ$ and $75^\\circ-90^\\circ$ as well as for upward-going neutrinos, are combined to give a single limit. The $90\\%$ C.L. single-flavor limit to the diffuse flux of ultra-high energy neutrinos with an $E^{-2}$ spectrum in the energy ra...

  14. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  15. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect (OSTI)

    Smith, Kevin Arthur [ORNL; Primm, Trent [ORNL

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  16. Real-Time Active Cosmic Neutron Background Reduction Methods

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

    2013-09-01

    Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing Laboratory–Andrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic veto—field measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

  17. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore »with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  18. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  19. March, 2001 Neutron Scattering Group

    E-Print Network [OSTI]

    Johnson, Peter D.

    March, 2001 Neutron Scattering Group A High Performance Hybrid Spectrometer for theA High of the instrument performance · Igor Zaliznyak · Laurence Passell OutlineOutline #12;Neutron Scattering GroupNeutron states in single crystals.single crystals. #12;Neutron Scattering GroupNeutron Scattering Group What

  20. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  1. A multilayer surface detector for ultracold neutrons

    E-Print Network [OSTI]

    Wang, Zhehui; Callahan, N B; Adamek, E R; Bacon, J D; Blatnik, M; Brandt, A E; Broussard, L J; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Gao, J; Gray, F E; Hoffbauer, M A; Holley, A T; Ito, T M; Liu, C -Y; Makela, M; Ramsey, J C; Pattie,, R W; Salvat, D J; Saunders, A; Schmidt, D W; Schulze, R K; Seestrom, S J; Sharapov, E I; Sprow, A; Tang, Z; Wei, W; Wexler, J W; Womack, T L; Young, A R; Zeck, B A

    2015-01-01

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top $^{10}$B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the $^{10}$B layer is a few microns thick, which is sufficient to detect the charged particles from the $^{10}$B(n,$\\alpha$)$^7$Li neutron-capture reaction, while thin enough so that ample light due to $\\alpha$ and $^7$Li escapes for detection by photomultiplier tubes. One-hundred-nm thick $^{10}$B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparisons with other existing $^3$He and $^{10}$B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  2. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect (OSTI)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  3. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  4. Neutrinos from Decaying Muons, Pions, Kaons and Neutrons in Gamma Ray Bursts

    E-Print Network [OSTI]

    Reetanjali Moharana; Nayantara Gupta

    2012-05-27

    In the internal shock model of gamma ray bursts ultrahigh energy muons, pions, neutrons and kaons are likely to be produced in the interactions of shock accelerated relativistic protons with low energy photons (KeV-MeV). These particles subsequently decay to high energy neutrinos/antineutrinos and other secondaries. In the high internal magnetic fields of gamma ray bursts, the ultrahigh energy charged particles ($\\mu^+$, $\\pi^+$, $K^+$) lose energy significantly due to synchrotron radiations before decaying into secondary high energy neutrinos and antineutrinos. The relativistic neutrons decay to high energy antineutrinos, protons and electrons. We have calculated the total neutrino flux (neutrino and antineutrino) considering the decay channels of ultrahigh energy muons, pions, neutrons and kaons. We have shown that the total neutrino flux generated in neutron decay can be higher than that produced in $\\mu^+$ and $\\pi^+$ decay. The charged kaons being heavier than pions, lose energy slowly and their secondary total neutrino flux is more than that from muons and pions at very high energy. Our detailed calculations on secondary particle production in $p\\gamma$ interactions give the total neutrino fluxes and their flavour ratios expected on earth. Depending on the values of the parameters (luminosity, Lorentz factor, variability time, spectral indices and break energy in the photon spectrum) of a gamma ray burst the contributions to the total neutrino flux from the decay of different particles (muon, pion, neutron and kaon) may vary and they would also be reflected on the neutrino flavour ratios.

  5. Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium

    SciTech Connect (OSTI)

    Lazar, J.; Vlcek, J.; Rezek, J. [Department of Physics, University of West Bohemia, Univerzitni 22, 30614 Plzen (Czech Republic)

    2010-09-15

    High power impulse magnetron sputtering of zirconium was investigated at the average target power density of up to 2.22 kW cm{sup -2} in a pulse. The depositions were performed using a strongly unbalanced magnetron with a planar zirconium target of 100 mm diameter at the argon pressure of 1 Pa. The repetition frequency was 500 Hz at duty cycles ranging from 4% to 10%. Time-averaged mass spectroscopy was carried out at the substrate positions of 100 and 200 mm from the target. The increase in the average target power density from 0.97 kW cm{sup -2} to 2.22 kW cm{sup -2} in shortened voltage pulses (from 200 to 80 {mu}s) at an average target power density of 100 W cm{sup -2} in a period led to high fractions (21%-32%) of doubly charged zirconium ions in total ion fluxes onto the substrate located 100 mm from the target. However, the respective fractions of singly charged zirconium ions decreased from 23% to 3%. It was observed that ion energy distributions were extended to high energies (up to 100 eV relative to the ground potential) under these conditions. The increased target power densities during the shortened voltage pulses resulted in a reduced deposition rate of films from 590 to 440 nm/min and in a weakly decreasing ionized fraction (from 55% to 49%) of the sputtered zirconium atoms in the flux onto the substrate. The doubly charged zirconium ions became strongly predominant (up to 63%) in the total ion flux onto the substrate at the distance of 200 mm from the target. Model calculations were carried out to explain the complicated deposition processes.

  6. Natural convection in high heat flux tanks at the Hanford Waste Site / [by] Mark van der Helm and Mujid S. Kazimi

    E-Print Network [OSTI]

    Van der Helm, Mark Johan, 1972-

    1996-01-01

    A study was carried out on the potential for natural convection and the effect of natural convection in a High Heat Flux Tank, Tank 241-C-106, at the Hanford Reservation. To determine the existence of natural convection, ...

  7. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect (OSTI)

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  8. Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field

    SciTech Connect (OSTI)

    D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

    2011-10-01

    Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

  9. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy PolicyLeaksDETLCell for Solid-Fluid

  10. Solar Neutron Events of October-November 2003

    E-Print Network [OSTI]

    K. Watanabe; M. Gros; P. H. Stoker; K. Kudela; C. Lopate; J. F. Valdes-Galicia; A. Hurtado; O. Musalem; R. Ogasawara; Y. Mizumoto; M. Nakagiri; A. Miyashita; Y. Matsubara; T. Sako; Y. Muraki; T. Sakai; S. Shibata

    2005-09-19

    During the period when the Sun was intensely active on October-November 2003, two remarkable solar neutron events were observed by the ground-based neutron monitors. On October 28, 2003, in association with an X17.2 large flare, solar neutrons were detected with high statistical significance (6.4 sigma) by the neutron monitor at Tsumeb, Namibia. On November 4, 2003, in association with an X28 class flare, relativistic solar neutrons were observed by the neutron monitors at Haleakala in Hawaii and Mexico City, and by the solar neutron telescope at Mauna Kea in Hawaii simultaneously. Clear excesses were observed at the same time by these detectors, with the significance calculated as 7.5 sigma for Haleakala, and 5.2 sigma for Mexico City. The detector onboard the INTEGRAL satellite observed a high flux of hard X-rays and gamma-rays at the same time in these events. By using the time profiles of the gamma-ray lines, we can explain the time profile of the neutron monitor. It appears that neutrons were produced at the same time as the gamma-ray emission.

  11. Measurement of High-Energy Solar Neutrons with SEDA-FIB onboard the ISS

    E-Print Network [OSTI]

    Muraki, Y; Matsumoto, H; Okudaira, O; Shibata, S; Goka, T; Obara, T; Yamamoto, T

    2013-01-01

    A new type of solar neutron detector (SEDA-FIB) was launched on board the Space Shuttle Endeavor on July 16 2009, and began collecting data at the International Space Station (ISS) on August 25 2009. This paper summarizes four years of observations with the solar neutron detector SEDA-FIB (Space Environment Data Acquisition using the FIBer detector). The solar neutron detector FIB can determine both the energy and arrival direction of solar neutrons. In this paper, we first present the angular distribution of neutron induced protons obtained in Monte Carlo simulations. The results are compared with the experimental results. Then we provide the angular distribution of background neutrons during one full orbit of the ISS (90 minutes). Next, the angular distribution of neutrons during the flare onset time from 20:02 to 20:10 UT on March 7 2011 is presented. It is compared with the distribution when a solar flare is not occurring. Observed solar neutrons possibly originated from the M-class solar flares that occu...

  12. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOE Patents [OSTI]

    Slaughter, Dennis R. (Oakland, CA); Pohl, Bertram A. (Berkeley, CA); Dougan, Arden D. (San Ramon, CA); Bernstein, Adam (Palo Alto, CA); Prussin, Stanley G. (Kensington, CA); Norman, Eric B. (Oakland, CA)

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  13. RPARTITION DE LA DENSIT DE NEUTRONS THERMIQUES DANS UN MILIEU DIFFUSEUR SEMI-INFINI IRRADI PAR UN FLUX NORMAL A SA FACE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    neutrons perpendiculaires a une face du bloc de paraffine, on a utilise Ie canal no 2 (1) gain6 de cadmium paraffine est recouvert par une feuille de cadmium de 0,7 mm d'6paisseur dans laquelle on a menage une fen de 14 /1 ooe de millim6tre de nitrate de cellulose (support de film Kodak). La surface du d6tecteur

  14. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect (OSTI)

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  15. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect (OSTI)

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  16. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  17. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  18. NEUTRON INTERFEROMETRY Neutron Interferometry

    E-Print Network [OSTI]

    Jeanjean, Louis

    #12;NEUTRON INTERFEROMETRY #12;#12;Neutron Interferometry Lessons in Experimental Quantum Mechanics of the modern quantum mechanical literature. Neutron interferometry is a mature technique in experimental of many isotopes is given in Chapter 3. Very accurate measurements of the neutron scattering lengths

  19. Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes

    E-Print Network [OSTI]

    Jameson, Antony

    tested, motivating its future usage for high-order, high-fidelity CFD. Nomenclature domain u solution. AIAA Aviation #12;I. Introduction The well-established CFD techniques of second-order numerical methods importance also feature complex turbulent flows, including combustion, acoustic noise prediction

  20. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  1. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  2. High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants

    E-Print Network [OSTI]

    Michael Boyle; Alessandra Buonanno; Lawrence E. Kidder; Abdul H. Mroué; Yi Pan; Harald P. Pfeiffer; Mark A. Scheel

    2008-10-06

    Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center-of-mass energy from the simulation by assuming energy balance. We compare these quantities with the predictions of various PN approximants (adiabatic Taylor and Pade models; non-adiabatic effective-one-body (EOB) models). We find that Pade summation of the energy flux does not accelerate the convergence of the flux series; nevertheless, the Pade flux is markedly closer to the numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Pade models overestimate the increase in flux and frequency derivative close to merger, whereas EOB models reproduce more faithfully the shape of and are closer to the numerical flux, frequency derivative and derivative of energy. We also compare the GW phase of the numerical simulation with Pade and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that the phase difference accumulated until $M \\omega = 0.1$ is -0.12 radians for Pade approximants, and 0.50 (0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters within the EOB models to minimize the phase difference, and confirm degeneracies among these parameters. By tuning pseudo 4PN order coefficients in the radial potential or in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase difference can be reduced - if desired - to much less than the estimated numerical phase error (0.02 radians).

  3. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    SciTech Connect (OSTI)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  4. Soil CO2 flux and photoautotrophic community composition in high-elevation, `barren' soil

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    unclear how microbial communities in the subnival zone obtain the C and energy necessary to sustain life described as `barren', despite their potential to host photoau- totrophic microbial communities. In high and function of these photoautotrophic microbial commu- nities remains essentially unknown. We measured soil CO

  5. Searches for High Frequency Variations in the $^8$B Solar Neutrino Flux at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2009-10-13

    We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar $g$-mode oscillations could affect the production or propagation of solar $^8$B neutrinos. The first search looked for any significant peak in the frequency range 1/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which $g$-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  6. A Diode Laser Sensor for High Precision CO2 and H2O Flux Measurements |

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155 HighU.S. DOE

  7. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  8. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  9. Perturbative photon flux generated by high-frequency relic gravitational waves and utilization of them for their detection

    E-Print Network [OSTI]

    Fangyu Li; R. M. L. Baker, Jr.; Zhenya Chen

    2006-04-26

    There exist corresponding metric perturbations of the relic gravitational waves (GWs) in the region of approximately h~10^(-30)-10^(-32)in the GHz band. A detector for these GWs is described in which we measure the perturbative photon flux (PPF) or signal generated by such high-frequency relic GWs (HFRGWs) via a coupling system of fractal membranes and a Gaussian beam (GB) passing through a static magnetic field. It is found that under the synchro-resonance condition in which the frequency of the GB is set equal to the frequency of the expected HFRGWs (h~2.00*10^(-31), v_g=10^10Hz in the quintessential inflationary models (QIM) and h~6.32*10^(-31), v_g=10^10Hz in the pre-big bang scenario (PBBS) may produce the PPFs of ~4.04*10^2/s and ~1.27*10^3/s in a surface of 100cm^2 area at the waist of the GB, respectively. The relatively weak first-order PPF, directed at right angles to the expected HFRGWs, is reflected by fractal membrane and the resulting reflected PPF (signal) exhibits a very small decay in transit to the detector (tunable microwave receiver) compared with the much stronger background photon flux, which allows for detection of the reflected PPF with signal to background noise ratios greater than one at the distance of the detector. We also discuss the selection capability of system and directional sensitivity for the resonance components from the stochastic relic GW background. The resolution of tiny difference between the PPFs generated by the relic GWs in the QIM and in the PBBS may be established and will be of cosmological significance. PACS numbers: 04.30.Nk, 04.30.Db, and 98.80.Cq.

  10. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  11. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  12. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect (OSTI)

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 ?g of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  13. Advanced Thomson scattering system for high-flux linear plasma generator

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A.; Donne, A. J. H.; Schram, D. C.; Naumenko, N. N.; Tugarinov, S. N.

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  14. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  15. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, Thomas W. (Los Alamos, NM)

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  16. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  17. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    S. Kar; A. Green; H. Ahmed; A. Alejo; A. P. L. Robinson; M. Cerchez; R. Clarke; D. Doria; S. Dorkings; J. Fernandez; S. R. Mirfyazi; P. McKenna; K. Naughton; D. Neely; P. Norreys; C. Peth; H. Powell; J. A. Ruiz; J. Swain; O. Willi; M. Borghesi

    2015-07-16

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  18. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  19. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    13, 2010. [11] D-D Neutron Generator Development at LBNL, J.12] High-yield DT Neutron Generator, B.A. Ludewigt et al. ,a Compact High-Yield Neutron Generator, O. Waldmann and B.

  20. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  1. Neutron diffraction measurements of dislocation density in copper crystals deformed at high strain rate

    SciTech Connect (OSTI)

    Rao, Mala N.; Chaplot, S. L.; Rawat, S.

    2013-02-05

    Neutron diffraction measurements of the rocking curves were carried out for single crystals of copper subjected to dynamic compression at 10{sup 3}/s strain rate. The line broadening is expected to be produced by dislocations, and an analysis of this broadening gives the dislocation density. Dislocation density is found to increase with increase of pressure.

  2. Silicon detectors for the n-TOF neutron beams monitoring

    E-Print Network [OSTI]

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  3. Gamma-rays from the vicinity of accreting neutron stars inside compact high-mass X-ray binaries

    E-Print Network [OSTI]

    W. Bednarek

    2008-11-25

    Dense wind of a massive star can be partially captured by a neutron star (NS) inside a compact binary system. Depending on the parameters of NS and the wind, the matter can penetrate the inner NS magnetosphere. At some distance from the NS a very turbulent and magnetized transition region is formed due to the balance between the magnetic pressure and the pressure inserted by accreting matter. This region provides good conditions for acceleration of particles to relativistic energies. The matter at the transition region can farther accrete onto the NS surface (the accretor phase) or is expelled from the NS vicinity (the propeller phase). We consider the consequences of acceleration of electrons at the transition region concentrating on the situation in which at least part of the matter falls onto the NS surface. This matter creates a hot spot on the NS surface which emits thermal radiation. Relativistic electrons lose energy on the synchrotron process and the inverse Compton (IC) scattering of this thermal radiation. We calculate the synchrotron spectra (from X-rays to soft $\\gamma$-rays) and IC spectra (above a few tens MeV) expected in such a scenario. It is argued that a population of recently discovered massive binaries by the INTEGRAL observatory, which contain neutron stars hidden inside dense stellar winds of massive stars, can be detectable by the recently launched {\\it Fermi} LAT telescope at GeV energy range. As an example, we predict the expected $\\gamma$-ray flux from recently discovered source IGR J19140+0951.

  4. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  5. Neutron Scattering Group February, 2001

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Scattering Group February, 2001 A High Performance Instrument for the Single Crystal Igor Zaliznyak Outline #12;Neutron Scattering Group Neutron spectrometer for studies of the low-energy coherent excitations in single crystals. Common requirements for a single crystal neutron spectrometer

  6. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Maeda, Y; Masuda, T; Morii, H; Naito, D; Nakajima, Y; Nanjo, H; Nomura, T; Sasao, N; Seki, S; Shiomi, K; Sumida, T; Tajima, Y

    2014-01-01

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  7. An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    E-Print Network [OSTI]

    Y. Maeda; N. Kawasaki; T. Masuda; H. Morii; D. Naito; Y. Nakajima; H. Nanjo; T. Nomura; N. Sasao; S. Seki; K. Shiomi; T. Sumida; Y. Tajima

    2014-12-22

    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/$c$ neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy $>$1 GeV was consistent with the MC expectation within 8.2% uncertainty.

  8. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  9. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    SciTech Connect (OSTI)

    Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  10. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    SciTech Connect (OSTI)

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kamenev, Konstantin V.; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul

    2014-04-15

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO{sub 3} have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  11. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    SciTech Connect (OSTI)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.

  12. CWB, 6/25/00 High-Yield Neutron Activation System for the

    E-Print Network [OSTI]

    Barnes, Cris W.

    to that used on TFTR and designed for ITER5 will be described as well as the requirements for the irradiation ohmic to 1.5 GW plasmas ­ NIF: 1010 n/shot (physics tests) to 10 MJ ignition >8 orders of magnitude l at vacuum vessel ­ 1010 neutrons/shot (hydro studies) 3x105 n/cm2 @ 50 cm (~minimum distance* and fluence

  13. Development of neutron measurement in high gamma field using new nuclear emulsion

    SciTech Connect (OSTI)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.; Tomita, H.; Iguchi, T.; Naka, T.; Morishima, K.; Maeda, S.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14 MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)

  14. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  15. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    densities, high atomic fractions, and high power e?cienciesa high atomic species fraction at signi?cantly lower power

  16. Defect Sink Characteristics of Specific Grain Boundary Types in 304 Stainless Steels Under High Dose Neutron Environments

    SciTech Connect (OSTI)

    Field, Kevin G [ORNL; Yang, Ying [ORNL; Busby, Jeremy T [ORNL

    2015-01-01

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling to mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 C. Investigations into the RIS response at specific grain boundary types were utilized to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed and benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and includes expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibit unique defect sink characteristics depending on their local structure. Such interactions were found to be consistent across all doses investigated and had larger global implications including precipitation of Ni-Si clusters near different grain boundary types.

  17. First Data Acquired on the EQ-SANS Diffractometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Liu, Dazhi [ORNL; Hong, Kunlun [ORNL; Gao, Carrie Y [ORNL; Melnichenko, Yuri B [ORNL; Littrell, Ken [ORNL; Smith, Greg [ORNL; Zhao, Jinkui [ORNL

    2011-01-01

    The measurement of the conformation of a Generation-8 Polyamidoamine dendrimer is reported as an initial experiment using the Extended Q-range Small Angle Neutron Scattering (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory (ORNL). The conformation parameters (radius of gyration, thickness of the soft shell etc.) are extracted by model fitting. The results are compared with data collected at the General-Purpose Small Angle Neutron Scattering at the High Flux Isotopic Reactor at ORNL. The comparison shows that the EQ-SANS diffractometer has comparable data statistics and Q resolution with shorter counting time over the measured Q-range.

  18. CORE SIM: A multi-purpose neutronic tool for research and education Christophe Demazire

    E-Print Network [OSTI]

    Demazière, Christophe

    University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 eigenfunctions of any nuclear core. For each situation, the static neutron flux, the different eigenmodes configurations: a vibrating control rod, a perturbation traveling upwards with the core flow, and a high

  19. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    SciTech Connect (OSTI)

    Chandler, David [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

    2010-01-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  20. Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    E-Print Network [OSTI]

    Maikel C. Rheinstädter; Tilo Seydel; Tim Salditt

    2006-07-20

    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times $\\tau$, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics.

  1. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    SciTech Connect (OSTI)

    Wilke, R. N., E-mail: rwilke@gwdg.de; Wallentin, J.; Osterhoff, M. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Pennicard, D.; Zozulya, A.; Sprung, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Salditt, T. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-11-01

    The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup ?2} s{sup ?1} or a flux of ?10{sup 10} photons s{sup ?1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  2. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J; Rousculp, Christopher L; Reinovsky, Robert E; Reass, William A; Griego, Jeffrey R; Oro, David M; Merrill, Frank E

    2010-06-28

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  3. Compact NE213 neutron spectrometer with high energy resolution for fusion applications

    SciTech Connect (OSTI)

    Zimbal, A.; Reginatto, M.; Schuhmacher, H.; Bertalot, L.; Esposito, B.; Poli, F.; Adams, J.M.; Popovichev, S.; Kiptily, V.; Murari, A. [Physikalisch-Technische Bundesanstalt, Bundesalleee 100, D-38116 Braunschweig (Germany); Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati, I-00044, Roma (Italy); Association Euratom-UKAEA Fusion, Culham Science Center, Abingdon, OX14 3DB (United Kingdom); Consorzio RFX--Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padua (Italy)

    2004-10-01

    Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeV

  4. Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2012-09-01

    This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

  5. Results from the Commissioning of the n-TOF Spallation Neutron Source at CERN

    E-Print Network [OSTI]

    Borcea, C; Dahlfors, M; Ferrari, A; García-Muñoz, G; Haefner, P; Herrera-Martínez, A; Kadi, Y; Lacoste, V; Radermacher, E; Saldaña, F; Vlachoudis, V; Zanini, L; Rubbia, Carlo; Buoni, S; Dangendorf, V; Nolte, R; Weierganz, M

    2003-01-01

    The new neutron time-of-flight facility (n_TOF) has been built at CERN and is now operational. The facility is intended for the measurement of neutron induced cross sections of relevance to Accelerator Driven Systems (ADS) and to fundamental physics. Neutrons are produced by spallation of the 20 GeV/c proton beam, delivered by the Proton Synchrotron (PS), on a massive target of pure lead. A measuring station is placed at about 185 m from the neutron producing target, allowing high-resolution measurements. The facility was successfully commissioned with two campaigns of measurements, in Nov. 2000 and Apr. 2001. The main interest was concentrated in the physical parameters of the installation (neutron flux and resolution function), along with the target behavior and various safety-related aspects. These measurements confirmed the expectations from Monte Carlo simulations of the facility, thus allowing to initiate the foreseen physics program.

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21

    A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (±1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

  10. Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    E-Print Network [OSTI]

    Allison, P; Bard, R; Beatty, J J; Besson, D Z; Bora, C; Chen, C -C; Chen, P; Connolly, A; Davies, J P; DuVernois, M A; Fox, B; Gorham, P W; Hanson, K; Hill, B; Hoffman, K D; Hong, E; Hu, L -C; Ishihara, A; Karle, A; Kelley, J; Kravchenko, I; Landsman, H; Laundrie, A; Li, C -J; Liu, T; Lu, M -Y; Maunu, R; Mase, K; Meures, T; Miki, C; Nam, J; Nichol, R J; Nir, G; O'Murchadha, A; Pfendner, C G; Ratzlaff, K; Richman, M; Rotter, B; Sandstrom, P; Seckel, D; Shultz, A; Song, M; Stockham, J; Stockham, M; Sullivan, M; Touart, J; Tu, H -Y; Varner, G S; Yoshida, S; Young, R; Guetta, D

    2015-01-01

    We searched for ultra-high energy (UHE) neutrinos from Gamma-Ray Bursts (GRBs) with the Askaryan Radio Array (ARA) Testbed station's 2011-2012 data set. Among 589 GRBs monitored by the Gamma Ray Coordinate Network (GCN) catalog from Jan. 2011 to Dec. 2012 over the entire sky, 57 GRBs were selected for analysis. These GRBs were chosen because they occurred during a period of low anthropogenic background and high stability of the station and fell within our geometric acceptance. We searched for UHE neutrinos from 57 GRBs and observed 0 events, which is consistent with 0.11 expected background events. With this result, we set the limits on the UHE GRB neutrino fluence and quasi-diffuse flux from $10^{16}$ to $10^{19}$~eV. This is the first limit on the UHE GRB neutrino quasi-diffuse flux at energies above $10^{16}$~eV.

  11. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  12. Detection system for high-resolution gamma radiation spectroscopy with neutron time-of-flight filtering

    DOE Patents [OSTI]

    Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter

    2014-12-30

    A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.

  13. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  14. Simultaneous Observation of Solar Neutrons from the ISS and High Mountain Observatories in association with a flare on July 8, 2014

    E-Print Network [OSTI]

    Muraki, Y; Koga, K; Kakimoto, F; Goka, T; Gonzalez, L X; Masuda, S; Matsubara, Y; Matsumoto, H; Miranda, P; Okudaira, O; Obara, T; Salinas, J; Sako, T; Shibata, S; Ticona, R; Tsunesada, Y; Valdes-Galicia, J F; Watanabe, K; Yamamoto, T

    2015-01-01

    An M6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with this flare, solar neutron detectors located on two high mountains, Mt. Sierra Negra and Chacaltaya and at the space station observed enhancements in the neutral channel. The authors analysed these data and a possible scenario of enhancements produced by high-energy protons and neutrons is proposed, using the data from continuous observation of a solar surface by the ultraviolet telescope onboard the Solar Dynamical Observatory (SDO).

  15. Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    E-Print Network [OSTI]

    O. Waldmann

    2003-04-21

    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.

  16. The New Uppsala Neutron Beam Facility

    SciTech Connect (OSTI)

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  17. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  18. The World Neutron Monitor Network as a tool for the study of solar neutrons

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    The World Neutron Monitor Network as a tool for the study of solar neutrons I. G. Usoskin1 , G. A Neutron Monitor Network to detect high-energy solar neutrons is dis- cussed in detail. It is shown that the existing network can be used for the routine detection of intense sporadic solar-neutron events whenever

  19. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  20. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    E-Print Network [OSTI]

    Waldmann, Ole

    2011-01-01

    A Permanent-Magnet Microwave Ion Source for a Compact High-A Permanent-Magnet Microwave Ion Source for a Compact High-on the development of a microwave ion source that will be

  1. Instrumentation development for magneto-transport and neutron scattering measurements at high pressure and low temperature 

    E-Print Network [OSTI]

    Wang, Weiwei

    2013-07-01

    High pressure, high magnetic field and low temperature techniques are required to investigate magnetic transitions and quantum critical behaviour in different ferromagnetic materials to elucidate how novel forms of ...

  2. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect (OSTI)

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  3. Explosives under pressure - the crystal structure of gamma-RDX as determined by high-pressure X-ray and neutron diffraction 

    E-Print Network [OSTI]

    Davidson, A.J.; Oswald, Iain D H; Francis, A.R.; Pulham, Colin

    Using a combination of X-ray single crystal and neutron powder diffraction, the crystal structure of the high-pressure ?-form of RDX has been determined at 5.2 GPa and shows that the RDX molecules adopt different conformations ...

  4. Neutronic Characterization of the Megapie Target

    E-Print Network [OSTI]

    Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

    2007-10-31

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

  5. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    EUTRON G ENERATOR High-output DD generators developed at theoffers a high-output, pulsable neutron generator, the GENIEneutron generators. High neutron outputs of ~10 8 n/s and 10

  6. High-resolution magnetohydrodynamics simulation of black hole-neutron star merger: Mass ejection and short gamma-ray burst

    E-Print Network [OSTI]

    Kiuchi, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke; Wada, Tomohide

    2015-01-01

    We report results of a high-resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K". We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulence-like motion induced by the non-axisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynth...

  7. High-resolution magnetohydrodynamics simulation of black hole-neutron star merger: Mass ejection and short gamma-ray burst

    E-Print Network [OSTI]

    Kenta Kiuchi; Yuichiro Sekiguchi; Koutarou Kyutoku; Masaru Shibata; Keisuke Taniguchi; Tomohide Wada

    2015-06-22

    We report results of a high-resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K". We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulence-like motion induced by the non-axisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynthesis, the radioactively-powered transient emission, and short gamma-ray bursts.

  8. High-resolution magnetohydrodynamics simulation of black hole-neutron star merger: Mass ejection and short gamma-ray burst

    E-Print Network [OSTI]

    Kenta Kiuchi; Yuichiro Sekiguchi; Koutarou Kyutoku; Masaru Shibata; Keisuke Taniguchi; Tomohide Wada

    2015-09-03

    We report results of a high-resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K". We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulence-like motion induced by the non-axisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynthesis, the radioactively-powered transient emission, and short gamma-ray bursts.

  9. Observations of Electrons from the Decay of Solar Flare Neutrons

    E-Print Network [OSTI]

    W. Dröge; D. Ruffolo; B. Klecker

    1996-04-03

    We have found evidence for fluxes of energetic electrons in interplanetary space on board the ISEE-3 spacecraft which we interpret as the decay products of neutrons generated in a solar flare on 1980 June 21. The decay electrons arrived at the s/c shortly before the electrons from the flare and can be distinguished from the latter by their distinctive energy spectrum. The time profile of the decay electrons is in good agreement with the results from a simulation based on a scattering mean free path derived from a fit to the flare electron data. The comparison with simultaneously observed decay protons and a published direct measurement of high-energy neutrons places important constraints on the parent neutron spectrum.

  10. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    Harpenau, Evan M.

    2012-01-13

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2?2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS s

  11. The Flux Qubit Revisited

    E-Print Network [OSTI]

    F. Yan; S. Gustavsson; A. Kamal; J. Birenbaum; A. P. Sears; D. Hover; T. J. Gudmundsen; J. L. Yoder; T. P. Orlando; J. Clarke; A. J. Kerman; W. D. Oliver

    2015-08-25

    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and coherence times in excess of 40 us at its flux-insensitive point. Qubit relaxation times across 21 qubits of widely varying designs are consistently matched with a single model involving ohmic charge noise, quasiparticle fluctuations, resonator loss, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, reaching T2 ~ 80 us , approximately the 2T1 limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary state-of-art qubits based on transverse qubit-resonator interaction.

  12. Challenges in the development of high-fidelity LWR core neutronics tools

    SciTech Connect (OSTI)

    Smith, K.; Forget, B. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01

    Modern computing has made possible the solution of extremely large-scale reactor simulations, and the literature has numerous examples of high-resolution methods (often Monte Carlo) applied to full-core reactor problems. However, there are currently no examples in the literature of application of such 'High-Fidelity' or 'First Principles' methods to operating Light Water Reactor (LWR) analysis. This paper seeks to remind code developers, project managers, and analysts of the many important aspects of LWR simulation that must be incorporated to produce truly high-fidelity analysis tools. The authors offer a monetary prize to the first person (or group) that successfully solves a new two-cycle operational PWR depletion benchmark problem using high-fidelity tools and demonstrates acceptable accuracy by comparison with measured operational plant data (open source) provided to the reactor analysis community. (authors)

  13. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  14. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ); Micklich, Bradley J. (Princeton, NJ)

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  15. Low energy neutron background in deep underground laboratories

    E-Print Network [OSTI]

    Andreas Best; Joachim Gorres; Matthias Junker; Karl-Ludwig Kratz; Matthias Laubenstein; Alexander Long; Stefano Nisi; Karl Smith; Michael Wiescher

    2015-09-02

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  16. Low energy neutron background in deep underground laboratories

    E-Print Network [OSTI]

    Best, Andreas; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2015-01-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  17. TRANSPUser'sGroupMeeting,PPPL,March23-24,2015 TRANSP use for Neutron and

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Fast Ion Da (FIDA) system - Fission chamber, Da edge monitors - Prototypes: - Neutron Collimated flux Neutron collimated flux monitor Number of channels: 4 (2 mid-plane, 2 diagonally inclined) Time resolutionTRANSPUser'sGroupMeeting,PPPL,March23-24,2015 1 29 TRANSP use for Neutron and Fast Ions

  18. Charge exchange neutral particle measurements with natural diamond detector under the deuterium-deuterium neutron field on JT-60U tokamak

    SciTech Connect (OSTI)

    Ishikawa, M.; Kusama, Y.; Takechi, M.; Nishitani, T.; Morioka, A.; Sasao, M.; Isobe, M.; Krasilnikov, A.; Kaschuck, Yu. A. [Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 319-0193 (Japan); Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); National Institute for Fusion Science, Toki, Gihu 509-5292 (Japan); Troitsk Institute of Innovating and Fusion Research (TRINITI) Troitsk, Moscow Region 142092 (Russian Federation)

    2004-10-01

    A natural diamond detector (NDD) has been installed on the JT-60U tokamak to measure the flux and the energy distribution of charge exchange (CX) fast neutral particles. A NDD has many important advantages to be used as a CX neutral particle analyzer, for example very compact size, high energy resolution, and high radiation hardness etc., while the neutrons and {gamma} rays are a large noise source in the deuterium plasma. The shield was set up around the NDD to reduce those noises. Time-resolved energy distribution of CX neutral particles corresponding to injected beam energy have been successfully obtained under high intensity neutron yield Y{sub n}>10{sup 15} n/s. Further enhanced neutral particle fluxes during sawtooth oscillation and Alfven eigenmodes were observed with the NDD. The performance of the NDD as CX neutral particle spectrometer under high intensity neutron yield was demonstrated for the first time on JT-60U in this work.

  19. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres II -- Magnetized Hydrogen Atmospheres

    E-Print Network [OSTI]

    Jeremy S. Heyl; Don Lloyd; Nir J. Shaviv

    2005-02-17

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect couples the direction of the polarization of photons leaving the NS surface, to the direction of the magnetic field along the ray's path. We analyze the consequences that this effect has on aligning the polarization vectors to generate large net polarizations, while considering thermal radiation originating from a thermal hydrogen atmosphere. Counter to previous predictions, we show that the thermal radiation should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  20. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    E-Print Network [OSTI]

    Tod E. Strohmayer

    1999-11-19

    Observations of thermonuclear (Type I) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here I review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  1. Possible High-Energy Neutrino and Photon Signals from Gravitational Wave Bursts due to Double Neutron Star Mergers

    E-Print Network [OSTI]

    Gao, He; Wu, Xue-Feng; Dai, Zi-Gao

    2013-01-01

    As the technology of gravitational-wave and neutrino detectors becomes increasingly mature, a multi-messenger era of astronomy is ushered in. Advanced gravitational wave detectors are close to making a ground-breaking discovery of gravitational wave bursts (GWBs) associated with mergers of double neutron stars (NS-NS). It is essential to study the possible electromagnetic (EM) and neutrino emission counterparts of these GWBs. Recent observations and numerical simulations suggest that at least a fraction of NS-NS mergers may leave behind a massive millisecond magnetar as the merger product. Here we show that protons accelerated in the forward shock powered by a magnetar wind pushing the ejecta launched during the merger process would interact with photons generated in the dissipating magnetar wind and emit high energy neutrinos and photons. We estimate the typical energy and fluence of the neutrinos from such a scenario. We find that $\\sim$PeV neutrinos could be emitted from the shock front as long as the ejec...

  2. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    SciTech Connect (OSTI)

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.

  3. Multi-Channel Auto-Dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes

    SciTech Connect (OSTI)

    Amonette, James E.; Barr, Jonathan L.

    2009-04-23

    Geological sequestration has the potential capacity and longevity to significantly decrease the amount of anthropogenic CO2 introduced into the atmosphere by combustion of fossil fuels such as coal. Effective sequestration, however, requires the ability to verify the integrity of the reservoir and ensure that potential leakage rates are kept to a minimum. Moreover, understanding the pathways by which CO2 migrates to the surface is critical to assessing the risks and developing remediation approaches. Field experiments, such as those conducted at the Zero Emissions Research and Technology (ZERT) project test site in Bozeman, Montana, require a flexible CO2 monitoring system that can accurately and continuously measure soil-surface CO2 fluxes for multiple sampling points at concentrations ranging from background levels to several tens of percent. To meet this need, PNNL is developing a multi-port battery-operated system capable of both spatial and temporal monitoring of CO2 at concentrations from ambient to at least 150,000 ppmv. This report describes the system components (sampling chambers, measurement and control system, and power supply) and the results of a field test at the ZERT site during the late summer and fall of 2008. While the system performed well overall during the field test, several improvements to the system are suggested for implementation in FY2009.

  4. Neutron - Mirror Neutron Oscillations: How Fast Might They Be?

    E-Print Network [OSTI]

    Zurab Berezhiani; Luis Bento

    2006-02-20

    We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron (n'), a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal n-n' oscillation in vacuum with a characteristic time $\\tau$ much shorter than the neutron lifetime, in fact as small as 1 sec. This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to present experimental capabilities and may also have interesting astrophysical consequences, in particular for the propagation of ultra high energy cosmic rays.

  5. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    E-Print Network [OSTI]

    Barth, Rolf F

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, ...

  6. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  7. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  8. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  9. SEARCH FOR POINT-LIKE SOURCES OF ULTRA-HIGH ENERGY NEUTRINOS AT THE PIERRE AUGER OBSERVATORY AND IMPROVED LIMIT ON THE DIFFUSE FLUX OF TAU NEUTRINOS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnologica Nacional - Facultad Regional Buenos Aires, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [Universidade Estadual de Campinas, IFGW, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Collaboration: Pierre Auger Collaboration; and others

    2012-08-10

    The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E{sub {nu}} between 10{sup 17} eV and 10{sup 20} eV from point-like sources across the sky south of +55 Degree-Sign and north of -65 Degree-Sign declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of {approx}3.5 years of a full surface detector array for the Earth-skimming channel and {approx}2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k{sub PS} {center_dot} E {sup -2}{sub {nu}} from a point-like source, 90% confidence level upper limits for k{sub PS} at the level of Almost-Equal-To 5 Multiplication-Sign 10{sup -7} and 2.5 Multiplication-Sign 10{sup -6} GeV cm{sup -2} s{sup -1} have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.

  10. The Extended Q-Range Small Angle Neutron Scattering Diffractometer at the SNS

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Gao, Carrie Y [ORNL; Liu, Dazhi [ORNL

    2010-01-01

    The Extended Q-Range Small Angle Neutron Scattering Diffractometer (EQ-SANS) at the Spallation Neutron Source is designed to have wide neutron momentum transfer (Q) coverage, high neutron beam intensity, and good wavelength resolution. In addition, the design and construction of the instrument aim at achieving maximum signal to noise ratio by minimizing the background. The instrument is located on the 60Hz SNS target. It has a primary flight path of 14m. Its secondary flight path varies from ~1m to 10m. One of the key components in the primary flight path is the neutron optics, consisting of a true-curved multi channel beam bender and sections of neutron guides. The optics is optimized to reduce the neutron transport loss to a minimum, thereby maximizing the available flux on sample. It also enables the avoidance of the direct line of sight of the neutron moderator at downstream locations. The instrument has three bandwidth-limiting choppers. These choppers effectively eliminate higher frame neutrons up to ~38 from the beam. A frame overlap mirror further cleans up the beam by reflecting out neutrons whose wavelengths are longer than ~33 . The bandwidth choppers also allow a frame-skipping mode of operation, which enables the EQ-SANS diffractometer to achieve a dynamic Q-range equivalent to that of a similar machine on a 20Hz source. The two-dimensional low-angle detector, based on 3He tube technologies, offers very high counting rates and counting efficiency. Initial operations have shown that the instrument has achieved its best-in-class design requirement.

  11. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  12. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M. H.; Chen, M. H.; Hatchett, S. P.; Hill, J. M.; King, J. A.; MacKinnon, A. J.; Patel, P.; Phillips, T.; Snavely, R. A.; Town, R. [University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Adam, J. C.; Heron, A. [Centre de Physique Theorique (UPR14 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Akli, K. U.; Stephens, R. [General Atomics, San Diego, California 92186 (United States); Borghesi, M.; Romagnani, L.; Zepf, M. [Department of Pure and Applied Physics, Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Evans, R. G. [Blackett Laboratory, Imperial College of Science Technology and Medicine, London SW7 2BZ (United Kingdom); Freeman, R. R. [The Ohio State University, Columbus, Ohio 34210 (United States); Habara, H. [Rutherford Appleton Laboratory, Chilton, Oxon, OX11OQX (United Kingdom)] (and others)

    2008-02-15

    An integrated experiment relevant to fast ignition . A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  13. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M

    2007-11-20

    An integrated experiment relevant to fast ignition. A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{sub {alpha}} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  14. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    SciTech Connect (OSTI)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  15. Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli

    E-Print Network [OSTI]

    Montfrooij, Wouter

    Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

  16. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect (OSTI)

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies. Relative to the MCNP solution, the MC{sup 2}-2/TWODANT results overestimated the multiplication factor by 0.22 {approx} 0.35% {Delta}{rho} for these small systems with very hard neutron spectrum. Comparisons of measured and calculated values for the fission reaction rate ratios of Godiva and Jezebel assemblies also showed that the MC{sup 2}-2/TWODANT results agreed well with measurements within 2.7%. From a series of methodology review and ENDF/B-VII.0 data processing, several improvement needs to enhance accuracy were also identified for the ETOE-2/MC{sup 2}-2 code system, including the multigroup slowing-down solution for whole-energy range, proper treatment for anisotropy of inelastic scattering, improved evaluation of inelastic and high-order anisotropic scattering source in RABANL calculations.

  17. Gluon saturation and Feynman scaling in leading neutron production

    E-Print Network [OSTI]

    Carvalho, F; Spiering, D; Navarra, F S

    2015-01-01

    In this paper we extend the color dipole formalism to the study of leading neutron production in $e + p \\rightarrow e + n + X$ collisions at high energies and estimate the related observables, which were measured at HERA and may be analysed in future electron-proton ($ep$) colliders. In particular, we calculate the Feynman $x_F$ distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive $ep$ HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analysed in detail. We show that the recently released H1 leading neutron spectra can be reproduced using the color dipole ...

  18. Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium 

    E-Print Network [OSTI]

    Stone, Joseph C.

    2001-01-01

    The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

  19. Fast Neutron Detection with a Segmented Spectrometer

    E-Print Network [OSTI]

    T. J. Langford; C. D. Bass; E. J. Beise; H. Breuer; D. K. Erwin; C. R. Heimbach; J. S. Nico

    2014-11-20

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  20. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-11-30

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  1. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  2. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect (OSTI)

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  3. High energy signatures of quasi-spherical accretion onto rotating, magnetized neutron star in the ejector-accretor intermediate state

    E-Print Network [OSTI]

    Bednarek, W

    2015-01-01

    We consider a simple scenario for the accretion of matter onto a neutron star in order to understand processes in the inner pulsar magnetosphere during the transition stage between different accretion modes. A simple quasi-spherical accretion process onto rotating, magnetized compact object is analyzed in order to search for the radiative signatures which could appear during transition between ejecting and accreting modes. It is argued that different accretion modes can be present in a single neutron star along different magnetic field lines for specific range of parameters characterising the pulsar (rotational period, surface magnetic field strength) and the density of surrounding medium. The radiation processes characteristic for the ejecting pulsar, i.e. curvature and synchrotron radiation produced by primary electrons in the pulsar outer gap, are expected to be modified by the presence of additional thermal radiation from the neutron star surface. We predict that during the transition from the pure ejecto...

  4. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    E-Print Network [OSTI]

    René Reifarth; Yuri A. Litvinov; Anne Endres; Kathrin Göbel; Tanja Heftrich; Jan Glorius; Alexander Koloczek; Kerstin Sonnabend; Claudia Travaglio; Mario Weigand

    2015-07-12

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,$\\gamma$), (n,p), (n,$\\alpha$), (n,2n), or (n,f), could be investigated.

  5. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    E-Print Network [OSTI]

    Reifarth, René; Endres, Anne; Göbel, Kathrin; Heftrich, Tanja; Glorius, Jan; Koloczek, Alexander; Sonnabend, Kerstin; Travaglio, Claudia; Weigand, Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,$\\gamma$), (n,p), (n,$\\alpha$), (n,2n), or (n,f), could be investigated.

  6. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    E-Print Network [OSTI]

    Feryal Ozel; Dimitrios Psaltis; Tolga Guver; Gordon Baym; Craig Heinke; Sebastien Guillot

    2015-05-19

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ~2 Msun neutron stars, we place strong and quantitative constraints on the properties of the equation of state between ~2-8 times the nuclear saturation density. We find that around M=1.5 Msun, the preferred equation of state predicts a radius of 10.8-0.4+0.5 km. When interpreting the pressure constraints in the context of high density equations of state based on interacting nucleons, our results suggest a weaker contribution of the three-body interaction potential than previously considered.

  7. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    SciTech Connect (OSTI)

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei, Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  8. Penning-trap mass spectrometry of highly charged, neutron-rich Rb and Sr isotopes in the vicinity of $A\\approx100$

    E-Print Network [OSTI]

    V. V. Simon; T. Brunner; U. Chowdhury; B. Eberhardt; S. Ettenauer; A. T. Gallant; E. Mané; M. C. Simon; P. Delheij; M. R. Pearson; G. Audi; G. Gwinner; D. Lunney; H. Schatz; J. Dilling

    2012-05-29

    The neutron-rich mass region around $A\\approx100$ presents challenges for modeling the astrophysical $r$-process because of rapid shape transitions. We report on mass measurements using the TITAN Penning trap at TRIUMF-ISAC to attain more reliable theoretical predictions of $r$-process nucleosynthesis paths in this region. A new approach using highly charged ($q=15+$) ions has been applied which considerably saves measurement time and preserves accuracy. New mass measurements of neutron-rich $^{94,97,98}$Rb and $^{94,97-99}$Sr have uncertainties of less than 4 keV and show deviations of up to 11$\\sigma$ to previous measurements. An analysis using a parameterized $r$-process model is performed and shows that mass uncertainties for the A=90 abundance region are eliminated.

  9. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  10. Abstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate the neutron production target. To mitigate the effect of the high power, and high intensity beam on the target we propose to reduce the intensity of the beam by un

    E-Print Network [OSTI]

    McDonald, Kirk

    the neutron production target. To mitigate the effect of the high power, and high intensity beam on the targetAbstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate a High-Power Beam* M. Haj Tahar, F Meot, P. Pile, *N. Tsoupas Brookhaven National Laboratory Upton, NY

  11. Transport of thermal neutrons in different forms of liquid hydrogen and the production of intense beams of cold neutrons

    SciTech Connect (OSTI)

    Swaminathan, K.; Tewari, S.P.

    1982-10-01

    From their studies the authors find that the thermal neutron inelastic scattering kernel incorporating the chemical binding energy in liquid hydrogen is able to successfully explain various neutron transport studies such as pulsed neutron and steady-state neutron spectra. For an infinite-sized assembly, D/sub 2/ at 4 K yields a very intense flux of cold and ultracold neutrons. For the practicable finite assembly corresponding to B/sup 2/ = 0.0158 cm/sup -2/, it is found that liquid hydrogen at 11 K gives the most intense beam of cold neutrons.

  12. The desire to achieve both high power density and high power conversion efficiency leads to several required features of a first wall and blanket concept. Achieving high

    E-Print Network [OSTI]

    California at Los Angeles, University of

    required features of a first wall and blanket concept. Achieving high power density means that the coolant wall and blanket design, tritium breeding, activation and waste, power conversion, first wall thermo First wall heat flux 2 MW/m2 Neutron wall load 10 MW/m2 Tritium Breeding Ratio (local 2D) 1.37 Power

  13. Determination of the response of pentaerythritol tetranitrate to static high pressure up to 4.2 GPa by neutron diffraction

    SciTech Connect (OSTI)

    Dick, J.J.; Dreele, R.B. von

    1997-11-01

    Neutron powder diffraction experiments were performed on pentaerythritol tetranitrate explosive up to 4.28 GPa. For deuterated samples the changes in lattice parameters, intramolecular torsional angles and molecular rotation were measured. The lattice parameter changes were different from those observed in protonated samples. However, there is no evidence of a phase transition or change in molecular symmetry.

  14. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    SciTech Connect (OSTI)

    De Doncker, Rik W. A. A.

    1992-01-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  15. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    SciTech Connect (OSTI)

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  16. Development of a Time-tagged Neutron Source for SNM Detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; Waldron, Will; Tinsley, Jim

    2015-06-18

    Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore »extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less

  17. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Guler, N.; Volegov, P.; Danly, C. R.; Grim, G. P.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-10-15

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  18. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with themore »previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.« less

  19. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.

  20. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  1. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  2. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  3. 2DBTOR: a toroidal geometry neutron diffusion code 

    E-Print Network [OSTI]

    Hrabal, Craig Anthony

    1990-01-01

    condition by specifying the neutron flux to current ratio as a function of position along the vacuum wall. Improved modelling of the central void region will be required if 2DBTOR is to prove to be an attractive program for Tokamak blanket scoping... at such temperatures, must be confined long enough to fuse. As a consequence of the high temperatures required for fusion, the reactants can not be contained within physical walls, since interactions with the wall material would likely cool the nuclei down below...

  4. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  5. Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars

    E-Print Network [OSTI]

    C. J. Horowitz; J. Piekarewicz

    2002-01-08

    Parity violating electron scattering can measure the neutron density of a heavy nucleus accurately and model independently. This is because the weak charge of the neutron is much larger then that of the proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to measure the root mean square neutron radius of $^{208}$Pb with an absolute accuracy of 1% ($\\pm 0.05$ Fm). This is more accurate then past measurements with hadronic probes, which all suffer from controversial strong interaction uncertainties. PREX should clearly resolve the neutron-rich skin. Furthermore, this benchmark value for $^{208}$Pb will provide a calibration for hadronic probes, such as proton scattering, which can then be used to measure neutron densities of many exotic nuclei. The PREX result will also have many implications for neutron stars. The neutron radius of Pb depends on the pressure of neutron-rich matter: the greater the pressure, the larger the radius as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity. The Pb radius is sensitive to the equation of state at normal densities while the radius of a 1.4 solar mass neutron star also depends on the equation of state at higher densities. Measurements of the radii of a number of isolated neutron stars such as Geminga and RX J185635-3754 should soon improve significantly. By comparing the equation of state information from the radii of both Pb and neutron stars one can search for a softening of the high density equation of state from a phase transition to an exotic state. Possibilities include kaon condensates, strange quark matter or color superconductors.

  6. Resonant Cyclotron Scattering and Comptonization in Neutron Star Magnetospheres

    E-Print Network [OSTI]

    Maxim Lyutikov; Fotis P. Gavriil

    2006-02-10

    Resonant cyclotron scattering of the surface radiation in the magnetospheres of neutron stars may considerably modify the emergent spectra and impede efforts to constraint neutron star properties. Resonant cyclotron scattering by a non-relativistic warm plasma in an inhomogeneous magnetic field has a number of unusual characteristics: (i) in the limit of high resonant optical depth, the cyclotron resonant layer is half opaque, in sharp contrast to the case of non-resonant scattering. (ii) The transmitted flux is on average Compton up-scattered by ~ $1+ 2 beta_T$, where $\\beta_T$ is the typical thermal velocity in units of the velocity of light; the reflected flux has on average the initial frequency. (iii) For both the transmitted and reflected fluxes the dispersion of intensity decreases with increasing optical depth. (iv) The emergent spectrum is appreciably non-Plankian while narrow spectral features produced at the surface may be erased. We derive semi-analytically modification of the surface Plankian emission due to multiple scattering between the resonant layers and apply the model to anomalous X-ray pulsar 1E 1048.1--5937. Our simple model fits just as well as the ``canonical'' magnetar spectra model of a blackbody plus power-law.

  7. Measuring Muon-Induced Neutrons with Liquid Scintillation Detector at Soudan Mine

    E-Print Network [OSTI]

    C. Zhang; D. -M. Mei

    2014-11-26

    We report a direct detection of muon-induced high energy neutrons with a 12-liter neutron detector fabricated with EJ-301 liquid scintillator operating at Soudan Mine for about two years. The detector response to energy from a few MeV up to $\\sim$ 20 MeV has been calibrated using radioactive sources and cosmic-ray muons. Subsequently, we have calculated the scintillation efficiency for nuclear recoils, up to a few hundred MeV, using Birks' law in the Monte Carlo simulation. Data from an exposure of 655.1 days were analyzed and neutron-induced recoil events were observed in the energy region from 4 MeV to 50 MeV, corresponding to fast neutrons with kinetic energy up to a few hundred MeV, depending on the scattering angle. Combining with the Monte Carlo simulation, the muon-induced fast neutron flux is determined to be $(2.3 \\pm 0.52 (sta.) \\pm 0.99 (sys.) ) \\times10^{-9}$ cm$^{-2}$s$^{-1}$ (E$_{n}$ $>$ 20 MeV), in a reasonable agreement with the model prediction. The muon flux is found to be ($1.65\\pm 0.02 (sta.) \\pm 0.1 (sys.) ) \\times10^{-7}$ cm$^{-2}$s$^{-1}$ (E$_{\\mu}$ $>$ 1 GeV), consistent with other measurements. As a result, the muon-induced high energy gamma-ray flux is simulated to be 7.08 $\\times$10$^{-7}$cm$^{-2}$s$^{-1}$ (E$_{\\gamma}$ $>$ 1 MeV) for the depth of Soudan.

  8. High Flux Ti Nanofiltration Membrane

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&

  9. Neutron-driven gamma-ray laser

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  10. Bright Transients from Black Hole - Neutron Star Mergers

    E-Print Network [OSTI]

    D'Orazio, Daniel J; Murray, Norman W; Price, Larry

    2016-01-01

    Direct detection of black hole-neutron star (BHNS) pairs is anticipated with the advent of aLIGO. Electromagnetic counterparts may be crucial for a confident gravitational-wave detection as well as for extraction of astronomical information. Yet BHNS star pairs are notoriously dark and so inaccessible to telescopes. Contrary to this expectation, a bright electromagnetic transient can occur in the final moments before merger as long as the neutron star is highly magnetized. The orbital motion of the neutron star magnet creates a Faraday flux and corresponding power available for luminosity. A spectrum of curvature radiation ramps up until the rapid injection of energy ignites a fireball, which would appear as an energetic blackbody peaking in the X-ray to gamma-rays for neutron star field strengths ranging from $10^{12}$G to $10^{16}$G respectively and a $10M_{\\odot}$ black hole. The fireball event may last from a few milliseconds to a few seconds depending on the NS magnetic field strength, and may be observa...

  11. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect (OSTI)

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  12. High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of {sup 116,120}Sn

    SciTech Connect (OSTI)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H. [and others

    1997-06-01

    Improved astrophysical reaction rates for {sup 116,120}Sn(n, {gamma}) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope {sup 116}Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the (n,T) cross sections used in the reaction network calculations or in the s-process models. One reason to suspect the (n, {gamma}) data is that previous measurements did not extend to low enough energies to determine accurately the Maxwellian-averaged capture cross sections at the low temperatures (kT=6-8 keV) favored by the most recent stellar models of the s process. Also, the two most recent high-precision measurements of the {sup 120}Sn(n, {gamma}) cross section are in serious disagreement. Because of its small size, this cross section could affect (via the s-process branching at {sup 121}Sn) the relative abundances of the three s-only isotopes of Te.

  13. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  14. Fission neutron/gamma irradiation of Bacillus thuringiensis bacteria at the Texas A&M University Nuclear Science Center Reactor 

    E-Print Network [OSTI]

    Hearnsberger, David Wayne

    2001-01-01

    The objective of this research is to fully characterize the effectiveness of the Texas A&M University Nuclear Science Center Reactor (TAMU NSCR) neutrons for bacterial sterilization, and to assess the secondary gamma flux produced when neutrons...

  15. Neutron Capture Experiments on Unstable Nuclei

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Sudowe, Ralf; Folden, Charles M., III; Nitsche, Heino; Hoffman, Darleane C.

    2005-01-15

    The overall objective of this project is the measurement of neutron capture cross sections of importance to stewardship science and astrophysical modeling of nucleosynthesis, while at the same time helping to train the next generation of scientists with expertise relevant to U.S. national nuclear security missions and to stewardship science. A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. Much of the information obtained will also be important in astrophysical modeling of nucleosynthesis. Measurements of these neutron capture cross sections are being conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the unique Detector for Advanced Neutron Capture Experiments (DANCE). In our early discussions with the DANCE group, decisions were made on the first cross sections to be measured and how our expertise in target preparation, radiochemical separations chemistry, and data analysis could best be applied. The initial emphasis of the project was on preparing suitable targets of both natural and separated stable europium isotopes in preparation for the ultimate goal of preparing a sufficiently large target of radioactive 155Eu (t1/2 = 4.7 years) and other radioactive and stable species for neutron cross-section measurements at DANCE. Our Annual Report, ''Neutron Capture Experiments on Unstable Nuclei'' by J. M. Schwantes, R. Sudowe, C. M. Folden III, H. Nitsche, and D. C. Hoffman, submitted to NNSA in December 2003, gives details about the initial considerations and scope of the project. During the current reporting period, electroplated targets of natural Eu together with valuable, stable, and isotopically pure 151Eu and 153Eu, and isotopically separated 154Sm were measured for the first time at the DANCE facility in early 2004. The Eu targets, suitable blanks, Be backing foils, and standards had been sent to the DANCE group in early fall 2003. Some preliminary data analysis was performed and more sophisticated analysis has begun. We developed plans for a suitable computer system for data analysis within our group at Berkeley and had meetings with counterparts at Lawrence Livermore National Laboratory (LLNL) and LANL concerning analysis of these data. Our major emphasis in 2004 has been to develop the separations and processes ultimately required to prepare radioactive targets of 4.7-year 155Eu. Efforts continued to devise an optimum multiprocess procedure suitable for use in separating radioactive 155Eu already produced by irradiation of stable 154Sm in a high neutron flux reactor at the Institut Laue-Langevin in France and shipped to LANL (the 22-min 155Sm neutron-capture product decays to 155Eu). This separation is extremely demanding because the highly radioactive 155Eu must be isolated from about 20 times as much mass of samarium before a target can be prepared for DANCE measurements. After all the procedures have been fully tested the radioactive 155Eu will be separated. The same electroplating methods already used successfully to prepare stable Eu isotope targets will be used to prepare the 155Eu target for DANCE. Discussions were held with LANL radiochemists in the Chemistry (C) Division about appropriate facilities at LANL for conducting the full-scale separation and purification of the radioactive targets. Three more multiprocess separations were developed that generated less chemical and radioactive waste, but they must still be adapted for processing hundred-milligram quantities. Until these separations can be successfully implemented at this scale, standard HPLC procedures will be used for separating and preparing radioactive 155Eu, 2.6-year 147Pm, and 1.9-year 171Tm target materials. Future directions beyond the preparation of radioactive lanthanide targets include closer collaboration with both LLNL and LANL to prepare ac

  16. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  17. Neutron Tomography and Space

    E-Print Network [OSTI]

    Egbert, Hal; Walker, Ronald; Flocchini, R.

    2007-01-01

    Kevin Shields, “Optimization of neutron tomography for rapidNEUTRON TOMOGRAPHY AND SPACE Hal Egbert, Ronald Walker, R.industrial applications[1]. Neutron Computed Tomography was

  18. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  19. Direct fissile assay of highly enriched UF/sub 6/ using random self-interrogation and neutron coincidence response

    SciTech Connect (OSTI)

    Stewart, J.E.; Menlove, H.O.

    1983-01-01

    A new nondestructive method for direct assay of /sup 235/U mass contained in Model 5A uranium hexafluoride (UF/sub 6/) product storage cylinders has been successfully tested in the laboratory and under field conditions. The technique employs passive neutron self-interrogation and uses the ratio of coincidences-to-totals counts as a measure of bulk fissile mass. The accuracy of the method is 6.8% (1 sigma) based on field measurements of 44 Model 5A cylinders, 11 of which were either only partially filled or contained reactor return material. The cylinders contained UF/sub 6/ with enrichments from 5.96% to 97.6%. Count times were 3 to 6 min depending on /sup 235/U mass. Samples ranged from below 1 kg to over 16 kg of /sup 235/U. Because the method relies primarily on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place. This feature alleviates inhomogeneity problems and offers increased assurance of the presence of stated amounts of bulk fissile material as compared with current verification methods.

  20. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 3. High-energy spectrum (time-of-flight method)

    SciTech Connect (OSTI)

    Hall, W.C.

    1985-09-01

    This report describes the experiments performed to measure the energy spectrum of neutrons released in certain atomic-weapons tests in Operation Greenhouse. The measurements were made of two types: (1) the time-of-flight measurements designed to establish the fission neutron spectrum down to about 3 MeV energy, and (2) the so-called Tenex (Temperature-Neutron Experiment) measurements designed to obtain the velocity distribution of neutrons produced by the deuterium-tritium fusion reactions.

  1. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect (OSTI)

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  2. Remarks on "Piezonuclear neutrons from fracturing of inert solids"

    E-Print Network [OSTI]

    Giovanni Comoretto; Marco Prevedelli

    2012-06-08

    In two series of measurements, Cardone, Carpinteri et al. report an excess of neutrons over the background flux corresponding to the catastrophic fracture of a granite block subject to compression. Here we show that these measurements contain large inconsistencies with respect to the stated experimental procedure, including fractional neutron counts and strongly non Poissonian statistics

  3. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  4. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    SciTech Connect (OSTI)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D. E-mail: m.duez@wsu.edu

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ?} neutron star, 5.6 M{sub ?} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ?} of nuclear matter is ejected from the system, while another 0.3 M{sub ?} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ? 6 MeV) and luminous in neutrinos (L{sub ?} ? 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  5. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect (OSTI)

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  6. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  7. Neutron diffraction study on very high elastic strain of 6% in an Fe{sub 3}Pt under compressive stress

    SciTech Connect (OSTI)

    Yamaguchi, Takashi; Fukuda, Takashi Kakeshita, Tomoyuki; Harjo, Stefanus; Nakamoto, Tatsushi

    2014-06-09

    An Fe{sub 3}Pt alloy with degree of order 0.75 exhibits a second-order-like martensitic transformation from a cubic structure to a tetragonal one at about 90?K; its tetragonality c/a changes nearly continuously from 1 to 0.945 on cooling from 90?K to 14?K. We have investigated the change in lattice parameters in a single crystal of the Fe{sub 3}Pt alloy at 93?K under compressive stresses, ?, applied in the [001] direction by neutron diffraction. The tetragonality c/a has decreased continuously from 1 to 0.907 with an increase in |?| up to |?|?=?280?MPa; the corresponding lattice strain in the [001] direction, due to the continuous structure change, increases from 0% to 6.1%. When the stress of 300?MPa is reached, c/a has changed abruptly from 0.907 to 0.789 due to a first-order martensitic transformation.

  8. Secondary neutrons in clinical proton radiotherapy: A charged issue

    E-Print Network [OSTI]

    Brenner, David Jonathan

    . However, the clinical significance of this whole-body low-dose neutron exposure has remained controversial on passive scattering. In this light, and in light of the signif- icant carcinogenicity of low-dose neutron high-en- ergy neutron doses in a mixed radiation field, and it is still harder to make neutron me

  9. Stellar 30-keV neutron capture in 94,96Zr and the 90Zr(gamma,n)89Zr photonuclear reaction with a high-power liquid-lithium target

    E-Print Network [OSTI]

    Tessler, M; Arenshtam, A; Feinberg, G; Friedman, M; Halfon, S; Kijel, D; Weissman, L; Aviv, O; Berkovits, D; Eisen, Y; Eliyahu, I; Haquin, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Yungrais, Z

    2015-01-01

    A high-power Liquid-Lithium Target (LiLiT) was used for the first time for neutron production via the thick-target 7Li(p,n)7Be reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1-2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF), the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3-5e10 n/s, more than one order of magnitude larger than present near-threshold 7Li(p,n) neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS) of 94Zr and 96Zr as 28.0+-0.6 mb and 12.4+-0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV) prompt cap...

  10. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  11. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  12. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  13. Neutron Scattering User Program | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Program SHARE Neutron Scattering Can Benefit Your Research Neutron scattering has applications in almost every technical and scientific field, from biology and chemistry to...

  14. Neutron scattering study of underdoped Ba1-xKxFe?As? (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-04

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe?As? (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe?As?, suggesting that this doping may be in the vicinity of a tricriticalmore »point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ?17 to ?8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.« less

  15. Neutron scattering study of underdoped Ba1-xKxFe?As? (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    SciTech Connect (OSTI)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-01

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe?As? (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe?As?, suggesting that this doping may be in the vicinity of a tricritical point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ?17 to ?8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.

  16. Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts

    E-Print Network [OSTI]

    Charles D. Dermer

    2002-04-16

    The hypothesis that ultra-high energy (>~ 10^19 eV) cosmic rays (UHECRs) are accelerated by gamma-ray burst (GRB) blast waves is assumed to be correct. Implications of this assumption are then derived for the external shock model of gamma-ray bursts. The evolving synchrotron radiation spectrum in GRB blast waves provides target photons for the photomeson production of neutrinos and neutrons. Decay characteristics and radiative efficiencies of the neutral particles that escape from the blast wave are calculated. The diffuse high-energy GRB neutrino background and the distribution of high-energy GRB neutrino events are calculated for specific parameter sets, and a scaling relation for the photomeson production efficiency in surroundings with different densities is derived. GRBs provide an intense flux of high-energy neutrons, with neutron-production efficiencies exceeding ~ 1% of the total energy release. The radiative characteristics of the neutron beta-decay electrons from the GRB "neutron bomb" are solved in a special case. Galaxies with GRB activity should be surrounded by radiation halos of ~ 100 kpc extent from the outflowing neutrons, consisting of a nonthermal optical/X-ray synchrotron component and a high-energy gamma-ray component from Compton-scattered microwave background radiation. The luminosity of sources of GRBs and relativistic outflows in L* galaxies such as the Milky Way is at the level of ~10^40+-1 ergs/s. This is sufficient to account for UHECR generation by GRBs. We briefly speculate on the possibility that hadronic cosmic rays originate from the subset of supernovae that collapse to form relativistic outflows and GRBs. (abridged)

  17. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  18. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  19. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  20. Use of a moments method for the analysis of flux distributions in subcritical assemblies

    E-Print Network [OSTI]

    Cheng, Hsiang-Shou

    1968-01-01

    A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...

  1. Thermo-mechanical and neutron lifetime modeling and design of Be pebbles in the neutron multiplier for the LIFE engine

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; de Caro, M S; Caro, A

    2009-03-16

    Concept designs for the laser-initiated fusion/fission engine (LIFE) include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a safe and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermomechanical behavior under continued neutron exposure. We consider the effects of high fluence/fast flux on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 C to enable creep to relax the stresses induced by swelling, which we estimate to be at least 16 months if uncoated and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  2. Suppression of carbon erosion by hydrogen shielding during high-flux hydrogen bombardment E. Salonen, K. Nordlund, J. Tarus, T. Ahlgren, and J. Keinonen

    E-Print Network [OSTI]

    Nordlund, Kai

    -flux low-energy ion bombardment. In tokamak-type fusion reactors the plasma is confined in a torus and plasma particles collide with the first walls of the chamber. In order to control the escaped particles material is very important. Impurities etched from the materials by boundary plasma interactions enter

  3. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  4. Performance of a Clad Tungsten Rod Spallation Neutron Source Target

    SciTech Connect (OSTI)

    Sommer, Walter F. [Los Alamos National Laboratory (United States); Maloy, Stuart A. [Los Alamos National Laboratory (United States); Louthan, McIntyre R. [Savannah River National Laboratory (United States); Willcutt, Gordon J. [Los Alamos National Laboratory (United States); Ferguson, Phillip D. [Oak Ridge National Laboratory (United States); James, Michael R. [Los Alamos National Laboratory (United States)

    2005-09-15

    Tungsten rods, slip-clad with Type 304L stainless steel, performed successfully as a spallation neutron source target operating to a peak fluence of {approx}4 x 10{sup 21} p/cm{sup 2}. The target was used as a neutron source during the Accelerator Production of Tritium (APT) materials irradiation program at the Los Alamos Neutron Science Center. Tungsten rods of 2.642-mm diameter were slip-fit in Type 304L stainless steel tubes that had an inner diameter of 2.667 mm. The radial gap was filled with helium at atmospheric pressure and room temperature. Los Alamos High Energy Transport (LAHET) calculations suggest a time-averaged peak power deposition in the W of 2.25 kW/cm{sup 3}. Thermal-hydraulic calculations indicate that the peak centerline W temperature reached 271 deg. C. The LAHET calculations were also used to predict neutron and proton fluxes and spectra for the complex geometry used in the irradiation program. Activation foil sets distributed throughout the experiment were used to determine target neutronics performance as a comparison to the LAHET calculations. Examination of the irradiated target assemblies revealed no significant surface degradation or corrosion on either the Type 304L or the W surfaces. However, it was clear that the irradiation changed material properties because post-proton-irradiation measurements on Type 304L test samples from the APT program demonstrated increases in the yield strength and decreases in the ductility and fracture toughness with increasing dose, and the wrought W rod samples became brittle. Fortunately, the slip-clad target design subjects the materials to very low stress.

  5. Small Angle Neutron Scattering

    SciTech Connect (OSTI)

    Urban, Volker S [ORNL

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  6. Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich

    E-Print Network [OSTI]

    Data from the Versatile Array of Neutron Detectors at Low Energy (VANDLE) will impact modeling of processes occurring in neutron-rich environments ·The energies of beta-delayed neutrons emitted from 25 strong feeding to high-lying states that emit high energy neutrons while others have broad distributions

  7. High dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations

    SciTech Connect (OSTI)

    Perez-Bergquist, Alex G; Nozawa, Takashi; Shih, Chunghao Phillip; Leonard, Keith J; Snead, Lance Lewis; Katoh, Yutai

    2015-01-01

    Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30 40 dpa at temperatures of 300 800 C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 C, substantial microstructural evolution is observed in those irradiated at 300 C. Specifically, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.

  8. ATR LEU Monolithic Foil-Type Fuel with Integral Cladding Burnable Absorber – Neutronics Performance Evaluation

    SciTech Connect (OSTI)

    Gray Chang

    2012-03-01

    The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The burnable absorber - 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and to improve the peak ratio of the inner/outer heat flux. The present work investigates the LEU Monolithic foil-type fuel with 10B Integral Cladding Burnable Absorber (ICBA) design and evaluates the subsequent neutronics operating effects of this proposed fuel designs. The proposed LEU fuel specification in this work is directly related to both the RERTR LEU Development Program and the Advanced Test Reactor (ATR) LEU Conversion Project at Idaho National Laboratory (INL).

  9. Research on fusion neutron sources

    SciTech Connect (OSTI)

    Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

    2012-06-19

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  10. NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS

    E-Print Network [OSTI]

    NEUTRON ELECTRIC-DIPOLE MOMENT, ULTRACOLD NEUTRONS AND POLARIZED 3He R. GOLUB~and Steve K REPORTS (Review Section of Physics Letters) 237, No. 1(1994)1--62. PHYSICS REPORTS North-Holland Neutron electric-dipole moment, ultracold neutrons and polarized 3He R. Goluba and Steve K. Lamoreauxb a

  11. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    E-Print Network [OSTI]

    M. R. Gilbert; S. L. Dudarev; D. Nguyen-Manh; S. Zheng; L. W. Packer; J. -Ch. Sublet

    2013-11-20

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant compared to a previous study, while at the same time indicating that helium embrittlement remains one of the most significant factors controlling the structural integrity of fusion power plant components.

  12. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore »continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  13. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  14. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  15. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  16. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect (OSTI)

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  17. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect (OSTI)

    Kang, Misun [ORNL; Bilheux, Hassina Z [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-lin [University of Tennessee, Knoxville (UTK); Perfect, Edmund [University of Tennessee, Knoxville (UTK); Horita, Juske [Texas Tech University (TTU); Warren, Jeffrey [ORNL

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  18. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  19. Characterization of a ballistic supermirror neutron guide

    E-Print Network [OSTI]

    H. Abele; D. Dubbers; H. Haese; M. Klein; A. Knoepfler; M. Kreuz; T. Lauer; B. Maerkisch; D. Mund; V. Nesvizhevsky; A. Petoukhov; C. Schmidt; M. Schumann; T. Soldner

    2005-10-26

    We describe the beam characteristics of the first ballistic supermirror neutron guide H113 that feeds the neutron user facility for particle physics PF1B of the Institute Laue-Langevin, Grenoble (ILL). At present, the neutron capture flux density of H113 at its 20x6cm2 exit window is 1.35x10^10/cm^2/s, and will soon be raised to above 2x10^10/cm^2/s. Beam divergence is no larger than beam divergence from a conventional Ni coated guide. A model is developed that permits rapid calculation of beam profiles and absolute event rates from such a beam. We propose a procedure that permits inter-comparability of the main features of beams emitted from ballistic or conventional neutron guides.

  20. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  1. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  2. Instruments | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons and Pressure Diffractometer CG-2 GP-SANS - General-Purpose Small-Angle Neutron Scattering Diffractometer 4A MR - Magnetism Reflectometer CG-3 Bio-SANS -...

  3. Ground water and snow sensor based on directional detection of cosmogenic neutrons.

    SciTech Connect (OSTI)

    Cooper, Robert Lee; Marleau, Peter; Griffin, Patrick J.

    2011-06-01

    A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

  4. Modeling Advanced Neutron Source reactor station blackout accident using RELAP5

    SciTech Connect (OSTI)

    Chen, N.C.J. (Oak Ridge National Lab., TN (USA)); Fletcher, C.D. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-01-01

    The Advanced Neutron Source (ANS) system model using RELAP5 has been developed to perform loss-of-coolant accident (LOCA) and non-LOCA transients as safety-related input for early design considerations. The transients studies include LOCA, station blackout, and reactivity insertion accidents. The small-, medium-, and large-break LOCA results were presented and documented. This paper will focus on the station blackout scenario. The station blackout analyses have concentrated on thermal-hydraulic system response with and without accumulators. Five transient calculations were performed to characterize system performance using various numbers and sizes of accumulators at several key sites. The main findings will be discussed with recommendations for conceptual design considerations. ANS is a state-of-the-art research reactor to be built and operated at high heat flux, high mass flux, and high coolant subcooling. To accommodate these features, three ANS-specific changes were made in the RELAP5 code by adding: the Petukhov heat transfer correlation for single-phase forced convection in the thin coolant channel; the Gambill additive method with the Weatherhead wall superheat for the critical heat flux; and the Griffith drift flux model for the interfacial drag in the slug flow regime. 7 refs., 6 figs., 1 tab.

  5. An in situ neutron diffraction study of cation disordering in synthetic quandilite Mg{sub 2}tiO{sub 4} at high temperatures.

    SciTech Connect (OSTI)

    O'Neill, H. St. C.; Redfern, S. A. T.; Kesson, S.; Short, S.; Australian National Univ.; Univ. Cambridge

    2003-05-01

    Temperature-dependent cation order-disorder has been studied in many 2+ - 3+ oxide spinels but 4+ - 2+ spinels have been found to be either completely normal or completely inverse when examined at room temperature. Here we report the temperature dependence of the cation distribution in the 4-2 spinel synthetic qandilite (Mg{sub 2}TiO{sub 4}) from in situ time-of-flight neutron powder diffraction experiments to 1416 {sup o}C. At room temperature, Mg{sub 2}TiO{sub 4} is confirmed to have completely inverse cation distribution, with Ti atoms occupying half the octahedrally coordinated cation sites. Cation disordering becomes observable above about 900 {sup o}C, with 4% of the Ti occupying the tetrahedral site by 1416 {sup o}C. The rate of reordering on cooling is fast, such that high-temperature disorder is not preserved on cooling to room temperature. The thermodynamics of the change in cation distribution with temperature can be described by an enthalpy of Mg-Ti disorder of -46.1 {+-} 0.4 kJ/mol.

  6. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  7. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  8. What are Neutrons? | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are Neutrons SHARE What are Neutrons? Visualization of An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser. a...

  9. Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 to 900 keV

    E-Print Network [OSTI]

    Danon, Yaron

    cross section and has been used as a neutron reflector in compact high flux reactors such as the Ad- vanced Test Reactor1 ~ATR!. Because of its low atomic mass, beryllium can also be used as a moderator, and its light weight makes it favorable in space applications.1 Beryllium also has applications in fusion

  10. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    SciTech Connect (OSTI)

    Huang, Kuan-Chih; Lu, James J.-Q.; Bhat, Ishwara B.; Dahal, Rajendra; Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3522 ; Danon, Yaron

    2013-04-15

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 Degree-Sign C was obtained by current density-voltage characteristics for fabricated p{sup +}-n diodes. A very low leakage current density of {approx}2 Multiplication-Sign 10{sup -8} A/cm{sup 2} at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p{sup +}-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be {approx}26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to {sup 3}He tube based technology.

  11. Design and characterization of 2.45 GHz electron cyclotron resonance plasma source with magnetron magnetic field configuration for high flux of hyperthermal neutral beam

    SciTech Connect (OSTI)

    Kim, Seong Bong [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Kim, Dae Chul; Yoo, Suk Jae [Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Namkung, Won; Cho, Moohyun [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

    2010-08-15

    A 2.45 GHz electron cyclotron resonance (ECR) source with a magnetron magnetic field configuration was developed to meet the demand of a hyperthermal neutral beam (HNB) flux on a substrate of more than 1x10{sup 15} cm{sup -2} s{sup -1} for industrial applications. The parameters of the operating pressure, ion density, electron temperature, and distance between the neutralization plate and the substrate for the HNB source are specified in a theoretical analysis. The electron temperature and the ion density are measured to characterize the ECR HNB source using a Langmuir probe and optical emission spectroscopy. The parameters of the ECR HNB source are in good agreement with the theoretically specified parameters.

  12. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²? m?² to reach a total ion fluence of 1×10²? m?² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore »thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (« less

  13. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  14. Intense combined source of neutrons and photons for interrogation based on compact deuteron RF accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    2015-06-18

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (more »RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less

  15. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    SciTech Connect (OSTI)

    Kurennoy, S. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garnett, R. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rybarcyk, L. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108 /s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(?15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.

  16. Computing Solar Absolute Fluxes

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2007-09-14

    Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

  17. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  18. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  19. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  20. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  1. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  2. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  3. D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks, San Diego, February 2005 PLASMA SHAPE, PROFILES AND FLUX CONTROL

    E-Print Network [OSTI]

    D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks, San JET-EFDA Contributors D. Moreau #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High · Conclusion #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks

  4. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  5. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  6. Experimental neutronics tests for a neutron activation system for the European ITER TBM

    SciTech Connect (OSTI)

    Klix, A.; Fischer, U. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gehre, D. [Technical University of Dresden, IKTP, Zellescher Weg 19, 01062 Dresden (Germany); Kleizer, G. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Raj, P. [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Université Paris-Sud, 15 rue Georges Clemenceau, F-91405 Paris (France); Rovni, I. [Budapest University of Technology and Economics, M?egyetem rkp. 3-9. H-1111 Budapest (Hungary); Ruecker, Tom [Karlsruhe Institute of Technology (KIT), INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and University of Applied Sciences Zittau-Goerlitz, Theodor-Körner-Allee 16, D-02754 Zittau (Germany)

    2014-08-21

    We are investigating methods for neutron flux measurement in the ITER TBM. In particular we have tested sets of activation materials leading to induced gamma activities with short half-lives of the order of tens of seconds up to minutes and standard activation materials. Packages of activation foils have been irradiated with the intense neutron generator of Technical University of Dresden in a pure DT neutron field as well as in a neutronics mock-up of the European ITER HCLL TBM. An important aim was to check whether the gamma activity induced in the activation foils in these packages could be measured simultaneously. It was indeed possible to identify gamma lines of interest in gamma-ray measurements immediately after extraction from the irradiation.

  7. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect (OSTI)

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  8. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  9. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect (OSTI)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  10. Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS M.E. Hagen(1), S.M. Shapiro(2 Neutron Source, Oak Ridge National Lab., P.O. Box 2008, Oak Ridge, TN 37831, U.S.A (2)Dept. of Condensed spectrometer that utilizes Bragg focusing optics to obtain a high intensity at the sample position for neutron

  11. SANS -Small Angle Neutron Scattering Tcnica de difrao

    E-Print Network [OSTI]

    Loh, Watson

    SANS - Small Angle Neutron Scattering Técnica de difração informações sobre tamanho e forma de- Neutrons are created in the centre of the target station when the beam of high energy protons collides by evaporating nuclear particles, mainly neutrons, in all directions. Each proton produces approximately 15

  12. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-06-01

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  13. The resonance absorption probability function for neutron and multiplicative integral

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; S. I. Kosenko; S. A. Chernegenko

    2012-08-05

    The analytical approximations for the moderating neutrons flux density like Fermi spectra, widely used in reactor physics, involve the probability function for moderating neutron to avoid the resonant absorption obtained using some restrictive assumptions regarding the acceptable resonances width. By means of multiplicative integral (Volterra integral) theory for a commutative algebra an analytical expression for the probability function is obtained rigorously without any restrictive assumptions.

  14. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  15. Neutron multiplication error in TRU waste measurements

    SciTech Connect (OSTI)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.

  16. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing for the sample exposed to TPE at 500 °C. Tritium Migration Analysis Program (TMAP) analysis reveals that the detrapping energy decreases from 1.8 eV to 1.4 eV, indicating the changes in trapping mechanisms. This paper also summarizes deuterium behavior studies in HFIR neutron-irradiated tungsten under US-Japan TITAN program.

  17. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  18. The coupling of the neutron transport application RATTLESNAKE to the nuclear fuels performance application BISON under the MOOSE framework

    SciTech Connect (OSTI)

    Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.

    2014-10-01

    The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.

  19. Neutron-Neutron Correlations in the Dissociation of Halo Nuclei

    E-Print Network [OSTI]

    N. A. Orr

    2008-03-06

    Studies attempting to probe the spatial configuration of the valence neutrons in two-neutron halo nuclei using the technique of intensity interferometry are described. Following a brief review of the method and its application to earlier measurements of the breakup of 6He, 11Li and 14Be, the results of the analysis of a high statistics data set for 6He are presented. The limitations of the technique, including the assumption of incoherent emission in the breakup and the sensitivity to the continuum states populated in the dissociation rather than the ground state, are discussed.

  20. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.