Sample records for high level radioactive

  1. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H. (ed.)

    1984-09-01T23:59:59.000Z

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  2. Survey of National Programs for Managing High-Level Radioactive

    E-Print Network [OSTI]

    Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel-Level Radioactive Waste and Spent Nuclear Fuel A Report to Congress and the Secretary of Energy October 2009 #12 Board #12;#12;U.S. Nuclear Waste Technical Review Board Survey of National Programs for Managing High

  3. Handbook of high-level radioactive waste transportation

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-10-01T23:59:59.000Z

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  4. Stability of High Level Radioactive Waste Forms

    SciTech Connect (OSTI)

    Besmann, T.M.; Kulkarni, N.S.; Spear, K.E.; Vienna, J.D.; Hanni, J.B.; Crum, J.D.; Hrma, P.

    2005-01-20T23:59:59.000Z

    This presentation was given at the DOE Office of Science-Environmental Management Science Program (EMSP) High-Level Waste Workshop held on January 19-20, 2005 at the Savannah River Site.

  5. The High-Level Radioactive Waste Act (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    Manitoba bars the storage of high-level radioactive wastes from spent nuclear fuel, not intended for research purposes, that was produced at a nuclear facility or in a nuclear reactor outside the...

  6. Spanish high level radioactive waste management system issues

    SciTech Connect (OSTI)

    Ulibarri, A.; Veganzones, A. [ENRESA, Madrid (Spain)

    1993-12-31T23:59:59.000Z

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included.

  7. Long-term management of high-level radioactive waste (HLW) and...

    Office of Environmental Management (EM)

    Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)...

  8. Assessment of Disposal Options for DOE-Managed High-Level Radioactive...

    Energy Savers [EERE]

    Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and...

  9. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07T23:59:59.000Z

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  10. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01T23:59:59.000Z

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  11. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01T23:59:59.000Z

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  12. Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste Repository

    E-Print Network [OSTI]

    Boyer, Edmond

    Sequential Thermo-Hydraulic Modeling of Variably Saturated Flow in High-Level Radioactive Waste-Malabry, France Key words: waste repository, geological disposal, thermo- hydraulic modeling Introduction The most long-lived radioactive wastes must be managed in a safe way for human health and for the environment

  13. Report on Separate Disposal of Defense High- Level Radioactive Waste

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernof

  14. Northeast High-Level Radioactive Waste Transportation Task Force Agenda |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y ear RHostTools Visualization |Department

  15. Northeast High-Level Radioactive Waste Transportation Task Force Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment ofNewDepartment ofNorman AugustineNorth

  16. Northeast High-Level Radioactive Waste Transportation Task Force Agenda |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment ofNewDepartment ofNorman

  17. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01T23:59:59.000Z

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  18. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect (OSTI)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12T23:59:59.000Z

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  19. Performance assessment overview for subseabed disposal of high level radioactive waste

    SciTech Connect (OSTI)

    Klett, R.D.

    1997-06-01T23:59:59.000Z

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

  20. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25T23:59:59.000Z

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  1. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01T23:59:59.000Z

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  2. Role of Congress in the High Level Radioactive Waste Odyssey: The Wisdom and Will of the Congress - 13096

    SciTech Connect (OSTI)

    Vieth, Donald L. [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States)] [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States); Voegele, Michael D. [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)] [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)

    2013-07-01T23:59:59.000Z

    Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congress had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)

  3. International program to study subseabed disposal of high-level radioactive wastes

    SciTech Connect (OSTI)

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01T23:59:59.000Z

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

  4. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  5. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    SciTech Connect (OSTI)

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05T23:59:59.000Z

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  6. Granite disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01T23:59:59.000Z

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

  7. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    SciTech Connect (OSTI)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01T23:59:59.000Z

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically ‘out of reach’.

  8. Shale disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01T23:59:59.000Z

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

  9. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01T23:59:59.000Z

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient isotropic stress of 100 MPa) at the borehole wall for the disposal of fuel assemblies and by about 90 MPa for vitrified waste. Simulated peak volumetric strain at the borehole wall is about 420 and 2600 microstrain for the disposal of fuel assemblies and vitrified waste, respectively. Stress and volumetric strain decline rapidly with distance from the borehole and with time. Simulated peak stress at and parallel to the borehole wall for the disposal of vitrified waste with anisotropic ambient horizontal stress is about 440 MPa, which likely exceeds the compressive strength of granite if unconfined by fluid pressure within the borehole. The relatively small simulated displacements and volumetric strain near the borehole suggest that software codes using a nondeforming grid provide an adequate approximation of mechanical deformation in the coupled thermal-mechanical model. Additional modeling is planned to incorporate the effects of hydrologic processes coupled to thermal transport and mechanical deformation in the host rock near the heated borehole.

  10. Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`

    SciTech Connect (OSTI)

    Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J. [and others

    1997-05-01T23:59:59.000Z

    The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

  11. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01T23:59:59.000Z

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  12. Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site

    SciTech Connect (OSTI)

    Bibler, N.E.; Coleman, C.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Kinard, W.F. [Charleston Coll., SC (United States). Dept. of Chemistry

    1992-10-01T23:59:59.000Z

    This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

  13. Relative yields of U-235 fission products measured in a high level radioactive sludge at Savannah River Site

    SciTech Connect (OSTI)

    Bibler, N.E.; Coleman, C.J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Kinard, W.F. (Charleston Coll., SC (United States). Dept. of Chemistry)

    1992-01-01T23:59:59.000Z

    This paper presents measurements of the concentrations of 42 of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at Savannah River Site. The 42 fision products make up 98% of the waste sludge. We used inductively coupled plasma-mass spectroscopy for the analysis. The relative yields for most of the fission products are in complete agreement with the known relative yields for the beta decay chains of the two asymmetric branches of the slow neutron fission of U-235. Disagreements can be reconciled based on the chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses. This paper presents measurements of the concentrations of 42 (98%) of the long-lived U-235 fission products in a high-level radioactive waste sludge stored at the Savannah River Site. We analyzed the sludge with inductively coupled plasma-mass spectroscopy. The relative yields for most of the fission products agree completely with the known relative vields for the beta decay chains of the two asymmetric: branches of the slow neutron fission of U-235. The chemistry of the fission products in the caustic waste sludges, the neutron fluences in SRS reactors, or interferences in the ICP-MS analyses explain the differences in the measured and calculated results.

  14. RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS

    SciTech Connect (OSTI)

    Hoffman, E.

    2012-11-08T23:59:59.000Z

    A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel?s susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

  15. Vitrification of Low-Activity Radioactive Waste Streams and a High-Level Radioactive Waste Stream in Support of the Hanford River Protection Program

    SciTech Connect (OSTI)

    Crawford, C.L.

    2002-07-10T23:59:59.000Z

    Hanford tank waste consists of about 190 million curies in 54 million gallons of highly radioactive and mixed hazardous waste stored in underground storage tanks at the Hanford Site in Washington State. The tank waste includes solids (sludge), liquids (supernatant), and salt cake (dried salts that dissolve in water to form supernatant). The tank waste will be remediated through treatment and immobilization to protect the environment and meet regulatory requirements. The U.S. Department of Energy's (DOE's) preferred alternative to remediate the Hanford tank waste is to pretreat the waste by separating it into low-activity waste (LAW) and high-level waste (HLW), followed by immobilization of the LAW for on-site disposal and immobilization of the HLW for ultimate disposal in a national repository. This paper describes the crucible-scale vitrification and associated wasteform product tests in support of the WTP at Hanford. The two different LAW glasses produced in this study were from pretreated Envelope A (Tank 241-AN-103) and Envelope C (Tank 241-AN-102) waste. The HLW glass was produced from Tank C-106 HLW sludge and the HLW radionuclide products separated from Hanford Site tank samples AN-103, AN-102 and AZ-102. Pretreatment of these three supernates consisted of characterization, strontium and transuranics removal by precipitation and filtration, and final Cs-137 and Tc-99 removal by ion exchange (IX). The glasses were produced from formulations supplied by Vitreous State Laboratory of the Catholic University of America (CUA). Formulations were based on previous surrogate testing and the actual characterization data from the radioactive feed streams. Crucible-scale vitrifications were performed in platinum/gold crucibles in a custom-designed furnace fit with an offgas containment system. Both LAW and HLW melter feed slurries were evaporated, calcined, and then melted at 1150 degrees C. The LAW and HLW glasses were heat-treated per a modeled centerline cooling curve for the LAW canister and HLW canister, respectively.

  16. Low Level Radioactive Waste Authority (Michigan)

    Broader source: Energy.gov [DOE]

    Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority ...

  17. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19T23:59:59.000Z

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  18. artificial radioactivity levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  19. ambient radioactivity levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  20. A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1995-06-01T23:59:59.000Z

    The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

  1. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    SciTech Connect (OSTI)

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

    1995-06-01T23:59:59.000Z

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  2. Report on Separate Disposal of Defense High-Level Radioactive Waste |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto| DepartmentDepartment

  3. Report on Separate Disposal of Defense High-Level Radioactive Waste |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernofDepartment of

  4. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers; Overview

    SciTech Connect (OSTI)

    Farmer, J.C.; McCright, R.D.; Kass, J.N.

    1988-06-01T23:59:59.000Z

    Three iron- to nickel-based austenitic alloys and three copper-based alloys are being considered as candidate materials for the fabrication of high-level radioactive-waste disposal containers. The austenitic alloys are Types 304L and 316L stainless steels and the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). Waste in the forms of both spent fuel assemblies from reactors and borosilicate glass will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking; and transgranular stress corrosion cracking. Problems specific to welds, such as hot cracking, may also occur. A survey of the literature has been prepared as part of the process of selecting, from among the candidates, a material that is adequate for repository conditions. The modes of degradation are discussed in detail in the survey to determine which apply to the candidate alloys and the extent to which they may actually occur. The eight volumes of the survey are summarized in Sections 1 through 8 of this overview. The conclusions drawn from the survey are also given in this overview.

  5. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect (OSTI)

    Smedes, H.W.

    1983-04-01T23:59:59.000Z

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  6. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

  7. EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization), Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high-level radioactive wastes resulting from chemical separations operations for defense radionuclides production at the DOE Savannah River Plant (SRP) near Aiken, South Carolina.

  8. US DOE-AECL cooperative program for development of high-level radioactive waste container fabrication, closure, and inspection techniques

    SciTech Connect (OSTI)

    Russell, E.W.

    1990-06-01T23:59:59.000Z

    The US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) plan to initiate a cooperative research program on development of manufacturing processes for high-level radioactive waste containers. This joint program will benefit both countries in the development of processes for the fabrication, final closure in a hot-cell, and certification of the containers. Program activity objectives can be summarized as follows: to support the selection of suitable container fabrication, final closure, and inspection techniques for the candidate materials and container designs that are under development or are being considered in the US and Canadian repository programs; and to investigate these techniques for alternate materials and/or container designs, to be determined in future optimization studies relating to long-term performance of the waste packages. The program participants will carry out this work in a conditional phased approach, and the scope of work for subsequent years will evolve subject to developments in earlier years. The overall term of this cooperative program is planned to run roughly three years. 5 refs., 2 tabs.

  9. Branch technical position on the use of expert elicitation in the high-level radioactive waste program

    SciTech Connect (OSTI)

    Kotra, J.P.; Lee, M.P.; Eisenberg, N.A. [Nuclear Regulatory Commission, Washington, DC (United States); DeWispelare, A.R. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1996-11-01T23:59:59.000Z

    Should the site be found suitable, DOE will apply to the US Nuclear Regulatory Commission for permission to construct and then operate a proposed geologic repository for the disposal of spent nuclear fuel and other high-level radioactive waste at Yucca Mountain. In deciding whether to grant or deny DOE`s license application for a geologic repository, NRC will closely examine the facts and expert judgment set forth in any potential DOE license application. NRC expects that subjective judgments of individual experts and, in some cases, groups of experts, will be used by DOE to interpret data obtained during site characterization and to address the many technical issues and inherent uncertainties associated with predicting the performance of a repository system for thousands of years. NRC has traditionally accepted, for review, expert judgment to evaluate and interpret the factual bases of license applications and is expected to give appropriate consideration to the judgments of DOE`s experts regarding the geologic repository. Such consideration, however, envisions DOE using expert judgments to complement and supplement other sources of scientific and technical information, such as data collection, analyses, and experimentation. In this document, the NRC staff has set forth technical positions that: (1) provide general guidelines on those circumstances that may warrant the use of a formal process for obtaining the judgments of more than one expert (i.e., expert elicitation); and (2) describe acceptable procedures for conducting expert elicitation when formally elicited judgments are used to support a demonstration of compliance with NRC`s geologic disposal regulation, currently set forth in 10 CFR Part 60. 76 refs.

  10. Radioactive waste from transmutation of technetium: a model for anticipating characteristics of high level waste from transmutation

    SciTech Connect (OSTI)

    Seitz, M.G. [Booz Allen Hamilton, Washington DC (United States)

    2007-07-01T23:59:59.000Z

    At this early stage in the conceptualization of fuel treatment and radioisotope transmutation for the disposition of nuclear wastes, it is possible to anticipate some characteristics of the waste stream resulting from the deployment of advanced technologies. Fission products and actinides cannot be completely destroyed by transmutation even with continuous purification and recycle. This is demonstrated for technetium in this analysis, but is true for all radioisotopes. Also, some of the reaction products are themselves long-lived radioactive isotopes. The purification and recycle steps produce nuclear wastes that must be planned for geologic disposal. Five radioisotopes have been identified to be produced in abundance by transmutation of technetium using fast neutrons. Four of these isotopes may be more benign than the original technetium-99 because of their longer half lives. However, one isotope, molybdenum-93 with a half life of four thousand years, may be troublesome. All of the isotopes arising from the transmutation process that end up in high level waste must be examined in terms of their behavior in geologic disposal. In selecting goals for chemical separations, the technologists must consider the entire cycle of separation and transmutation before applying the performance expected in a single separation to implications concerning a repository. A separation efficiency of 0.95 can translate into the disposal of as much as 30 to 60 percent of the technetium in the repository if down stream losses are not controlled. In this case, the treatment may have little impact on anticipated off site radiation from technetium. The destruction of technetium through continuous recycle requires the cost of increased neutron dose and increased space in reactors that must be considered in design of fuel treatment systems. (authors)

  11. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    N /A

    1999-08-13T23:59:59.000Z

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action.

  12. Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

  13. Low-level radioactive waste regulation: Science, politics and fear

    SciTech Connect (OSTI)

    Burns, M.E. (ed.)

    1988-01-01T23:59:59.000Z

    An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

  14. Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    N /A

    2002-10-25T23:59:59.000Z

    The purpose of this environmental impact statement (EIS) is to provide information on potential environmental impacts that could result from a Proposed Action to construct, operate and monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nye County, Nevada. The EIS also provides information on potential environmental impacts from an alternative referred to as the No-Action Alternative, under which there would be no development of a geologic repository at Yucca Mountain.

  15. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services, LLC, Lexington, Kentucky 40513 (United States)

    2012-07-01T23:59:59.000Z

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  16. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  17. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect (OSTI)

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17T23:59:59.000Z

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

  18. High-level and transuranic radioactive wastes: Background information document for amendments to 40 CFR part 191

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The report provides the necessary background information technical analyses, and justifications in support of the proposed amendments to 40 CFR Part 191. The scope of the report encompasses the conceptual framework for assessing radiation exposures and associated health risks. In general terms, this assessment examines the radioactive source term characterization, analysis of the movement of radionuclides from the repository through the appropriate environmental exposure pathways and doses received by members of the general public. The report used transuranic waste for individual dose and ground-water protection analysis.

  19. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

    2013-07-01T23:59:59.000Z

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  20. Milestones for selection, characterization, and analysis of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01T23:59:59.000Z

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  1. Transmutation of high-level radioactive waste and production of {sup 233}U using an accelerator-driven reactor

    SciTech Connect (OSTI)

    Takahashi, Hiroshi; Takashita, Hirofumi; Chen, Xinyi

    1994-08-01T23:59:59.000Z

    Reactor safety, the disposal of high-level nuclear waste, and nonproliferation of nuclear material for military purposes are the problems of greatest concern for nuclear energy. Technologies for accelerators developed in the field of high-energy physics can contribute to solving these problems. For reactor safety, especially for that of a Na-cooled fast reactor, the use of an accelerator, even a small one, can enhance the safety using a slightly subcritical reactor. There is growing concern about how we can deal with weapons-grade Pu, and about the large amount of Pu accumulating from the operation of commercial reactors. It has been suggested that this Pu could be incinerated, using the reactor and a proton accelerator. However, because Pu is a very valuable material with future potential for generating nuclear energy, we should consider transforming it into a proliferation-resistant material that cannot be used for making bombs, rather than simply eliminating the Pu. An accelerator-driven fast reactor (700 MWt), run in a subcritical condition, and fueled with MOX can generate {sup 233}U more safely and efficiently than can a critical reactor. We evaluate the production of {sup 233}U, {sup 239}Pu, and the transmutation of the long-lived fission products of {sup 99}Tc and {sup 129}I, which are loaded with YH{sub 1.7} between the fast core and blanket, by reducing the conversion factor of Pu to {sup 233}U. And we assessed the rates of radiation damage, hydrogen production, and helium production in a target window and in the surrounding vessel.

  2. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTI Comparison T.Hazardous

  3. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    SciTech Connect (OSTI)

    NA

    2001-02-15T23:59:59.000Z

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the queries provide a straight-forward means used to verify results. Another advantage of using the MS Access database was the ability to develop query hierarchies using nested queries. Calculations were broken into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing unit risk factors calculated using RADTRAN IV to produce radiological impacts. Through the use of queries, impacts by origin, mode, fuel type or many other parameters can be obtained. The paper will show both the flexibility of the assessment tool and the ease it provides for verifying results.

  4. EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    The Proposed Action defined in the Yucca Mountain FEIS is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain to dispose of spent nuclear fuel and high-level radioactive waste. The Proposed Action includes transportation of these materials from commercial and DOE sites to the repository.

  5. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

    2007-04-01T23:59:59.000Z

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  6. Appalachian States Low-Level Radioactive Waste Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

  7. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25T23:59:59.000Z

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  8. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 2: High level radioactive waste and spent fuel management

    SciTech Connect (OSTI)

    Ahlstroem, P.E.; Chapman, C.C.; Kohout, R.; Marek, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Volume 2 contains 109 papers divided into the following sections: recent developments in environmental remediation technologies; decommissioning of nuclear power reactors; environmental restoration site characterization and monitoring; decontamination and decommissioning of other nuclear facilities; prediction of contaminant migration and related doses; treatment of wastes from decontamination and decommissioning operations; management of complex environmental cleanup projects; experiences in actual cleanup actions; decontamination and decommissioning demolition technologies; remediation of obsolete sites from uranium mining and milling; ecological impacts from radioactive environmental contamination; national environmental management regulations--issues and assessments; significant issues and strategies in environmental management; acceptance criteria for very low-level radioactive wastes; processes for public involvement in environmental activities and decisions; recent experiences in public participation activities; established and emerging environmental management organizations; and economic considerations in environmental management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  9. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  10. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  11. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  12. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect (OSTI)

    McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

    2001-02-06T23:59:59.000Z

    Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

  13. Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

  14. Solid low-level radioactive waste radiation stability studies 

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  15. Solid low-level radioactive waste radiation stability studies

    E-Print Network [OSTI]

    Williams, Arnold Andre?

    1989-01-01T23:59:59.000Z

    importance to good site selection. The combination of a properly operated site having good geologic and hydrologic characteristics were considered the only barriers necessary to isolate low-level radioactive waste from the environment (Pollard 1986... of the waste. The only means of ultimate disposal is to allow time for the radioactivity to decay (Cember 1983), while providing adequate pmtection against dispersal to the environment. Low-level wastes may be defined as those which would have to be diluted...

  16. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  17. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  18. The basics in transportation of low-level radioactive waste

    SciTech Connect (OSTI)

    Allred, W.E.

    1998-06-01T23:59:59.000Z

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

  19. EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this environmental impact statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high-level wastes currently stored in underground tanks at West Valley, New York.

  20. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01T23:59:59.000Z

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  1. Interfaces between transport and geologic disposal systems for high-level radioactive wastes and spent nuclear fuel: A new international guidance document

    SciTech Connect (OSTI)

    Pope, R.B. [Oak Ridge National Lab., TN (United States); Baekelandt, L. [Organisme National des Dechets Radioactifs et des Matieres Fissiles, Brussels (Belgium); Hoorelbeke, J.M. [CEA Agence Nationale pour la Gestion des Dechets Radioactifes (ANDRA), 75 - Paris (France); Han, K.W.; Pollog, T. [International Atomic Energy Agency, Vienna (Austria); Blackman, D. [Department of Transport, London (United Kingdom); Villagran, J.E. [Villagran Nuclear Consulting Services, Toronto, ON (Canada)

    1994-04-01T23:59:59.000Z

    An International Atomic Energy Agency (IAEA) Technical Document (TECDOC) has been developed and will be published by the IAEA. The TECDOC addresses the interfaces between the transport and geologic disposal systems for, high-level waste (HLW) and spent nuclear fuel (SNF). The document is intended to define and assist in discussing, at both the domestic and the international level, regulatory, technical, administrative, and institutional interfaces associated with HLW and SNF transport and disposal systems; it identifies and discusses the interfaces and interface requirements between the HLW and SNF, the waste transport system used for carriage of the waste to the disposal facility, and the HLW/SNF disposal facility. It provides definitions and explanations of terms; discusses systems, interfaces and interface requirements; addresses alternative strategies (single-purpose packages and multipurpose packages) and how interfaces are affected by the strategies; and provides a tabular summary of the requirements.

  2. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01T23:59:59.000Z

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  3. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect (OSTI)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01T23:59:59.000Z

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  4. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect (OSTI)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01T23:59:59.000Z

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  5. Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina)

    Broader source: Energy.gov [DOE]

    The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the...

  6. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect (OSTI)

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01T23:59:59.000Z

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  7. Sandia National Laboratories: removing the highly radioactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear Energy,...

  8. EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization) Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high...

  9. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15T23:59:59.000Z

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  10. Mobile plant for low-level radioactive waste reprocessing

    SciTech Connect (OSTI)

    Sobolev, I.A.; Panteleyev, V.I.; Demkin, V.I. [Government of Moscow (Russian Federation). Dept. of Engineering Supply

    1993-12-31T23:59:59.000Z

    Along with nuclear power plants, many scientific and industrial enterprises generate radioactive wastes, especially low-level liquid wastes. Some of these facilities generate only small amounts on the order of several dozen cubic meters per year. The Moscow scientific industrial association, Radon, developed a mobile pilot system, EKO, for the processing of LLW with a low salt content. The plant consists of three modules: ultrafiltration module; electrodialysis module; and filtration module. The paper describes the technical parameters and test results from the plant on real LLW.

  11. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  12. Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program Direction

  13. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Eaton, W.C. [ed.

    1995-05-31T23:59:59.000Z

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  14. Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)

    Broader source: Energy.gov [DOE]

    The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

  15. Greater-than-Class C low-level radioactive waste characterization. Appendix H: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.

    1991-08-01T23:59:59.000Z

    This report develops and presents estimates for a set of three values that represent a reasonable range for the packaging factors for several waste streams that are potential greater-than-Class C low-level radioactive waste. The packaging factor is defined as the volume of a greater-than-Class C low-level waste disposal container divided by the original, as-generated or ``unpackaged,`` volume of the wastes loaded into the disposal container. Packaging factors take into account any processes that reduce or increase an original unpackaged volume of a greater-than-Class C low-level radioactive waste, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. The three values developed represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated volume of waste for disposal, and (c) a low case packaging factor for the smallest volume expected. Three categories of greater-than-Class C low-level waste are evaluated in this report: activated metals, sealed sources, and all other wastes. Estimates of reasonable packaging factors for the low, base, and high cases for the specific waste streams in each category are shown in Table H-1.

  16. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01T23:59:59.000Z

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  17. Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

  18. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect (OSTI)

    B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

    1999-08-01T23:59:59.000Z

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  19. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  20. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  1. Microbial degradation of low-level radioactive waste. Final report

    SciTech Connect (OSTI)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01T23:59:59.000Z

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  2. CHARACTERIZATION OF HIGH PHOSPHATE RADIOACTIVE TANK WASTE AND SIMULANT DEVELOPMENT

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.

    2009-10-15T23:59:59.000Z

    A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for engineered-scaled testing of pretreatment processes in a non-radiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from irradiated nuclear fuel. The bismuth phosphate sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium. The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus present in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate species. The bismuth in the sludge solids is best described as bismuth ferrite, BiFeO3. Infrared spectral data, microscopy, and thermal analysis data are presented to support these conclusions. The behavior of phosphorus during caustic leaching of the bismuth phosphate sludge solids is also discussed.

  3. 1989 Annual report on low-level radioactive waste management progress

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

  4. Maine State Briefing Book on low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  5. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect (OSTI)

    Vacri, M. L. di; Nisi, S.; Balata, M. [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)] [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)

    2013-08-08T23:59:59.000Z

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  6. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01T23:59:59.000Z

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  7. Determination of Iodine-129 in Low Level Radioactive Wastes - 13334

    SciTech Connect (OSTI)

    Choi, K.C.; Ahn, J.H.; Park, Y.J.; Song, K.S. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)] [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    For the radioactivity determination of {sup 129}I in the radioactive wastes, alkali fusion and anion-exchange resin separation methods, which are sample pretreatment methods, have been investigated in this study. To separate and quantify the {sup 129}I radionuclide in an evaporator bottom and spent resin, the radionuclide was chemically leached from the wastes and adsorbed on an anion exchange resin at pH 4, 7, 9. In the case of dry active waste and another solid type, the alkali fusion method was applied. KNO{sub 3} was added as a KOH and oxidizer to the wastes. It was then fused at 450 deg. C for 1 hour. The radioactivity of the separated iodine was measured with a low energy gamma spectrometer after the sample pretreatment. Finally, it was confirmed that the recovery rate of the iodine for the alkali fusion method was 83.6±3.8%, and 86.4±1.6% for the anionic exchange separation method. (authors)

  8. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect (OSTI)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25T23:59:59.000Z

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

  9. New Jersey State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.

  10. Ohio State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.

  11. Oregon State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Oregon State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Oregon. The profile is a result of a survey of NRC licensees in Oregon. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Oregon.

  12. Connecticut State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    none,

    1981-06-01T23:59:59.000Z

    The Connecticut State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Connecticut. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Connecticut. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Connecticut.

  13. Puerto Rico State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

  14. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    none,

    1981-10-01T23:59:59.000Z

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  15. Florida State Briefing Book for low-level radioactive-waste management

    SciTech Connect (OSTI)

    none,

    1981-06-01T23:59:59.000Z

    The Florida State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Florida. The profile is the result of a survey of NRC licensees in Florida. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Florida.

  16. Utah State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  17. Wyoming State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  18. North Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.

  19. Pennsylvania State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    The Pennsylvania State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Pennsylvania. The profile is the result of a survey of NRC licensees in Pennsylvania. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Pennsylvania.

  20. South Carolina State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

  1. Massachusetts State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-03-12T23:59:59.000Z

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

  2. Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)

    Broader source: Energy.gov [DOE]

    The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect...

  3. Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)

    Broader source: Energy.gov [DOE]

    The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

  4. Washington State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  5. Managing low-level radioactive waste in a democratic society: Requirements and accommodations

    SciTech Connect (OSTI)

    Ortciger, T. [Illinois Dept. of Nuclear Safety, Springfield, IL (United States); Ayers, M. [Sangamon State Univ., Springfield, IL (United States)

    1993-12-31T23:59:59.000Z

    This paper will focus on public policy needs to ensure the involvement of the general public in effective decision-making related to the handling of low-level radioactive waste. It highlights difficulties experienced in involving the public in siting low-level radioactive waste disposal facilities. It reviews the process recently developed by Illinois to locate a disposal facility and discusses that process`s potential as a general model for siting such facilities and involving citizens in a democratic fashion.

  6. Texas State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

  7. Measurements of extremely low radioactivity levels in BOREXINO

    E-Print Network [OSTI]

    Arpesella, C

    2001-01-01T23:59:59.000Z

    The techniques researched, developed and applied towards the measurement of radioisotope concentrations at ultra-low levels in the real-time solar neutrino experiment BOREXINO at Gran Sasso are presented and illustrated with specific results of widespread interest. We report the use of low-level germanium gamma spectrometry, low-level miniaturized gas proportional counters and low background scintillation detectors developed in solar neutrino research. Each now sets records in its field. We additionally describe our techniques of radiochemical ultra-pure, few atom manipulations and extractions. Forefront measurements also result from the powerful combination of neutron activation and low-level counting. Finally, with our techniques and commercially available mass spectrometry and atomic absorption spectroscopy, new low-level detection limits for isotopes of interest are obtained.

  8. Measurements of extremely low radioactivity levels in BOREXINO

    E-Print Network [OSTI]

    Borexino Collaboration; C. Arpesella

    2001-09-20T23:59:59.000Z

    The techniques researched, developed and applied towards the measurement of radioisotope concentrations at ultra-low levels in the real-time solar neutrino experiment BOREXINO at Gran Sasso are presented and illustrated with specific results of widespread interest. We report the use of low-level germanium gamma spectrometry, low-level miniaturized gas proportional counters and low background scintillation detectors developed in solar neutrino research. Each now sets records in its field. We additionally describe our techniques of radiochemical ultra-pure, few atom manipulations and extractions. Forefront measurements also result from the powerful combination of neutron activation and low-level counting. Finally, with our techniques and commercially available mass spectrometry and atomic absorption spectroscopy, new low-level detection limits for isotopes of interest are obtained.

  9. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T. [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Laboratories and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  10. Low-Level Radioactive Waste Disposal Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

  11. Low-Level Radioactive Waste Management in the United States: What Have We Wrought? The Richard S. Hodes, M.D. Honor Lecture Award - 12222

    SciTech Connect (OSTI)

    Jacobi, Lawrence R.

    2012-07-01T23:59:59.000Z

    In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regional and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)

  12. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-01-01T23:59:59.000Z

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  13. Gas generation from low-level radioactive waste: Concerns for disposal

    SciTech Connect (OSTI)

    Siskind, B.

    1992-04-01T23:59:59.000Z

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

  14. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E. (Frederick, MD); Long, Frederick G. (Ijamsville, MD)

    1984-01-01T23:59:59.000Z

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  15. High Level Waste Management Division High. Level Waste System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May| ArgonneHigh Level

  16. Documentation on currently operating low-level radioactive waste treatment systems: National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Not Available

    1987-11-01T23:59:59.000Z

    In May 1985, the US Department of Energy issued a Program Research and Development Announcement requesting documentation on currently operating low-level radioactive waste treatment systems. Six grants were awarded to support that documentation. Final reports for the following grants and grantees are compiled in this document: Shredder/Compactor Report by Impell Corp., Volume Reduction and Solidification System for Low-Level Radwaste Treatment by Waste Chem Corp., Low-Level Radioactive Waste Treatment Systems in Northern Europe by Pacific Nuclear Services/Nuclear Packaging Inc., The University of Missouri Research Reactor Facility Can Melter System by the University of Missouri, Drying of Ion-Exchange Resin and Filter Media by Nuclear Packaging Inc., and Operational Experience with Selective Ion-Exchange Media in Sluiceable Pressurized Demineralizers at Nuclear Power Plants by Analytical Resources Inc. 65 refs., 4 figs., 7 tabs.

  17. Guidance document for prepermit bioassay testing of low-level radioactive waste

    SciTech Connect (OSTI)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01T23:59:59.000Z

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  18. Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area

    SciTech Connect (OSTI)

    Keck, K.A.; Seitz, R.R.

    2002-09-26T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

  19. The CMS High Level Trigger

    E-Print Network [OSTI]

    Adam, W; Deldicque, C; Ero, J; Frühwirth, R; Jeitler, Manfred; Kastner, K; Köstner, S; Neumeister, N; Porth, M; Padrta P; Rohringer, H; Sakulinb, H; Strauss, J; Taurok, A; Walzel, G; Wulz, C E; Lowette, S; Van De Vyver, B; De Lentdecker, G; Vanlaer, P; Delaere, C; Lemaître, V; Ninane, A; van der Aa, O; Damgov, J; Karimäki, V; Kinnunen, R; Lampen, T; Lassila-Perini, K M; Lehti, S; Nysten, J; Tuominiemi, J; Busson, P; Todorov, T; Schwering, G; Gras, P; Daskalakis, G; Sfyrla, A; Barone, M; Geralis, T; Markou, C; Zachariadou, K; Hidas, P; Banerjee, S; Mazumdara, K; Abbrescia, M; Colaleoa, A; D'Amato, N; De Filippis, N; Giordano, D; Loddo, F; Maggi, M; Silvestris, L; Zito, G; Arcelli, S; Bonacorsi, D; Capiluppi, P; Dallavalle, G M; Fanfani, A; Grandi, C; Marcellini, S; Montanari, A; Odorici, F; Travaglini, R; Costa, S; Tricomi, A; Ciulli, a V; Magini, N; Ranieri, R; Berti, L; Biasotto, M; Gulminia, M; Maron, G; Toniolo, N; Zangrando, L; Bellato, M; Gasparini, U; Lacaprara, S; Parenti, A; Ronchese, P; Vanini, S; Zotto, S; Ventura P L; Perugia; Benedetti, D; Biasini, M; Fano, L; Servoli, L; Bagliesi, a G; Boccali, T; Dutta, S; Gennai, S; Giassi, A; Palla, F; Segneri, G; Starodumov, A; Tenchini, R; Meridiani, P; Organtini, G; Amapane, a N; Bertolino, F; Cirio, R; Kim, J Y; Lim, I T; Pac, Y; Joo, K; Kim, S B; Suwon; Choi, Y I; Yu, I T; Cho, K; Chung, J; Ham, S W; Kim, D H; Kim, G N; Kim, W; CKim, J; Oh, S K; Park, H; Ro, S R; Son, D C; Suh, J S; Aftab, Z; Hoorani, H; Osmana, A; Bunkowski, K; Cwiok, M; Dominik, Wojciech; Doroba, K; Kazana, M; Królikowski, J; Kudla, I; Pietrusinski, M; Pozniak, Krzysztof T; Zabolotny, W M; Zalipska, J; Zych, P; Goscilo, L; Górski, M; Wrochna, G; Zalewski, P; Alemany-Fernandez, R; Almeida, C; Almeida, N; Da Silva, J C; Santos, M; Teixeira, I; Teixeira, J P; Varelaa, J; Vaz-Cardoso, N; Konoplyanikov, V F; Urkinbaev, A R; Toropin, A; Gavrilov, V; Kolosov, V; Krokhotin, A; Oulianov, A; Stepanov, N; Kodolova, O L; Vardanyan, I; Ilic, J; Skoro, G P; Albajar, C; De Troconiz, J F; Calderón, A; López-Virto, M A; Marco, R; Martínez-Rivero, C; Matorras, F; Vila, I; Cucciarelli, S; Konecki, M; Ashby, S; Barney, D; Bartalini, P; Benetta, R; Brigljevic, V; Bruno, G; Cano, E; Cittolin, S; Della Negra, M; de Roeck, A; Favre, P; Frey, A; Funk, W; Futyan, D; Gigi, D; Glege, F; Gutleber, J; Hansen, M; Innocente, V; Jacobs, C; Jank, W; Kozlovszky, Miklos; Larsen, H; Lenzi, M; Magrans, I; Mannelli, M; Meijers, F; Meschi, E; Mirabito, L; Murray, S J; Oh, A; Orsini, L; Palomares-Espiga, C; Pollet, L; Rácz, A; Reynaud, S; Samyn, D; Scharff-Hansen, P; Schwick, C; Sguazzoni, G; Sinanis, N; Sphicas, P; Spiropulu, M; Strandlie, A; Taylor, B G; Van Vulpen, I; Wellisch, J P; Winkler, M; Villigen; Kotlinski, D; Zurich; Prokofiev, K; Speer, T; Dumanoglu, I; Bristol; Bailey, S; Brooke, J J; Cussans, D; Heath, G P; Machin, D; Nash, S J; Newbold, D; Didcot; Coughlan, A; Halsall, R; Haynes, W J; Tomalin, I R; Marinelli, N; Nikitenko, A; Rutherford, S; Seeza, C; Sharif, O; Antchev, G; Hazen, E; Rohlf, J; Wu, S; Breedon, R; Cox, P T; Murray, P; Tripathi, M; Cousins, R; Erhan, S; Hauser, J; Kreuzer, P; Lindgren, M; Mumford, J; Schlein, P E; Shi, Y; Tannenbaum, B; Valuev, V; Von der Mey, M; Andreevaa, I; Clare, R; Villa, S; Bhattacharya, S; Branson, J G; Fisk, I; Letts, J; Mojaver, M; Paar, H P; Trepagnier, E; Litvine, V; Shevchenko, S; Singh, S; Wilkinson, R; Aziz, S; Bowden, M; Elias, J E; Graham, G; Green, D; Litmaath, M; Los, S; O'Dell, V; Ratnikova, N; Suzuki, I; Wenzel, H; Acosta, D; Bourilkov, D; Korytov, A; Madorsky, A; Mitselmakher, G; Rodríguez, J L; Scurlock, B; Abdullin, S; Baden, D; Eno, S; Grassi, T; Kunori, S; Pavlon, S; Sumorok, K; Tether, S; Cremaldi, L M; Sanders, D; Summers, D; Osborne, I; Taylor, L; Tuura, L; Fisher,W C; Mans6, J; Stickland, D P; Tully, C; Wildish, T; Wynhoff, S; Padley, B P; Chumney, P; Dasu, S; Smith, W H; CMS Trigger Data Acquisition Group

    2006-01-01T23:59:59.000Z

    At the Large Hadron Collider at CERN the proton bunches cross at a rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent factor of O(1000) data reduction is obtained by a software-implemented High Level Trigger (HLT) selection that is executed on a multi-processor farm. In this review we present in detail prototype CMS HLT physics selection algorithms, expected trigger rates and trigger performance in terms of both physics efficiency and timing.

  20. Risk-informing decisions about high-level nuclear waste repositories

    E-Print Network [OSTI]

    Ghosh, Suchandra Tina, 1973-

    2004-01-01T23:59:59.000Z

    Performance assessments (PAs) are important sources of information for societal decisions in high-level radioactive waste (HLW) management, particularly in evaluating safety cases for proposed HLW repository development. ...

  1. Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    `Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  2. Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    `Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  3. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect (OSTI)

    Abramenkova, G.; Klavins, M. [Faculty of Geographical and Earth Sciences, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586 (Latvia); Abramenkovs, A. [Ministry of Environment, Hazardous Wastes Management State Agency, 31 Miera Street, Salaspils, LV-2169 (Latvia)

    2008-01-15T23:59:59.000Z

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification temperature up to 83 deg. C. Experimental data shows, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas. Significant reduction of viscosity is an important factor, which facilitates the fulfillment all gaps and cavities with the mortar during conditioning of solid radioactive wastes in containers. On the other hand, increase water ratio from 0.45 up to 0.65 decreases mechanical stability of water-cement samples from 23 N/mm{sup 2} to the 12 N/mm{sup 2}. It means that water-cement bulk stability significantly decreases with increasing of water content. Technologically is important to increase the tritiated water content in container with cemented radioactive wastes. It gives a possibility to increase the fulfillment of container with radioactive materials. On the other hand, additional water significantly reduces bulk stability of containers with cemented radioactive wastes, which can result in disintegration of radioactive wastes packages in repository during 300 years. Taking into account the experimental results, it is not recommended to exceed the water/cement ratio more than 0.60. Tritium and Cs{sup 137} leakage tests show, that radionuclides release curves has a complicate structure. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium release in water phase. This is unpleasant factor, which significantly decreases the safety of disposed radioactive wastes. Despite the positive impact on solidification temperature drop, the addition of fly ash to the cement-water mortar is not recommended in case of cementation of radionuclides in concrete containers. In conclusion: The cementation processes of solid radioactive wastes in concrete containers were investigated. The influence of additives on cementation processes was studied. It was shown, that the increasing of water ratio from 0.45 up to 0.65 decreases water-cement mortar

  4. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01T23:59:59.000Z

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  5. Concentrating solar collector system for the evaporation of low-level radioactive waste water

    SciTech Connect (OSTI)

    Diamond, S.C.; Cappiello, C.C.

    1981-01-01T23:59:59.000Z

    The Los Alamos National Laboratory has recently been awarded a grant under the Solar Federal Buildings Program to design, construct, and operate a high-temperature solar energy system for the processing of low-level radioactive waste water. Conceptual design studies have been completed, and detailed design work is under way for a solar system to produce process heat to evaporate 38,000 gal (143,830 L) of waste water per month. The system will use approximately 11,000 ft/sup 2/ (1022 m/sup 2/) of concentrating parabolic trough collectors operating at about 500/sup 0/F (262/sup 0/C). Construction of the system is anticipated to begin in 1981. Performance optimization of collector array size and configuration, storage medium and capacity, system operation, and control schemes are done using the active solar system simulator in the DOE-2 building energy analysis computer program. Results of this optimization are reported. This project represents a unique application of solar energy to an increasingly significant problem area in the energy field.

  6. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    SciTech Connect (OSTI)

    Hochel, R.C. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-03-01T23:59:59.000Z

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility.

  7. Siting of low-level radioactive waste disposal facilities in Texas

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01T23:59:59.000Z

    University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

  8. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    SciTech Connect (OSTI)

    Quinn, G.J. [Wastren, Inc. (United States)

    1992-01-01T23:59:59.000Z

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

  9. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    SciTech Connect (OSTI)

    Kolberg, Mark [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada)] [Baird and Associates, 1267 Cornwall Rd., Suite 100, Oakville ON, L6J7T5 (Canada); Case, Glenn [Atomic Energy of Canada Limited, Port Hope, ON (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON (Canada); Ferguson Jones, Andrea [MMM Group Limited, Thornhill, ON (Canada)] [MMM Group Limited, Thornhill, ON (Canada)

    2013-07-01T23:59:59.000Z

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from the various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)

  10. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  11. New York State low-level radioactive waste status report for 1998

    SciTech Connect (OSTI)

    Voelk, H.

    1999-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

  12. New York State Low-Level Radioactive Waste Status Report for 1992

    SciTech Connect (OSTI)

    Attridge, T.; Rapaport, S.; Yang, Qian

    1993-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

  13. New York State low-level radioactive waste status report for 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

  14. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01T23:59:59.000Z

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  15. Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565

    SciTech Connect (OSTI)

    Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

    2012-07-01T23:59:59.000Z

    The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

  16. Low-level radioactive waste source terms for the 1992 integrated data base

    SciTech Connect (OSTI)

    Loghry, S L; Kibbey, A H; Godbee, H W; Icenhour, A S; DePaoli, S M

    1995-01-01T23:59:59.000Z

    This technical manual presents updated generic source terms (i.e., unitized amounts and radionuclide compositions) which have been developed for use in the Integrated Data Base (IDB) Program of the U.S. Department of Energy (DOE). These source terms were used in the IDB annual report, Integrated Data Base for 1992: Spent Fuel and Radioactive Waste Inventories, Projections, and Characteristics, DOE/RW-0006, Rev. 8, October 1992. They are useful as a basis for projecting future amounts (volume and radioactivity) of low-level radioactive waste (LLW) shipped for disposal at commercial burial grounds or sent for storage at DOE solid-waste sites. Commercial fuel cycle LLW categories include boiling-water reactor, pressurized-water reactor, fuel fabrication, and uranium hexafluoride (UF{sub 6}) conversion. Commercial nonfuel cycle LLW includes institutional/industrial (I/I) waste. The LLW from DOE operations is category as uranium/thorium fission product, induced activity, tritium, alpha, and {open_quotes}other{close_quotes}. Fuel cycle commercial LLW source terms are normalized on the basis of net electrical output [MW(e)-year], except for UF{sub 6} conversion, which is normalized on the basis of heavy metal requirement [metric tons of initial heavy metal ]. The nonfuel cycle commercial LLW source term is normalized on the basis of volume (cubic meters) and radioactivity (curies) for each subclass within the I/I category. The DOE LLW is normalized in a manner similar to that for commercial I/I waste. The revised source terms are based on the best available historical data through 1992.

  17. Greater-than-Class C low-level waste characterization. Appendix I: Impact of concentration averaging low-level radioactive waste volume projections

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; O`Kelley, M.; Ely, P.

    1991-08-01T23:59:59.000Z

    This study provides a quantitative framework for bounding unpackaged greater-than-Class C low-level radioactive waste types as a function of concentration averaging. The study defines the three concentration averaging scenarios that lead to base, high, and low volumetric projections; identifies those waste types that could be greater-than-Class C under the high volume, or worst case, concentration averaging scenario; and quantifies the impact of these scenarios on identified waste types relative to the base case scenario. The base volume scenario was assumed to reflect current requirements at the disposal sites as well as the regulatory views. The high volume scenario was assumed to reflect the most conservative criteria as incorporated in some compact host state requirements. The low volume scenario was assumed to reflect the 10 CFR Part 61 criteria as applicable to both shallow land burial facilities and to practices that could be employed to reduce the generation of Class C waste types.

  18. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    SciTech Connect (OSTI)

    Fish, L.W.

    1994-09-01T23:59:59.000Z

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study.

  19. Current Regulations and Guidance - New Approaches for Risk-Informed Low-Level Radioactive Waste Management

    SciTech Connect (OSTI)

    Ryan, M.T. Ph.D.; CHP [Advisory Committee on Nuclear Waste and Materials, U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the historical foundations and future challenges for commercial low-level radioactive waste (LLRW) management in the United States. LLRW has been managed at government facilities since the beginning of the nuclear age and in the commercial sector since the early 1960's. Over the intervening years many technical, management and regulatory changes have occurred. Significant progress has been made in waste form, waste packaging and in recognizing radionuclides important to performance of disposal technologies and disposal facilities. This presentation will examine approaches using existing regulations and risk-informed approaches to improve guidance, licensing and management of LLRW. (authors)

  20. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01T23:59:59.000Z

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  1. State of the art review of alternatives to shallow land burial of low level radioactive waste

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A review of alternatives to shallow land burial for disposal of low level radioactive waste was conducted to assist ORNL in developing a program for the evaluation, selection, and demonstration of the most acceptable alternatives. The alternatives were categorized as follows: (1) near term isolation concepts, (2) far term isolation concepts, (3) dispersion concepts, and (4) conversion concepts. Detailed descriptions of near term isolation concepts are provided. The descriptions include: (1) method of isolation, (2) waste forms that can be accommodated, (3) advantages and disadvantages, (4) facility and equipment requirements, (5) unusual operational or maintenance requirements, (6) information/technology development requirements, and (7) related investigations of the concept.

  2. Time of Compliance for Disposal of Low-Level Radioactive Waste | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavingsAugustPhase 2 FundingTimof

  3. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect (OSTI)

    Mazer, J.J.; No, Hyo J.

    1995-08-01T23:59:59.000Z

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  4. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15T23:59:59.000Z

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  5. High Level Waste System Plan Revision 9

    SciTech Connect (OSTI)

    Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

    1998-04-01T23:59:59.000Z

    Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

  6. Greater-Than-Class C low-level radioactive waste treatment technology evaluation

    SciTech Connect (OSTI)

    Garrison, T W; Fischer, D K

    1993-01-01T23:59:59.000Z

    This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

  7. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  8. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01T23:59:59.000Z

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  9. Estimating costs of low-level radioactive waste disposal alternatives for the Commonwealth of Massachusetts

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report was prepared for the Commonwealth of Massachusetts by the Idaho National Engineering Laboratory, National Low-Level Waste Management Program. It presents planning life-cycle cost (PLCC) estimates for four sizes of in-state low-level radioactive waste (LLRW) disposal facilities. These PLCC estimates include preoperational and operational expenditures, all support facilities, materials, labor, closure costs, and long-term institutional care and monitoring costs. It is intended that this report bc used as a broad decision making tool for evaluating one of the several complex factors that must be examined when deciding between various LLRW management options -- relative costs. Because the underlying assumptions of these analyses will change as the Board decides how it will manage Massachusett`s waste and the specific characteristics any disposal facility will have, the results of this study are not absolute and should only be used to compare the relative costs of the options presented. The disposal technology selected for this analysis is aboveground earth-mounded vaults. These vaults are reinforced concrete structures where low-level waste is emplaced and later covered with a multi-layered earthen cap. The ``base case`` PLCC estimate was derived from a preliminary feasibility design developed for the Illinois Low-Level Radioactive Waste Disposal Facility. This PLCC report describes facility operations and details the procedure used to develop the base case PLCC estimate for each facility component and size. Sensitivity analyses were performed on the base case PLCC estimate by varying several factors to determine their influences upon the unit disposal costs. The report presents the results of the sensitivity analyses for the five most significant cost factors.

  10. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect (OSTI)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01T23:59:59.000Z

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  11. High temperature liquid level sensor

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  12. Analytical support for a new, low-level radioactive wastewater treatment plant

    SciTech Connect (OSTI)

    Jones, V.D.; Marsh, J.H.; Ingram, L.M.; Melton, W.L.; Magonigal, E.J.

    1990-01-01T23:59:59.000Z

    The Savannah River Site (SRS) located in Aiken, SC, is operated by Westinghouse Savannah River Company under contract with the US Department of Energy. The mission of SRS is to manufacture radioisotopes for use in national defense and space exploration. The F/H Effluent Treatment Facility (ETF) is a wastewater treatment plant supporting SRS for low-level radioactive process waste streams. In order to comply with the Federal Resource Conservation and Recovery Act, the facility had to become operational by November 8, 1988. The F/H ETF employs pH adjustment, microfiltration, organic removal, reverse osmosis, evaporation, and ion exchange to remove contaminants prior to discharge to the environment via a state-permitted outfall. Concentrated contaminants removed by these processes are diverted to other facilities for further processing. The ETF is supported by a 24 hr/day facility laboratory for process control and characterization of influent feed, treated effluent water, and concentrated waste. Permit compliance analyses reported to the state of SC are performed by an offsite certified contract laboratory. The support laboratory is efficiently organized to provide: metal analyses by ICP-AES, alpha/beta/gamma activity counting, process ions by Ion Selective Electrode (ISE), oil and grease analyses by IR technique, mercury via cold vapor AA, conductivity, turbidity, and pH. All instrumentation is contained in hoods for radioactive sample handling.

  13. Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment

    E-Print Network [OSTI]

    Aguilar-Arevalo, A; Bertou, X; Bole, D; Butner, M; Cancelo, G; Vázquez, A Castañeda; Chavarria, A E; Neto, J R T de Mello; Dixon, S; D'Olivo, J C; Estrada, J; Moroni, G Fernandez; Torres, K P Hernández; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Liao, J; López, M; Molina, J; Moreno-Granados, G; Pena, J; Privitera, P; Sarkis, Y; Scarpine, V; Schwarz, T; Haro, M Sofo; Tiffenberg, J; Machado, D Torres; Trillaud, F; You, X; Zhou, J

    2015-01-01T23:59:59.000Z

    We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\\alpha$ and $\\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\\alpha$ spectroscopy and the $\\beta$ decay sequence search. These levels of radioactive contamination are su...

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  15. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Newberry, W.F.

    1994-07-01T23:59:59.000Z

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  16. Low-level radioactive waste technology: a selected, annotated bibliography. [416 references

    SciTech Connect (OSTI)

    Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

    1981-10-01T23:59:59.000Z

    This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

  17. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    SciTech Connect (OSTI)

    Tyner, C.J.; Birk, S.M.

    1995-09-01T23:59:59.000Z

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  18. Recent accomplishments in low-level radioactive waste measurement at Los Alamos

    SciTech Connect (OSTI)

    Midkiff, W.S.; Attrep, M.; Covey, J.R.

    1994-03-01T23:59:59.000Z

    Is Los Alamos National Laboratory (LANL) the only laboratory that has difficulty measuring low concentrations of alpha radioactivity in wastewater, or do the rest of the nation`s laboratories just not realize the lack of precision/accuracy in its own measurements? DOE Order 5400.5 sets 30 pCi/L total alpha as a goal for effluent discharge. The State of Colorado requires 0.05 pCi/L. The EPA is considering standards in this range for drinking water and therefore, presumably in treated wastewater effluent. How reasonable are these limits with respect to ease and precision/accuracy of routine measurements and real risk to human health and environmental protection? After reviewing the constraints of various analytical methods, the paper describes a method using {sup 236}Pu and {sup 243}Am as traces to determine low levels of alpha in water samples.

  19. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  20. A data base for low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01T23:59:59.000Z

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  1. Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

  2. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    SciTech Connect (OSTI)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F. [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)] [Hot Labs and Waste Management Center, Atomic Energy Authority, 3 Ahmed El-Zomor St., El-Zohour District, Naser City, 11787, Cairo (Egypt)

    2013-07-01T23:59:59.000Z

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Center (HLWMC) for storage and monitoring. (authors)

  3. Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices

    SciTech Connect (OSTI)

    Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

  4. Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    public, and environment through specific requirements for the generation, treatment, storage, and disposal of US DOE radioactive waste. The Order is divided into four...

  5. National profile on commercially generated low-level radioactive mixed waste

    SciTech Connect (OSTI)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01T23:59:59.000Z

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  6. Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1

    E-Print Network [OSTI]

    Sheffield, University of

    Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1 , W to 19 o C. Both ion-exchange and hydrolysis control the corrosion of this glass. Processing of field disposal facilities, which presumes an understanding of the main glass corrosion mechanisms. The corrosion

  7. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    SciTech Connect (OSTI)

    L.Soholt; G.Gonzales; P.Fresquez; K.Bennett; E.Lopez

    2003-03-01T23:59:59.000Z

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses to higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.

  8. Greater-than-Class C low-level radioactive waste characterization. Appendix E-5: Impact of the 1993 NRC draft Branch Technical Position on concentration averaging of greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Tuite, P.; Tuite, K.; Harris, G. [Waste Management Group, Inc., Peekskill, NY (United States)

    1994-09-01T23:59:59.000Z

    This report evaluates the effects of concentration averaging practices on the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) generated by the nuclear utility industry and sealed sources. Using estimates of the number of waste components that individually exceed Class C limits, this report calculates the proportion that would be classified as GTCC LLW after applying concentration averaging; this proportion is called the concentration averaging factor. The report uses the guidance outlined in the 1993 Nuclear Regulatory Commission (NRC) draft Branch Technical Position on concentration averaging, as well as waste disposal experience at nuclear utilities, to calculate the concentration averaging factors for nuclear utility wastes. The report uses the 1993 NRC draft Branch Technical Position and the criteria from the Barnwell, South Carolina, LLW disposal site to calculate concentration averaging factors for sealed sources. The report addresses three waste groups: activated metals from light water reactors, process wastes from light-water reactors, and sealed sources. For each waste group, three concentration averaging cases are considered: high, base, and low. The base case, which is the most likely case to occur, assumes using the specific guidance given in the 1993 NRC draft Branch Technical Position on concentration averaging. To project future GTCC LLW generation, each waste category is assigned a concentration averaging factor for the high, base, and low cases.

  9. Long-term durability of polyethylene for encapsulation of low-level radioactive, hazardous, and mixed wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01T23:59:59.000Z

    The durability of polyethylene waste forms for treatment of low-level radioactive, hazardous, and mixed wastes is examined. Specific potential failure mechanisms investigated include biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation. These data are supported by results from waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. Polyethylene was found to be extremely resistant to each of these potential failure modes under anticipated storage and disposal conditions. 16 refs., 3 figs., 1 tab.

  10. Methods for verifying compliance with low-level radioactive waste acceptance criteria

    SciTech Connect (OSTI)

    NONE

    1993-09-01T23:59:59.000Z

    This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

  11. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect (OSTI)

    Gorbunova, Olga A. [SUE SIA 'Radon', Moscow (Russian Federation); Kamaeva, Tatiana S. [Vernadsky Institute of Geochemistry and Analytical Chemistry Russian Academy of Sciences, Moscow (Russian Federation)

    2012-07-01T23:59:59.000Z

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  12. Microbial degradation of low-level radioactive waste. Volume 2, Annual report for FY 1994

    SciTech Connect (OSTI)

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-08-01T23:59:59.000Z

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program is to develop modified microbial degradation test procedures that will be more appropriate than the existing procedures for evaluating the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms indigenous to LLW disposal sites are being employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results over the past year on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of the annual report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides has been developed during this study.

  13. Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-12-01T23:59:59.000Z

    This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

  14. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.

    1993-08-01T23:59:59.000Z

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  15. Figure-of-merit analysis and cost effectiveness of low-level radioactive waste treatment systems

    SciTech Connect (OSTI)

    Cox, N.D.; Falconer, K.L.; McCormack, M.D.; Hootman, H.D.; Thompson, T.K.

    1982-01-01T23:59:59.000Z

    Two studies were performed to assess low-level waste treatment systems that are available commercially for volume reduction and/or solidification. In the first, a Figure-of-Merit (FOM) decision analysis technique was used to evaluate fourteen low-level radioactive waste processing systems on their ability to treat power reactor wastes. The assessment of the various processing systems was accomplished using a five member task force. The systems were judged on eleven major criteria and twenty subcriteria. The system judged superior to all the others was compaction of dry wastes with liquid wastes and sludges being directly incorporated into concrete. This was also the lowest cost system. The controlled air incinerator was judged the preferred incineration process. The Werner-Pfleider bitumen extruder was the preferred liquid waste treatment system. In the second study, the cost economy of volume reduction measured in land disposal dollars was investigated. The greatest cost savings with volume reduction were realized with a BWR using a deep bed condensate polishing system; the least with a PWR with condensate polishing. For both BWR systems and PWRs without condensate cleanup, over 80% of the savings in land disposal dollars resulted from volume reduction of liquid waste streams (concentrated liquids and filter sludge). For a PWR with a condensate polishing system, which had the least cost effective system for volume reduction, about one-third of the savings resulting from incineration of spent resin and compactible trash was offset by the increased expense of casks required for transporting concentrated liquids which have undergone additional volume reduction.

  16. Crystallization in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Dane R Spearing, Gary L Smith, SK Sundaram

    2002-01-01T23:59:59.000Z

    This review outlines important aspects of crystallization in HLW glasses, such as equilibrium, nucleation, growth, and dissolution. The impact of crystallization on continuous melters and the chemical durability of high-level waste glass are briefly discussed.

  17. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01T23:59:59.000Z

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  18. High level waste tank farm setpoint document. Revision 1

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-31T23:59:59.000Z

    Revision 1 modifies Attachment I of this Technical Report as a result of a meeting which was held Friday, January 27, 1994 between Maintenance, Work Control, and Engineering to discuss report contents. Upon completion of the meeting, the Flow Chart was edited accordingly. Attachment 2 is modified for clerical reasons. Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Fanns. The setpoint document (Appendix 2) will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  19. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  20. Use of engineered soils and other site modifications for low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

  1. First of Hanford's Highly Radioactive Sludge Moved Away from River |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIADepartmentJulyDeputyUpdates

  2. Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, SeniorVolume

  3. Highly Radioactive Sludge Removal Complete: Historic Cleanup Effort Reduces

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FYAffairs,Assessment HazleDepartment ofof Energythe Risk

  4. The Environmental Protection Agency`s proposed regulation of low level radioactive waste (40 CFR Part 193): A Department of Energy overview

    SciTech Connect (OSTI)

    Frangos, T.G. [Dept. of Energy, Washington, DC (United States)

    1989-11-01T23:59:59.000Z

    The Department of Energy (DOE) manages one of the world`s largest programs for storage, treatment, and disposal of low-level radioactive wastes. This system with facilities located at sites across the nation has evolved over some forty years in response to changing needs, technologies, and increasing public awareness and concerns for environmental protection. The DOE has operated in a self regulatory mode in most aspects of its low-level waste (LLW) programs. It has been DOE`s policy and practice to provide at least the same level of safety and protection for the public, DOE and contractor employees, and the general environment, as that required by the Nuclear Regulatory Commission for commercial operations. DOE`s policies have been implemented through a management system that historically has been highly decentralized so as to be responsive to the needs of DOE sites which generate a wide variety of wastes at some 25 locations. In addition to concerns with the LLW that it manages, DOE has an interest in the US Environmental Protection Agency`s (EPA) promulgation of 40 CFR Part 193 because of its responsibilities under the Low Level Radioactive Waste Policy Amendments Act (LLRWPAA) to manage certain classes of waste and to assist and encourage the development of interstate compact-managed regional low-level waste disposal sites.

  5. A Software Architecture for High Level Applications

    SciTech Connect (OSTI)

    Shen,G.

    2009-05-04T23:59:59.000Z

    A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

  6. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01T23:59:59.000Z

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

  7. Statistical High-Level Synthesis under Process

    E-Print Network [OSTI]

    Giles, C. Lee

    designers is process variability, which causes considerable fluctu- ations in performance and power with variability has be- come one of the major design focuses for nanoscale VLSI design. Traditionally, performanceStatistical High-Level Synthesis under Process Variability Yuan Xie and Yibo Chen Pennsylvania

  8. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22T23:59:59.000Z

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  9. Designing A High Level Test Specification

    E-Print Network [OSTI]

    Sun, Jing

    Designing A High Level Test Specification Language For iec 61499 function block diagram formulae. introduction Mohamad Farid Jaafar Iec 61499 Function block IEC 61499 is one of the standards((input=accelPressed) & (label=throttle.ACCEL))) Figure 1. The IEC 61499 Function Block Notation. (a) Basic Blocks (b) Composite

  10. annual radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  11. activity radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  12. aqueous radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  13. acidic radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  14. activities radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  15. activity radioactive wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  16. alkaline radioactive waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  17. High Level Waste ManagemenfDivision ..

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May| ArgonneHigh Level Waste

  18. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  19. High-Level Waste Melter Study Report

    SciTech Connect (OSTI)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13T23:59:59.000Z

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  20. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  1. Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  2. Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  3. Characterization of Class A low-level radioactive waste 1986--1990. Volume 4: Appendices A--E

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  4. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    SciTech Connect (OSTI)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01T23:59:59.000Z

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  5. High-level waste melter alternatives assessment report

    SciTech Connect (OSTI)

    Calmus, R.B.

    1995-02-01T23:59:59.000Z

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  6. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect (OSTI)

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  7. Guidance on the application of quality assurance for characterizing a low-level radioactive waste disposal site

    SciTech Connect (OSTI)

    Pittiglio, C.L. Jr.; Starmer, R.J.; Hedges, D.

    1990-10-01T23:59:59.000Z

    This document provides the Nuclear Regulatory Commission's staff guidance to an applicant on meeting the quality control (QC) requirements of Title 10 of the Code of Federal Regulations, Part 61, Section 61.12 (10 CFR 61.12), for a low-level waste disposal facility. The QC requirements combined with the requirements for managerial controls and audits are the basis for developing a quality assurance (QA) program and for the guidance provided herein. QA guidance is specified for site characterization activities necessary to meet the performance objectives of 10 CFR Part 61 and to limit exposure to or the release of radioactivity. 1 tab.

  8. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01T23:59:59.000Z

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  9. Service Oriented Architecture for High Level Applications

    SciTech Connect (OSTI)

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; /SLAC; Shen, Guobao; /Brookhaven

    2012-06-28T23:59:59.000Z

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  10. High-level waste qualification: Managing uncertainty

    SciTech Connect (OSTI)

    Pulsipher, B.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Qualification of high-level waste implies specifications driven by risk against which performance can be assessed. The inherent uncertainties should be addressed in the specifications and statistical methods should be employed to appropriately manage these uncertainties. Uncertainties exist whenever measurements are obtained, sampling is employed, or processes are affected by systematic or random perturbations. This paper presents the approach and statistical methods currently employed by Pacific Northwest Laboratory (PNL) and West Valley Nuclear Services (WVNS) to characterize, minimize, and control uncertainties pertinent to a waste-form acceptance specification concerned with product consistency.

  11. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect (OSTI)

    Kirner, N.P. [Ebasco Environmental, Idaho Falls, ID (United States)

    1994-09-01T23:59:59.000Z

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  12. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

  13. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly [National Research Centre 'Kurchatov Institute', Moscow (Russian Federation)

    2012-07-01T23:59:59.000Z

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4? and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ?8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose conditions has proven successful. The radioactivity measuring devices for operation at high, non-uniform dose background were tested in the field and a new data of measurement of contamination distribution in the premises and installations were obtained. (authors)

  14. Umbra's High Level Architecture (HLA) Interface

    SciTech Connect (OSTI)

    GOTTLIEB, ERIC JOSEPH; MCDONALD, MICHAEL J.; OPPEL III, FRED J.

    2002-04-01T23:59:59.000Z

    This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

  15. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    SciTech Connect (OSTI)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01T23:59:59.000Z

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  16. Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations

    SciTech Connect (OSTI)

    Fields, D.E.; Emerson, C.J.

    1984-08-01T23:59:59.000Z

    The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

  17. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01T23:59:59.000Z

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  18. Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.

    SciTech Connect (OSTI)

    Terry, M. T. (Michael T.); Edgemon, G. L. (Glenn L.); Mickalonis, J. I. (John I.); Mizia, R. E. (Ronald E.)

    2002-01-01T23:59:59.000Z

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  19. Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks

    SciTech Connect (OSTI)

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-02-26T23:59:59.000Z

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  20. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Ringenberg, J.D. [Nebraska Dept. of Environmental Quality, NE (United States)

    1993-03-01T23:59:59.000Z

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  1. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Taie, K.R.

    1994-12-31T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP.

  2. Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

  3. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory

    2010-11-09T23:59:59.000Z

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  4. Remote Sensing Analysis of the Sierra Blanca (Faskin Ranch) Low-Level Radioactive Waste Disposal Site, Hudspeth County, Texas

    SciTech Connect (OSTI)

    LeMone, D. V.; Dodge, R.; Xie, H.; Langford, R. P.; Keller, G. R.

    2002-02-26T23:59:59.000Z

    Remote sensing images provide useful physical information, revealing such features as geological structure, vegetation, drainage patterns, and variations in consolidated and unconsolidated lithologies. That technology has been applied to the failed Sierra Blanca (Faskin Ranch) shallow burial low-level radioactive waste disposal site selected by the Texas Low-Level Radioactive Waste Disposal Authority. It has been re-examined using data from LANDSAT satellite series. The comparison of the earlier LANDSAT V (5/20/86) (30-m resolution) with the later new, higher resolution ETM imagery (10/23/99) LANDSAT VII data (15-m resolution) clearly shows the superiority of the LANDSAT VII data. The search for surficial indications of evidence of fatal flaws at the Sierra Blanca site utilizing was not successful, as it had been in the case of the earlier remote sensing analysis of the failed Fort Hancock site utilizing LANDSAT V data. The authors conclude that the tectonic activity at the Sierra Blanca site is much less recent and active than in the previously studied Fort Hancock site. The Sierra Blanca site failed primarily on the further needed documentation concerning a subsurface fault underneath the site and environmental justice issues. The presence of this fault was not revealed using the newer LANDSAT VII data. Despite this fact, it must be remembered that remote sensing provides baseline documentation for determining future physical and financial remediation responsibilities. On the basis of the two sites examined by LANDSAT remote sensing imaging, it is concluded that it is an essential, cost-effective tool that should be utilized not only in site examination but also in all nuclear-related facilities.

  5. Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report is submitted in response to Title 1 of the 1980 Low-Level Radioactive Waste Policy Act, as amended, (the Act). The report summarizes expenditures made by compact regions and unaffiliated states during calendar year 1995 of surcharge rebates from the July 1, 1986, January 1, 1988, and January 1, 1990, milestones, and the January 1, 1993, deadline. Section 5(d)(2)(A) of the Act requires the Department of Energy (DOE) to administer a surcharge escrow account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compact regions (compact regions currently without disposal sites) and nonmember states (states without disposal sites that are not members of compact regions) to the three sited states (states with operating disposal facilities--Nevada, South Carolina, and Washington) for the use of facilities in sited states through the end of 1992. In administering the surcharge escrow account, the Act requires DOE to: (1) Invest the funds in interest-bearing United States Government securities with the highest available yield; (2) Determine eligibility for rebates of the funds by evaluating compact region and state progress toward developing new disposal sites against the milestone requirements set forth in the Act; (3) Disburse the collected rebates and accrued interest to eligible compact regions, states, or generators; (4) Assess compliance of rebate expenditures in accordance with the conditions and limitations prescribed in the Act; and (5) Submit a report annually to Congress summarizing rebate expenditures by state and compact region and assessing the compliance of each such state or compact region with the requirement for expenditure of the rebates as provided in section 5(d)(2)(E) of the Act.

  6. High Level Waste Management Division High-Level Waste System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May| ArgonneHigh Level Waste.6

  7. High Level Computational Chemistry Approaches to the Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems High Level Computational Chemistry Approaches to the...

  8. Sandia National Laboratories: high PV deployment level

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployment level ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  9. Public acceptance activities for the development of new commercial low-level radioactive waste disposal capacity in the United States of America

    SciTech Connect (OSTI)

    Ozaki, C.B.; Scott, R.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-12-31T23:59:59.000Z

    In the US, the states are responsible for providing disposal capability for commercial low-level radioactive waste generated within their borders. Public acceptance of state activities toward developing this capability is a key factor in the ultimate success of state efforts. The states are using several different approaches to gain public acceptance for the location and development of new low-level radioactive waste disposal facilities. This presentation describes state efforts to gain public acceptance for siting and developing activities and discusses the lessons learned from these state experiences.

  10. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

  11. Radiation Impact of Very Low Level Radioactive Steel Reused in Building Industry with Emphasis on External Exposure Pathway - 12569

    SciTech Connect (OSTI)

    Panik, Michal; Hrncir, Tomas; Necas, Vladimir [Slovak University of Technology in Bratislava, Bratislava (Slovakia)

    2012-07-01T23:59:59.000Z

    Considerable quantities of various materials are accumulated during the decommissioning process of nuclear installations. Some of arising materials are activated or contaminated. However, many of them continue to have an economic value and exist in a form that can be recycled or reused for special purposes. Furthermore much of the material generated during decommissioning process will contain only small amounts of radionuclides. For these materials there exist environmental and economic incentives to maximize the use of the concept of clearance from further regulatory control. This impact analysis is devoted to mentioned incentives. The aim is to conditionally clear maximum amount of the scrap steel and consequently recycle and reuse it in form of reinforcing components in tunnel and bridge building scenarios. Recent calculations relevant for external exposure pathway indicate that concept of conditional clearance represent a feasible option for the management of radioactive materials. Even in chosen specific industrial applications it is possible to justify new, approximately one order of magnitude higher, clearance levels. However analysis of other possible exposure pathways relevant for particular scenario of reuse of conditionally cleared materials has to be performed in order to confirm indications from partially obtained results. Basically, the concept of conditional clearance can bring two basic benefits. Firstly it is saving of considerable funds, which would be otherwise used for treatment, conditioning and disposal of materials at appropriate radioactive waste repository. Moreover materials with intrinsic value (particularly metals) can be recycled and reused in industrial applications instead of investing resources on mining and production process in order to obtain new, 'fresh' materials. (authors)

  12. Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Crum, Jarrod V.; Bates, Derrick J.; Bredt, Paul; Greenwood, Lawrence R.; Smith, H D.

    2005-10-01T23:59:59.000Z

    The Hanford radioactive tank waste will be separated into low-activity waste and high-level waste that will both be vitrified into borosilicate glasses. To demonstrate the feasibility of vitrification and the durability of the high-level waste glass, a high-level waste sample from Tank AZ-101 was processed to glass in a hot cell and analyzed with respect to chemical composition, radionuclide content, waste loading, and the presence of crystalline phases and then tested for leachability. The glass was analyzed with inductively coupled plasma-atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, ? energy spectrometry, ? spectrometry, and liquid scintillation counting. The WISE Uranium Project calculator was used to calculate the main sources of radioactivity to the year 3115. The observed crystallinity and the results of leachability testing of the glass will be reported in Part 2 of this paper.

  13. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect (OSTI)

    D.C. Richardson

    2003-03-19T23:59:59.000Z

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

  14. EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste

    Broader source: Energy.gov [DOE]

    This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

  15. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  16. 4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of

    E-Print Network [OSTI]

    the wastes from uranium mines have been removed from mining sites and used in local and nearby communities4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low levels of radioactivity. For example, the range of natural uranium concentrations may average as low

  17. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Spent  Nuclear   Fuel,”   Integrated   Radioactive   Waste   Management  spent  nuclear  fuel”  [42  USC  10101]   as   high-­?level   waste   potentially   neglects   the   waste   management  

  18. High-level verification of system designs

    E-Print Network [OSTI]

    Kundu, Sudipta

    2009-01-01T23:59:59.000Z

    Re?nement Checking of CSP Programs 6.8.2 SPARK: High-Levelcompression for model- checking csp or how to check 1020state-of-the-art tool to check CSP re? nements. The approach

  19. High level indole signalling in Escherichia coli

    E-Print Network [OSTI]

    Gaimster, Hannah Dorne

    2014-06-10T23:59:59.000Z

    indole signalling in Escherichia coli Abstract Indole is a small signalling molecule, produced by many species of bacteria, including Escherichia coli. It is made by the enzyme tryptophanase, which converts tryptophan into indole, pyruvate and ammonia... . Indole has diverse roles in E. coli, including regulation of biofilm formation, acid resistance and pathogenicity. In these cases, E. coli responds to a low, persistent level of indole (0.5-1 mM), similar to the concentration found in an E. coli...

  20. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    SciTech Connect (OSTI)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany)] [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)] [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01T23:59:59.000Z

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  1. Simulations of long-term health risk from shallow land burial of low-level radioactive waste

    SciTech Connect (OSTI)

    Little, C.A.; Fields, D.E.

    1982-01-01T23:59:59.000Z

    PRESTO (Prediction of Radiation Effects from Shallow Trench Operations) is a computer code developed under U.S. Environmental Protection Agency (EPA) funding to evaluate possible health effects from shallow land burial of low-level radioactive wastes. The model is intended to assess radionuclide transport, ensuing exposure, and health impact to a static local population for up to 1000 years following the end of burial operations. Human exposure scenarios that may be considered by model include normal releases (including leaching and operational spillage), human intrusion, and near site farming. Pathways and processes of transit from the trench to an individual or population include:groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. Off-site population and individual doses and cancer risks may be calculated as well as doses and risks to the intruder and farmer. Data have been compiled for three extant shallow land burial sites: Barnwell, South Carolina; Beatty, Nevada; and West Valley, New York. Some simulation results for the Barnwell site are presented. 13 references, 3 figures, 3 tables.

  2. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect (OSTI)

    Hulse, R.A.

    1991-08-01T23:59:59.000Z

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  3. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01T23:59:59.000Z

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  4. High Level Waste Corporate Board Charter

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office of Environmental Management

  5. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Tyacke, M.; Schmitt, R.

    1993-07-01T23:59:59.000Z

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  6. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility - 13429

    SciTech Connect (OSTI)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taiwan (China)] [Hydrotech Research Institute, National Taiwan University, Taiwan (China); Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel [Argonne National Laboratory, Argonne, IL 60439 (United States)] [Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, Chen-Wuing [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China)] [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)] [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)

    2013-07-01T23:59:59.000Z

    Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)

  7. Progress in resolving Hanford Site high-level waste tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

    1995-02-01T23:59:59.000Z

    Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

  8. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    E-Print Network [OSTI]

    De Melo Mendonca, T M

    2014-01-01T23:59:59.000Z

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  9. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01T23:59:59.000Z

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  10. Technology and System Level Demonstration of Highly Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    DoE SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Principal Investigator: Donald Stanton (Cummins)...

  11. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation arravt081vssnewhouse2011o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  12. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and...

  13. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect (OSTI)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

  14. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    SciTech Connect (OSTI)

    Larson, D.E. (ed.)

    1980-09-01T23:59:59.000Z

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  15. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect (OSTI)

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R. [Applied Research Center, Florida International University, Miami, FL (United States)

    2008-07-01T23:59:59.000Z

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations to aid in the benefit-cost analysis for management decision whether to deploy the technology or to abandon the pipeline as has been done in the past. In conclusion: The ultimate objective of this study is to qualify NuVision's unplugging technology for use at Hanford. Experimental testing has been conducted using three pipeline lengths and three types of blockages. Erosion rates have been obtained and pressure data is being analyzed. An amplification of the inlet pressure has been observed along the pipeline and is the key to determining up to what pipe lengths the technology can be used without surpassing the site pressure limit. In addition, we will attempt to establish what the expected unplugging rates will be at the longer pipe lengths for each of the three blockages tested. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations so that management decisions can be made whether the technology has a reasonable chance to successfully unplug a pipeline, such as a cross site transfer line or process transfer pipeline at the Waste Treatment Plant. (authors)

  16. Dataflow Transformations in High-level DSP System Design

    E-Print Network [OSTI]

    Bhattacharyya, Shuvra S.

    in the application that can be analyzed and transformed for effective optimization. Because of the high level of abstraction at which they operate, the transformations employed in this process have a large impact on keyDataflow Transformations in High-level DSP System Design (Invited Paper) Sankalita Saha, Sebastian

  17. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    SciTech Connect (OSTI)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19T23:59:59.000Z

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  18. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  19. WASTE CONTAINER AND WASTE PACKAGE PERFORMANCE MODELING TO SUPPORT SAFETY ASSESSMENT OF LOW AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL.

    SciTech Connect (OSTI)

    SULLIVAN, T.

    2004-06-30T23:59:59.000Z

    Prior to subsurface burial of low- and intermediate-level radioactive wastes, a demonstration that disposal of the wastes can be accomplished while protecting the health and safety of the general population is required. The long-time frames over which public safety must be insured necessitates that this demonstration relies, in part, on computer simulations of events and processes that will occur in the future. This demonstration, known as a Safety Assessment, requires understanding the performance of the disposal facility, waste containers, waste forms, and contaminant transport to locations accessible to humans. The objective of the coordinated research program is to examine the state-of-the-art in testing and evaluation short-lived low- and intermediate-level waste packages (container and waste form) in near surface repository conditions. The link between data collection and long-term predictions is modeling. The objective of this study is to review state-of-the-art modeling approaches for waste package performance. This is accomplished by reviewing the fundamental concepts behind safety assessment and demonstrating how waste package models can be used to support safety assessment. Safety assessment for low- and intermediate-level wastes is a complicated process involving assumptions about the appropriate conceptual model to use and the data required to support these models. Typically due to the lack of long-term data and the uncertainties from lack of understanding and natural variability, the models used in safety assessment are simplistic. However, even though the models are simplistic, waste container and waste form performance are often central to the case for making a safety assessment. An overview of waste container and waste form performance and typical models used in a safety assessment is supplied. As illustrative examples of the role of waste container and waste package performance, three sample test cases are provided. An example of the impacts of distributed container failure times on cumulative release and peak concentration is provided to illustrate some of the complexities in safety assessment and how modeling can be used to support the conceptual approach in safety assessment and define data requirements. Two examples of the role of the waste form in controlling release are presented to illustrate the importance of waste form performance to safety assessment. These examples highlight the difficulties in changing the conceptual model from something that is conservative and defensible (such as instant release of all the activity) to more representative conceptual models that account for known physical and chemical processes (such as diffusion), The second waste form example accounts for the experimental observation that often a thin film with low diffusion properties forms on the waste form surface. The implications of formation of such a layer on release are investigated and the implications of attempting to account for this phenomena in a safety assessment are addressed.

  20. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15T23:59:59.000Z

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  1. High-Level Waste Corporate Board, Mark Gilbertson

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office ofHighHigh-LevelHigh-Level

  2. EIS-0287: Idaho High-Level Waste & Facilities Disposition

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  3. High Level Overview of DOE Biomass Logistics II Project Activities

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

  4. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOE Patents [OSTI]

    Colombo, P.; Kalb, P.D.

    1984-06-05T23:59:59.000Z

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  5. High-Level Waste System Process Interface Description

    SciTech Connect (OSTI)

    d'Entremont, P.D.

    1999-01-14T23:59:59.000Z

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.

  6. MUTATION-BASED VALIDATION OF HIGH-LEVEL MICROPROCESSOR IMPLEMENTATIONS

    E-Print Network [OSTI]

    Al-Asaad, Hussain

    MUTATION-BASED VALIDATION OF HIGH-LEVEL MICROPROCESSOR IMPLEMENTATIONS Jorge Campos and Hussain Al-level microprocessor implementation by generating a test sequence for a collection of ab- stract design error models of microprocessors, engineers are forced to validate a larger design space in a shorter time frame. This task becomes

  7. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01T23:59:59.000Z

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  8. High-Level Information Fusion and Mission Planning in Highly Anisotropic Threat Spaces

    E-Print Network [OSTI]

    Witkowski, Mark

    High-Level Information Fusion and Mission Planning in Highly Anisotropic Threat Spaces Mark sharing and high-level information fusion to allow for the visualisation of highly anisotropic threat options. Keywords: Information Fusion, Threat Map, Tactical Planning. 1 Introduction We present a first

  9. High-Level Waste Corporate Board Performance Assessment Subcommittee

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office ofHighHigh-Level WasteLevel

  10. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01T23:59:59.000Z

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  11. Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste

    E-Print Network [OSTI]

    Cabeche, Dion Tunick

    2011-01-01T23:59:59.000Z

    The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

  12. Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings

    E-Print Network [OSTI]

    Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

    2010-01-01T23:59:59.000Z

    Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

  13. Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings 

    E-Print Network [OSTI]

    Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

    2010-01-01T23:59:59.000Z

    Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

  14. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01T23:59:59.000Z

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  15. Conceptual modular description of the high-level waste management system for system studies model development

    SciTech Connect (OSTI)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01T23:59:59.000Z

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  16. Electrosorption on carbon aerogel electrodes as a means of treating low-level radioactive wastes and remediating contaminated ground water

    SciTech Connect (OSTI)

    Tran, Tri Duc; Farmer, Joseph C.; DePruneda, Jean H.; Richardson, Jeffery H.

    1997-07-01T23:59:59.000Z

    A novel separation process based upon carbon aerogel electrodes has been recently developed for the efficient removal of ionic impurities from aqueous streams. This process can be used as an electrical y- regenerated alternative to ion exchange, thereby reducing-the need for large quantities of chemical regenerants. Once spent (contaminated), these regenerants contribute to the waste that must be disposed of in landfills. The elimination of such wastes is especially beneficial in situations involving radioactive contaminants, and pump and treat processing of massive volumes of ground water. A review and analysis of potential applications will be presented.

  17. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  18. Methods of calculating the post-closure performance of high-level waste repositories

    SciTech Connect (OSTI)

    Ross, B. (ed.)

    1989-02-01T23:59:59.000Z

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  19. Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"

    E-Print Network [OSTI]

    was it removed?). I don't think the removal in Appendix F of the old Appendix D language about the hulls;Enclosure 3 In the Bismuth Phosphate process, the cladding (or coating) hulls are first removed). The fuel is then dissolved into its constituent parts consisting of uranium, transuranic elements (e

  20. Locations of Spent Nuclear Fuel and High-Level Radioactive Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNaturalemployeeDepartment of

  1. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of theArctic Energy Summit26and Spent Nuclear

  2. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-94 December 1994

  3. Long-term management of high-level radioactive waste (HLW) and spent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for annuclear fuel (SNF) | Department

  4. High-Level Waste Corporate Board Meeting Agenda

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office ofHighHigh-Level Waste

  5. Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation 

    E-Print Network [OSTI]

    Medvedev, Dmitry Gennadievich

    2005-11-01T23:59:59.000Z

    The processes of development of nuclear weapons resulted in accumulation of thousands of curies of high-level radioactive waste. Liquid waste produced in the US has been stored in carbon steel tanks in highly alkaline (1-3 ...

  6. High Waste Loading Glass Formulations for Hanford High-Aluminum High-Level Waste Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledge ofHIGH WASTE

  7. High-Level Synthesis of Digital Microfluidic Biochips

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    16 High-Level Synthesis of Digital Microfluidic Biochips FEI SU Intel Corporation and KRISHNENDU CHAKRABARTY Duke University Microfluidic biochips offer a promising platform for massively parallel DNA-generation system-on-chip (SOC) designs that are expected to include microfluidic components. We propose a system

  8. High-Level waste process and product data annotated bibliography

    SciTech Connect (OSTI)

    Stegen, G.E.

    1996-02-13T23:59:59.000Z

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  9. Production and Properties of Solidified High-Level

    E-Print Network [OSTI]

    #12;#12;- 5 - 1. INTRODUCTION For more than 30 years, reprocessing of spent nuclear fuel has taken assistance from Risø to ELSAM/ELKRAFT's waste management project. Abstract. Available information form. Liquid high-level waste will also be produced by future reprocessing of power reactor fuel

  10. Reliability-Centric High-Level Synthesis , N. Mansouri

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    critical applications, poor reliability can be catastrophic in terms of both human and equipment cost1 Reliability-Centric High-Level Synthesis S. Tosun , N. Mansouri , E. Arvas , M. Kandemir-down. As a result, it is becoming necessary to treat reliability as a first-class citizen in system design

  11. Putting high-level Petri nets to work in industry

    E-Print Network [OSTI]

    van der Aalst, Wil

    Putting high-level Petri nets to work in industry W.M.P. van der Aalst Department of Mathematics Petri nets exist for over 30 years. Especially in the last decade Petri nets have been put into practice extensively. Thanks to several useful ex- tensions and the availability of computer tools, Petri nets have

  12. Generating Code for High-Level Operations through Code Composition

    E-Print Network [OSTI]

    Generating Code for High-Level Operations through Code Composition James M. Stichnoth August 1997 of the authors and should not be interpreted as necessarily representing the official policies or endorsements: Compilers, code generation, parallelism, communication generation #12;Abstract A traditional compiler

  13. The R Environment A high-level overview

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    use it. #12;What exactly is R? R is a language and environment for statistical computing and graphics Sarkar The R Environment #12;What exactly is R? R is a language and environment for statisticalThe R Environment A high-level overview Deepayan Sarkar Indian Statistical Institute, Delhi 6

  14. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J. [Quebec Cartier Mining Co., Bethlehem, PA (United States)

    1996-12-31T23:59:59.000Z

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  15. Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

  16. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

    1982-01-01T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  17. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23T23:59:59.000Z

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  18. IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD

    SciTech Connect (OSTI)

    UYTIOCO EM

    2007-11-14T23:59:59.000Z

    The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

  19. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  20. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong -Sang

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore »glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  1. High Level Waste Management Division . H L W System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May| ArgonneHigh Level Waste.

  2. A compilation of the electricity generated and low-level radioactive wastes shipped for disposal by US nuclear power plants, 1959-1985

    SciTech Connect (OSTI)

    Kibbey, A.H.; DePaoli, S.M.

    1987-12-01T23:59:59.000Z

    The LWRDATA data base contains both volume and radioactivity data on nearly all the low-level radioactive waste (LLW) shipments from commercial boiling-water reactor (BWR) and pressurized-water reactor (PWR) nuclear power plants from 1959 through 1985. The corresponding net electrical output is also included in the data base. This report compares the various physical forms of LLW (i.e., wet; dry, compressible; irradiated, non-fuel core component; and miscellaneous) generated by BWR and PWR plants on the basis of their annual net electricity generation. Further comparisons are made of three specific categories of BWRs based on their size and condensate polishing systems: (1) small deep-bed plants, (2) large deep-bed plants, and (3) filter-demineralizer plants. The various types and volumes of PWR wastes generated per net megawatt (electrical)-year are also compared by nuclear steam supply system manufacturer. Limitations of the available data are discussed. 25 refs., 30 figs., 5 tabs.

  3. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    SciTech Connect (OSTI)

    MICHAEL R. ZALUTSKY

    2012-08-08T23:59:59.000Z

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production.

  4. Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

  5. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    SciTech Connect (OSTI)

    Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)] [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

    2013-07-01T23:59:59.000Z

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  6. Nondestructive examination of DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-05-01T23:59:59.000Z

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

  7. 324 Building radiochemical engineering cells, high-level vault, low-level vault, and associated areas closure plan

    SciTech Connect (OSTI)

    Barnett, J.M.

    1998-03-25T23:59:59.000Z

    The Hanford Site, located adjacent to and north of Richland, Washington, is operated by the US Department of Energy, Richland Operations Office (RL). The 324 Building is located in the 300 Area of the Hanford Site. The 324 Building was constructed in the 1960s to support materials and chemical process research and development activities ranging from laboratory/bench-scale studies to full engineering-scale pilot plant demonstrations. In the mid-1990s, it was determined that dangerous waste and waste residues were being stored for greater than 90 days in the 324 Building Radiochemical Engineering Cells (REC) and in the High-Level Vault/Low-Level Vault (HLV/LLV) tanks. [These areas are not Resource Conservation and Recovery Act of 1976 (RCRA) permitted portions of the 324 Building.] Through the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-89, agreement was reached to close the nonpermitted RCRA unit in the 324 Building. This closure plan, managed under TPA Milestone M-20-55, addresses the identified building areas targeted by the Tri-Party Agreement and provides commitments to achieve the highest degree of compliance practicable, given the special technical difficulties of managing mixed waste that contains high-activity radioactive materials, and the physical limitations of working remotely in the areas within the subject closure unit. This closure plan is divided into nine chapters. Chapter 1.0 provides the introduction, historical perspective, 324 Building history and current mission, and the regulatory basis and strategy for managing the closure unit. Chapters 2.0, 3.0, 4.0, and 5.0 discuss the detailed facility description, process information, waste characteristics, and groundwater monitoring respectively. Chapter 6.0 deals with the closure strategy and performance standard, including the closure activities for the B-Cell, D-Cell, HLV, LLV; piping and miscellaneous associated building areas. Chapter 7.0 addresses the closure activities identified in Chapter 6.0, and also adds information on closure activities for the soil directly beneath the unit, regulated material removed during closure, and the schedule for closure. Chapter 8.0 provides Surveillance, monitoring and post-closure information and Chapter 9.0 provides a list of references used throughout the document.

  8. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    E-Print Network [OSTI]

    Mari, Jean-Luc

    2014-01-01T23:59:59.000Z

    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...

  9. Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory

    SciTech Connect (OSTI)

    Lockie, K. A.; McNaught, W. B.

    2002-02-26T23:59:59.000Z

    The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

  10. Systems analysis approach to the disposal of high-level waste in deep ocean sediments

    SciTech Connect (OSTI)

    de Marsily, G.; Hill, M. D.; Murray, C. N.; Talbert, D. M.; Van Dorp, F.; Webb, G. A.M.

    1980-01-01T23:59:59.000Z

    Among the different options being studied for disposal of high-level solidified waste, increasing attention is being paid to that of emplacement of glasses incorporating the radioactivity in deep oceanic sediments. This option has the advantage that the areas of the oceans under investigation appear to be relatively unproductive biologically, are relatively free from cataclysmic events, and are areas in which the natural processes are slow. Thus the environment is stable and predictable so that a number of barriers to the release and dispersion of radioactivity can be defined. Task Groups set up in the framework of the International Seabed Working Group have been studying many aspects of this option since 1976. In order that the various parts of the problem can be assessed within an integrated framework, the methods of systems analysis have been applied. In this paper the Systems Analysis Task Group members report the development of an overall system model. This will be used in an iterative process in which a preliminary analysis, together with a sensitivity analysis, identifies the parameters and data of most importance. The work of the other task groups will then be focussed on these parameters and data requirements so that improved results can be fed back into an improved overall systems model. The major requirements for the development of a preliminary overall systems model are that the problem should be separated into identified elements and that the interfaces between the elements should be clearly defined. The model evolved is deterministic and defines the problem elements needed to estimate doses to man.

  11. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  12. Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    PM Daling; SB Ross; BM Biwer

    1999-12-17T23:59:59.000Z

    The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

  13. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    G. Radulesscu; J.S. Tang

    2000-06-07T23:59:59.000Z

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

  14. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31T23:59:59.000Z

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  15. EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

  16. alpha low-level stored: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  17. argonne-west low-level mixed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  18. alpha-mixed low-level waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  19. acute low-level microwave: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  20. alamos low-level waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  1. alternative llw low-level: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is: not high-level radioactive waste or irradiated nuclear fuel not uranium, thorium or other ore tailings or waste from extraction and concentration for source material...

  2. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10T23:59:59.000Z

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  3. Site Selection and Geological Research Connected with High Level Waste Disposal Programme in the Czech Republic

    SciTech Connect (OSTI)

    Tomas, J.

    2003-02-25T23:59:59.000Z

    Attempts to solve the problem of high-level waste disposal including the spent fuel from nuclear power plants have been made in the Czech Republic for over the 10 years. Already in 1991 the Ministry of Environment entitled The Czech Geological Survey to deal with the siting of the locality for HLW disposal and the project No. 3308 ''The geological research of the safe disposal of high level waste'' had started. Within this project a sub-project ''A selection of perspective HLW disposal sites in the Bohemian Massif'' has been elaborated and 27 prospective areas were identified in the Czech Republic. This selection has been later narrowed to 8 areas which are recently studied in more detail. As a parallel research activity with siting a granitic body Melechov Massif in Central Moldanubian Pluton has been chosen as a test site and the 1st stage of research i.e. evaluation and study of its geological, hydrogeological, geophysical, tectonic and structural properties has been already completed. The Melechov Massif was selected as a test site after the recommendation of WATRP (Waste Management Assessment and Technical Review Programme) mission of IAEA (1993) because it represents an area analogous with the host geological environment for the future HLW and spent fuel disposal in the Czech Republic, i.e. variscan granitoids. It is necessary to say that this site would not be in a locality where the deep repository will be built, although it is a site suitable for oriented research for the sampling and collection of descriptive data using up to date and advanced scientific methods. The Czech Republic HLW and spent fuel disposal programme is now based on The Concept of Radioactive Waste and Spent Nuclear Fuel Management (''Concept'' hereinafter) which has been prepared in compliance with energy policy approved by Government Decree No. 50 of 12th January 2000 and approved by the Government in May 2002. Preparation of the Concept was required, amongst other reasons in connection with preparations for the Czech Republic's accession to the European Union and in connection with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management adopted under the auspices of the International Atomic Energy Agency, which was signed by the Czech Republic in 1997. According to the approved Concept it is expected that a deep geological repository in the Czech Republic will be built in granitic rocks.

  4. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01T23:59:59.000Z

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  5. High Level Waste Corporate Board Charter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresented By:DanielHigh

  6. Working with SRNL - Our Facilities- High and Intermediate Level Shielded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresentedMetal HydrideHigh

  7. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office ofHigh

  8. Accelerated Weathering of High-Level and Plutonium-bearing Lanthanide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weathering of High-Level and Plutonium-bearing Lanthanide Borosilicate Waste Glasses under Hydraulically Unsaturated Accelerated Weathering of High-Level and Plutonium-bearing...

  9. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect (OSTI)

    Dewberry, R.A.

    2001-02-13T23:59:59.000Z

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  10. ARTICLE IN PRESS Unexpectedly high radioactivity burdens in ice-rafted

    E-Print Network [OSTI]

    Darby, Dennis

    of national and international research programs have improved our knowledge of radionu- clide contaminant independent observations of these unexpectedly high specific activities were made several years apart, (3 fallout, nu- clear power and fuel reprocessing accidents, and dis- charges from nuclear fuel reprocessing

  11. Survey of statistical and sampling needs for environmental monitoring of commercial low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Eberhardt, L.L.; Thomas, J.M.

    1986-07-01T23:59:59.000Z

    This project was designed to develop guidance for implementing 10 CFR Part 61 and to determine the overall needs for sampling and statistical work in characterizing, surveying, monitoring, and closing commercial low-level waste sites. When cost-effectiveness and statistical reliability are of prime importance, then double sampling, compositing, and stratification (with optimal allocation) are identified as key issues. If the principal concern is avoiding questionable statistical practice, then the applicability of kriging (for assessing spatial pattern), methods for routine monitoring, and use of standard textbook formulae in reporting monitoring results should be reevaluated. Other important issues identified include sampling for estimating model parameters and the use of data from left-censored (less than detectable limits) distributions.

  12. DEVELOPMENT OF HIGH TEMPERATURE TARGETS AND ION SOURCES FOR ONLINE RADIOACTIVE ISOTOPE PRODUCTION

    E-Print Network [OSTI]

    Titov, Anatoly

    PRODUCTION V.N.Panteleev, A.E.Barzakh, D.V.Fedorov, V.S.Ivanov, F.V.Moroz, S.Yu.Orlov, A.G.Polyakov, M.D.Seliverstov, Yu.M.Volkov 1. Introduction At the IRIS facility a high temperature target for effective production of a tungsten foil as a target container material allows to maintain the working temperature for refractory foil

  13. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect (OSTI)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01T23:59:59.000Z

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  14. A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

    2003-02-27T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

  15. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2006-04-20T23:59:59.000Z

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  16. 4.5 Meter high level waste canister study

    SciTech Connect (OSTI)

    Calmus, R. B.

    1997-10-01T23:59:59.000Z

    The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.

  17. PID Performance in the LHCb High Level Trigger

    E-Print Network [OSTI]

    Benson, S

    2014-01-01T23:59:59.000Z

    The LHCb High Level Trigger (HLT) incorporates RICH particle identification (PID) calculations that are designed to be faster than those used for the offline reconstruction, which is necessary due to the timing constraints imposed on the HLT. The performance of this faster calculation has been evaluated using $B^+ \\to \\overline{D}^0\\pi^+$ events recorded during 2011 data taking and compared against the performance of the offline calculation. The time taken to calculate PID information in the HLT has been measured both for the configuration used in Run 1, and for configurations approaching that used offline. Similar overall efficiency and misidentification performance is seen in the configurations used offline and in the HLT, though the raw values of PID variables can differ substantially for a given candidate.

  18. High {sup 222}Rn levels, enhanced plateout, increased diffusion coefficient

    SciTech Connect (OSTI)

    Leonard, B.E.

    1994-12-31T23:59:59.000Z

    In a previous study of plateout and resuspension effects for {sup 222}Rn progeny, an unexpected suppression of the airborne {sup 218}Po and {sup 214}Po levels, which is total unrelated and not predicted by theory or other works, was observed when high {sup 222}Rn concentrations were utilized in a 0.283-m{sup 3} test chamber. Two separate time-dependent methods were used and are reported here to measure this airborne progeny suppression effect to attempt to possibly determine the magnitude and cause of the effect and possible consequences on prior and current ongoing radon research by others. The earlier buildup method was used to observe the buildup phase of {sup 222} Rn and its daughters from a constant emanation source, a constant air change rate (ACH), and initially zero concentrations Rn and progeny. The data were compared with theory using Leonard`s solutions to the Bateman equations to determine the magnitude of the suppression. The second method, referred to as the {open_quotes}down{close_quotes} method, was to measure the decrease in {sup 222}Rn and progeny concentrations from an initially injected high {sup 222}Rn activity concentration in the test chamber, the decrease resulting from a constant ACH of {approximately}0.1 h{sup -1} imposed by the gradual removal of air from the chamber at a constant rate of {approximately}0.5 l/min. No {sup 222}Rn emanation source was present during the second method after the initial injection so that the level of the {sup 222}Rn underwent a monotonic decrease in concentration.

  19. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    SciTech Connect (OSTI)

    Quigley, K.D.; Wessman, D

    2003-02-27T23:59:59.000Z

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

  20. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  1. Kinetics of Conversion of High-level Waste to Glass

    SciTech Connect (OSTI)

    Izak, Pavel (ASSOC WESTERN UNIVERSITY); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Schweiger, Michael J. (BATTELLE (PACIFIC NW LAB)); Heineman, W.R.; Eller, P.G.

    2001-01-01T23:59:59.000Z

    The kinetics of the conversion of high-level waste (HLW) feed to glass controls the rate of HLW processing. Simulated HLW feed and low silica - high sodium (LSHS) feed with co-precipitated Fe, Ni, Cr, and Mn hydroxides (to simulate the chemical and physical makeup of these components in the melter feed) were heated at constant temperature increase rates (0.4, 4, and 14?C/min), quenched at different stages of conversion, and analyzed with optical microscope, scanning electron microscope, and x-ray diffraction (XRD). Quartz, sodium nitrate, carnegieite (Na8Al4Si4O18), sodalite (Na8(AlSiO4)6(NO2)2), and spinel were identified in the samples. Mass fractions of these phases were determined as functions of the temperature and the heating rate. The fractions of nitrates and quartz decreased with increasing temperature, starting above 550?C and dropping to zero at 850?C. Spinel was present in the feed within the temperature interval from 350?C to 1050?C, peaking between 550 and 700?C. Sodalite (in HLW feed) and carnegieite (in LSHS feed) formed at temperatures above 600?C and then began to dissolve. TGA and DSC were use to determine the mass loss and the conversion heat as functions of temperature and heating rate and were compared with the reaction progress reached in quenched samples.

  2. Safety assessment of alternatives to shallow-land burial of low-level radioactive waste: Volume 2, Environmental conditions affecting reliability of engineered barriers. [Contains glossary

    SciTech Connect (OSTI)

    Cerven, F.; Otis, M.D.

    1987-09-01T23:59:59.000Z

    The need for new disposal capacity for low-level radioactive waste (LLW) has led to a re-examination of disposal practices. A number of enhancements and alternatives to traditional shallow-land burial have been proposed to meet the need for new capacity and to address various concerns about the performance history of existing commercial LLW sites. Fifteen potentially important degradation mechanisms for a LLW facility are identified, categorized, and analyzed to determine their importance to the proper functioning of the disposal facility over its 500-year lifetime. Wind storms, biological intrusion, mechanical settling, freeze/thaw cycling, chemical degradation, wind erosion, and water erosion were considered the most important mechanisms. Data supporting concrete structure long-term performance in sulfate environments and long-term cover performance in erosive and biological intrusion environments were obtained. Research on the performance of covers and concrete structures in the presence of the other listed degradation mechanisms is recommended. 18 refs., 16 figs., 9 tabs.

  3. Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-05-31T23:59:59.000Z

    The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

  4. High level waste facilities -- Continuing operation or orderly shutdown

    SciTech Connect (OSTI)

    Decker, L.A.

    1998-04-01T23:59:59.000Z

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

  5. Cementitious Grout for Closing SRS High Level Waste Tanks - 12315

    SciTech Connect (OSTI)

    Langton, C.A.; Stefanko, D.B.; Burns, H.H. [Savannah River National Laboratory (United States); Waymer, J.; Mhyre, W.B. [URS Quality and Testing (United States); Herbert, J.E.; Jolly, J.C. Jr. [Savannah River Remediation, LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2012-07-01T23:59:59.000Z

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. Ancillary equipment abandoned in the tanks will also be filled to the extent practical. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and to be chemically reducing with a reduction potential (Eh) of -200 to -400. Grouts with this chemistry stabilize potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted to support the mass placement strategy developed by Savannah River Remediation (SRR) Closure Operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures. The cement and slag contents of a mix selected for filling Tanks 18-F and 19-F should be limited to no more than 125 and 210 lbs/cyd, respectively, to limit the heat generated as the result of hydration reaction during curing and thereby enable mass pour placement. Trial mixes with water to total cementitious materials ratios of 0.550 to 0.580 and 125 lbs/cyd of cement and 210 lbs/cyd of slag met the strength and permeability requirements. Mix LP no.8-16 was selected for closing SRS Tanks 18-F and 19-F because it meets or exceeds the design requirements with the least amount of Portland cement and blast furnace slag. This grout is expected to flow at least 45 feet. A single point of discharge should be sufficient for unrestricted flow conditions. However, additional entry points should be identified as back-up in case restrictions in the tank impede flow. The LP no.8 series of trial mixes had surprisingly high design compressive strengths (2000 to 4000/5000 psi) which were achieved at extended curing times (28 to 90 days, respectively) given the small amount of Portland cement in the mixes (100 to 185 lbs/cyd). The grouts were flowable structural fills containing 3/8 inch gravel and concrete sand aggregate. These grouts did not segregate and require no compaction. They have low permeabilities (? 10{sup -9} cm/s) and are consequen

  6. Savannah River Site Probabilistic Risk Assessment high-level review

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    A review of the Savannah River Site (SRS) Probabilistic Risk Assessment (PRA) has been performed by a review committee organized by the US Department of Energy (DOE) and its contractor, EG&G Idaho, Inc. The High-Level Peer Review Committee (referred to as ``the Committee`` in this report) members are identified in Section 2. The main purpose of the review has been to provide assurance that the SRS PRA is responsive to safety issues associated with the restart and continued operation of the Savannah River reactors. The Committee members are all experienced practitioners of PRA, and several of the members have been deeply involved In a concurrent, detailed review of the SRS PRA. Source material and expertise available to the Committee included the SRS PRA document itself issued August 31. 1989, and Interaction with key PRA and plant experts at both the Savannah River Site and the Los Alamos National Laboratory (LANL), who had performed an independent PRA evaluation of the SRS K-reactor. The cooperation and support received from those connected with the review were outstanding.

  7. Defense High-Level Waste Leaching Mechanisms Program. Final report

    SciTech Connect (OSTI)

    Mendel, J.E. (compiler)

    1984-08-01T23:59:59.000Z

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  8. Glass formulation for phase 1 high-level waste vitrification

    SciTech Connect (OSTI)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01T23:59:59.000Z

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  9. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. [Oak Ridge National Lab., TN (United States); Dunbar, N.W. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States); Tixier, J.S.; Powell, T.D. [Pacific Northwest Lab., Richland, WA (United States)

    1992-11-01T23:59:59.000Z

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were {sup 137}Cs and {sup 90}Sr, with lesser amounts of {sup 6O}Co, {sup 241}Am, and {sup 239,240}Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the {sup 137}Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of {sup 90}Sr, {sup 241}Am, or {sup 239,240}Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500{degrees}C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  10. Tracer-level radioactive pilot-scale test of in situ vitrification for the stabilization of contaminated soil sites at ORNL

    SciTech Connect (OSTI)

    Spalding, B.P.; Jacobs, G.K.; Naney, M.T. (Oak Ridge National Lab., TN (United States)); Dunbar, N.W. (New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)); Tixier, J.S.; Powell, T.D. (Pacific Northwest Lab., Richland, WA (United States))

    1992-11-01T23:59:59.000Z

    A field demonstration of in situ vitrification (ISV) was completed in May 1991, and produced approximately 12 Mg of melted earthen materials containing 12.7 mCi of radioactivity within 500 g of sludge in amodel of an old seepage trench waste disposal unit. Past waste disposal operations at Oak Ridge National Laboratory have left several contaminated seepage sites. In planning for remediation of such sites, ISV technology has been identified as a leading candidate because of the high risks associated with any retrieval option and because of the usual high quality of vitreous waste form. Major isotopes placed in the test trench were [sup 137]Cs and [sup 90]Sr, with lesser amounts of [sup 6O]Co, [sup 241]Am, and [sup 239,240]Pu. A total of 29 MWh of electrical power was delivered to the ground over a 5-day period producing a melt depth of 8.5 ft. During melting, 2.4% of the [sup 137]Cs volatilized from the melt into an off-gas containment hood and was captured quantitatively on a high efficiency particulate air filter. No volatilization of [sup 90]Sr, [sup 241]Am, or [sup 239,240]Pu was detected and > 99.993% retention of these isotopes in the melt was estimated. The use of added rare earth tracers (Ce, La, and Nd), as surrogates for transuranic isotopes, led to estimated melt retentions of >99.9995% during the test. The molten material, composed of the native soil and dolomitic limestone used for filling the test trench, reached a processing temperature of 1500[degrees]C. Standardized leaching procedures using Product Consistency Testing indicated that the ISV product has excellent characteristics relative to other vitreous nuclear waste forms.

  11. JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY

    SciTech Connect (OSTI)

    Lee, S.

    2011-07-05T23:59:59.000Z

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline pump orientations are chosen by the previous work [Lee et. al, 2008] and the initial engineering judgement for the conservative flow estimate since the modeling results for the other pump orientations are compared with the baseline results. As shown in Table 1, the present study assumes that each slurry pump has 900 gpm flowrate for the tank mixing analysis, although the Standard Operating Procedure for Tank 48 currently limits the actual pump speed and flowrate to a value less than 900 gpm for a 29 inch liquid level. Table 2 shows material properties and weight distributions for the solids to be modeled for the mixing analysis in Tank 48.

  12. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  13. Closure development for high-level nuclear waste containers for the tuff repository; Phase 1, Final report

    SciTech Connect (OSTI)

    Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P. [Babcock and Wilcox Co., Lynchburg, VA (USA). Nuclear Power Div.]|[Babcock and Wilcox Co., Alliance, OH (USA). Research and Development Div.

    1990-09-01T23:59:59.000Z

    This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literature survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.

  14. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  15. HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

    2006-10-02T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

  16. High-level waste issues and resolutions document

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The High-Level Waste (HLW) Issues and Resolutions Document recognizes US Department of Energy (DOE) complex-wide HLW issues and offers potential corrective actions for resolving these issues. Westinghouse Management and Operations (M&O) Contractors are effectively managing HLW for the Department of Energy at four sites: Idaho National Engineering Laboratory (INEL), Savannah River Site (SRS), West Valley Demonstration Project (WVDP), and Hanford Reservation. Each site is at varying stages of processing HLW into a more manageable form. This HLW Issues and Resolutions Document identifies five primary issues that must be resolved in order to reach the long-term objective of HLW repository disposal. As the current M&O contractor at DOE`s most difficult waste problem sites, Westinghouse recognizes that they have the responsibility to help solve some of the complexes` HLW problems in a cost effective manner by encouraging the M&Os to work together by sharing expertise, eliminating duplicate efforts, and sharing best practices. Pending an action plan, Westinghouse M&Os will take the initiative on those corrective actions identified as the responsibility of an M&O. This document captures issues important to the management of HLW. The proposed resolutions contained within this document set the framework for the M&Os and DOE work cooperatively to develop an action plan to solve some of the major complex-wide problems. Dialogue will continue between the M&Os, DOE, and other regulatory agencies to work jointly toward the goal of storing, treating, and immobilizing HLW for disposal in an environmentally sound, safe, and cost effective manner.

  17. Level 1 Tornado PRA for the High Flux Beam Reactor

    SciTech Connect (OSTI)

    Bozoki, G.E.; Conrad, C.S.

    1994-05-01T23:59:59.000Z

    This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data, were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.

  18. High-Level Waste Systems Plan. Revision 7

    SciTech Connect (OSTI)

    Brooke, J.N.; Gregory, M.V.; Paul, P.; Taylor, G.; Wise, F.E.; Davis, N.R.; Wells, M.N.

    1996-10-01T23:59:59.000Z

    This revision of the High-Level Waste (HLW) System Plan aligns SRS HLW program planning with the DOE Savannah River (DOE-SR) Ten Year Plan (QC-96-0005, Draft 8/6), which was issued in July 1996. The objective of the Ten Year Plan is to complete cleanup at most nuclear sites within the next ten years. The two key principles of the Ten Year Plan are to accelerate the reduction of the most urgent risks to human health and the environment and to reduce mortgage costs. Accordingly, this System Plan describes the HLW program that will remove HLW from all 24 old-style tanks, and close 20 of those tanks, by 2006 with vitrification of all HLW by 2018. To achieve these goals, the DWPF canister production rate is projected to climb to 300 canisters per year starting in FY06, and remain at that rate through the end of the program in FY18, (Compare that to past System Plans, in which DWPF production peaked at 200 canisters per year, and the program did not complete until 2026.) An additional $247M (FY98 dollars) must be made available as requested over the ten year planning period, including a one-time $10M to enhance Late Wash attainment. If appropriate resources are made available, facility attainment issues are resolved and regulatory support is sufficient, then completion of the HLW program in 2018 would achieve a $3.3 billion cost savings to DOE, versus the cost of completing the program in 2026. Facility status information is current as of October 31, 1996.

  19. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01T23:59:59.000Z

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  20. Vitrification and testing of a Hanford high-level waste sample, Part 2: Phase identification and waste form leachability

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Crum, Jarrod V.; Bredt, Paul; Greenwood, Lawrence R.; Smith, H D.

    2005-10-01T23:59:59.000Z

    A sample of Hanford high-level radioactive waste from Tank AZ-101 was vitrified into borosilicate glass and tested to demonstrate its compliance with regulatory requirements. Compositional aspects of this study were reported in Part 1 of this paper. This second and last part presents results of crystallinity and leachability testing. Crystallinity was quantified in a glass sample heat treated according to the cooling curve of glass at the centerline of a Hanford Waste Treatment Plant canister. By quantitative X-ray diffraction analysis and image analysis applied to scanning electron microscopy micrographs, the sample contained 7 mass% of spinel, predominantly trevorite. Glass leachability was measured with the product consistency test and the toxicity characteristic leaching procedure. Measured data and model estimates were in reasonable agreement. Leachability results were close to those obtained for the nonradioactive simulant. Models were used to elucidate the effects of glass composition of spinel formation and to estimate effects of spinel formation on glass leachability.

  1. Primary Research Paper Untangling the confounding effects of urbanization and high water level on

    E-Print Network [OSTI]

    McMaster University

    Primary Research Paper Untangling the confounding effects of urbanization and high water level form 1 December 2004; accepted 15 December 2004 Key words: multiple stressors, water level

  2. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  3. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    E-Print Network [OSTI]

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01T23:59:59.000Z

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  4. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.; Lamar, D.A.; Elliott, M.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-31T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  5. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.R.; Lamar, D.A.; Elliott, M.L.

    1994-04-01T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  6. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31T23:59:59.000Z

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  7. An international initiative on long-term behavior of high-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    international initiative on long-term behavior of high-level nuclear waste glass. An international initiative on long-term behavior of high-level nuclear waste glass. Abstract:...

  8. Coupled Model for Heat and Water Transport in a High Level Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report...

  9. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    SciTech Connect (OSTI)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01T23:59:59.000Z

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  10. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 1: Low and intermediate level radioactive waste management

    SciTech Connect (OSTI)

    Alexandre, D.; Baker, R.; Kohout, R.; Marke, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Sections of the proceedings include the following: engineered and geological barriers; radioactive transportation and related issues; national programs for HLW and spent fuel management; recent advances in HLW treatment; science and engineering of the repository system; national examples of spent fuel storage systems; disposal systems for HLW and spent fuel--design and status; reprocessing and its influence on waste quantities; qualification methods for HLW; site characterization and underground testing; science and engineering of HLW and spent fuel storage systems; transmutation and separations of radioactivity; disposal site selection approaches and issues; and safety assessments and methodology for repositories.

  11. Improved Alumina Loading in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Kim, D.; Vienna, J.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Peeler, D.K.; Fox, K.M. [Savannah River National Laboratory, Aiken, SC (United States); Aloy, A.; Trofimenko, A.V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Gerdes, K.D. [EM-21, Office of Waste Processing, U.S. Department of Energy, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    Recent tank retrieval, blending, and treatment strategies at both the Savannah River Site (SRS) and Hanford have identified increased amounts of high-Al{sub 2}O{sub 3} waste streams that are scheduled to be processed through their respective high-level waste (HLW) vitrification facilities. It is well known that the addition of small amounts of Al{sub 2}O{sub 3} to borosilicate glasses generally enhances the durability of the waste glasses. However, at higher Al{sub 2}O{sub 3} concentrations nepheline (NaAlSiO{sub 4}) formation can result in a severe deterioration of the chemical durability of the slowly cooled glass near the center of the canister. Additionally, higher concentrations of Al{sub 2}O{sub 3} generally increase the liquidus temperature of the melt and decrease the processing rate. Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Khlopin Radium Institute (KRI) are jointly performing laboratory and scaled-melter tests, through US Department of Energy, EM-21 Office of Waste Processing program, to develop glass formulations with increased Al{sub 2}O{sub 3} concentrations. These glasses are formulated for specific DOE waste compositions at Hanford and Savannah River Site. The objectives are to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints such as viscosity, liquidus temperature, and glass durability. This paper summarizes the results of recent tests of simulated Hanford HLW glasses containing up to 26 wt% Al{sub 2}O{sub 3} in glass. In summary: Glasses with Al{sub 2}O{sub 3} loading ranging from 25 to 27 wt% were formulated and tested at a crucible scale. Successful glass formulations with up to 26 wt% Al{sub 2}O{sub 3} that do not precipitate nepheline during CCC treatment and had spinel crystals 1 vol% or less after 24 hr heat treatment at 950 deg. C were obtained. The selected glass, HAL-17 with 26 wt% Al{sub 2}O{sub 3}, had viscosity and electrical conductivity within the boundaries for adequate processing in the Joule heated melters operated at 1150 deg. C. This HAL-17 glass was successfully processed using small-scale (SMK) and larger scale (EP-5) melters. There was no indication of spinel settling during processing. The product glass samples from these melter tests contained 1 to 4 vol% spinel crystals that are likely formed during cooling. The PCT tests on the product glasses are underway. The present study demonstrated that it is possible to formulate the glasses with up to 26 wt% Al{sub 2}O{sub 3} that satisfy the property requirements and is processable with Joule-heated melters operated at 1150 deg. C. The 'nepheline discriminator' for HAL-17 glass is 0.45, which supports that claim that the current rule ('nepheline discriminator' < 0.62) is too restrictive. Considering that the cost of HLW treatment is highly dependent on loading of waste in glass, this result provides a potential for significant cost saving for Hanford. The maximum Al{sub 2}O{sub 3} loading that can be achieved will also depend on concentrations of other components in wastes. For example, the loading of waste used in this study was also limited by the spinel crystallization after 950 deg. C 24 hr heat treatment, which suggests that the concentrations of spinel-forming components such as Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, NiO, ZnO, and MnO would be critical in addition to Al{sub 2}O{sub 3} for the maximum Al{sub 2}O{sub 3} loading achievable. The observed glass production rate per unit melter surface area of 0.75 MT/(d.m{sup 2}) for SMK test is comparable to the design capacity of WTP HLW melters at 0.8 MT/(d.m{sup 2}). However, the test with EP-5 melter achieved 0.38 MT/(d.m{sup 2}), which is roughly a half of the WTP design capacity. This result may imply that the glass with 26 wt% Al{sub 2}O{sub 3} may not achieve the WTP design production rate. However, this hypothesis is not conclusive because of unknown effects of melter size and operation

  12. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  13. Development of Crystal-Tolerant High-Level Waste Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

    2010-12-17T23:59:59.000Z

    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ?10-?m crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation of the crystal-tolerant HLW glasses for higher waste loading. A physical modeling effort revealed that the Stokes and Richardson-Zaki equations can be used to adequately predict the accumulation rate of spinel crystals of different sizes and concentrations in the glass discharge riser of HLW melters. The determined shape factor for the glass beads was only 0.73% lower than the theoretical shape factor for a perfect sphere. The shape factor for the spinel crystals matched the theoretically predicted value to within 10% and was smaller than that of the beads, given the larger drag force caused by the larger surface area-to-volume ratio of the octahedral crystals. In the hindered settling experiments, both the glass bead and spinel suspensions were found to follow the predictions of the Richardson-Zaki equation with the exponent n = 3.6 and 2.9 for glass beads and spinel crystals, respectively.

  14. High CO2 levels in the Proterozoic atmosphere estimated from

    E-Print Network [OSTI]

    Kaufman, Alan Jay

    a Proterozoic (,1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope such as carbon dioxide and methane must have been much higher1,2 . However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion

  15. Production Cost Modeling for High Levels of Photovoltaics Penetration

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Milford, J.

    2008-02-01T23:59:59.000Z

    The goal of this report is to evaluate the likely avoided generation, fuels, and emissions resulting from photovoltaics (PV) deployment in several U.S. locations and identify new tools, methods, and analysis to improve understanding of PV impacts at the grid level.

  16. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect (OSTI)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01T23:59:59.000Z

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  17. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    SciTech Connect (OSTI)

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04T23:59:59.000Z

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  18. atlas high level: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    s of data per board from the detector front-end on multiple high-speed serial links, low-latency data processing, data buffering, and data transmission to the ATLAS trigger and...

  19. A high-level framework for PDE-constrained optimisation

    E-Print Network [OSTI]

    Simon Funke

    2013-02-21T23:59:59.000Z

    Its main features are an intuitive mathematical interface, a high degree of ... Engineering; J.6 [Computer Applications]: Computer-Aided Engineering; D.2 ... By contrast, the adjoint method computes the gradient of a scalar functional with a.

  20. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect (OSTI)

    NONE

    1988-12-01T23:59:59.000Z

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  1. Liquidus Temperature and Primary Crystallization Phases in High-Zirconia High-Level Waste Borosilicate Glasses

    SciTech Connect (OSTI)

    Plaisted, Trevor J.; Hrma, Pavel R.; Vienna, John D.; Jiricka, Antonin

    1999-12-09T23:59:59.000Z

    Liquidus temperature (TL) studies of high-Zr high-level waste (HLW) borosilicate glasses have identified three primary phases: baddelyite (ZrO2), zircon (ZrSiO4), and alkali-zirconium silicates, such as parakeldyshite (Na2ZrSi2O7). Using published TL data for HLW glasses with these primary phases, we have computed partial specific TLs for major glass components. On the Na2O-SiO2-ZrO2 submixture, we have determined approximate positions of the boundaries between the baddelyite, zircon, and parakeldyshite primary phase fields. The maximum that can dissolve at 1150?C in a borosilicate HLW glass subjected to common processability and acceptability constraints appears to be 16.5 mass% ZrO2.

  2. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    SciTech Connect (OSTI)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01T23:59:59.000Z

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  3. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

  4. High-Level Waste Corporate Board Presentation Archive | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, Senior FellowDepartmentEnergy

  5. West Valley Demonstration Project High-Level Waste Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-IndiaVALUEWater Power ProgramDecemberWendyDRAFT_19507_1

  6. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1AResearchStudy of theAAAAA

  7. High Level Waste Corporate Board Newsletter - 06/03/08

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office of Environmental

  8. High Level Waste Corporate Board Newsletter - 06/03/09

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office of EnvironmentalUPCOMING

  9. High Level Waste Corporate Board Newsletter - 09/11/08

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office of

  10. NERC Presentation: Accommodating High Levels of Variable Generation,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3ServicesNEET FY 12a-12Environmental Policy

  11. High Level Architecture (HLA) federation with Umbra and OPNET federates.

    SciTech Connect (OSTI)

    Oppel, Fred John III; Hart, Brian; Van Leeuwen, Brian P.

    2004-03-01T23:59:59.000Z

    Network-centric systems that depend on mobile wireless ad hoc networks for their information exchange require detailed analysis to support their development. In many cases, this critical analysis is best provided with high-fidelity system simulations that include the effects of network architectures and protocols. In this research, we developed a high-fidelity system simulation capability using an HLA federation. The HLA federation, consisting of the Umbra system simulator and OPNET Modeler network simulator, provides a means for the system simulator to both affect, and be affected by, events in the network simulator. Advances are also made in increasing the fidelity of the wireless communication channel and reducing simulation run-time with a dead reckoning capability. A simulation experiment is included to demonstrate the developed modeling and simulation capability.

  12. Level Structure of 103Ag at high spins

    E-Print Network [OSTI]

    S. Ray; N. S. Pattabiraman; Krishichayan; A. Chakraborty; S. Mukhopadhyay; S. S. Ghugre; S. N. Chintalapudi; A. K. Sinha; U. Garg; S. Zhu; B. Kharraja; D. Almehed

    2007-12-07T23:59:59.000Z

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three experimental signatures of chirality in the nuclei; however microscopic calculations are indicative of a magnetic phenomenon

  13. High Level Computational Chemistry Approaches to the Prediction of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'iPresented By:Science Bowl|HighEnergetic

  14. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  15. HLW-OVP-97-0068 High Level Waste Management Division High-Level Waste System Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV and evolution studied through6 C

  16. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect (OSTI)

    Barariu, Gheorghe [National Authority for Nuclear Activities - Subsidiary of Technology and Engineering for Nuclear Projects - SITON, 409 Atomistilor Str., P.O. Box 5204, Mg4, Magurele (Romania)] [National Authority for Nuclear Activities - Subsidiary of Technology and Engineering for Nuclear Projects - SITON, 409 Atomistilor Str., P.O. Box 5204, Mg4, Magurele (Romania)

    2013-07-01T23:59:59.000Z

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  17. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04T23:59:59.000Z

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

  18. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Brady, Patrick Vane [Sandia National Laboratories, Albuquerque, NM] [Sandia National Laboratories, Albuquerque, NM; Arnold, Bill Walter [Sandia National Laboratories, Albuquerque, NM] [Sandia National Laboratories, Albuquerque, NM

    2012-09-01T23:59:59.000Z

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  19. Evaluation of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive waste

    SciTech Connect (OSTI)

    Triplett, M.B.; Smith, R.I.

    1984-04-01T23:59:59.000Z

    The primary mission selected by DOE for the monitored retrieval storage (MRS) system is to provide an alternative means of storage in the event that the repository program is delayed. The MRS concepts considered were the eight concepts included in the MRS Research and Development Report to Congress (DOE 1983). These concepts are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. Conceptual design analyses were performed for the candidate concepts using a common set of design requirements specified in consideration of the MRS mission.

  20. A postmortem assessment of environmental compliance of a high-level radioactive waste repository, Hanford Site, Washington 

    E-Print Network [OSTI]

    Petrini, Rudolf Harald Wilhelm

    1988-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pertinent legislation . Radionuclide concentrations at the accessible environment 74 79 81 84 97 111 111 115 CONCLUSIONS 142 REFERENCES 147 APPENDIX 150 Development of expressions for regulatory Rf and Krt: generic repository . Development... of expressions for regulatory Rf and Ku in presence of matrix diffusion: generic repository . . . . . . . . . . . Development of expressions for regulatory Rf and Kri: Cohasset flow top. . . . . . . . . . . . . . . . . Development of expressions...

  1. A postmortem assessment of environmental compliance of a high-level radioactive waste repository, Hanford Site, Washington

    E-Print Network [OSTI]

    Petrini, Rudolf Harald Wilhelm

    1988-01-01T23:59:59.000Z

    to the accessible environment, a period of time during which the waste must be contained within the barrier, and acceptable release rates from the barrier. Based on these generic standards, a postmortem assessment of the potential for environmental compliance... regulatory time frame. The degree of regulatory geochemical retardation needed in the system in order to guarantee compliance with cumulative mass release limits at the accessible environment over a period of 10, 000 years is evaluated for the nuclides...

  2. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

    Office of Environmental Management (EM)

    EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic wastesodium...

  3. Conformance Tool High Level Design Document: IEC 61850 Cyber Security Acceleration Project

    SciTech Connect (OSTI)

    Edgar, Thomas W.

    2013-05-01T23:59:59.000Z

    This document is the high level design document for the Pacific Northwest National Laboratory (PNNL) IEC 62351-3, 4 and 6 standards conformance test software toolkit.

  4. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1995-03-01T23:59:59.000Z

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  5. User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)

    SciTech Connect (OSTI)

    Icenhour, A.S.; Tharp, M.L.

    1996-08-01T23:59:59.000Z

    The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

  6. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  7. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  8. An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste Glass Compositions

    E-Print Network [OSTI]

    Sheffield, University of

    An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste of Mo in glasses containing simplified simulated high level nuclear waste (HLW) streams has been originating from the reprocessing of spent nuclear fuel. Experiments using simulated nuclear waste streams

  9. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect (OSTI)

    WILLIS, W.L.

    2000-06-15T23:59:59.000Z

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  10. Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes?

    E-Print Network [OSTI]

    Alpuente, María

    Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes. E-mail: fjoliver@dsic.upv.es. Abstract.We introduce a class of high level Petri nets, called reconfig- urable nets, that can dynamically modify their own structure by rewrit- ing

  11. High-Level Power Estimation with Interconnect Effects Kavel M. Buyuksahin

    E-Print Network [OSTI]

    Najm, Farid N.

    the predicted (at RTL) power against that measured using SPICE. An average er- ror of 14.4% is obtainedHigh-Level Power Estimation with Interconnect Effects Kavel M. B¨uy¨uks¸ahin ECE Dept.najm@toronto.edu ABSTRACT We extend earlier work on high-level average power esti- mation to include the power due

  12. Characteristics Data Base: Programmer's guide to the High-Level Waste Data Base

    SciTech Connect (OSTI)

    Jones, K.E. (DataPhile, Inc., Knoxville, TN (USA)); Salmon, R. (Oak Ridge National Lab., TN (USA))

    1990-08-01T23:59:59.000Z

    The High-Level Waste Data Base is a menu-driven PC data base developed as part of OCRWM's technical data base on the characteristics of potential repository wastes, which also includes spent fuel and other materials. This programmer's guide completes the documentation for the High-Level Waste Data Base, the user's guide having been published previously. 3 figs.

  13. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect (OSTI)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09T23:59:59.000Z

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  14. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30T23:59:59.000Z

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  15. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    SciTech Connect (OSTI)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-02-26T23:59:59.000Z

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used.

  16. The Effect of Temperature and Composition on Spinel Concentration and Crystal Size in High-Level Waste Glass

    SciTech Connect (OSTI)

    Mika, M (.); Patek, M (.); Maixner, J (.); Randakova, S (.); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Anibal Taboas, Rick Vanbrabant, Gary Benda.

    2001-01-01T23:59:59.000Z

    High-level radioactive wastes can be safely immobilized in alkali-aluminoborosilicate glass. To reduce the cost of the vitrification process, the waste loading should be maximized. This can be done by optimizing the process using mathematical modeling. The main objective of our work was to determine one of the necessary inputs for the mathematical model, which is the effect of temperature and composition on the concentration of spinel crystals and their size. We prepared six glasses with a different content of Li+, Na+, Mg2+, Ni2+, Cr3+, and SiIV and studied the effect of composition on the temperature dependence of spinel equilibrium concentration in glass by X-ray powder diffraction. The size of crystals was determined using optical microscopy. It was found that the temperature effect on spinel concentration significantly increased as the content of Ni2+ or Mg2+ in glass increased and slightly decreased as the content of Cr3+ increased and Li+ and Na+ content decreased. Both Ni2+ and Cr3+ acted as nucleating agents, producing a huge number of tiny spinel crystals ({approx}2 im). In particular, Ni2+ seems to very significantly facilitate spinel crystallization.

  17. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    SciTech Connect (OSTI)

    Sweeney, Robin L,; Lechel, David J.

    2003-02-25T23:59:59.000Z

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

  18. EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS

    SciTech Connect (OSTI)

    Barnes, Jennifer; Kasen, Daniel [Departments of Physics and Astronomy, 366 LeConte Hall, University of California, Berkeley, CA 94720 (United States)

    2013-09-20T23:59:59.000Z

    The coalescence of compact objects is a promising astrophysical source of detectable gravitational wave signals. The ejection of r-process material from such mergers may lead to a radioactively powered electromagnetic counterpart signal which, if discovered, would enhance the science returns. As very little is known about the optical properties of heavy r-process elements, previous light-curve models have adopted opacities similar to those of iron group elements. Here we consider the effect of heavier elements, particularly the lanthanides, which increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time-dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses {approx}10{sup -3}-10{sup -1} M{sub Sun} and velocities {approx}0.1-0.3 c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted toward the infrared bands due to strong optical line blanketing, and the colors at later times are representative of a blackbody near the recombination temperature of the lanthanides (T {approx} 2500 K). We further consider the case in which a second mass outflow, composed of {sup 56}Ni, is ejected from a disk wind, and show that the net result is a distinctive two component spectral energy distribution, with a bright optical peak due to {sup 56}Ni and an infrared peak due to r-process ejecta. We briefly consider the prospects for detection and identification of these transients.

  19. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A. (ed.)

    1991-01-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  20. Saturated absorption at nanowatt power levels using metastable xenon in a high-finesse optical cavity

    E-Print Network [OSTI]

    G. T. Hickman; T. B. Pittman; J. D. Franson

    2014-09-19T23:59:59.000Z

    Strong saturated absorption at nanowatt power levels has been demonstrated using metastable xenon in a high-finesse optical cavity. The use of metastable xenon allows a high quality factor of Q=2*10^8 to be achieved at relatively high atomic densities without any contamination or damage to the optical surfaces, which is often a problem when using high-density rubidium or other alkali atoms. This technique provides a relatively straightforward way to produce nonlinearities at the single-photon level with possible applications in quantum communications and computing.

  1. Assigning intonation elements and prosodic phrasing for English speech synthesis from high level linguistic input 

    E-Print Network [OSTI]

    Black, Alan W; Taylor, Paul A

    This paper describes a method for generating intonation events and prosodic phrasing from a high level linguistic description. Specifically, the input consists of information normally available from linguistic processing: ...

  2. aging high-level waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Corrosion Issues in High-level Nuclear Waste Containers. Open Access Theses and Dissertations Summary: ??In this...

  3. Feasibility of lateral emplacement in very deep borehole disposal of high level nuclear waste

    E-Print Network [OSTI]

    Gibbs, Jonathan Sutton

    2010-01-01T23:59:59.000Z

    The U.S. Department of Energy recently filed a motion to withdraw the Nuclear Regulatory Commission license application for the High Level Waste Repository at Yucca Mountain in Nevada. As the U.S. has focused exclusively ...

  4. Planning and scheduling of concurrent high-level activities for UUV mission operations

    E-Print Network [OSTI]

    Chang, Larry, S. M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This thesis develops a mission planning and scheduling algorithm that enables a single Unmanned Undersea Vehicle (UUV) to concurrently perform high level activities, while managing various resources in a dynamic ocean ...

  5. Building a High-Level Dataflow System on top of Map-Reduce: The Pig Experience

    E-Print Network [OSTI]

    Olston, Christopher

    Building a High-Level Dataflow System on top of Map-Reduce: The Pig Experience Alan F. Gates, Olga are open-source projects administered by the Apache Software Foundation. This paper describes

  6. New optics technology opens door to high-resolution atomic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optics technology opens door to high-resolution atomic-level hard X-ray studies June 8, 2015 Tweet EmailPrint An international collaboration involving two U.S. Department of Energy...

  7. Functional specificity for high-level linguistic processing in the human brain

    E-Print Network [OSTI]

    Fedorenko, Evelina G.

    Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain ...

  8. Design of a high-level waste repository system for the United States

    E-Print Network [OSTI]

    Driscoll, Michael J.

    1988-01-01T23:59:59.000Z

    This report presents a conceptual design for a High Level Waste disposal system for fuel discharged by U.S. commercial power reactors, using the Yucca Mountain repository site recently designated by federal legislation. ...

  9. Reading Between the Lines: Learning to Map High-level Instructions to Commands

    E-Print Network [OSTI]

    Branavan, Satchuthanan R.

    In this paper, we address the task of mapping high-level instructions to commands in an external environment. Processing these instructions is challenging—they posit goals to be achieved without specifying the steps required ...

  10. High-Level Fusion Physics and Materials Interface Challenges July 27, 2012

    E-Print Network [OSTI]

    High-Level Fusion Physics and Materials Interface Challenges July 27, 2012 a Fusion Nuclear Science Facility (FNSF), to test materials under severe and fusion.S. fusion program complete the near term critical research and development (R

  11. OPERATING EXPERIENCE LEVEL 3, Requalification Test Failure of Certain High Efficiency Particulate Air (HEPA) Filters- Update

    Broader source: Energy.gov [DOE]

    Operating Experience Level 3 (OE-3) document provides information regarding the previous requalification test failure and subsequent successful requalification, of certain high efficiency particulate air (HEPA) filter models manufactured by Flanders Corporation.

  12. Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste

    SciTech Connect (OSTI)

    Peters, T.B.

    2001-09-10T23:59:59.000Z

    This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

  13. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect (OSTI)

    Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  14. HighLevel Power Estimation with Interconnect Effects # Kavel M. B

    E-Print Network [OSTI]

    Najm, Farid N.

    ) power against that measured using SPICE. An average er­ ror of 14.4% is obtained for the averageHigh­Level Power Estimation with Interconnect Effects # Kavel M. B Ë? uy Ë? uksâ?ºahin ECE Dept.najm@toronto.edu ABSTRACT We extend earlier work on high­level average power esti­ mation to include the power due

  15. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    SciTech Connect (OSTI)

    CALMUS, R.B.

    1999-05-18T23:59:59.000Z

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward.

  16. The tolerance of two varieties of cotton to relatively high levels of sodium and magnesium 

    E-Print Network [OSTI]

    Parekh, Manhar C

    1969-01-01T23:59:59.000Z

    THE TO'ERANCE OF TNO VARIETIES OF COTTON TO RELATIVELY HIGH LEVELS OF SODIUM AND MAGNESIUM A Tnesis by Msnhar C. Parekh Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree...) (Nember) (Nemb ) August 1969 ABSTRACT The Tolerance of Two Varieties of Cotton to Relatively High Levels of Sodium and Magnesium. (August 1969) Masher C. Parekh, B. S. , Gujarat University, Directed by: Dr. H. E. Joham An experiment was conducted...

  17. A critical concern for embedded sys tems is the need to deliver high levels of per

    E-Print Network [OSTI]

    Mudge, Trevor

    10 A critical concern for embedded sys­ tems is the need to deliver high levels of per­ formance voltage. Because dynam­ ic energy scales quadratically with supply volt­ age, DVS can significantly reduce energy use. 2 Enabling systems to run at multiple fre­ quency and voltage levels is challenging

  18. Towards High-Level Models For Low-Power Systems Florence Maraninchi

    E-Print Network [OSTI]

    Towards High-Level Models For Low-Power Systems Florence Maraninchi Computer Science, Joseph at Verimag addresses model-extraction from SystemC, to connect to verification tools. This work is done of transaction-level-modeling for systems-on-a-chip (TLM). We develop models in SystemC, or using the synchronous

  19. Product consistency test of fully radioactive high-sodium content borosilicate glass K-26 N.V. Ojovan1

    E-Print Network [OSTI]

    Sheffield, University of

    Scientific and Industrial Association "Radon", Moscow, Russia. 2 Immobilisation Science Laboratory implemented on an experimental scale as part of the research program of SIA `Radon' on the immobilisation designed to immobilise intermediate level operational waste from nuclear power plants. Some tons

  20. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  1. EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC

    Broader source: Energy.gov [DOE]

    This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

  2. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  3. Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-07-01T23:59:59.000Z

    This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

  4. Determination of total cyanide in Hanford Site high-level wastes

    SciTech Connect (OSTI)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01T23:59:59.000Z

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  5. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  6. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01T23:59:59.000Z

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  7. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  8. Cross flow filtration of aqueous radioactive tank wastes

    SciTech Connect (OSTI)

    McCabe, D.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Reynolds, B.A. [Battelle Pacific Northwest Lab., Richland, WA (United States); Todd, T.A. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Wilson, J.H. [Oak Ridge National Lab., TN (United States)

    1997-02-01T23:59:59.000Z

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic.

  9. Radioactive Technetium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation SafetyFP

  10. Radioactive Technetium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation SafetyFPVA

  11. Regulatory compliance in the design of packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1993-06-01T23:59:59.000Z

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

  12. Radioactive Materials License Commitments

    E-Print Network [OSTI]

    Radioactive Materials License Commitments for The University of Texas at Austin May 2009 July 2009 in the use of radioactive materials. In July 1963, the State of Texas granted The University of Texas at Austin a broad radioactive materials license for research, development and instruction. While this means

  13. Phase I high-level waste pretreatment and feed staging plan

    SciTech Connect (OSTI)

    Manuel, A.F.

    1996-02-05T23:59:59.000Z

    This document provides the preliminary planning basis for the U.S. Department of Energy (DOE) to provide a sufficient quantity of high-level waste feed to the privatization contractor during Phase I. By this analysis of candidate high-level waste feed sources, the initial quantity of high-level waste feed totals more than twice the minimum feed requirements. The flexibility of the current infrastructure within tank farms provides a variety of methods to transfer the feed to the privatization contractor`s site location. The amount and type of pretreatment (sludge washing) necessary for the Phase I processing can be tailored to support the demonstration goals without having a significant impact on glass volume (i.e., either inhibited water or caustic leaching can be used).

  14. Technical baseline description of high-level waste andlow-activity waste feed mobilization and delivery

    SciTech Connect (OSTI)

    Papp, I.G. [Numatec Hanford Corporation, Richland, WA 99352 (United States)

    1997-06-01T23:59:59.000Z

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces.

  15. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    SciTech Connect (OSTI)

    Horwitz, E. P.; Schulz, W. W.

    1998-06-18T23:59:59.000Z

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

  16. Tradeoffs in the design of a system for high level language interpretation

    SciTech Connect (OSTI)

    Osorio, F.C.C.; Patt, Y.N.

    1983-01-01T23:59:59.000Z

    The problem of designing a system for high-level language interpretation (HLLI) is considered. First, a model of the design process is presented where several styles of design, e.g. turing machine interpretation, CISC architecture interpretation and RISC architecture interpretation are treated uniformly. Second, the most significant characteristics of HLLI are analysed in the context of different design styles, and some guidelines are presented on how to identify the most suitable design style for a given high-level language problem. 12 references.

  17. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect (OSTI)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  18. High-Level Waste Corporate Board, Dr. Inᅢᄅs Triay

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approved on 24 July 2008 1 Office ofHighHigh-Level

  19. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect (OSTI)

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01T23:59:59.000Z

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  20. Role of alkyl alcohol on viscosity of silica-based chemical gels for decontamination of highly radioactive nuclear facilities

    SciTech Connect (OSTI)

    Choi, B. S.; Yoon, S. B.; Jung, C. H.; Lee, K. W.; Moon, J. K. [Div. of Decontamination and Decommissioning Technology Development, Korea Atomic Energy Research Inst., Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    Silica-based chemical gel for the decontamination of nuclear facilities was prepared by using fumed silica as a viscosifier, a 0.5 M Ce (IV) solution dissolved in concentrated nitric acid as a chemical decontamination agent, and tripropylene glycol butyl ether (TPGBE) as a co-viscosifier. A new effective strategy for the preparation of the chemical gel was investigated by introducing the alkyl alcohols as organic solvents to effectively dissolve the co-viscosifier. The mixture solution of the co-viscosifier and alkyl alcohols was more effective in the control of viscosity than that of the co-viscosifier only in gel. Here, the alkyl alcohols played a key role as an effective dissolution solvent for the co-viscosifier in the preparation of the chemical gel, resulting in a reducing of the amount of the co-viscosifier and gel time compared with that of the chemical gel prepared without the alkyl alcohols. It was considered that the alkyl alcohols contributed to the effective dissolution of the co-viscosifier as well as the homogeneous mixing in the formation of the gel, while the co-viscosifier in an aqueous media of the chemical decontamination agent solution showed a lower solubility. The decontamination efficiency of the chemical gels prepared in this work using a multi-channel analyzer (MCA) showed a high decontamination efficiency of over ca. 94% and ca. 92% for Co-60 and Cs-137 contaminated on surface of the stainless steel 304, respectively. (authors)

  1. The kinetics of spinel crystallization from a high-level waste glass

    SciTech Connect (OSTI)

    Reynolds, J.G. [Univ. of Idaho, Moscow, ID (United States). Div. of Soils; Hrma, P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-31T23:59:59.000Z

    The kinetics of spinel crystallization from a molten high-iron simulated high-level nuclear waste glass was studied using isothermal heat treatments. Optical microscopy with image analysis was used to measure volume fraction of spinel as a function of heat treatment time and temperature. The Johnson-Mehl-Avrami equation was fitted to data to determine kinetic coefficients for spinel crystallization. The liquidus temperature and Avrami number are T{sub L} = 1,337K and n = 1.5.

  2. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    SciTech Connect (OSTI)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07T23:59:59.000Z

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  3. Low-Level Radioactive Waste Management Criteria Review and Approach Document, Rev. 0, EA CRAD 31-11, April 30, 2015

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheney suggesting a billVehicles | Department of Energy

  4. Introduction to naturally occurring radioactive material

    SciTech Connect (OSTI)

    Egidi, P.

    1997-08-01T23:59:59.000Z

    Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

  5. Post-compression of high energy terawatt-level femtosecond pulses and application to high order harmonic generation

    E-Print Network [OSTI]

    Hort, Ond?ej; Cabasse, Amélie; Petit, Stéphane; Mével, Eric; Descamps, Dominique; Constant, Eric

    2015-01-01T23:59:59.000Z

    We perform a post-compression of high energy pulses by using optical-field ionization of low pressure helium gas in a guided geometry. We apply this approach to a TW chirped-pulse-amplification based Ti:Sapphire laser chain and show that spectral broadening can be controlled both with the input pulse energy and gas pressure. Under optimized conditions, we generate 10 fs pulses at TW level directly under vacuum and demonstrate a high stability of the post compressed pulse duration. These high energy post-compressed pulses are thereafter used to perform high harmonic generation in a loose focusing geometry. The XUV beam is characterized both spatially and spectrally on a single shot basis and structured continuous XUV spectra are observed.

  6. Scheduling and Optimizing Stream Programs on Multicore Machines by Exploiting High-Level

    E-Print Network [OSTI]

    (SDF) high-level abstraction of stream programs to design adaptive stream programs for energy reduction traffic on the interconnection fabric, such as networks on-chip. While SDF abstractions can help optimize stream programs on multicore machines, SDF is more suitable for describing stream data

  7. Unified High-Level Synthesis and Module Placement for Defect-Tolerant Microfluidic Biochips*

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    49.2 825 Unified High-Level Synthesis and Module Placement for Defect-Tolerant Microfluidic University, Durham, NC 27708, USA {fs, krish}@ee.duke.edu ABSTRACT Microfluidic biochips promise on the automated design of droplet-based microfluidic biochips. We present a synthesis methodology that unifies

  8. Inferring Variable Conflicts for Local Search from High-Level Models

    E-Print Network [OSTI]

    Flener, Pierre

    Inferring Variable Conflicts for Local Search from High-Level Models Magnus °Agren, Pierre Flener in local search algorithms are often shrunk by only considering moves modifying variables that actually for speeding up search. State-of-the-art solutions to, e.g., the progressive party problem exploit

  9. Dual-level parallelism for high-order CFD methods q

    E-Print Network [OSTI]

    Dong, Suchuan "Steven"

    MP shared-memory parallelization and employ a work- load-splitting scheme that reduces the OpenDual-level parallelism for high-order CFD methods q Suchuan Dong, George Em Karniadakis * Division-order methods and implemented in the spectral/hp element framework to take advantage of the hierarchical

  10. Columbia University TRECVID-2005 Video Search and High-Level Feature Extraction

    E-Print Network [OSTI]

    Chang, Shih-Fu

    1 Columbia University TRECVID-2005 Video Search and High-Level Feature Extraction Shih-Fu Chang and Multimedia Lab, Columbia University http://www.ee.columbia.edu/dvmm Oct. 28th 2005 Descriptions of Submitted. Search I_C_2_ColumbiaI1_1: Interactive system, using text search (against ASR/MT), content- based image

  11. ABDUCTIVE LOGIC PROGRAMMING Abductive Logic Programming is a high level knowledge representation

    E-Print Network [OSTI]

    Moraitis, Pavlos

    ABDUCTIVE LOGIC PROGRAMMING Abductive Logic Programming is a high level knowledge representation framework that allows us to solve problems declaratively based on abductive reasoning. It extends normal predicates. Problem solving is effected by deriving hypotheses on these abducible predicates (abductive hy

  12. AN EXPERIMENTAL TOOLCHAIN BASED ON HIGH-LEVEL DATAFLOW MODELS OF COMPUTATION FOR HETEROGENEOUS MPSOC

    E-Print Network [OSTI]

    Boyer, Edmond

    a high-level dataflow language. The experimental platform is based on a 5-core Texas Instruments OMAP4 of functionalities and processing capabilities while respecting a fixed power budget of a few Watts. Recent improvements in em- bedded systems are due to MPSoCs that combine general purpose cores, dedicated cores

  13. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect (OSTI)

    Han, F.C.

    1996-09-30T23:59:59.000Z

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  14. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-04-09T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  15. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-06-02T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  16. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  17. ISO/IEC 15909-2, concepts of high-level nets and CPN Laure Petrucci

    E-Print Network [OSTI]

    Kindler, Ekkart

    ISO/IEC 15909-2, concepts of high-level nets and CPN Laure Petrucci LIPN, University Paris 13 Villetaneuse, France L. Petrucci PNS'07 -- 26 june 2007 1 / 11 #12;Outline Outline 1 Genesis Status of ISO/IEC 2 / 11 #12;Genesis Status of ISO/IEC 15909 Status of ISO/IEC 15909 Standard in 3 parts Part 1

  18. Enabling High-Level Application Development in the Internet of Things

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Nord Europe, France firstname.lastname@inria.fr Abstract. The sensor networking field is evolving limited subsets of above men- tioned challenges. In this paper, we propose a multi-stage modelT appli- cation development process. Key words: Internet of Things, Sensor networks, High-level program

  19. High-Level Information An Approach for Integrating Front-End and Back-End Compilers

    E-Print Network [OSTI]

    Li, Zhiyuan

    High-Level Information ­ An Approach for Integrating Front-End and Back-End Compilers Sangyeun Cho-end and back-end compilers by passing front-end information to the back-end compiler. Importing this information into an existing back- end leverages the state-of-the-art analysis and transforma- tion

  20. Issues in Performance Certification for High-Level Automotive Control Software Bruce W. Weide1

    E-Print Network [OSTI]

    on the front lines of the automotive industry. We were struck by the fact that there seems to be one widelyIssues in Performance Certification for High-Level Automotive Control Software Bruce W. Weide1 Clemson University Clemson, SC USA murali@cs.clemson.edu 3 Center for Automotive Research Mechanical