National Library of Energy BETA

Sample records for high intensity electron

  1. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  2. High-resolution electron-ion coincidence spectroscopy of ethanol in intense laser fields

    SciTech Connect (OSTI)

    Hatamoto, T.; Pruemper, G.; Okunishi, M.; Ueda, K.; Mathur, D.

    2007-06-15

    High-resolution electron-ion coincidence spectroscopy is used to (i) map correlations between electrons and ions from atomlike ionization of ethanol by intense 400 and 800 nm light pulses and (ii) disentangle the effects of dissociative multiphoton (MPI) and tunneling (TI) ionization. Electron spectra correlated with C{sup n+} (n=1,2,3) exhibit a continuum structure with a high-energy tail due to inelastic collisions involving rescattered electrons following TI, while those correlated with C{sub 2}H{sub n}O{sup +} have structure characteristic of MPI and above-threshold ionization.

  3. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    E-Print Network [OSTI]

    S. S. Bulanov; C. B. Schroeder; E. Esarey; W. P. Leemans

    2013-06-05

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high energy e-beam interacting with a counter-streaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  4. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect (OSTI)

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  5. Observations of the filamentation of high-intensity laser-produced electron beams

    SciTech Connect (OSTI)

    Wei, M.S.; Beg, F.N.; Dangor, A.E.; Gopal, A.; Tatarakis, M.; Krushelnick, K. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Clark, E.L.; Evans, R.G. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Ledingham, K.W.D. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); McKenna, P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Norreys, P.A. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 OQX (United Kingdom); Zepf, M. [Department of Physics, The Queen's University, University Road, Belfast BT7 1NN (United Kingdom)

    2004-11-01

    Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

  6. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-Print Network [OSTI]

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  7. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7 ps, 2 × 10{sup 20} W cm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  8. Simulation of the Beam Dump for a High Intensity Electron Gun

    E-Print Network [OSTI]

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  9. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  10. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  11. High-intensity double-pulse X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore »in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  12. The Radiation Reaction Effect on Electrons at Super-High Laser Intensities with Application to Ion Acceleration

    SciTech Connect (OSTI)

    Naumova, N. M.; Sokolov, I. V.; Tikhonchuk, V. T.; Schlegel, T.; Nees, J. A.; Yanovsky, V. P.; Labaune, C.; Mourou, G. A.

    2009-07-25

    At super-high laser intensities the radiation back reaction on electrons becomes so significant that its influence on laser-plasma interaction cannot be neglected while simulating these processes with particle-in-cell (PIC) codes. We discuss a way of taking the radiation effect on electrons into account and extracting spatial and frequency distributions of the generated high-frequency radiation. We also examine ponderomotive acceleration of ions in the double layer created by strong laser pulses and we compare an analytical description with PIC simulations as well. We discuss: (1) non-stationary features found in simulations, (2) electron cooling effect due to radiation losses, and (3) the limits of the analytical model.

  13. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; Huang, Zhirong; Marinelli, Agostino; Tang, Chuanxiang

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  14. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam

  15. High intensity femtosecond enhancement cavities

    E-Print Network [OSTI]

    Abram, Gilberto

    2009-01-01

    To produce extreme ultraviolet radiation via high harmonic generation (HHG) in rare gases, light intensities in excess of 1014 W/cm 2 are required. Usually such high intensity are obtained by parametric amplification of ...

  16. Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: CONTROL AND TRANSPORT OF INTENSE ELECTRON BEAMS Hui Li, Doctor of beam characteristics over long distances. The University of Maryland Electron Ring (UMER), which uses low energy, high current electron beams to model the transport physics of intense space

  17. Effect of the plasma electrode position and shape on the beam intensity of the highly charged ions from RIKEN 18 GHz electron-cyclotron-resonance ion source

    SciTech Connect (OSTI)

    Higurashi, Y.; Nakagawa, T.; Kidera, M.; Aihara, T.; Kobayashi, K.; Kase, M.; Goto, A.; Yano, Y. [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); SAS Ltd. Kita-shinagawa 5-9-11, Shinjuku-ku, Tokyo (Japan); RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2006-03-15

    Beam intensities of highly charged Ar ions (Ar{sup 11+,12+}) were measured as a function of plasma electrode position. We observed that the beam intensity of Ar{sup 11+,12+} increased when putting the electrode far from the electron-cyclotron-resonance zone. On the other hand, lower charged heavy ions (Ar{sup 8+,7+}) dramatically decreased. We observed that the intense beam extraction strongly affects the plasma condition. It may be due to the ion pumping effect.

  18. EFFECTS OF MULTI-ELECTRON CORRELATION ON MULTIPHOTON IONIZATION AND HIGH-ORDER HARMONIC GENERATION OF ATOMIC AND MOLECULAR SYSTEMS IN INTENSE ULTRASHORT LASER FIELDS

    E-Print Network [OSTI]

    Heslar, John

    2009-05-07

    The study of the electron correlation and quantum dynamics of many-electron atoms and molecules in the presence of intense external fields is a subject of much current importance in science and technology. While experimental ...

  19. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  20. MeV electrons accelerated backward along laser axis from low energy, high intensity laser-water interactions

    E-Print Network [OSTI]

    Feister, Scott; Morrison, John T; Frische, Kyle D; Orban, Chris; Ngirmang, Gregory; Handler, Abraham; Schillaci, Mark; Chowdhury, Enam A; Freeman, R R; Roquemore, W M

    2015-01-01

    Direct electron spectrum measurements show MeV energy electrons generated backward along the laser axis by a $\\lambda =$ 780 nm, 40 fs, 2.9 mJ short-pulse laser ($1.5 \\cdot 10^{18}$ W/cm$^2$). Electrons pass through a 3 mm hole in the center of the final off-axis paraboloid (OAP) and are characterized by a magnetic spectrometer. The charge collected at the OAP is hundreds of pC per pulse. A mechanism for this super-ponderomotive backward electron acceleration is discussed in the framework of 3D Particle-in-cell simulations.

  1. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators

    SciTech Connect (OSTI)

    Cheng Xinbing; Liu Jinliang; Qian Baoliang; Zhang Yu; Zhang Hongbo [College of Photoelectrical Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2009-11-15

    A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

  2. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A. (Albuquerque, NM); Leifeste, Gordon T. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM)

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  3. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  4. Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM John Richardson fusion, spallation neutron sources, free-electron lasers, and other applications. In addition, all beams beams. #12;LONGITUDINAL DYNAMICS OF AN INTENSE ELECTRON BEAM By John Richardson Harris. Dissertation

  5. Response of High-Tc Superconductor Metamaterials to High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Conference: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Citation Details In-Document Search Title: Response of High-Tc Superconductor...

  6. Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: Precision Control of Intense Electron Beams in a Low-Energy Ring ELECTRON BEAMS IN A LOW-ENERGY RING by Chao Wu Dissertation submitted to the Faculty of the Graduate School of particle accelerators require beams with high intensity and low emittance in a stable fashion. An important

  7. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  8. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect (OSTI)

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  9. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M. H.; Chen, M. H.; Hatchett, S. P.; Hill, J. M.; King, J. A.; MacKinnon, A. J.; Patel, P.; Phillips, T.; Snavely, R. A.; Town, R. [University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Adam, J. C.; Heron, A. [Centre de Physique Theorique (UPR14 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Akli, K. U.; Stephens, R. [General Atomics, San Diego, California 92186 (United States); Borghesi, M.; Romagnani, L.; Zepf, M. [Department of Pure and Applied Physics, Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Evans, R. G. [Blackett Laboratory, Imperial College of Science Technology and Medicine, London SW7 2BZ (United Kingdom); Freeman, R. R. [The Ohio State University, Columbus, Ohio 34210 (United States); Habara, H. [Rutherford Appleton Laboratory, Chilton, Oxon, OX11OQX (United Kingdom)] (and others)

    2008-02-15

    An integrated experiment relevant to fast ignition . A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  10. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M

    2007-11-20

    An integrated experiment relevant to fast ignition. A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{sub {alpha}} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  11. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  12. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC Citation Details In-Document Search Title: Radiation Dose Measurement for High-Intensity...

  13. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    E-Print Network [OSTI]

    Umstadter, Donald

    Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse Xiaofang Wang filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, Me-intensity lasers has made it pos- sible to study extreme physics on a tabletop. Among the studies, the generation

  14. Lateral Electron Transport in High-Intensity Laser-Irradiated Foils Diagnosed by Ion Emission P. McKenna,1,2,* D. C. Carroll,1

    E-Print Network [OSTI]

    Greenaway, Alan

    of the factors influencing the efficiency of longitudinal energy transport in a laser-irradiated target electric-field generation resulting from electron transport. The measurement of large electric fields (0:1 TV=m) millimeters from the laser focus reveals that lateral energy transport continues long after

  15. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore »beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  16. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  17. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan [North Carolina Central Univ., Durham, NC (United States); Vlahovic, Branislav [North Carolina Central Univ., Durham, NC (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-06-21

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  18. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  19. Quantum Vacuum Experiments Using High Intensity Lasers

    E-Print Network [OSTI]

    Mattias Marklund; Joakim Lundin

    2009-04-02

    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.

  20. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  1. RELATIVISTIC (E > 0.6, > 2.0, AND > 4.0 MeV) ELECTRON ACCELERATION AT GEOSYNCHRONOUS ORBIT DURING HIGH-INTENSITY, LONG-DURATION, CONTINUOUS AE ACTIVITY (HILDCAA) EVENTS

    SciTech Connect (OSTI)

    Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Tsurutani, Bruce T.; Santolik, Ondrej

    2015-01-20

    Radiation-belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration is studied for solar cycle 23 (1995-2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. All of the 35 HILDCAA events under study were found to be characterized by flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. For the E > 2.0 MeV electron fluxes, enhancement of >50% occurred during 100% of HILDCAAs. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region when wave data were available. Fully 100% of these HILDCAA cases were associated with enhanced whistler-mode chorus waves. The enhancements of E > 0.6, > 2.0, and > 4.0 MeV electrons occurred ?1.0 day, ?1.5 days, and ?2.5 days after the statistical HILDCAA onset, respectively. The statistical acceleration rates for the three energy ranges were ?1.8 × 10{sup 5}, 2.2 × 10{sup 3}, and 1.0 × 10{sup 1} cm{sup –2} s{sup –1} sr{sup –1} d{sup –1}, respectively. The relativistic electron-decay timescales were determined to be ?7.7, 5.5, and 4.0 days for the three energy ranges, respectively. The HILDCAAs were divided into short-duration (D ? 3 days) and long-duration (D > 3 days) events to study the dependence of relativistic electron variation on HILDCAA duration. For long-duration events, the flux enhancements during HILDCAAs with respect to pre-event fluxes were ?290%, 520%, and 82% for E > 0.6, > 2.0, and > 4.0 MeV electrons, respectively. The enhancements were ?250%, 400%, and 27% respectively, for short-duration events. The results are discussed with respect to the current understanding of radiation-belt dynamics.

  2. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  3. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect (OSTI)

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 ; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  4. The investigation of high intensity laser driven micro neutron sources

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , access to high temperature states of mat- ter capable of thermonuclear fusion and/or the effi- cientThe investigation of high intensity laser driven micro neutron sources for fusion materials. The application of fast pulse, high intensity lasers to drive low cost DT point neutron sources for fusion

  5. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ;...

  6. LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS

    E-Print Network [OSTI]

    McDonald, Kirk

    LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS G. I. Silvestrov, Budker Institute for Nuclear Physics Novosibirsk, August 1998. #12;1 LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS target of liquid metal. The technical solution is producing the target in the form of flat jet flowing

  7. Intense pulsed light sintering of copper nanoink for printed electronics

    E-Print Network [OSTI]

    Kim, Hak-Sung; Dhage, Sanjay R.; Shim, Dong-Eun; Hahn, H. Thomas

    2009-01-01

    copper nanoink for printed electronics Hak-Sung Kim · Sanjay1 Introduction Printed electronics techniques such as inkjetcomponents of printed electronics are conducting lines and ?

  8. High-intensity beam collimation and targetry

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab

    2006-11-01

    Principles, design criteria and realization of reliable collimation systems for the high-power accelerators and hadron colliders are described. Functionality of collimators as the key elements of the machine protection system are discussed along with the substantial progress on the crystal collimation front. The key issues are considered in design of high-power target systems and achieving their best performance. Simulation code requirements are presented.

  9. Dynamics of an electron in a relativistically intense laser field including radiaion reaction

    SciTech Connect (OSTI)

    Galkin, A. L., E-mail: galkin@kapella.gpi.ru [Prokhorov General Physics Institute of the Russian Academy of Science (Russian Federation)

    2012-08-15

    The dynamics of an electron in a relativistically intense laser pulse field is described with the radiation reaction being taken into account. The study is based on solving the Newton equation with the Lorentz and the radiation reaction forces. Validation is provided for an iteration technique which makes it possible to remove the discrepancies found in the theoretical models of radiation reaction. It is demonstrated that an electron having a high initial velocity and colliding head-on with a laser pulse sheds a considerable part of its kinetic energy due to the radiation reaction. A broadening of the electromagnetic pulse emitted by the electron occurs as a result of the same effect. The findings obtained can be used to experimentally verify the effect of radiation reaction.

  10. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  11. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore »is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  12. High Intensity Muon Beams in Osaka -MuSIC

    E-Print Network [OSTI]

    McDonald, Kirk

    High Intensity Muon Beams in Osaka - MuSIC Yoshitaka Kuno Osaka Unviersity, Osaka, Japan ! THB2014 ·Muon Transport ·COMET ·MuSIC facility at Osaka University ·MuSIC stage-I for µSR ·PRISM demonstration at MuSIC ·Phase Rotation at FFAG ·Summary #12;Muon Beam Sources #12;ISIS EM, RIKEN-RAL J-PARC, MUSE

  13. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  14. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect (OSTI)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  15. Note: Design and initial results of a multi-pulsed intense electron beam source

    SciTech Connect (OSTI)

    Xia, L., E-mail: xialiansheng@caep.cn; Zhang, H.; Yang, A.; Shen, Y.; Wang, W.; Wen, L.; Zhang, K.; Shi, J.; Zhang, L.; Deng, J. [Institute of Fluid Physics, CAEP, Mianyang 621900 (China)

    2014-06-15

    A multi-pulsed intense electron beam source is introduced, including the design and the initial experimental results. The source can generate a burst of three pulses of intense electron beams with energy of 2–3 MeV and beam intensities of around 2.5 kA. An inductive adder is chosen to generate the pulsed diode voltages and a dispenser cathode is chosen to emit electron beams. The test results indicate that the design of the source is reliable. The multi-pulsed diode voltage is up to 2.5 MV and the beam intensities are more than 2 kA at the exit of the source with small variation.

  16. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In- tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via of the electromagnetic pulse [3]. The resulting temporary energy transfer to the longitudinal motion of the electron can

  17. Fusion neutron yield from high intensity laser-cluster interaction

    SciTech Connect (OSTI)

    Davis, J.; Petrov, G.M.; Velikovich, A.L. [Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-06-15

    The fusion neutron yield from a compact neutron source is studied. Laser-irradiated deuterium clusters serve as a precursor of high-energy deuterium ions, which react with the walls of a fusion reaction chamber and produce copious amounts of neutrons in fusion reactions. The explosion of deuterium clusters with initial radius of 50-200 A irradiated by a subpicosecond laser with intensity of 10{sup 16} W/cm{sup 2} is examined theoretically. We studied the conversion efficiency of laser energy to ion kinetic energy, the mean and maximum ion kinetic energy, and ion energy distribution function by a molecular dynamics model. A yield of {approx}10{sup 5}-10{sup 6} neutrons/J is obtainable for a peak laser intensity of 10{sup 16}-10{sup 17} W/cm{sup 2} and clusters with an initial radius of 200-400 A.

  18. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    E-Print Network [OSTI]

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  19. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  20. Overview of High Intensity Linac Programs in Europe

    E-Print Network [OSTI]

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  1. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­?energy-­? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­?energy-­? density plasma the ideas for steady-­?state current drive developed for low-­?energy-­? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­?energy-­?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  2. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In­ tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via potential'' associated with the envelope of the electromagnetic pulse [3]. The resulting temporary energy

  3. High Performance Electronic Structure Engineering: Large Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Electronic Structure Engineering: Large Scale GW Calculations Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Aug 7 2015 - 10:00am...

  4. Inverse Free Electron Laser Interactions with Sub-Picosecond High Brightness Electron Beams

    E-Print Network [OSTI]

    Moody, Joshua Timothy

    2014-01-01

    Accelerated Electron Beam Spectrum . . . . . . . . . . . .2 High Brightness Electron Beams Produced in thetion of Uniformly Filled Ellipsoidal Electron Beam: Method-

  5. Generation of short gamma-ray pulses on electron bunches formed in intense interfering laser beams with tilted fronts

    SciTech Connect (OSTI)

    Korobkin, V V; Romanovskiy, M Yu; Trofimov, V A; Shiryaev, O B

    2014-05-30

    It is shown that in the interference of multiple laser pulses with a relativistic intensity, phase and amplitude fronts of which are tilted at an angle with respect to their wave vector, effective traps of charged particles, which are moving at the velocity of light, are formed. Such traps are capable of capturing and accelerating the electrons produced in the ionisation of low-density gas by means of laser radiation. The accelerated electrons in the traps form a bunch, whose dimensions in all directions are much smaller than the laser radiation wavelength. Calculations show that the energy of accelerated electrons may amount to several hundred GeV at experimentally accessible relativistic laser intensities. As a result of the inverse Compton scattering, gamma-quanta with a high energy and narrow radiation pattern are emitted when these electrons interact with a laser pulse propagating from the opposite direction. The duration of emitted gamma-ray pulses constitutes a few attoseconds. The simulation is performed by solving the relativistic equation of motion for an electron with a relevant Lorentz force. (interaction of radiation with matter)

  6. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect (OSTI)

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  7. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect (OSTI)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  8. Electron density measurements of atmospheric-pressure non-thermal N{sub 2} plasma jet by Stark broadening and irradiance intensity methods

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang; Cheng, Cheng E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-05-15

    An atmospheric-pressure non-thermal plasma jet excited by high frequency alternating current using nitrogen is developed and the electron density in the active region of this plasma jet is investigated by two different methods using optical emission spectroscopy, Stark broadening, and irradiance intensity method. The irradiance intensity method shows that the average electron density is about 10{sup 20}/m{sup 3} which is slightly smaller than that by the Stark broadening method. However, the trend of the change in the electron density with input power obtained by these two methods is consistent.

  9. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  10. Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay

    E-Print Network [OSTI]

    Bungau, Adriana

    This paper introduces an experimental probe of the sterile neutrino with a novel, high-intensity source of electron antineutrinos from the production and subsequent decay of [superscript 8]Li. When paired with an existing ...

  11. Simultaneous electronic and the magnetic excitation of a ferromagnet by intense THz pulses

    E-Print Network [OSTI]

    Shalaby, Mostafa; Hauri, Christoph P

    2015-01-01

    The speed of magnetization reversal is a key feature in magnetic data storage. Magnetic fields from intense THz pulses have been recently shown to induce small magnetization dynamics in Cobalt thin film on the sub-picosecond time scale. Here, we show that at higher field intensities, the THz electric field starts playing a role, strongly changing the dielectric properties of the cobalt thin film. Both the electronic and magnetic responses are found to occur simultaneously, with the electric field response persistent on a time scale orders of magnitude longer than the THz stimulus

  12. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    SciTech Connect (OSTI)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-04-28

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100?kW/cm{sup 2} was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm{sup 2} range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm{sup 2}. The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ?0.5 mW/cm{sup 2} to ?5?kW/cm{sup 2})

  13. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  14. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  15. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  16. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  17. Holographic generation of highly twisted electron beams

    E-Print Network [OSTI]

    Vincenzo Grillo; Gian Carlo Gazzadi; Erfan Mafakheri; Stefano Frabboni; Ebrahim Karimi; Robert W. Boyd

    2014-12-11

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction, and thus may be used in the study of the magnetic properties of materials and for manipulating nano-particles.

  18. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  19. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  20. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  1. Rider Energy Expenditure during High Intensity Horse Activity 

    E-Print Network [OSTI]

    O'Reilly, Colleen L

    2015-04-29

    (DDR) to determine if playing DDR for 30 min a day could meet minimum exercise requirements. Experienced DDR players as well as inexperienced DDR players were observed to determine if they could meet energy expenditure requirements. This study..., in contradiction with the Nintendo Wii study found that experienced DDR players exhibited exercise of a moderate intensity with mean HR of 161.2 beats per min (bpm) and mean VO2 of 25.2mL·kg -1·min-1 and expended more than 150 kcal in the 30 min exercise which...

  2. NEUTRALIZED TRANSPORT OF HIGH INTENSITY BEAMS E. Henestroza #

    E-Print Network [OSTI]

    Gilson, Erik

    system is injected into a neutralized drift section. The neutralization is provided by a metal arc source and an RF plasma source. Effects of a "plasma plug", where electrons are extracted from a localized plasma as the "volumetric plasma", where neutralization is provided by the plasma laid down along the ion path, are both

  3. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  4. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    SciTech Connect (OSTI)

    Ma, T

    2010-04-21

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  5. ELECTRONIC CERAMICS IN HIGH TEMPERATURE ENVIRONMENTS

    E-Print Network [OSTI]

    Searcy, A.W.

    2010-01-01

    o n on E l e c t r o n i c Ceramics i n Severe Environments,d i n t h e B u l l e t i n o f the American Ceramic S o c ie t y ELECTRONIC CERAMICS IN HIGH TEMPERATURE ENVIRONMENTS

  6. Can we detect "Unruh radiation" in the high intensity lasers?

    E-Print Network [OSTI]

    Satoshi Iso; Yasuhiro Yamamoto; Sen Zhang

    2011-02-23

    An accelerated particle sees the Minkowski vacuum as thermally excited, which is called the Unruh effect. Due to an interaction with the thermal bath, the particle moves stochastically like the Brownian motion in a heat bath. It has been discussed that the accelerated charged particle may emit extra radiation (the Unruh radiation) besides the Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the radiation from the fluctuating motion. In this reports, we review our recent analysis on the issue of the Unruh radiation. In this report, we particularly consider the thermalization of an accelerated particle in the scalar QED, and derive the relaxation time of the thermalization.

  7. Lifetime Analysis at High Intensity Colliders Applied to the LHC

    E-Print Network [OSTI]

    Salvachua, B; Bruce, R; Burkart, F; Redaelli, S; Valentino, G; Wollmann, D

    2013-01-01

    The beam lifetime is one of the main parameters to define the performance of a collider. In a super-conducting machine like the LHC, the lifetime determines the intensity reach for a given collimation cleaning. The beam lifetime can be calculated from the direct measurement of beam current. However, due to the noise in the beam current signal only an average lifetime over several seconds can be calculated. We propose here an alternative method, which uses the signal of the beam loss monitors in the vicinity of the primary collimators to get the instantaneous beam lifetime at the collimators. In this paper we compare the lifetime from the two methods and investigate the minimum lifetime over the LHC cycle for all the physics fills in 2011 and 2012. These data provide a reference for estimates of performance reach from collimator cleaning.

  8. Generation of Stable (3+1)-dimensional High-intensity Ultrashort Light Pulses

    SciTech Connect (OSTI)

    Todorov, T. P.; Koprinkov, I. G. [Department of Applied Physics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorova, M. E. [College of Energetics and Electronics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorov, M. D. [Faculty of Appl. Math. and Informatics, Technical University of Sofia, 1000 Sofia (Bulgaria)

    2010-11-25

    The spatiotemporal dynamics of high-intensity femtosecond laser pulses is studied within a rigorous physical model. The pulse propagation is described by the nonlinear envelope equation. The propagation and the material equations are solved self-consistently at realistic physical conditions. Self-compression of the pulse around single-cycle regime and dramatic increase of the pulse intensity is found. At certain conditions, the peak intensity, transversal width, time duration, and the spatiotemporal pulse shape remain stable with the propagation of the pulse, resembling a soliton formation process. This, to our knowledge, is the first simulation of high-intensity ultrashort soliton formation dynamics in the (3+1)-dimensional case.

  9. Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

    E-Print Network [OSTI]

    Seipt, D; Fritzsche, S; Kampfer, B

    2015-01-01

    We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element.

  10. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect (OSTI)

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  11. Experimental Parameters for a Cerium 144 Based Intense Electron Antineutrino Generator Experiment at Very Short Baselines

    E-Print Network [OSTI]

    J. Gaffiot; T. Lasserre; G. Mention; M. Vivier; M. Cribier; M. Durero; V. Fischer; A. Letourneau; E. Dumonteil; I. S. Saldikov; G. V. Tikhomirov

    2015-02-09

    The standard three-neutrino oscillation paradigm, associated with small squared mass splittings $\\ll 0.1\\ \\mathrm{eV^2}$, has been successfully built up over the last 15 years using solar, atmospheric, long baseline accelerator and reactor neutrino experiments. However, this well-established picture might suffer from anomalous results reported at very short baselines in some of these experiments. If not experimental artifacts, such results could possibly be interpreted as the existence of at least an additional fourth sterile neutrino species, mixing with the known active flavors with an associated mass splitting $\\ll 0.1\\ \\mathrm{eV^2}$, and being insensitive to standard weak interactions. Precision measurements at very short baselines (5 to 15 m) with intense MeV electronic antineutrino emitters can be used to probe these anomalies. In this article, the expected antineutrino signal and backgrounds of a generic experiment which consists of deploying an intense beta minus radioactive source inside or in the vicinity of a large liquid scintillator detector are studied. The technical challenges to perform such an experiment are identified, along with quantifying the possible source and detector induced systematics, and their impact on the sensitivity to the observation of neutrino oscillations at short baselines.

  12. Laboratory Astrophysics Using High Intensity Particle and Photon...

    Office of Scientific and Technical Information (OSTI)

    We will give examples on how frontier phenomena such as black holes, supernovae, gamma ray bursts, ultra high-energy cosmic rays, etc., can be investigated in the laboratory...

  13. Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications 

    E-Print Network [OSTI]

    Williams, F. D. M.; Kondratas, H. M.

    1983-01-01

    Developments over the past fifteen years have evolved new short flame, high intensity (1,000,000 BTU/HR/ft3 ) combustion systems for industrial uses. Such systems produce a more uniform and higher heat flux than conventional low intensity systems...

  14. Simulation of High-Intensity Mercury Jet Targets

    E-Print Network [OSTI]

    McDonald, Kirk

    of high speed jet cavitation and breakup FronTier MHD, a 3D code with explicitly tracked interfaces for cavitation Realistic equation of states Simulation studies focus on Distortion of mercury jets entering Smoothed Particle Hydrodynamics (SPH) Code · A new code for free surface / multiphase MHD flows is being

  15. MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS

    E-Print Network [OSTI]

    McDonald, Kirk

    as high-Z target to be evaluated for effects of irradiation on CTE, fracture toughness and ductility loss or strength) degrade with radiation is unknown. Titanium Ti-6Al-4V alloy The evaluation of the fracture toughness changes due to irradiation is of interest regarding this alloy that combines good tensile strength

  16. Generation of very low energy-spread electron beams using low-intensity laser pulses in a low-density plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Jha, Pallavi

    2011-03-15

    The possibility of obtaining high-energy electron beams of high quality by using a low-density homogeneous plasma and a low-intensity laser (just above the self-injection threshold in the bubble regime) has been explored. Three-dimensional simulations are used to demonstrate, for the first time, an energy-spread of less than 1%, from self-trapping. More specifically, for a plasma density of 2x10{sup 18} cm{sup -3} and a laser intensity of a{sub 0}=2, a high-energy (0.55 GeV), ultrashort (1.4 fs) electron beam with very low energy-spread (0.55%) and high current (3 kA) is obtained. These parameters satisfy the requirements for drivers of short-wavelength free-electron lasers. It is also found that the quality of the electron beam depends strongly on the plasma length, which therefore needs to be optimized carefully to get the best performance in the experiments.

  17. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect (OSTI)

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  18. Laser enhanced high-intensity focused ultrasound thrombolysis: An in vitro study

    E-Print Network [OSTI]

    Cui, Huizhong; Yang, Xinmai

    2013-01-17

    Laser-enhanced thrombolysis by high intensity focused ultrasound (HIFU) treatment was studied in vitro with bovine blood clots. To achieve laser-enhanced thrombolysis, laser light was employed to illuminate the sample concurrently with HIFU...

  19. Extremely high frequency RF effects on electronics.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  20. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect (OSTI)

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

  1. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  2. ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic and Density

    E-Print Network [OSTI]

    Pawley, James

    ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, VOL. 83 LVSEM for High Resolution Topographic Surface-Imaging Scanning Electron Microscope 205 C. Electrons as Probes in Scanning Microscopes 205 D. Limitations Associated with the Use of Electrons as the Probing Radiation 206 E. Response to These Limitations

  3. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect (OSTI)

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  4. Electron cloud effects on an intense ion beam in a four solenoid lattice

    E-Print Network [OSTI]

    2008-01-01

    electrons when intercepting the beam with diagnostics. Theon the electron cloud diagnostics for the 45-mA beam andbeam ion and electron species in the vicinity of the diagnostic (

  5. High-Level Fusion of Depth and Intensity for Pedestrian Classification

    E-Print Network [OSTI]

    Gavrila, Dariu M.

    High-Level Fusion of Depth and Intensity for Pedestrian Classification Marcus Rohrbach1,3 , Markus. This paper presents a novel approach to pedestrian classi- fication which involves a high-level fusion pedestrians and non-pedestrians. We refrain from the construction of a joint feature space, but instead employ

  6. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    E-Print Network [OSTI]

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  7. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more »Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  8. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    SciTech Connect (OSTI)

    Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ?10–100?mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ?10–50?keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  9. Investigation of relativistic intensity laser generated hot electron dynamics via copper K{sub ?} imaging and proton acceleration

    SciTech Connect (OSTI)

    Willingale, L.; Thomas, A. G. R.; Maksimchuk, A; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109 (United States); Morace, A. [University of California-San Diego, La Jolla, California 92093 (United States) [University of California-San Diego, La Jolla, California 92093 (United States); Universitŕ di Milano-Biocca, Piazza della Scienza 3, 20126 Milano (Italy); Bartal, T.; Kim, J.; Beg, F. N. [University of California-San Diego, La Jolla, California 92093 (United States)] [University of California-San Diego, La Jolla, California 92093 (United States); Stephens, R. B.; Wei, M. S. [General Atomics, San Diego, California 92121 (United States)] [General Atomics, San Diego, California 92121 (United States)

    2013-12-15

    Simultaneous experimental measurements of copper K{sub ?} imaging and the maximum target normal sheath acceleration proton energies from the rear target surface are compared for various target thicknesses. For the T-cubed laser (?4 J, 400 fs) at an intensity of ?2 × 10{sup 19} W cm{sup ?2}, the hot electron divergence is determined to be ?{sub HWHM}?22{sup °} using a K{sub ?} imaging diagnostic. The maximum proton energies are measured to follow the expected reduction with increasing target thickness. Numerical modeling produces copper K{sub ?} trends for both signal level and electron beam divergence that are in good agreement with the experiment. A geometric model describing the electron beam divergence reproduces the maximum proton energy trends observed from the experiment and the fast electron density and the peak electric field observed in the numerical modeling.

  10. Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study

    E-Print Network [OSTI]

    Sipe,J. E.

    Superconductivity-induced phonon anomalies in high-Tc superconductors: A Raman intensity study O. V of a number of Raman-active phonons below the superconducting transition temperature in YBa2Cu3O7 x , Bi2Sr2Ca to obtain information about the superconducting state.4 Several years ago, Friedl et al.5 ob- served

  11. Investigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

    E-Print Network [OSTI]

    Nikogosyan, David N.

    efficiency with that for other existing meth- ods of recording. We studied the temperature sensing properties changes in the fiber core induced by thermal heating, were developed. They include the use of a CO2 laserInvestigation of long-period fiber gratings induced by high-intensity femtosecond UV laser pulses

  12. Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1

    E-Print Network [OSTI]

    McDonald, Kirk

    Target Material Irradiation Studies for High-Intensity Accelerator Beams N. Simos1* , H. Kirk1 , H on the behavior of special materials and composites under irradiation conditions and their potential use irradiated target material. The ever greater deposited energy and induced thermo-mechanical loads combined

  13. High Efficiency Driving Electronics for General Illumination...

    Office of Scientific and Technical Information (OSTI)

    Driving Electronics for General Illumination LED Luminaires Upadhyay, Anand 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION New generation of standalone LED driver platforms...

  14. Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air

    E-Print Network [OSTI]

    Milchberg, Howard

    in Air S. Varma, Y.-H. Chen, and H. M. Milchberg Institute for Research in Electronics and Applied in atmospheric air on the long-range filamentary propagation of intense femtosecond laser pulses. In a pump following a pump pulse filamenting in air has a dramatic effect on the propagation of an intense probe pulse

  15. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  16. Electronic behavior of highly correlated metals

    SciTech Connect (OSTI)

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms, coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.

  17. E-beam ionized channel guiding of an intense relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A. (Albuquerque, NM); Godfrey, Brendon B. (Albuquerque, NM); Kiekel, Paul D. (Albuquerque, NM); Shope, Steven L. (Albuquerque, NM)

    1988-01-01

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path.

  18. E-beam ionized channel guiding of an intense relativistic electron beam

    DOE Patents [OSTI]

    Frost, C.A.; Godfrey, B.B.; Kiekel, P.D.; Shope, S.L.

    1988-05-10

    An IREB is guided through a curved path by ionizing a channel in a gas with electrons from a filament, and confining the electrons to the center of the path with a magnetic field extending along the path. The magnetic field is preferably generated by a solenoid extending along the path. 2 figs.

  19. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  20. Report of the Snowmass M6 Working Group on high intensity proton sources

    SciTech Connect (OSTI)

    Weiren Chou and J. Wei

    2002-08-20

    The U.S. high-energy physics program needs an intense proton source, a 1-4 MW Proton Driver (PD), by the end of this decade. This machine will serve as a stand-alone facility that will provide neutrino superbeams and other high intensity secondary beams such as kaons, muons, neutrons, and anti-protons (cf. E1 and E5 group reports) and also serve as the first stage of a neutrino factory (cf. M1 group report). It can also be a high brightness source for a VLHC. Based on present accelerator technology and project construction experience, it is both feasible and cost-effective to construct a 1-4 MW Proton Driver. Two recent PD design studies have been made, one at FNAL and the other at the BNL. Both designed PD's for 1 MW proton beams at a cost of about U.S. $200M (excluding contingency and overhead) and both designs were upgradeable to 4 MW. An international collaboration between FNAL, BNL and KEK on high intensity proton facilities is addressing a number of key design issues. The superconducting (sc) RF cavities, cryogenics, and RF controls developed for the SNS can be directly adopted to save R&D efforts, cost, and schedule. PD studies are also actively being pursued at Europe and Japan.

  1. REPORT OF THE SNOWMASS M6 WORKING GROUP ON HIGH INTENSITY PROTON SOURCES.

    SciTech Connect (OSTI)

    CHOU,W.; WEI,J.

    2001-08-14

    The M6 working group had more than 40 active participants (listed in Section 4). During the three weeks at Snowmass, there were about 50 presentations, covering a wide range of topics associated with high intensity proton sources. The talks are listed in Section 5. This group also had joint sessions with a number of other working groups, including E1 (Neutrino Factories and Muon Colliders), E5 (Fixed-Target Experiments), M1 (Muon Based Systems), T4 (Particle Sources), T5 (Beam dynamics), T7 (High Performance Computing) and T9 (Diagnostics). The M6 group performed a survey of the beam parameters of existing and proposed high intensity proton sources, in particular, of the proton drivers. The results are listed in Table 1. These parameters are compared with the requirements of high-energy physics users of secondary beams in Working Groups E1 and E5. According to the consensus reached in the E1 and E5 groups, the U.S. HEP program requires an intense proton source, a 1-4 MW Proton Driver, by the end of this decade.

  2. Early-time interface instabilities in high intensity aero-breakup of liquid drop

    E-Print Network [OSTI]

    Hu, X Y

    2014-01-01

    The early-time interface instabilities in high intensity (high Weber number and high Reynolds number) aero-breakup of a liquid drop are investigated by numerical simulations. A combined analysis based on simulation results and linear-instability theory show that both RT (Rayleigh-Taylor) and KH (Kelvin-Helmholtz) instabilities contributes the dominant disturbances originate from about the half way from the stagnation point to the equator. This is verified further with a specially modified simulation, which decreases the effect of KH instability while keeps other flow properties unchanged.

  3. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect (OSTI)

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at ? = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  4. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    SciTech Connect (OSTI)

    Krasheninnikov, S. I.

    2014-10-15

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation.

  5. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  6. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect (OSTI)

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  7. Spatiotemporal study of the local thermodynamic equilibrium deviations in high-intensity discharge lamps

    SciTech Connect (OSTI)

    Helali, H.; Bchir, T.; Araoud, Z.; Charrada, K.

    2013-04-15

    The aim of this work is to study the local thermodynamic equilibrium (LTE) deviations in arc discharges plasma generated in high-intensity discharge lamps operating under an ac (50 Hz) power supply. To achieve this goal, we elaborate a two-temperature, two-dimensional, and time-depending model. We have found numerical results almost reproducing the experimental data, which allows us to validate this model. After validation, we have discussed different energy term effects on the LTE deviations.

  8. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect (OSTI)

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  9. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  10. Generation of intense coherent attosecond X-ray pulses using relativistic electron mirrors

    SciTech Connect (OSTI)

    Kulagin, V V; Kornienko, V N; Cherepenin, Vladimir A; Suk, Hyyong

    2013-05-31

    We analyse the steepening of the leading edge of femtosecond petawatt pulses with the use of plasma layers and show that, at an electron density several times higher than the critical one, an asymmetric (in time domain) pulse can be produced with an amplitude of the first half-wave differing little from the maximum pulse amplitude. Using numerical simulation, we have studied the interaction of such pulses with nanometre-thick films, including the generation of relativistic electron mirrors and the reflection of a counterpropagating probe pulse from such mirrors. The resulting coherent X-ray pulses have a duration of {approx}120 as and a power of {approx}600 GW at a wavelength of {approx}13 nm. Our results demonstrate that the reflectivity of a relativistic electron mirror situated in the accelerating pulse field is independent of the probe pulse amplitude when it increases up to the accelerating pulse amplitude. (interaction of laser radiation with matter. laser plasma)

  11. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    SciTech Connect (OSTI)

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ?{sub c}/?<1 (?{sub c} and ? are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ?{sub c}/?>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (?{sub c}/?)<1/(?{sub c}/?)>1 by increasing the magnetic field strength.

  12. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup ?15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1?m) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  13. PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS, VOLUME 2, 121301 (1999) Temporary acceleration of electrons while inside an intense electromagnetic pulse

    E-Print Network [OSTI]

    McDonald, Kirk

    1999-01-01

    acceleration of electrons while inside an intense electromagnetic pulse Kirk T. McDonald Joseph Henry incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic" associated with the envelope of the electromagnetic pulse [3]. The resulting temporary energy transfer

  14. REVIEW OF SCIENTIFIC INSTRUMENTS 84, 022701 (2013) Intense terahertz pulses from SLAC electron beams using coherent

    E-Print Network [OSTI]

    2013-01-01

    February 2013) SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration field at a THz focus has reached 4.4 GV/m (0.44 V/Ĺ) at LCLS. This paper presents measurements

  15. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect (OSTI)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  16. Devices for high precision x-ray beam intensity monitoring on BSRF

    E-Print Network [OSTI]

    Hua-Peng, LI; Zhao, Yi-Dong; Zheng, Lei; Liu, Shu-Hu; Zhao, Xiao-Liang; Zhao, Ya-Shuai

    2016-01-01

    Synchrotron radiation with the characteristic of high brilliance, high level of polarization, high collimation, low emittance and wide tunability in energy has been used as a standard source in metrology(1, 2). For a decade, lots of calibration work have been done on 4B7A in Beijing Synchrotron Radiation Facility (BSRF) (3, 4). For the calibration process, a high-precision online monitor is indispensable. To control the uncertainty under 0.1%, we studied different sizes parallel ion chambers with rare-gas and used different collecting methods to monitor the x-ray intensity of the beamline. Two methods to collect the signal of the ion chambers: reading the current directly with electrometer or signal amplification to collect the counts were compared.

  17. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    E-Print Network [OSTI]

    D. Habs; M. Gross; P. G. Thirolf; P. Böni

    2010-09-30

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

  18. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect (OSTI)

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  19. The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons

    E-Print Network [OSTI]

    Gaetano Fiore; Renato Fedele; Umberto de Angelis

    2014-11-14

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of propagation of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation ("slingshot effect"). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.

  20. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  1. High-performance computing of electron microstructures

    SciTech Connect (OSTI)

    Bishop, A. [Los Alamos National Lab., NM (United States); Birnir, B.; Galdrikian, B.; Wang, L. [Univ. of California, Santa Barbara, CA (United States)

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was a collaboration between the Quantum Institute at the University of California-Santa Barbara (UCSB) and the Condensed Matter and Statistical Physics Group at LANL. The project objective, which was successfully accomplished, was to model quantum properties of semiconductor nanostructures that were fabricated and measured at UCSB using dedicated molecular-beam epitaxy and free-electron laser facilities. A nonperturbative dynamic quantum theory was developed for systems driven by time-periodic external fields. For such systems, dynamic energy spectra of electrons and photons and their corresponding wave functions were obtained. The results are in good agreement with experimental investigations. The algorithms developed are ideally suited for massively parallel computing facilities and provide a fundamental advance in the ability to predict quantum-well properties and guide their engineering. This is a definite step forward in the development of nonlinear optical devices.

  2. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01

    1.1 Basics of Inertial Confinement Fusion with High Poweredguided fast-ignition inertial confinement fusion, Phys. Rev.Fast-Ignition Inertial Confinement Fusion,” Physical Review

  3. CLNS 03/1827 VERY HIGH VOLTAGE PHOTOEMISSION ELECTRON GUNS*

    E-Print Network [OSTI]

    CLNS 03/1827 VERY HIGH VOLTAGE PHOTOEMISSION ELECTRON GUNS* Charles K. Sinclair # , Cornell voltage DC electron guns with photoemission cathodes are a natural choice for generating the beams gradient in these guns. The photocathode operational lifetime is limited by the gun vacuum and by ion back

  4. Electron shielding of vortons in high-density quark matter

    E-Print Network [OSTI]

    Paulo F. Bedaque; Evan Berkowitz; Geoffrey Ji; Nathan Ng

    2011-12-06

    We consider the the effect of the electron cloud about a vorton in the CFL-$K^0$ high-density phase by numerically solving the ultrarelativistic Thomas-Fermi equation about a toroidal charge. Including electrons removes the electric monopole contribution to the energy, and noticeably decreases the equilibrium radius of these stable vortex loops.

  5. High-pressure synthesis of electronic materials 

    E-Print Network [OSTI]

    Penny, George B. S.

    2010-01-01

    High-pressure techniques have become increasingly important in the synthesis of ceramic and metallic solids allowing the discovery of new materials with interesting properties. In this research dense solid oxides have ...

  6. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  7. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  8. On the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas

    SciTech Connect (OSTI)

    Krygier, A. G.; Schumacher, D. W.; Freeman, R. R.

    2014-02-15

    We use particle-in-cell modeling to identify the acceleration mechanism responsible for the observed generation of super-hot electrons in ultra-intense laser-plasma interactions with solid targets with pre-formed plasma. We identify several features of direct laser acceleration that drive the generation of super-hot electrons. We find that, in this regime, electrons that become super-hot are primarily injected by a looping mechanism that we call loop-injected direct acceleration.

  9. Vacuum ultra-violet emission of plasma discharges with high Xe partial pressure using a cathode protective layer with high secondary electron emission

    SciTech Connect (OSTI)

    Zhu, Di; Song, Le; Zhang, Xiong; Kajiyama, Hiroshi

    2014-02-14

    In this work, the mechanism of the vacuum ultra-violet (VUV) emission of plasma discharges, with high Xe partial pressure and high ion-induced secondary electrons emission protective layer, is studied by measuring the VUV light emission directly and comparing it with two-dimensional simulations. From the panel measurement, we find that the high intensity of excimer VUV mainly contributes to the high luminous efficacy of SrCaO-plasma display panels (PDP) at a low sustain voltage. The unchanged Xe excitation efficiency indicates that the electron temperature is not decreased by the high secondary electrons emission protective layer, even though the sustain voltage is much lower. From the two-dimensional simulations, we can find that the ratio of excimer VUV to resonant VUV, which is determined by the collision rate in the discharge, is only significantly affected by the Xe partial pressure, while it is independent of the sustain voltage and the secondary-electrons-emission capability of protective layer. The unchanged average electron energy at the moment when the electric field becomes maximum confirms that the improvement of the VUV production efficiency mainly is attributed to the increase in electron heating efficiency of a PDP with high ion-induced secondary electrons emission protective layer. Combining the experimental and the simulation results, we conclude about the mechanism by which the VUV production is improved for the plasma display panel with a high Xe partial pressure and a cold cathode with high ion-induced secondary electrons emission.

  10. Backscattering of an Intense Laser Beam by an Electron Fei He, Y.Y. Lau, Donald P. Umstadter, and Richard Kowalczyk

    E-Print Network [OSTI]

    Umstadter, Donald

    but is independent of the electron energy, that a high power laser does not necessarily produce high power radiation for this scattering problem from a low to an ultrahigh power laser, and from a low to an ultrahigh energy electron

  11. Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2011-01-01

    In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...

  12. Electronic Applications of High Temperature Superconductors 

    E-Print Network [OSTI]

    Kroger, H.; Miracky, R. F.

    1988-01-01

    of the high temperature superconductors in advanced radar systems. The low loss microwave properties of superconductors have already been exploited by Lincoln Laboratory in demonstrating signal processing systems whose capabilities greatly exceed any... from estimates of its surface im pedance for naturally occurring low-frequency electromagnetic waves. Low-frequen y (10. 3 to let Hz) fluctuations in the earth's magnetic field induce eddy currents at its surface; the size of the induced voltage...

  13. Friday, May 21, 2010 High-Performance Electronics without the High Price

    E-Print Network [OSTI]

    Rogers, John A.

    Friday, May 21, 2010 High-Performance Electronics without the High Price A method for printing, however, is its price tag. To make a gallium arsenide solar panel today, manufacturers grow-Performance Electronics without the High Price 5/26/2010http

  14. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Bishop, Alan R. (Los Alamos, NM); Nguyen, Dinh C. (Los Alamos, NM); Chernobrod, Boris M. (Santa Fe, NM); Gorshkov, Vacheslav N. (Kiev, UA)

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  15. Title of Document: EXPERIMENTAL STUDY OF SOLITONS ON INTENSE ELECTRON BEAMS

    E-Print Network [OSTI]

    Anlage, Steven

    is supported by the U.S. Department of Energy Offices of High Energy Physics and Fusion Energy Sciences, and the Dept. of Defense Office of Naval Research and the Joint Technology Office. #12;iv Table of Contents......................................................................................................iii List of Tables

  16. High power 325 MHz vector modulators for the Fermilab High Intensity Neutrino Source (HINS)

    SciTech Connect (OSTI)

    Madrak, Robyn Leigh; Wildman, David; /Fermilab

    2008-10-01

    One of the goals of the low energy 60 MeV section of the HINS H{sup -} linac [1] is to demonstrate that a total of {approx}40 RF cavities can be powered by a single 2.5 MW, 325 MHz klystron. This requires individual vector modulators at the input of each RF cavity to independently adjust the amplitude and phase of the RF input signal during the 3.5 ms RF pulse. Two versions of vector modulators have been developed; a 500 kW device for the radiofrequency quadrupole (RFQ) and a 75 kW modulator for the RF cavities. High power tests showing the vector modulator phase and amplitude responses will be presented.

  17. Guiding of low-energy electrons by highly ordered Al{sub 2}O{sub 3} nanocapillaries

    SciTech Connect (OSTI)

    Milosavljevic, A. R.; Vikor, Gy.; Pesic, Z. D.; Kolarz, P.; Sevic, D.; Marinkovic, B. P.; Matefi-Tempfli, S.; Matefi-Tempfli, M.; Piraux, L.

    2007-03-15

    We report an experimental study of guided transmission of low-energy (200-350 eV) electrons through highly ordered Al{sub 2}O{sub 3} nanocapillaries with large aspect ratio (140 nm diameter and 15 {mu}m length). The nanochannel array was prepared using self-ordering phenomena during a two-step anodization process of a high-purity aluminum foil. The experimental results clearly show the existence of the guiding effect, as found for highly charged ions. The guiding of the electron beam was observed for tilt angles up to 12 degree sign . As seen for highly charged ions, the guiding efficiency increases with decreasing electron incident energy. The transmission efficiency appeared to be significantly lower than observed for highly charged ions and, moreover, the intensity of transmitted electrons significantly decreases with decreasing impact energy.

  18. Extension of high-order harmonic generation cutoff via coherent control of intense few-cycle chirped laser pulses

    E-Print Network [OSTI]

    Carrera, Juan J.; Chu, Shih-I

    2007-03-16

    We present an ab initio quantum investigation of the high-order harmonic generation (HHG) cutoff extension using intense few-cycle chirped laser pulses. For a few-cycle chirped driving laser pulse, it is shown that significant ...

  19. Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma

    SciTech Connect (OSTI)

    Abedi, Samira [Physics Department, North Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Dorranian, Davoud [Laser Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Abari, Mehdi Etehadi [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Shokri, Babak [Physics Department, Science Faculty, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of)

    2011-09-15

    In this paper, the effect of weakly relativistic ponderomotive force in the interaction of intense laser pulse with nonisothermal, underdense, collisional plasma is studied. Ponderomotive force modifies the electron density and temperature distribution. By considering the weakly relativistic effect and ohmic heating of plasma electrons, the nonlinear dielectric permittivity of plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. It is shown that with considering the ohmic heating of electrons and collisions, the effect of ponderomotive force in weakly relativistic regime leads to steepening the electron density profile and increases the temperature of plasma electrons noticeably. Bunches of electrons in plasma become narrower. By increasing the laser pulse strength, the wavelength of density oscillations decreases. In this regime of laser-plasma interaction, electron temperature increases sharply by increasing the intensity of laser pulse. The amplitude of electric and magnetic fields increases by increasing the laser pulse energy while their wavelength decreases and they lost their sinusoidal form.

  20. Boron nitride substrates for high-quality graphene electronics

    E-Print Network [OSTI]

    Shepard, Kenneth

    Boron nitride substrates for high-quality graphene electronics C. R. Dean1,2 *, A. F. Young3 , I and J. Hone2 * Graphene devices on standard SiO2 substrates are highly disor- dered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene1­12 . Although suspend- ing

  1. A Lightweight, High-performance I/O Management Package for Data-intensive Computing

    SciTech Connect (OSTI)

    Wang, Jun

    2011-06-22

    Our group has been working with ANL collaborators on the topic â??bridging the gap between parallel file system and local file systemâ?ť during the course of this project period. We visited Argonne National Lab -- Dr. Robert Rossâ??s group for one week in the past summer 2007. We looked over our current project progress and planned the activities for the incoming years 2008-09. The PI met Dr. Robert Ross several times such as HEC FSIO workshop 08, SCâ??08 and SCâ??10. We explored the opportunities to develop a production system by leveraging our current prototype to (SOGP+PVFS) a new PVFS version. We delivered SOGP+PVFS codes to ANL PVFS2 group in 2008.We also talked about exploring a potential project on developing new parallel programming models and runtime systems for data-intensive scalable computing (DISC). The methodology is to evolve MPI towards DISC by incorporating some functions of Google MapReduce parallel programming model. More recently, we are together exploring how to leverage existing works to perform (1) coordination/aggregation of local I/O operations prior to movement over the WAN, (2) efficient bulk data movement over the WAN, (3) latency hiding techniques for latency-intensive operations. Since 2009, we start applying Hadoop/MapReduce to some HEC applications with LANL scientists John Bent and Salman Habib. Another on-going work is to improve checkpoint performance at I/O forwarding Layer for the Road Runner super computer with James Nuetz and Gary Gridder at LANL. Two senior undergraduates from our research group did summer internships about high-performance file and storage system projects in LANL since 2008 for consecutive three years. Both of them are now pursuing Ph.D. degree in our group and will be 4th year in the PhD program in Fall 2011 and go to LANL to advance two above-mentioned works during this winter break. Since 2009, we have been collaborating with several computer scientists (Gary Grider, John bent, Parks Fields, James Nunez, Hsing-Bung Chen, etc) from HPC5 and James Ahrens from Advanced Computing Laboratory in Los Alamos National Laboratory. We hold a weekly conference and/or video meeting on advancing works at two fronts: the hardware/software infrastructure of building large-scale data intensive cluster and research publications. Our group members assist in constructing several onsite LANL data intensive clusters. Two parties have been developing software codes and research papers together using both sidesâ?? resources.

  2. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R. (Golden, CO)

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  3. Meson production in high-energy electron-nucleus scattering

    E-Print Network [OSTI]

    Göran Fäldt

    2010-06-09

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering is now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus. The process takes place in the small-angle-Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  4. MR-Guided High-Intensity Focused Ultrasound: Current Status of an Emerging Technology

    SciTech Connect (OSTI)

    Napoli, Alessandro, E-mail: napoli.alessandro@gmail.com; Anzidei, Michele, E-mail: michele.anzidei@gmail.com; Ciolina, Federica, E-mail: federica.ciolina@gmail.com; Marotta, Eugenio, E-mail: eugenio.marotta@gmail.com; Cavallo Marincola, Beatrice, E-mail: beatrice.cavalloamarincola@gmail.com; Brachetti, Giulia, E-mail: giuliabrachetti@gmail.com; Mare, Luisa Di, E-mail: luisadimare@gmail.com; Cartocci, Gaia, E-mail: gaia.cartocci@gmail.com; Boni, Fabrizio, E-mail: fabrizioboni00@gmail.com; Noce, Vincenzo, E-mail: vinc.noce@hotmail.it; Bertaccini, Luca, E-mail: lucaone84@libero.it; Catalano, Carlo, E-mail: carlo.catalano@uniroma1.it [Sapienza, University of Rome, Department of Radiological Sciences (Italy)] [Sapienza, University of Rome, Department of Radiological Sciences (Italy)

    2013-10-15

    The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance-guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.

  5. Left-Right Symmetric Models at the High-Intensity Frontier

    E-Print Network [OSTI]

    Castillo-Felisola, Oscar; Helo, Juan C; Kovalenko, Sergey G; Ortiz, Sebastian E

    2015-01-01

    We study constraints on Left-Right Symmetric models from searches of semileptonic decays of $D$, $D_{s}$, $B$ mesons, mediated by heavy neutrinos $N$ with masses $m_N\\sim $ GeV that go on their mass shell leading to a resonant enhancement of the rates. Using these processes we examine, as a function of $m_N$ and $M_{W_R}$, the physics reach of the recently proposed high-intensity beam dump experiment SHiP, which is expected to produce a large sample of $D_s$ mesons. We compare these results with the corresponding reach of neutrinoless double beta decay experiments, as well as like-sign dilepton searches with displaced vertices at the LHC. We conclude that the SHiP experiment has clear advantages in probing the Left-Right Symmetric models for heavy neutrinos in the GeV mass range.

  6. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  7. Diamondoid monolayers as electron emitters

    DOE Patents [OSTI]

    Yang, Wanli (El Cerrito, CA); Fabbri, Jason D. (San Francisco, CA); Melosh, Nicholas A. (Menlo Park, CA); Hussain, Zahid (Orinda, CA); Shen, Zhi-Xun (Stanford, CA)

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  8. High-resolution electron microscopy of advanced materials

    SciTech Connect (OSTI)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  9. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    SciTech Connect (OSTI)

    Nitschke, J.M. (ed.)

    1989-10-19

    Following the First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop.

  10. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore »hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  11. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    SciTech Connect (OSTI)

    Dong, Q.; Liang, Y. X.; Ferry, D.; Cavanna, A.; Gennser, U.; Couraud, L.; Jin, Y.

    2014-07-07

    We report on the results obtained from specially designed high electron mobility transistors at 4.2?K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1?Hz can reach 6.3 nV/Hz{sup 1?2} and 20 aA/Hz{sup 1?2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  12. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    E-Print Network [OSTI]

    Scoby, Cheyne Matthew

    2012-01-01

    111 Transverse electron beamfemtosecond relativistic electron beams . . Organization offields of a relativistic electron beam. Phys. Rev. Lett. ,

  13. Ionization and high-order harmonic generation in aligned benzene by a short intense circularly polarized laser pulse

    E-Print Network [OSTI]

    Moiseyev, Nimrod

    Ionization and high-order harmonic generation in aligned benzene by a short intense circularly and high-order harmonic generation by benzene aligned in the polarization plane of a short circularly pulses 4 . Recently, other types of HHG processes have been dis- covered in molecules. The planar benzene

  14. Received 9 May 2015 | Accepted 9 Sep 2015 | Published 9 Oct 2015 High-intensity power-resolved radiation

    E-Print Network [OSTI]

    MacDonald, Mark

    to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed. Monitoring systems, such as fission chambers and rhodium detector systems are expensive and have limited high temperatures, corrosion, extreme radiation levels and miniaturization. In-core monitoring systems

  15. Electronically conductive ceramics for high temperature oxidizing environments

    DOE Patents [OSTI]

    Kucera, Gene H. (Downers Grove, IL); Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL)

    1986-01-01

    A high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  16. Electronically conductive ceramics for high temperature oxidizing environments

    DOE Patents [OSTI]

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  17. Performance of a new electron-tracking Compton camera under intense radiations from a water target irradiated with a proton beam

    E-Print Network [OSTI]

    Yoshihiro Matsuoka; T. Tanimori; H. Kubo; A. Takada; J. D. Parker; T. Mizumoto; Y. Mizumura; S. Iwaki; T. Sawano; S. Komura; T. Kishimoto; M. Oda; T. Takemura; S. Miyamoto; S. Sonoda; D. Tomono; K. Miuchi; S. Kabuki; S. Kurosawa

    2015-01-22

    We have developed an electron-tracking Compton camera (ETCC) for use in next-generation MeV gamma ray telescopes. An ETCC consists of a gaseous time projection chamber (TPC) and pixel scintillator arrays (PSAs). Since the TPC measures the three dimensional tracks of Compton-recoil electrons, the ETCC can completely reconstruct the incident gamma rays. Moreover, the ETCC demonstrates efficient background rejection power in Compton-kinematics tests, identifies particle from the energy deposit rate (dE/dX) registered in the TPC, and provides high quality imaging by completely reconstructing the Compton scattering process. We are planning the "Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment" (SMILE) for our proposed all-sky survey satellite. Performance tests of a mid-sized 30 cm-cubic ETCC, constructed for observing the Crab nebula, are ongoing. However, observations at balloon altitudes or satellite orbits are obstructed by radiation background from the atmosphere and the detector itself. The background rejection power was checked using proton accelerator experiments conducted at the Research Center for Nuclear Physics, Osaka University. To create the intense radiation fields encountered in space, which comprise gamma rays, neutrons, protons, and other energetic entities, we irradiated a water target with a 140 MeV proton beam and placed a SMILE-II ETCC near the target. In this situation, the counting rate was five times than that expected at the balloon altitude. Nonetheless, the ETCC stably operated and identified particles sufficiently to obtain a clear gamma ray image of the checking source. Here, we report the performance of our detector and demonstrate its effective background rejection based in electron tracking experiments.

  18. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - Ă?Â?165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  19. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore »(Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (« less

  20. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $?$ Beams of High Intensity and Large Brilliance

    E-Print Network [OSTI]

    D. Habs; U. Köster

    2010-09-08

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with $\\gamma$ beams allow to produce certain radioisotopes, e.g. $^{47}$Sc, $^{44}$Ti, $^{67}$Cu, $^{103}$Pd, $^{117m}$Sn, $^{169}$Er, $^{195m}$Pt or $^{225}$Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example $^{195m}$Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like $^{47}$Sc, $^{67}$Cu and $^{225}$Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.

  1. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    SciTech Connect (OSTI)

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M. Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.; Franzen, K. Y.

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 e?A of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 p?A of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 e?A. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  2. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  3. Impact of a high-intensity fire on mixed evergreen and mixed conifer forests in the Peninsular

    E-Print Network [OSTI]

    Deutschman, Douglas

    Impact of a high-intensity fire on mixed evergreen and mixed conifer forests in the Peninsular have changed the forest fire regime across the western United States by excluding fire. Fire conifer forest, oak woodland, chaparral and grassland. Most conifers were killed by the fire, especially

  4. Deeply-scaled GaN high electron mobility transistors for RF applications

    E-Print Network [OSTI]

    Lee, Dong Seup

    2014-01-01

    Due to the unique combination of large critical breakdown field and high electron velocity, GaN-based high electron mobility transistors (HEMTs) have great potential for next generation high power RF amplifiers. The ...

  5. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    SciTech Connect (OSTI)

    Batani, D.; Folpini, G.; Giuffrida, L.; Maheut, Y.; Malka, G.; Nicolai, Ph.; Ribeyre, X. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France)] [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Antonelli, L. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France) [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Universitŕ di Roma “Tor Vergata,” Roma (Italy); Atzeni, S.; Marocchino, A.; Schiavi, A. [Dipartimento SBAI, Université di Roma “La Sapienza” and CNISM, Roma (Italy)] [Dipartimento SBAI, Université di Roma “La Sapienza” and CNISM, Roma (Italy); Badziak, J.; Chodukowski, T.; Kalinowska, Z.; Pisarczyk, T.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)] [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Baffigi, F.; Cristoforetti, G.; Gizzi, L. A.; Koester, P. [Intense Laser Irradiation Laboratory, INO-CNR, Pisa (Italy)] [Intense Laser Irradiation Laboratory, INO-CNR, Pisa (Italy); and others

    2014-03-15

    An experiment was performed using the PALS laser to study laser-target coupling and laser-plasma interaction in an intensity regime ?10{sup 16}?W/cm{sup 2}, relevant for the “shock ignition” approach to Inertial Confinement Fusion. A first beam at low intensity was used to create an extended preformed plasma, and a second one to create a strong shock. Pressures up to 90 Megabars were inferred. Our results show the importance of the details of energy transport in the overdense region.

  6. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect (OSTI)

    Minami, R., E-mail: minami@prc.tsukuba.ac.jp; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  7. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Turin and A. A. Balandin, Electronics Letters 40, 81 (2004).REFERENCES G. E. Moore, Electronics 38 (1965). E. Pop, Nanofor High-power Electronics” PCSI-38:38th Conference on the

  8. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOE Patents [OSTI]

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  9. MERIT -The High Intensity Liquid Mercury Target Experiment at the CERN PS

    E-Print Network [OSTI]

    McDonald, Kirk

    placed long straight sections around the ring of the accelerator, thus creating intense neutrino beams-induced pressure waves and resulting pitting corrosion in the containment walls and cavitation formation. The use of a free flowing liquid in the form of a jet is a promising design option to address these issues

  10. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, Pavel [JLAB

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  11. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect (OSTI)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  12. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC

    SciTech Connect (OSTI)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-04-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.

  13. Heavy and superheavy elements production in high intensive fluxes of explosive process

    E-Print Network [OSTI]

    Lutostansky, Yu S; Panov, I V

    2015-01-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lower temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for Mike, Par and Barbel experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible in case of binary mixture of starting isotopes with the significant addit...

  14. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    SciTech Connect (OSTI)

    Feister, S. Orban, C.; Nees, J. A.; Morrison, J. T.; Frische, K. D.; Chowdhury, E. A.; Roquemore, W. M.

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.

  15. Switching processes in TGS crystals irradiated by high-current electron beam

    E-Print Network [OSTI]

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  16. Solar wind-magnetosphere coupling leading to relativistic electron energization during high-speed streams

    E-Print Network [OSTI]

    Lyons, Larry

    Solar wind-magnetosphere coupling leading to relativistic electron energization during high. Smith (2005), Solar wind-magnetosphere coupling leading to relativistic electron energization during. Using observations during a period of persistent high-speed, corotating, solar wind streams, we

  17. Self-pinched transport of a high ?/? electron beam

    SciTech Connect (OSTI)

    Myers, M. C.; Wolford, M. F.; Sethian, J. D. [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States)] [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States); Rose, D. V. [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States)] [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States); Hegeler, F. [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)] [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)

    2013-10-15

    The self-pinched transport of a 0.5 MeV, 18 kA cylindrical electron beam has been studied experimentally and computationally. The relatively low voltage and high current required for materials surface modification applications leads to complicated beam dynamics as the Alfven limit is approached. Transport and focusing of the high ?/? beam was done in a sub-Torr, neutral gas-filled, conducting tube in the ion-focused regime. In this regime, beam space charge forces are progressively neutralized to allow focusing of the beam by its self-magnetic field. The beam exhibits stable envelope oscillations as it is efficiently and reproducibly propagated for distances greater than a betatron wavelength. Experimental results follow the trends seen in 2-D particle-in-cell simulations. Results show that the input electron beam can be periodically focused to a peaked profile with the beam half-current radius decreased by a factor of 2.84. This results in an increase of a factor of 8 in beam current density. This focusing is sufficient to produce desired effects in the surface layers of metallic materials.

  18. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  19. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect (OSTI)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  20. Huliq:Breaking News Submit News Login Linear Nanotubes Offer Path To High-Performance Electronics

    E-Print Network [OSTI]

    Rogers, John A.

    Huliq:Breaking News Submit News Login Linear Nanotubes Offer Path To High-Performance Electronics.MoSys.com Page 1 of 2Linear nanotubes offer path to high-performance electronics | Huliq: Breaking News 3/28/2007http://www.huliq.com/16423/linear-nanotubes-offer-path-to-high-performance-electronics #12;compared

  1. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup ?4}–10{sup ?3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup ?3} to 3.8 × 10{sup 11} cm{sup ?3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  2. Measured Properties of the DUVFEL High Brightness, Ultrashort Electron Beam

    SciTech Connect (OSTI)

    Emma, Paul J

    2002-08-20

    The DUVFEL electron linac is designed to produce sub-picosecond, high brightness electron bunches to drive an ultraviolet FEL. The accelerator consists of a 1.6 cell S-band photoinjector, variable pulse length Ti:Sapp laser, 4 SLAC-type S-band accelerating sections, and 4-dipole chicane bunch compressor. In preparation for FEL operation, the compressed electron beam has been fully characterized. Measurement of the beam parameters and simulation of the beam are presented. The properties of the laser and photoinjector are summarized in Table 1. In typical running, 10 mJ of IR light is produced by the Spectraphyics Tsunami Ti:Sapphire oscillator and TSA50 amplifier, which is frequency tripled to produce 450 uJ of UV light. After spatial filtering and aperturing of the gaussian mode to produce a nearly uniform laser spot, about 200-300 uJ is delivered to the cathode. This produces 300 pC of charge at the accelerating phase of 30 degrees. The RF cavity is a Gun IV [1] with copper cathode that has been modified for better performance [2]. In principle, the laser pulse length may be adjusted from 100 fs to 10 ps, however there are practical limitations on the range of adjustment due to dispersion characteristics and efficiency of the BBO crystals. The thickness of the harmonic crystals is optimized for pulse lengths from 1-5 ps. Within this range of pulse lengths there is evidence [3] of variations in the time profile of the UV light that are sensitive to the phase-matching angle of the crystal.

  3. Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum K. P. Singh*

    E-Print Network [OSTI]

    Singh, Kunwar Pal

    . Singh* Department of Physics, Indian Institute of Technology, New Delhi-110016, India (Received 2 August distribution of electrons f x,vx,vy at different time scales was recorded. Singh et al. [13] have shown

  4. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortuńo, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore »length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  5. Effect of magnetic-field configuration on the beam intensity from electron cyclotron resonance ion source and RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yano, Y. [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); SAS Ltd., Kita-shinagawa 5-9-11, Shinjuku-ku, Tokyo (Japan); RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2006-03-15

    We measured the main plasma parameters (density of electron, temperature of electrons, and ion confinement time) as a function of B{sub min} and B{sub inj} with laser ablation technique. We observed that the B{sub min} mainly affects the temperature and density of electrons and all of the three parameters increase with increasing the B{sub inj}. We also observed that the gas pressure of the plasma chamber at the rf injection side became minimum at the optimum value for B{sub min} at fixed gas flow. This result indicates that the ionization efficiency becomes maximum at optimum value for B{sub min}. From these results, it is concluded that the plasma production is strongly dependent on the B{sub min} (plasma generator). We also observed that the B{sub inj} affects the ion confinement time, temperature, and density of electrons. All of the three parameters increase with increasing B{sub inj}.

  6. Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography

    E-Print Network [OSTI]

    Parikh, Atul N.

    Pattern transfer of electron beam modified self-assembled monolayers for high-resolution electron beam lithography. Focused electron beams from 1 to 50 keV and scanning tunneling microscopy at 10 of electron beam damage on the monolayers and the subsequent etching reactions has been explored through x

  7. DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*

    E-Print Network [OSTI]

    McDonald, Kirk

    954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

  8. Time-dependent density-functional theory for molecular processes in strong fields: Study of multiphoton processes and dynamical response of individual valence electrons of N2 in intense laser fields

    E-Print Network [OSTI]

    Chu, Xi; Chu, Shih-I

    2001-11-14

    We present a time-dependent density-functional theory (TDDFT) with proper asymptotic long-range potential for nonperturbative treatment of multiphoton processes of many-electron molecular systems in intense laser fields. ...

  9. Experimental investigation of electron multipactor discharges at very high frequency

    E-Print Network [OSTI]

    Graves, Timothy P. (Timothy Paul)

    2006-01-01

    Multipactor discharges are a resonant condition in which electrons impact a surface in phase with an alternating electric field. The discharge is sustained by electron multiplication from secondary emission. As motivation, ...

  10. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect (OSTI)

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  11. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammels, A.F.

    1987-08-04

    A solvated electron lithium negative electrode is described containing: containment means holding a solution of lithium dissolved in liquid ammonia to form a solvated electron solution, the solvated electron solution contacting a lithium intercalating membrane and providing lithium to the intercalating membrane during discharge and accepting it from the intercalating membrane during charge.

  12. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    E-Print Network [OSTI]

    M. Lantz; D. Gorelov; A. Jokinen; V. S. Kolhinen; A. Mattera; H. Penttilä; S. Pomp; V. Rakopoulos; S. Rinta-Antila; A. Solders

    2013-04-09

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some considerations for the design of the neutron converter will be discussed, together with different scenarios for which fission targets and neutron energies to focus on.

  13. High-harmonic generation in plasmas from relativistic laser-electron scattering

    E-Print Network [OSTI]

    Umstadter, Donald

    High-harmonic generation in plasmas from relativistic laser-electron scattering S. Banerjee, A. R Results are presented on the generation of high harmonics through the scattering of relativistic electrons to be the emission of even- order harmonics, linear dependence on the electron density, significant amount

  14. Solar-wind magnetosphere coupling, including relativistic electron energization, during high-speed streams

    E-Print Network [OSTI]

    Lyons, Larry

    Solar-wind­ magnetosphere coupling, including relativistic electron energization, during high. If this inference is correct, and if it is chorus that energizes the relativistic electrons, then high-speed solar-speed solar wind streams, and fluxes of relativistic electrons observed at geosynchronous orbit enhance

  15. Senderovich 1 Electrode Design Adjustments to a High Voltage Electron Gun

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    Senderovich 1 Electrode Design Adjustments to a High Voltage Electron Gun Igor Senderovich Abstract, a very high voltage electron gun needs to be designed.1 To these ends, several geometric parameters were were performed on off-axis electron acceleration. Introduction The design of the electrode gun has

  16. PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda

    E-Print Network [OSTI]

    PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W present results from the SLAC E­150 experiment on plasma focusing of high energy density electron and experiments to test this con­ cept were carried out with low energy density electron beams [2]. The goals

  17. X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma

    E-Print Network [OSTI]

    Umstadter, Donald

    Electrons in a Helium Plasma K. Ta Phuoc,1 A. Rousse,1,* M. Pittman,1 J. P. Rousseau,1 V. Malka,1 S a few years ago by the detection of the second and the third harmonic light of a 1:053 m laser system

  18. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    E-Print Network [OSTI]

    Seidl, P.A.

    2011-01-01

    of Science, Office of Fusion Energy Sciences, of the U.S.of Science, Office of Fusion Energy Sciences, of the U.S.driver for inertial fusion energy would have unusually high

  19. Electron Scattering From High-Momentum Neutrons in Deuterium

    E-Print Network [OSTI]

    A. V. Klimenko; S. E. Kuhn; for the CLAS collaboration

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' $F_{2n}^{eff}$ was extracted as a function of $W^{*}$ and the scaling variable $x^{*}$ at extreme backward kinematics, where effects of FSI appear to be smaller. For $p_{s}>400$ MeV/c, where the neutron is far off-shell, the model overestimates the value of $F_{2n}^{eff}$ in the region of $x^{*}$ between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  20. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect (OSTI)

    A.V. Klimenko; S.E. Kuhn

    2005-10-12

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  1. Electron scattering from high-momentum neutrons in deuterium

    SciTech Connect (OSTI)

    Klimenko, A.V.; Kuhn, S.E.; Bueltmann, S.; Careccia, S.L.; Dharmawardane, K.V.; Dodge, G.E.; Guler, N.; Hyde-Wright, C.E.; Klein, A.; Tkachenko, S.; Weinstein, L.B.; Zhang, J. [Old Dominion University, Norfolk, Virginia 23529 (United States); Butuceanu, C.; Griffioen, K.A.; Baillie, N.; Fersch, R.G.; Funsten, H. [College of William and Mary, Williamsburg, Virginia 23187 (United States); Egiyan, K.S.; Asryan, G.; Dashyan, N.B. [Yerevan Physics Institute, 375036 Yerevan (Armenia)] (and others)

    2006-03-15

    We report results from an experiment measuring the semiinclusive reaction {sup 2}H(e,e{sup '}p{sub s}) in which the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p{sup {yields}}{sub s}, and momentum transfer Q{sup 2}. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a 'bound neutron structure function' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For p{sub s}>0.4 GeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's 'off-shell-ness' is one possible effect that can cause the observed deviation.

  2. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect (OSTI)

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D. [Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  3. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  4. Abstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate the neutron production target. To mitigate the effect of the high power, and high intensity beam on the target we propose to reduce the intensity of the beam by un

    E-Print Network [OSTI]

    McDonald, Kirk

    the neutron production target. To mitigate the effect of the high power, and high intensity beam on the targetAbstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate a High-Power Beam* M. Haj Tahar, F Meot, P. Pile, *N. Tsoupas Brookhaven National Laboratory Upton, NY

  5. High-speed silicon electro-optic modulator for electronic photonic integrated circuits

    E-Print Network [OSTI]

    Gan, Fuwan

    2007-01-01

    The development of future electronic-photonic integrated circuits (EPIC) based on silicon technology critically depends on the availability of CMOS-compatible high-speed modulators that enable the interaction of electronic ...

  6. Effect of the plasma instability on the beam intensity from RIKEN 18 GHz electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Higurashi, Y.; Nakagawa, T.; Kidera, M.; Aihara, T.; Kobayashi, K.; Kase, M.; Goto, A.; Yano, Y. [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); SAS Ltd., Kita-shinagawa 5-9-11, Shinjuku-ku, Tokyo (Japan); RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2006-03-15

    We measured the beam oscillation of RIKEN 18 GHz electron cyclotron resonance ion source for various conditions. In this experiment, the frequency of the beam oscillation increases with increasing the gas pressure and decreases with increasing rf power. The oscillation frequency is strongly dependent on the negative voltage of biased disk, i.e., the frequency increases with increasing the negative voltage. We observed that the frequency is strongly dependent on the mass of ionized gas.

  7. The National Scalable Cluster Project: Three Lessons about High Performance Data Mining and Data Intensive Computing

    E-Print Network [OSTI]

    Grossman, Robert

    The National Scalable Cluster Project: Three Lessons about High Performance Data Mining and Data are becoming common. In this paper, we describe three basic lessons we have learned about data mining and data to the data. By mining data, we mean looking for patterns, changes, associations, anomalies and other

  8. Flame Surface Fractal Characteristics in Premixed Turbulent Combustion at High Turbulence Intensities

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Flame Surface Fractal Characteristics in Premixed Turbulent Combustion at High Turbulence of the flame surfaces in premixed turbulent combustion, the fractal approach is considered to be one with diameters of 11.2 and 22.4 mm, with flames of propane­air with equivalence ratios of 0.8 and 1

  9. HIGH INTENSITY LINAC DRIVER FOR THE SPIRAL-2 PROJECT : DESIGN OF SUPERCONDUCTING 88 MHZ QUARTER WAVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . For the high-energy section of the linac, a superconducting 88 MHz Quarter Wave Resonator (beta 0.12) has been WAVE RESONATORS (BETA 0.12), POWER COUPLERS AND CRYOMODULES T. Junquera, G. Olry, H. Saugnac, J Abstract A superconducting linac driver, delivering deuterons with an energy up to 40 MeV (5 mA) and heavy

  10. MATERIAL R&D FOR HIGH-INTENSITY PROTON BEAM PROGRESS REPORT

    E-Print Network [OSTI]

    McDonald, Kirk

    strength, very low thermal expansion or high ductility #12;Experimentation with Graphite & Carbon Resilience in terms of strength/shock absorption · CTE evaluation · Stress-strain · Fatigue · Fracture Toughness and crack development/propagation ·Corrosion Resistance ·De-lamination (if a composite such as CC

  11. Secure, Efficient Data Transport and Replica Management for High-Performance Data-Intensive Computing_

    E-Print Network [OSTI]

    Chervenak, Ann

    Secure, Efficient Data Transport and Replica Management for High-Performance Data environment, we present the design and initial performance measurements of our GridFTP protocol for efficient- energy physics and climate modeling, we conclude that these applications require two fundamental data

  12. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  13. Contribution to the numerical study of turbulence in high intensity discharge lamps

    SciTech Connect (OSTI)

    Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

    2011-07-15

    We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.

  14. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond 2002 We have conducted experiments exploring pulsed laser deposition of thin films using the high average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination

  15. Laboratory Design for High-Performance Electron Microscopy

    E-Print Network [OSTI]

    Knowles, David William

    in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State plenum of air in the HVAC system) and have only the minimum number of heat-producing sources. Similarly

  16. LambdaStation: Exploiting Advance Networks In Data Intensive High Energy Physics Applications

    SciTech Connect (OSTI)

    Harvey B. Newman

    2009-09-11

    Lambda Station software implements selective, dynamic, secure path control between local storage & analysis facilities, and high bandwidth, wide-area networks (WANs). It is intended to facilitate use of desirable, alternate wide area network paths which may only be intermittently available, or subject to policies that restrict usage to specified traffic. Lambda Station clients gain awareness of potential alternate network paths via Clarens-based web services, including path characteristics such as bandwidth and availability. If alternate path setup is requested and granted, Lambda Station will configure the local network infrastructure to properly forward designated data flows via the alternate path. A fully functional implementation of Lambda Station, capable of dynamic alternate WAN path setup and teardown, has been successfully developed. A limited Lambda Station-awareness capability within the Storage Resource Manager (SRM) product has been developed. Lambda Station has been successfully tested in a number of venues, including Super Computing 2008. LambdaStation software, developed by the Fermilab team, enables dynamic allocation of alternate network paths for high impact traffic and to forward designated flows across LAN. It negotiates with reservation and provisioning systems of WAN control planes, be it based on SONET channels, demand tunnels, or dynamic circuit networks. It creates End-To-End circuit between single hosts, computer farms or networks with predictable performance characteristics, preserving QoS if supported in LAN and WAN and tied security policy allowing only specific traffic to be forwarded or received through created path. Lambda Station project also explores Network Awareness capabilities.

  17. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect (OSTI)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  18. Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments

    E-Print Network [OSTI]

    T. Higuchi; H. Fujii; M. Ikeno; Y. Igarashi; E. Inoue; R. Itoh; H. Kodama; T. Murakami; M. Nakao; K. Nakayoshi; M. Saitoh; S. Shimazaki; S. Y. Suzuki; M. Tanaka; K. Tauchi; M. Yamauchi; Y. Yasu; G. Varner; Y. Nagasaka; T. Katayama; K. Watanabe; M. Ishizuka; S. Onozawa; C. J. Li

    2003-05-28

    Data logging at an upgraded KEKB accelerator or the J-PARC facility, currently under commission, requires a high density data acquisition platform with integrated data reduction CPUs. To follow market trends, we have developed a DAQ platform based on the PCI bus, a choice which permits a fast DAQ and a long expected lifetime of the system. The platform is a 9U-VME motherboard consisting of four slots for signal digitization modules, readout FIFOs for data buffering, and three PMC slots, on one of which resides a data reduction CPU. We have performed long term and thermal stability tests. The readout speed on the platform has been measured up to 125 MB/s in DMA mode.

  19. The IsoDAR High Intensity H$_2^+$ Transport and Injection Tests

    E-Print Network [OSTI]

    Alonso, Jose; Calabretta, Luciano; Campo, Daniela; Celona, Luigi; Conrad, Janet M; Day, Alexandra; Castro, Giuseppe; Labrecque, Francis; Winklehner, Daniel

    2015-01-01

    This technical report reviews the tests performed at the Best Cyclotron Systems, Inc. facility in regards to developing a cost effective ion source, beam line transport system, and acceleration system capable of high H$_2^+$ current output for the IsoDAR (Isotope Decay At Rest) experiment. We begin by outlining the requirements for the IsoDAR experiment then provide overview of the Versatile Ion Source, Low Energy Beam Transport system, spiral inflector, and cyclotron. The experimental measurements are then discussed and the results are compared with a thorough set of simulation studies. Of particular importance we note that the Versatile Ion Source (VIS) proved to be a reliable ion source capable of generating a large amount of H$_2^+$ current. The results suggest that with further upgrades, the VIS could potentially be a suitable candidate for IsoDAR. The conclusion outlines the key results from our tests and introduces the forthcoming work this technical report has motivated.

  20. Role of dc space charge field in the optimization of microwave conversion efficiency from a modulated intense relativistic electron beam

    SciTech Connect (OSTI)

    Xiao, Renzhen; Chen, Changhua; Wu, Ping; Song, Zhimin; Sun, Jun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China)] [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

    2013-12-07

    We demonstrate an efficiency of 70% with 5.1 GW microwave power for a diode voltage of 770 kV and a current modulation coefficient of 1.67 in a klystron-like relativistic backward wave oscillator. The device combines the advantages of reducing electron beam radius, adopting dual-cavity extractor, and introducing two pre-modulation cavities. A large dc space charge field is present due to the conversion of considerable potential energy to kinetic energy at the end of beam-wave interaction region. A nonlinear theory is developed to show that the dc space charge field can increase the current modulation coefficient and microwave conversion efficiency significantly.

  1. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Yang, Jie Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5?eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  2. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    E-Print Network [OSTI]

    Duris, Joseph

    2015-01-01

    Demonstration of high-trapping efficiency and narrow energylaser accelerator for efficient production of high qualityand J. S. Wurtele. High-efficiency extraction of microwave

  3. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  4. High quality YBa2Cu307 Josephson junctions made by direct electron beam writing

    E-Print Network [OSTI]

    Nadgorny, Boris

    High quality YBa2Cu307 Josephson junctions made by direct electron beam writing S. K. Tolpygo, S beam writing over YBa,C&O, thin-tilm microbridges, using scanning transmission electron microscope fabricated by the technologically attractive method of direct electron beam writing. The idea of using

  5. Mechanics of stretchable electronics with high fill factors Yewang Su a,b

    E-Print Network [OSTI]

    Rogers, John A.

    and flexible electronics to achieve both mechanical stretchability and high fill factors (e.g., full, 100. 1. Introduction Stretchable and flexible electronics have performance equal to established shows the mesh design of stretchable and flexible electronics (Kim et al., 2008b; Song et al., 2009; Su

  6. A high voltage test stand for electron gun qualification for LINACs

    SciTech Connect (OSTI)

    Wanmode, Yashwant D.; Mulchandani, J.; Acharya, M.; Bhisikar, A.; Singh, H.G.; Shrivastava, Purushottam

    2011-07-01

    An electron gun lest stand has been developed at RRCAT. The test stand consists of a high voltage pulsed power supply, electron gun filament supply, grid supply, UHV system and electron gun current measurement system. Several electron guns developed indigenously were evaluated on this test stand. The shielding is provided for the electron gun set up. Electron gun tests can be tested upto 55 kV with pulse width of 15 microsecs and pulse repetition rates up to 200 Hz. The technical details of the subsystems are furnished and results of performance of the test stand have been reported in this paper. (author)

  7. Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser

    E-Print Network [OSTI]

    Lobet, Mathieu; d'Humičres, Emmanuel; Gremillet, Laurent

    2015-01-01

    Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam's properties with respect to the laser parameters are also examined.

  8. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  9. High-energy high-luminosity electron-ion collider eRHIC

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10{sup 33}-10{sup 34} cm{sup -2} sec{sup -1} range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and {beta}* = 5 cm, takes advantage of newly commissioned Nb{sub 3}Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R&D in Section 5.

  10. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached ?225?kV bias voltage while generating less than 100?pA of field emission (<10?pA) using a 40?mm cathode/anode gap, corresponding to field strength of 13.7?MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ?22.5 MV/m with field emission less than 100?pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  11. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  12. Fast magnetic field annihilation in the relativistic collisionless regime driven by two ultra-short high-intensity laser pulses

    E-Print Network [OSTI]

    Gu, Y J; Kumar, D; Liu, Y; Singh, S K; Esirkepov, T Zh; Bulanov, S V; Weber, S; Korn, G

    2015-01-01

    The magnetic quadrupole structure formation during the interaction of two ultra-short high power laser pulses with a collisionless plasma is demonstrated with 2.5-dimensional particle-in-cell simulations. The subsequent expansion of the quadrupole is accompanied by magnetic field annihilation in the ultrarelativistic regime, when the magnetic field can not be sustained by the plasma current. This results in a dominant contribution of the displacement current exciting a strong large scale electric?field. This field leads to the conversion of magnetic energy into kinetic energy of accelerated electrons inside the thin current sheet.

  13. Search for Extremely Metal-poor Galaxies in the Sloan Digital Sky Survey (II): high electron temperature objects

    E-Print Network [OSTI]

    Almeida, J Sanchez; Morales-Luis, A B; Munoz-Tunon, C; Garcia-Benito, R; Nuza, S E; Kitaura, F S

    2016-01-01

    Extremely metal-poor (XMP) galaxies are defined to have gas-phase metallicity smaller than a tenth of the solar value (12 + log[O/H] < 7.69). They are uncommon, chemically and possibly dynamically primitive, with physical conditions characteristic of earlier phases of the Universe. We search for new XMPs in the Sloan Digital Sky Survey (SDSS) in a work that complements Paper I. This time high electron temperature objects are selected; since metals are a main coolant of the gas, metal- poor objects contain high-temperature gas. Using the algorithm k-means, we classify 788677 spectra to select 1281 galaxies having particularly intense [OIII]4363 with respect to [OIII]5007, which is a proxy for high electron temperature. The metallicity of these candidates was computed using a hybrid technique consistent with the direct method, rendering 196 XMPs. A less restrictive noise constraint provides a larger set with 332 candidates. Both lists are provided in electronic format. The selected XMP sample have mean stell...

  14. Device and method for electron beam heating of a high density plasma

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  15. Eigenmode analysis of a high-gain free-electron laser based on...

    Office of Scientific and Technical Information (OSTI)

    Eigenmode analysis of a high-gain free-electron laser based on a transverse gradient undulator Citation Details In-Document Search Title: Eigenmode analysis of a high-gain...

  16. Clinical Application of High-Dose, Image-Guided Intensity-Modulated Radiotherapy in High-Risk Prostate Cancer

    SciTech Connect (OSTI)

    Bayley, Andrew, E-mail: Andrew.Bayley@rmp.uhn.on.c [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada); Rosewall, Tara; Craig, Tim; Bristow, Rob; Chung, Peter; Gospodarowicz, Mary; Menard, Cynthia; Milosevic, Michael; Warde, Padraig; Catton, Charles [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, ON (Canada)

    2010-06-01

    Purpose: To report the feasibility and early toxicity of dose-escalated image-guided IMRT to the pelvic lymph nodes (LN), prostate (P), and seminal vesicles (SV). Methods and Materials: A total of 103 high-risk prostate cancer patients received two-phase, dose-escalated, image-guided IMRT with 3 years of androgen deprivation therapy. Clinical target volumes (CTVs) were delineated using computed tomography/magnetic resonance co-registration and included the prostate, portions of the SV, and the LN. Planning target volume margins (PTV) used were as follows: P (10 mm, 7 mm posteriorly), SV (10 mm), and LN (5 mm). Organs at risk (OaR) were the rectal and bladder walls, femoral heads, and large and small bowel. The IMRT was planned with an intended dose of 55.1 Gy in 29 fractions to all CTVs (Phase 1), with P+SV consecutive boost of 24.7 Gy in 13 fractions. Daily online image guidance was performed using bony landmarks and intraprostatic markers. Feasibility criteria included delivery of intended doses in 80% of patients, 95% of CTV displacements incorporated within PTV during Phase 1, and acute toxicity rate comparable to that of lower-dose pelvic techniques. Results: A total of 91 patients (88%) received the total prescription dose. All patients received at least 72 Gy. In Phase 1, 63 patients (61%) received the intended 55.1 Gy, whereas 87% of patients received at least 50 Gy. Dose reductions were caused by small bowel and rectal wall constraints. All CTVs received the planned dose in >95% of treatment fractions. There were no Radiation Therapy Oncology Group acute toxicities greater than Grade 3, although there were five incidences equivalent to Grade 3 within a median follow-up of 23 months. Conclusion: These results suggest that dose escalation to the PLN+P+SV using IMRT is feasible, with acceptable rates of acute toxicity.

  17. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  18. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  19. Multi-Electron Production at High Transverse Momenta in ep Collisions at HERA

    E-Print Network [OSTI]

    Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Delerue, N; Demirchyan, R; de Roeck, A; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grabskii, V; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Haidt, Dieter; Hajduk, L; Haller, J; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, C; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Kueckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüders, S; Lüke, D; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nikitin, D K; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Petrukhin, A; Pitzl, D; Pöschl, R; Povh, B; Raicevic, N; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski, V; Wacker, K; Wagner, J; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winde, M; Winter, G G; Wissing, C; Woerling, E E; Wünsch, E; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M

    2003-01-01

    Multi-electron production is studied at high electron transverse momentum in positron- and electron-proton collisions using the H1 detector at HERA. The data correspond to an integrated luminosity of 115 pb-1. Di-electron and tri-electron event yields are measured. Cross sections are derived in a restricted phase space region dominated by photon-photon collisions. In general good agreement is found with the Standard Model predictions. However, for electron pair invariant masses above 100 GeV, three di-electron events and three tri-electron events are observed, compared to Standard Model expectations of 0.30 pm 0.04 and 0.23 pm 0.04, respectively.

  20. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore »>1 mJ with a 120 Hz repetition rate, obtaining a resolving power of ?/?? > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  1. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    SciTech Connect (OSTI)

    Liu, Jianlong; Li, Nannan; Guo, Jing; Fang, Yong; Deng, Jiang [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zeng, Baoqing, E-mail: bqzeng@uestc.edu.cn [National Key Laboratory of Science and Technology on Vacuum Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices Zhongshan Lab, Department of Electronic Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402 (China); Wang, Wenzhong; Li, Jiangnan; Hao, Chenchun [School of Science, Minzu University of China, Beijing 100081 (China)

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  2. Advanced technologies for improving high frequency performance of AlGaN/GaN high electron mobility transistors

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2008-01-01

    In this thesis, we have used a combination of physical analysis, numerical simulation and experimental work to identify and overcome some of the main challenges in AlGaN/GaN high electron mobility transistors (HEMTs) for ...

  3. Exploring electronic structure through high-resolution hard x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical...

  4. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect (OSTI)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  5. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silica�s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and the interplay of rate effects with the effects of annealing, to accurately predict the fibers� reliability and expected lifetime

  6. Nuclear astrophysics with intense photon beam

    SciTech Connect (OSTI)

    Shizuma, Toshiyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-07-09

    Quasi-monochromatic photon beams generated by inverse Compton scattering of laser light with high energy electrons can be used for precise measurements of photoneutrons and resonant scattered {gamma} rays. Extremely high intensity and small energy spreading width of the photon beam expected at the ELI Nuclear Physics facility would increase the experimental sensitivities considerably. Possible photonuclear reaction measurements relevant to the p-process nucleosynthesis are discussed.

  7. Management of Respiratory Motion in Extracorporeal High-Intensity Focused Ultrasound Treatment in Upper Abdominal Organs: Current Status and Perspectives

    SciTech Connect (OSTI)

    Muller, A., E-mail: arnaud.muller@chu-lyon.fr [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France); Petrusca, L.; Auboiroux, V. [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland)] [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland); Valette, P. J. [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)] [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France); Salomir, R. [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland)] [University of Geneva, Department of Radiology, Faculty of Medicine (Switzerland); Cotton, F. [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)] [Centre Hospitalier Lyon Sud, Service de Radiologie, Hospices Civils de Lyon (France)

    2013-12-15

    Extracorporeal high-intensity focused ultrasound (HIFU) is a minimally invasive therapy considered with increased interest for the ablation of small tumors in deeply located organs while sparing surrounding critical tissues. A multitude of preclinical and clinical studies have showed the feasibility of the method; however, concurrently they showed several obstacles, among which the management of respiratory motion of abdominal organs is at the forefront. The aim of this review is to describe the different methods that have been proposed for managing respiratory motion and to identify their advantages and weaknesses. First, we specify the characteristics of respiratory motion for the liver, kidneys, and pancreas and the problems it causes during HIFU planning, treatment, and monitoring. Second, we make an inventory of the preclinical and clinical approaches used to overcome the problem of organ motion. Third, we analyze their respective benefits and drawbacks to identify the remaining physical, technological, and clinical challenges. We thereby consider the outlook of motion compensation techniques and those that would be the most suitable for clinical use, particularly under magnetic resonance thermometry monitoring.

  8. MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform

    SciTech Connect (OSTI)

    Merckel, Laura G.; Bartels, Lambertus W.; Koehler, Max O.; Bongard, H. J. G. Desiree van den; Deckers, Roel; Mali, Willem P. Th. M.; Binkert, Christoph A.; Moonen, Chrit T.; Gilhuijs, Kenneth G. A. Bosch, Maurice A. A. J. van den

    2013-04-15

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  9. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  10. Acute Toxicity in High-Risk Prostate Cancer Patients Treated With Androgen Suppression and Hypofractionated Intensity-Modulated Radiotherapy

    SciTech Connect (OSTI)

    Pervez, Nadeem, E-mail: nadeempe@cancerboard.ab.c [Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Small, Cormac [Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); MacKenzie, Marc [Division of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada); Yee, Don; Parliament, Matthew [Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Ghosh, Sunita [Division of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Mihai, Alina; Amanie, John; Murtha, Albert [Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Field, Colin [Division of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada); Murray, David [Division of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Fallone, Gino [Division of Medical Physics, Cross Cancer Institute, Edmonton, Alberta (Canada); Pearcey, Robert, E-mail: robertpe@cancerboard.ab.c [Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada)

    2010-01-15

    Purpose: To report acute toxicity resulting from radiotherapy (RT) dose escalation and hypofractionation using intensity-modulated RT (IMRT) treatment combined with androgen suppression in high-risk prostate cancer patients. Methods and Materials: Sixty patients with a histological diagnosis of high-risk prostatic adenocarcinoma (having either a clinical Stage of >=T3a or an initial prostate-specific antigen [PSA] level of >=20 ng/ml or a Gleason score of 8 to 10 or a combination of a PSA concentration of >15 ng/ml and a Gleason score of 7) were enrolled. RT prescription was 68 Gy in 25 fractions (2.72 Gy/fraction) over 5 weeks to the prostate and proximal seminal vesicles. The pelvic lymph nodes and distal seminal vesicles concurrently received 45 Gy in 25 fractions. The patients were treated with helical TomoTherapy-based IMRT and underwent daily megavoltage CT image-guided verification prior to each treatment. Acute toxicity scores were recorded weekly during RT and at 3 months post-RT, using Radiation Therapy Oncology Group acute toxicity scales. Results: All patients completed RT and follow up for 3 months. The maximum acute toxicity scores were as follows: 21 (35%) patients had Grade 2 gastrointestinal (GI) toxicity; 4 (6.67%) patients had Grade 3 genitourinary (GU) toxicity; and 30 (33.33%) patients had Grade 2 GU toxicity. These toxicity scores were reduced after RT; there were only 8 (13.6%) patients with Grade 1 GI toxicity, 11 (18.97%) with Grade 1 GU toxicity, and 5 (8.62%) with Grade 2 GU toxicity at 3 months follow up. Only the V60 to the rectum correlated with the GI toxicity. Conclusion: Dose escalation using a hypofractionated schedule to the prostate with concurrent pelvic lymph node RT and long-term androgen suppression therapy is well tolerated acutely. Longer follow up for outcome and late toxicity is required.

  11. Study of 1–8 keV K-? x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect (OSTI)

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D. [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)] [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-? line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-? x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ?740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-? yield (I{sub x} ? I{sub L}{sup ?}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent ? = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are ?{sub Mg} = 1.2 × 10{sup ?5}, ?{sub Ti} = 3.1 × 10{sup ?5}, ?{sub Fe} = 2.7 × 10{sup ?5}, ?{sub Cu} = 1.9 × 10{sup ?5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  12. Open foundry platform for high-performance electronic-photonic integration

    E-Print Network [OSTI]

    Ram, Rajeev J.

    Open foundry platform for high-performance electronic-photonic integration Jason S. Orcutt,1 commercial electronic 45 nm SOI-CMOS foundry process. By utilizing existing front-end fabrication processes. Bogaerts, R. Baets, J. M. Fedeli, and L. Fulbert, "Towards foundry approach for silicon photonics: silicon

  13. IDENTIFICATION AND CONTROL METHODS FOR HIGH POWER ELECTRON BEAM-DRIVEN MICROWAVE TUBES

    E-Print Network [OSTI]

    IDENTIFICATION AND CONTROL METHODS FOR HIGH POWER ELECTRON BEAM-DRIVEN MICROWAVE TUBES C. Abdallah systems community, but have not yet been fully exploited within the HPM community. The simpler electron beam accelerator. We present simulation rlesults which show that a simple nonlinear model using

  14. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2 materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high

  15. Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air

    E-Print Network [OSTI]

    . INTRODUCTION Because of their remarkable physical and electronic properties, carbon nanotubes are promising nanotubes in air,3,4 in an oxygen stream,5 or under a flow of carbon dioxide gas.6 Thinning of nanotubesScanning electron microscopy study of carbon nanotubes heated at high temperatures in air Xuekun Lu

  16. ccsd00001969, Particle-in-cell simulations of high energy electron

    E-Print Network [OSTI]

    ccsd­00001969, version 2 ­ 23 Oct 2004 Particle-in-cell simulations of high energy electron energy electrons from the underdense plasmas are investigated using two dimensional particle- in-cell simulations. When the ratio of the laser power and a critical power of relativistic self

  17. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  18. The High-Electron Mobility Transistor at 30: Impressive Accomplishments and Exciting Prospects

    E-Print Network [OSTI]

    del Alamo, Jesus A.

    2010 marked the 30th anniversary of the High-Electron Mobility Transistor (HEMT). The HEMT represented a triumph for the, at the time, relatively new concept of bandgap engineering and nascent molecular beam epitaxy ...

  19. Multi-wavelength analysis of high energy electrons in solar flares: a case study of August 20, 2002 flare

    E-Print Network [OSTI]

    J. Kasparova; M. Karlicky; E. P. Kontar; R. A. Schwartz; B. R. Dennis

    2005-08-30

    A multi-wavelength spatial and temporal analysis of solar high energy electrons is conducted using the August 20, 2002 flare of an unusually flat (gamma=1.8) hard X-ray spectrum. The flare is studied using RHESSI, Halpha, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below 100 keV. The positions of the Halpha emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Halpha emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Halpha intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.

  20. High density electronic circuit and process for making

    DOE Patents [OSTI]

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  1. A 25 KV/10A PULSER FOR DRIVING A HIGH-POWER PIERCE ELECTRON GUN

    E-Print Network [OSTI]

    A 25 KV/10A PULSER FOR DRIVING A HIGH-POWER PIERCE ELECTRON GUN J. J. Barroso, J. O. Rossi, H-tube pulser to drive a high-power electron gun. The tube includes a 2.0µF/100kV capacitor bank whose discharge is controlled by a tetrode tube connected to the gun cathode. Typical measured operating parameters are 3

  2. High Beta Observations of the Hot Electron Interchange Instability

    E-Print Network [OSTI]

    been made in the presence of the magnetic levitation fields. We find the HEI mode is characterized observed in high-beta plasma created in the Levitated Dipole Experiment (LDX). We have previously that characterize these modes now incorporate fast magnetic measurements in an attempt to put together a coherent

  3. Self-interaction-free time-dependent density-functional theory for molecular processes in strong fields:? High-order harmonic generation of H2 in intense laser fields

    E-Print Network [OSTI]

    Chu, Shih-I; Chu, Xi

    2001-01-17

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for nonperturbative treatment of multiphoton processes of many-electron molecular systems in intense laser fields. The time-dependent ...

  4. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  5. Evolution of electron beam phase space distribution in a high-gain FEL

    SciTech Connect (OSTI)

    Webb,S.D.; Litvinenko, V. N.

    2009-08-23

    FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.

  6. A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 eV for crossed beam experiments

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    1 A high-intensity, pulsed supersonii:, carbon source aivith C("Pi> kinetic energies of 0.08-0.7 e the laser pulse, the pulsed valve, and a chopper wheel located 40 mm after the laser ablation. Neither. INTRODUCTION Chemical reactions of ground state atomic carbon C(3Pj) play a major role in combustion processes

  7. Surface Intensive Materials Processing for Multi-Functional Purposes

    SciTech Connect (OSTI)

    Ila, D.; Williams, E.K.; Muntele, C.I.; George, M.A.; Poker, D.B.; Hensley, D.K.; Larkin, D.J.

    2000-03-06

    We have chosen silicon carbide (SiC) as a multi-functional material to demonstrate the application of surface intensive processing for device fabrication. We will highlight two devices which are produced in house at the Center for Irradiation of materials of Alabama A and M university: (A) High temperature electronic gas sensor, (B) High temperature optical properties/sensor.

  8. Long distance nu_e -> nu_mu transitions and CP-violation with high intensity beta-beams

    E-Print Network [OSTI]

    Carlo Rubbia

    2013-06-10

    The recent experimental determinations of a large theta_13 angle have opened the way to a determination of the mass hierarchy and of the CP-violating phase. Experiments based on horn produced (anti-)neutrino conventional beams are presently under development. The event rates are marginal for a definitive search, since they require very intense beams and extremely large detector masses. Zucchelli has proposed a method in which pure (anti-)nu_e beams are generated by the beta-decay of relativistic radio-nuclides stored in a high energy storage ring pointing towards a far away neutrino detector. Since they have a much smaller transverse momentum distribution, the neutrino flux will be much more narrowly concentrated than with a horn. The isomeric doublet Li-8 (anti-nu_e, tau_1/2=0.84s) and B-8 (nu_e, tau_1/2=0.77s) has been studied. Neutrino and antineutrino beams are produced with an average transverse momentum of about 6.5 MeV/c. Radioactive ions may be generated with a dedicated table-top storage ring to supply a suitable ion source to be accelerated at high energies either at FNAL or at CERN. Ions should then extracted from the accelerator and accumulated in a decay storage ring with a long straight section pointing toward the neutrino detector. A massive detector based on liquid Argon technology is probably offering the best opportunities for such future programme. The present ICARUS LAr-TPC experiment has already collected at LNGS events in the relevant neutrino energy region. They should provide a first evidence for a conclusive experimental study of the competing signals and more generally for the actual feasibility of the beta-beam option in a search of the CP violating phase. Additional data may be provided in the near future with the ICARUS and MicroBooNe neutrino experiments located at a short distance neutrino beam and that will collect a much larger number of neutrino events.

  9. High Energy Electron Confinement in a Magnetic Cusp Configuration

    E-Print Network [OSTI]

    Park, Jaeyoung; Sieck, Paul E; Offermann, Dustin T; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni

    2014-01-01

    We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when beta (plasma pressure/magnetic field pressure) is order of unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high beta a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. The current experiment validates this theoretical conjecture for the first time and represents critical progress toward the Polywell fusion concept which combines a high beta cusp configuration with an electrostatic fusion for a compact, economical, power-producing nuclear fusion reactor.

  10. High-Dialectric-Constant Capacitors for Power Electronic Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡HighApproachesDepartment of

  11. High-energy high-luminosity electron-ion collider eRHIC

    E-Print Network [OSTI]

    Litvinenko, Vladimir N; Belomestnykh, Sergei; Ben-Zvi, Ilan; Blaskiewicz, Michael M; Calaga, Rama; Chang, Xiangyun; Fedotov, Alexei; Gassner, David; Hammons, Lee; Hahn, Harald; Hao, Yue; He, Ping; Jackson, William; Jain, Animesh; Johnson, Elliott C; Kayran, Dmitry; Kewisch, Jrg; Luo, Yun; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Minty, Michiko; Parker, Brett; Pikin, Alexander; Pozdeyev, Eduard; Ptitsyn, Vadim; Rao, Triveni; Roser, Thomas; Skaritka, John; Sheehy, Brian; Tepikian, Steven; Than, Yatming; Trbojevic, Dejan; Tsentalovich, Evgeni; Tsoupas, Nicholaos; Tuozzolo, Joseph; Wang, Gang; Webb, Stephen; Wu, Qiong; Xu, Wencan; Zelenski, Anatoly

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which provide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.

  12. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Tsinghua University, Beijing (China); Ding, Yuantao [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Marinelli, Agostino [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Huang, Zhirong [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunch compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.

  13. Longitudinal Dynamics of Twin Electron Bunches in a High-energy Linac

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Zhen; Tsinghua University, Beijing; Ding, Yuantao; Marinelli, Agostino; Huang, Zhirong

    2015-03-01

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We #12;find that the wake#12;fields in the accelerator structures play an important role in the twin-bunchmore »compression, and through analysis show that they can be used to extend the available time delay range. Based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  14. A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

    SciTech Connect (OSTI)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22

    In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

  15. Overview of Recent Progres on High Repetition Rate, High Brightness Electron Guns

    E-Print Network [OSTI]

    Sannibale, F.

    2014-01-01

    Ceramic DC Electron Gun for the Jefferson Laboratory FEL.ALICE (ERLP) DC Photoinjector Gun Commissioning, Proc. ofa 500-kV Photo- cathode DC Gun for the ERL Light Sources in

  16. Use of a Linear Paul Trap to Study Random Noise-Induced Beam Degradation in High-Intensity Accelerators

    E-Print Network [OSTI]

    Gilson, Erik

    -Intensity Accelerators Moses Chung* Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions

  17. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  18. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma acceleratorsa...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Production of high-quality electron bunches by dephasing and beam loading in channeled beams, with a few 109 electrons within a few percent of the same energy above 80 MeV, were produced with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping

  19. IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY

    E-Print Network [OSTI]

    IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY Jens , Ruediger Meyer 3 1) Fraunhofer Institute for Electron Beam and Plasma Technology (FEP), Winterbergstr. 28 Through (RISE EWT) solar cells by electron beam high-rate evaporation of aluminum. In stationary

  20. Stopping of directed energetic electrons in high-temperature hydrogenic plasmas C. K. Li and R. D. Petrasso

    E-Print Network [OSTI]

    Stopping of directed energetic electrons in high-temperature hydrogenic plasmas C. K. Li and R. D, the interaction of directed energetic electrons with a high-temperature hydro- genic plasma is analytically modeled. The randomizing effect of scattering off both plasma ions and electrons is treated from a unified

  1. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    SciTech Connect (OSTI)

    Rahman, O.; Ben-Zvi, I.; Degen, C.; Gassner, D. M.; Lambiase, R.; Meng, W.; Pikin, A.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Pietz, J.; Ackeret, M.; Yeckel, C.; Miller, R.; Dobrin, E.; Thompson, K.

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  2. A PC-PCL-based control system for the high-voltage pulsed-power operation of the Intense Diagnostic Neutral Beam (IDNB) Experiment

    SciTech Connect (OSTI)

    Gribble, R.

    1993-06-01

    A stand-alone, semiautomated control system for the high-voltage pulsed-power energy sources on the Intense Diagnostic Neutral Beam Experiment at Los Alamos National Laboratory using personal computer (PC) and programmable logic controller (PLC) technology has been developed and implemented. The control system, consisting of a PC with the graphic operator interface, the network connecting the PC to the PLC, the PLC, the PLC I/O modules, fiber-optic interfaces and software, is described.

  3. Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors

    E-Print Network [OSTI]

    Azize, Mohamed

    We report the nanoscale characterization of the mechanical stress in InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the combined use of convergent beam electron diffraction (CBED) and ...

  4. Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave

    SciTech Connect (OSTI)

    Villalba-Chávez, S. Müller, C.

    2013-12-15

    Absorption and dispersion of probe photons in the field of a high-intensity circularly polarized laser wave are investigated. The optical theorem is applied for determining the absorption coefficients in terms of the imaginary part of the vacuum polarization tensor. Compact expressions for the vacuum refraction indices and the photon absorption coefficients are obtained in various asymptotic regimes of interest. The outcomes of this analysis reveal that, far from the region relatively close to the threshold of the two-photon reaction, the birefringence and dichroism of the vacuum are small and, in some cases, strongly suppressed. On the contrary, in a vicinity of the region in which the photo-production of a pair occurs, these optical properties are manifest with lasers of moderate intensities. We take advantage of such a property in the search of minicharged particles by considering high-precision polarimetric experiments. In addition, Raman-like electromagnetic waves resulting from the inelastic part of the vacuum polarization tensor are suggested as an alternative form for finding exclusion limits on these hypothetical charge carriers. The envisaged parameters of upcoming high-intensity laser facilities are used for establishing upper bounds on the minicharged particles. -- Highlights: •Via dichroism and birefringence of the vacuum by a strong laser wave, minicharged particles can be probed. •The discovery potential is the highest in a vicinity of the first pair production threshold. •As alternative observable, Raman scattered waves are put forward.

  5. High Efficiency, Multi-Terawatt X-ray free electron lasers

    E-Print Network [OSTI]

    Emma, Claudio; Wu, Juhao; Pellegrini, Claudio

    2015-01-01

    We study high efficiency, multi-terawatt peak power, few angstrom wavelength, X-ray Free Electron Lasers (X-ray FELs). To obtain these characteristics we consider an optimized undulator design: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. The peak power and efficiency depend on the transverse electron beam distribution and on time dependent effects, like synchrotron sideband growth. The last effect is identified as the main cause for reduction of electron beam microbunching and FEL peak power. We show that the optimal functional form for the undulator magnetic field tapering profile, yielding the maximum output power, depends significantly on these effects. The output power achieved when neglecting time dependent effects for an LCLS-like X-ray FEL with a 100 m lo...

  6. Measuring the strong electrostatic and magnetic fields with proton radiography for ultra-high intensity laser channeling on fast ignition

    SciTech Connect (OSTI)

    Uematsu, Y.; Iwawaki, T.; Habara, H., E-mail: habara@eei.eng.osaka-u.ac.jp; Tanaka, K. A. [Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Ivancic, S.; Theobald, W. [Laboratory for Laser Energetics, 250 East River Road, Rochester, New York 14623-1299 (United States); Lei, A. L. [Shanghai Institute of Laser Plasma, 201800 Shanghai (China)

    2014-11-15

    In order to investigate the intense laser propagation and channel formation in dense plasma, we conducted an experiment with proton deflectometry on the OMEGA EP Laser facility. The proton image was analyzed by tracing the trajectory of mono-energetic protons, which provides understanding the electric and magnetic fields that were generated around the channel. The estimated field strengths (E ? 10{sup 11} V/m and B ? 10{sup 8} G) agree with the predictions from 2D-Particle-in-cell (PIC) simulations, indicating the feasibility of the proton deflectometry technique for over-critical density plasma.

  7. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    SciTech Connect (OSTI)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Ĺ) extreme-ultraviolet (EUV, 800-1350 Ĺ) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}? {sub g} , b {sup 1}? {sub u} , and b'{sup 1}? {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}? {sub u} {sup +}, c{sub n} {sup 1}? {sub u} , and o{sub n} {sup 1}? {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  8. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    SciTech Connect (OSTI)

    Ratner, Daniel; /Stanford U. /SLAC

    2012-05-25

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  9. International Journal of High Speed Electronics and Systems fc World Scientific Publishing Company

    E-Print Network [OSTI]

    Pulfrey, David L.

    International Journal of High Speed Electronics and Systems fc World Scientific Publishing Company FULL-CHIP POWER-SUPPLY NOISE: THE EFFECT OF ON-CHIP POWER-RAIL INDUCTANCE C.W. FOK Department, if applicable) The importance of on-chip power-rail inductance in generating delta-I power-supply noise

  10. High Average Power Operation of a Scraper-Outcoupled Free-Electron Laser

    SciTech Connect (OSTI)

    Michelle D. Shinn; Chris Behre; Stephen Vincent Benson; Michael Bevins; Don Bullard; James Coleman; L. Dillon-Townes; Tom Elliott; Joe Gubeli; David Hardy; Kevin Jordan; Ronald Lassiter; George Neil; Shukui Zhang

    2004-08-01

    We describe the design, construction, and operation of a high average power free-electron laser using scraper outcoupling. Using the FEL in this all-reflective configuration, we achieved approximately 2 kW of stable output at 10 um. Measurements of gain, loss, and output mode will be compared with our models.

  11. In situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated Mg nanoblades

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA Received 23 March 2008; accepted,2 Hydrogen has been con- sidered as one of the promising alternative energy resources due to its abundanceIn situ reflection high energy electron diffraction study of dehydrogenation process of Pd coated

  12. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 1 High Specificity Binding of Lectins to

    E-Print Network [OSTI]

    Dagenais, Mario

    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 1 High Specificity Binding of Lectins, IEEE, Mario Dagenais, Senior Member, IEEE, Matthew T. Hurley, and Philip DeShong Abstract are available online at http://ieeexplore.ieee.org. Digital Object Identifier 10.1109/JSTQE.2009

  13. Milligram-Scale High-Voltage Power Electronics for Piezoelectric Microrobots

    E-Print Network [OSTI]

    Wood, Robert

    of piezoelectric actuators in microrobotic applications, and demonstrating experimental realizations of sub-100mgMilligram-Scale High-Voltage Power Electronics for Piezoelectric Microrobots Michael Karpelson, Student Member, IEEE, Gu-Yeon Wei, Member, IEEE, Robert J. Wood, Member, IEEE Abstract-- Piezoelectric

  14. Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature treatment

    E-Print Network [OSTI]

    Bertsch George F.

    Transmission electron energy-loss spectroscopy study of carbon nanotubes upon high temperature subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions #12;Transmission of carbon nanotube materials, grown with a pulsed-laser deposition technique but purified and heat treated

  15. Silicoboroncarbonitride ceramics: A class of high-temperature, dopable electronic materials

    E-Print Network [OSTI]

    Balzar, Davor

    Silicoboron­carbonitride ceramics: A class of high-temperature, dopable electronic materials P. A-derived silicoboron­carbonitride ceramics are reported. Structural analysis using radial . The conductivity variation with temperature for both SiCN and SiBCN ceramics shows Mott's variable range hopping

  16. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect (OSTI)

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  17. Coherent electron cooling

    SciTech Connect (OSTI)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  18. Possible Routes to Frictionless Transport of Electronic Fluids in High-Temperature Superconductors

    E-Print Network [OSTI]

    Zotin K-H Chu

    2009-12-23

    Electric-field-driven transport of electronic fluids in metallic glasses as well as three-dimensional amorphous superconductors are investigated by using the verified approach which has been successfully adopted to study the critical transport of glassy solid helium in very low temperature environment. The critical temperatures related to the nearly frictionless transport of electronic fluids were found to be directly relevant to the superconducting temperature of amorphous superconductors after selecting specific activation energies. Our results imply that optimal shear-thinning is an effective way to reach high-temperature charged superfluidity or superconductivity.

  19. Raman spectroscopy of graphite in high magnetic fields: Electron-phonon coupling and magnetophonon resonance

    SciTech Connect (OSTI)

    Kim, Younghee; Smirnov, Dmitry; Kalugin, Nikolai G.; Lombardo, Antonio; Ferrari, Andrea C.

    2013-12-04

    The magneto-Raman measurements of graphite were performed in a back-scattering Faraday geometry at temperature 10 K in magnetic fields up to 45 T. The experimental data reveal the rich structure of Raman-active excitations dominated by K-point massive electrons. At high magnetic fields the graphite E{sub 2g} Raman line shows complex multi- component behavior interpreted as magnetophonon resonance coupled electron-phonon modes at graphite’s K-point. Also we found the clear signature of the fundamental, strongly dumped, n=0 magnetophonon resonance associated with H point massless holes.

  20. IEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 5, MAY 2001 233 Interface Traps at High Doping Drain Extension

    E-Print Network [OSTI]

    Fu, Li Ming

    to induce the thermal-trap-tunneling process of electron transition from the conduction band to the valence the conduction band, and the arrow NT indicates the net process of electron tunneling from traps to the valenceIEEE ELECTRON DEVICE LETTERS, VOL. 22, NO. 5, MAY 2001 233 Interface Traps at High Doping Drain

  1. Can Clinicians Create High-Quality Databases? A Study on A Flexible Electronic Health Record (fEHR) System

    E-Print Network [OSTI]

    Song, Il-Yeol

    Can Clinicians Create High-Quality Databases? A Study on A Flexible Electronic Health Record (f propose a flexible Electronic Health Record (fEHR) system, which allows clinicians to build new templates implementation of HIT, the electronic health record(EHR)[9, 19], and propose a flexible EHR (fEHR) system. The f

  2. Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems

    E-Print Network [OSTI]

    Chen, Ray

    in order to realize true implementation of roll-to-roll manufacturing of flexible electronic systems-to-roll manufacturing system for flexible electronic systems opens limitless possibilities for the deployment of high performance flexible electronic components in a variety of applications including communication, sensing

  3. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J. [Colorado State U.; Biedron, S. [Colorado State U.; Harris, J. [Colorado State U.; Martinez, J. [Colorado State U.; Milton, S. V. [Colorado State U.; Van Keuren, J. [Colorado State U.; Benson, Steve V. [JLAB; Evtushenko, Pavel [JLAB; Neil, George R. [JLAB; Zhang, Shukui [JLAB

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  4. The Cause of Photospheric and Helioseismic Responses to Solar Flares: High-Energy Electrons or Protons?

    E-Print Network [OSTI]

    A. G. Kosovichev

    2007-10-03

    Analysis of the hydrodynamic and helioseismic effects in the photosphere during the solar flare of July 23, 2002, observed by Michelson Doppler Imager (MDI) on SOHO, and high-energy images from RHESSI shows that these effects are closely associated with sources of the hard X-ray emission, and that there are no such effects in the centroid region of the flare gamma-ray emission. These results demonstrate that contrary to expectations the hydrodynamic and helioseismic responses (''sunquakes") are more likely to be caused by accelerated electrons than by high-energy protons. A series of multiple impulses of high-energy electrons forms a hydrodynamic source moving in the photosphere with a supersonic speed. The moving source plays a critical role in the formation of the anisotropic wave front of sunquakes.

  5. Linear Theory Analysis of Self-Amplified Parametric X-ray Radiation from High Current Density Electron Bunches

    E-Print Network [OSTI]

    Lobach, Ihar; Feranchuk, Ilya

    2015-01-01

    Linear theory of the parametric beam instability or the self-amplification of parametric x-ray radiation (PXR) from relativistic electrons in a crystal is considered taking into account finite emittance of the electron beam and absorption of the radiation. It is shown that these factors change essentially the estimation of threshold parameters of the electron bunches for the coherent X-ray generation. The boundary conditions for the linear theory of the effect is analyzed in details and it is shown that the grazing incidence diffraction geometry is optimal for the growth of instability. Numerical estimations of amplification and coherent photon yield in dependence on the electron current density are presented for the case of mm-thickness Si crystal and 100 MeV electrons. Possible improvements of the experimental scheme for optimization of the coherent radiation intensity are discussed.

  6. Nonlinear dust acoustic waves in a mixed nonthermal high energy-tail electron distribution

    SciTech Connect (OSTI)

    Younsi, Smain; Tribeche, Mouloud

    2008-07-15

    Large amplitude as well as weakly nonlinear dust acoustic waves in a mixed nonthermal high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from Boltzmann distribution on the large amplitude dust acoustic soliton are then considered. The dust charge variation leads to an additional enlargement of the dust acoustic soliton, which is more pronounced as the electrons evolve far away from Maxwell-Boltzmann distribution. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. The results complement and provide new insights into our previously published results on this problem [K. Aoutou, M. Tribeche, and T. H. Zerguini, Phys. Plasmas 15, 013702 (2008)].

  7. High Energy Electron Signals from Dark Matter Annihilation in the Sun

    SciTech Connect (OSTI)

    Schuster, Philip; Toro, Natalia; Weiner, Neal; Yavin, Itay; /New York U., CCPP

    2012-04-09

    In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.

  8. Electron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward | DepartmentElectron thermal

  9. The laser switched linac and development of a high brilliance electron source

    SciTech Connect (OSTI)

    Melissinos, A.C.; Bamber, C.; Blalock, T.; Fry, A.; Wilson, T.

    1991-09-01

    This task originated in 1987 to explore the possibility of accelerating short bursts of electrons by pulsed power. The principal effort of our group was to demonstrate that electrons can be accelerated by picosecond-long electrical pulses which are compressed in a radial transmission line. This goal has new been achieved and our results are presented in this paper. We have achieved a gradient of 45 MV/m across a 250 {mu}m accelerating gap and have accelerated 10{sup 6} electrons in a 1 ps long pulse. The beam emerges from a 500 {mu}m hole and can be refocused to this transverse dimension. The efficiency of the system, is of order {eta} = 2 {times} 10{sup {minus}6} due to the small number of electrons accelerated. If we identify the gap spacing with one half wavelength of the accelerating r.f.,''our device is equivalent to a 600 GHz structure. The principal limitation in the accelerating gradient comes from the H.V. hold-off properties of the semiconductor disks that are used as photoconductive switches. We believe that with better materials a factor of 10 can be gained in the gradient. Similarly, the electron yield can be increased by at least three orders of magnitude if proper photocathodes are used in place of the metallic surface. The more difficult problem is the engineering of a multicell structure using our present design of the single cell. Our plans for the continuation of this work are given. One of the most promising applications of laser switched acceleration is in the operation of a very low emittance electron source. Thus we have turned our attention to this subject, and in particular to building a high brilliance electron source using a superconducting cavity. Also discussed is the possibility of picosecond x-ray sources.

  10. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect (OSTI)

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, ���¢��������Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.���¢������� The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  11. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    SciTech Connect (OSTI)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  12. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  13. Design and testing of an electron cyclotron resonance heating ion source for use in high field compact superconducting cyclotrons

    E-Print Network [OSTI]

    Artz, Mark E

    2012-01-01

    The main goal of this project is to evaluate the feasibility of axial injection of a high brightness beam from an Electron Cyclotron Resonance ion source into a high magnetic field cyclotron. Axial injection from an ion ...

  14. Magnification 3x -1,000,000x Electron Gun High brightness Schottky

    E-Print Network [OSTI]

    Damm, Werner

    SEM Column Magnification 3x - 1,000,000x Electron Gun High brightness Schottky Emitter Resolution Current 1 pA to 40 nA Accelerating Voltage 1 kV to 5 kV, 10kV to 30 kV Gun Vacuum Magnification 150x to 1,000,000x Resolution (SE) Gun Ga liquid metal ion source Chamber

  15. Electronic power conditioning for dynamic power conversion in high-power space systems 

    E-Print Network [OSTI]

    Hansen, James Michael

    1991-01-01

    power conversion allows for improved methods of power conditioning. A block diagram of one such system that uses dynamic power conversion is shown in Fig. 4. The blocks labeled Energy Source, Primary Heat Rejection, snd User's Load are the same...ELECTRONIC POWER CONDITIONING FOR DYNAMIC POWER CONVERSION IN HIGH ? POWER SPACE SYSTEMS A Thesis by JAMES MICHAEL HANSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  16. High harmonic attosecond pulse train amplification in a free electron laser

    SciTech Connect (OSTI)

    McNeil, B.W.; Sheehy, B.; Thompson, N.R.; Dunning, D.J.

    2011-03-04

    It is shown using three-dimensional simulations that the temporal structure of an attosecond pulse train, such as that generated via high harmonic generation in noble gases, may be retained in a free electron laser amplifier through to saturation using a mode-locked optical klystron configuration. At wavelengths of {approx}12 nm, a train of attosecond pulses of widths {approx}300 as with peak powers in excess of 1 GW are predicted.

  17. Controlling high-frequency collective electron dynamics via single-particle complexity

    E-Print Network [OSTI]

    N. Alexeeva; M. T. Greenaway; A. G. Balanov; O. Makarovsky; A. Patanč; M. B. Gaifullin; F. Kusmartsev; T. M. Fromhold

    2012-07-21

    We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

  18. Universality of electron distributions in high-energy air showers - description of Cherenkov light production

    E-Print Network [OSTI]

    F. Nerling; J. Blümer; R. Engel; M. Risse

    2005-12-22

    The shower simulation code CORSIKA has been used to investigate the electron energy and angular distributions in high-energy showers. Based on the universality of both distributions, we develop an analytical description of Cherenkov light emission in extensive air showers, which provides the total number and angular distribution of photons. The parameterisation can be used e.g. to calculate the contribution of direct and scattered Cherenkov light to shower profiles measured with the air fluorescence technique.

  19. High field, high efficiency terahertz pulse generation by optical rectification

    E-Print Network [OSTI]

    Huang, Wenqian Ronny

    2014-01-01

    The great difficulty of producing high intensity radiation in the terahertz (THz) spectral region by conventional electronics has stimulated interest in development of sources based on photonics. Optical rectification in ...

  20. Experience at Fermilab with high quantum efficiency photo-cathodes for rf electron guns

    SciTech Connect (OSTI)

    A. Fry, E. Hahn, W. Hartung, M. Kuchnir, P. Michelato and D. Sertore

    1998-10-01

    As part of the A0 Photo-injector collaboration at Fermi-lab [1, 2] and the TeSLA collaboration [3], a high bright-ness, low emittance electron source has been developed. In the process, a system was constructed for coating molybde-num cathodes with a layer of cćsium telluride (Cs2 Te), a photo-emissive material of high quantum efficiency (QE). The use of Cs2 Te was first investigated at CERN [4] and LANL [5]. The development of the systems for the TeSLA Test Facility Linac and the Fermilab Photo-injector was done in Milano [6]. The system at Fermilab incorporates manipulator arms to transfer a cathode from the preparation chamber into a 1.3 GHz photo-electron RF gun while it re-mains in an ultra-high vacuum (UHV) environment, in or-der to avoid the deleterious effects of residual gases on the QE. A first prototype electron gun has been operated with a photo-cathode for several months [1]. This paper describes preliminary results obtained with the first 2 photo-cathodes and the first gun. Some of the desired parameters for the TeSLA Test Fa-cility beam are given in Table 1. The desired characteristics for the photo-cathodes include (i) high QE, (ii) high current density (>500 A/cm{sup 2} ), (iii) long lifetime, and (iv) low field emission. The choice of Cs2 Te is a compromise between long lifetime, rugged metal cathodes with low QE (typi-cally between 10{sup -6} and 10{sup -4} and semiconductor cathodes with high QE (>10%), which generally have a short life-time because of their sensitivity to contamination.

  1. A fast high-order method to calculate wakefield forces in an electron beam

    E-Print Network [OSTI]

    Qiang, Ji

    2013-01-01

    wakefield for an electron beam. The same method can alsowakefields inside an electron beam using a modified densitywakefield forces in an electron beam Ji Qiang, Chad

  2. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01

    8.3 Accelerated Electron2.4 Electron TransportSimulations of LPI-measured Electron Distributions 8.5

  3. High Throughput Ab initio Modeling of Charge Transport for Bio-Molecular-Electronics

    E-Print Network [OSTI]

    Bruque, Nicolas A.

    2009-01-01

    DNA-Based Molecular Electronics. vol. 725. New York: AIP,Heath, “Whence molecular electronics? ” Science, vol. 306,model,” J. Computational Electronics, vol. 6, no. 4, pp.

  4. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; Khorgolkhuu, Od; Ojha, Madhusudan

    2015-01-01

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  5. Intense terahertz emission from relativistic circularly polarized laser pulses interaction with overdense plasmas

    SciTech Connect (OSTI)

    Chen, Zi-Yu; Li, Xiao-Ya [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)] [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Yu, Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-10-15

    During the interaction of a relativistic circularly polarized laser pulse with an overdense plasma target, the longitudinal motion of bunches of electrons under the action of light pressure and electrostatic restore force can emit intense terahertz (THz) pulses. This mechanism allows high pump laser intensity and large electron number participating in the emission. Two-dimensional particle-in-cell simulations are carried out to investigate the THz emission. The results suggest that such a source can produce remarkably intense THz pulses with energy of several mJ/sr and power of tens of gigawatts, which could find applications in nonlinear studies and relativistic laser-plasma interaction diagnostics.

  6. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  7. Electron Spin Rotation And Matching Scheme For ELIC, A High-Luminosity Ring-Ring Electron-Ion Collider

    SciTech Connect (OSTI)

    Bogacz, A.; Chevtsov, P.; Derbenev, Y.; Krafft, G.; Zhang, Y.

    2009-08-04

    A unique design feature of a polarized Electron-Ion Collider (ELIC) based on CEBAF is its Figure-8 shaped storage rings for both electrons and ions, which significantly simplifies beam polarization maintenance and manipulation. The CEBAF accelerator is used as a full energy injector of polarized electron beams into the electron storage ring. While electron polarization is maintained vertical in arcs of the ring, a stable longitudinal spin at four collision points is achieved through vertical crossing bending magnets, solenoid spin rotators, and horizontal orbit bends. Spin matching technique needs to be implemented in order to enhance quantum self-polarization and minimize depolarization effects. In this paper, we also discuss several important issues related to the use of positron beams, radiative polarization and quantum depolarization effects, as well as spin in ELIC.

  8. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  9. Creation of transversely polarized high-energy electrons and positrons in crystals

    SciTech Connect (OSTI)

    Baryshevskii, V.B.; Tikhomirov, V.V.

    1983-07-01

    It is shown that when high-energy ..gamma.. quanta pass through a crystal at small angles to the crystallographic planes (axes) a new phenomenon arises: creation of transversely polarized electrons and positrons by unpolarized ..gamma.. quanta. Estimates based on the theory developed in this paper for this phenomenon show that it can be used to obtain transversely polarized electrons and positrons with degree of polarization 50--90% and with energies of hundreds and thousands GeV in the case of incidence of the ..gamma.. quanta on atomic planes, and starting with an energy of several tens of GeV in the case of incidence on atomic axes. Concrete calculations are made of the polarization, number, and angular distributions of positrons produced by 350-GeV ..gamma.. quanta incident on the (110) family of planes of a tungsten plate of thickness 3 x 10 cm. The features of the manifestation of the described phenomenon in bent crystals are analyzed.

  10. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  11. Inner-Shell Multiple Ionization of Polyatomic Molecules With an Intense X-Ray Free-Electron Laser Studied By Coincident Ion Momentum Imaging

    SciTech Connect (OSTI)

    Erk, B. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Rolles, D. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Foucar, L. [Max Planck Society, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Rudek, B. [Max Planck Advanced Study Group and Deutsches Elektronen-Synchrotron, Hamburg (Germany); Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Epp, S. W. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Cryle, M. [Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Bostedt, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Schorb, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Technical Univ. Berlin (Germany). Inst. for Optic and Atomic Physics; Bozek, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Rouzee, A. [Max Born Inst., Berlin (Germany); Hundertmark, A. [Max Born Inst., Berlin (Germany); Marchenko, T. [Laboratory of Chemical Physics, Paris (France); Simon, M. [Laboratory of Chemical Physics, Paris (France); Filsinger, F. [Fritz Haber Inst. for Max Planck Gesellschaft, Berlin (Germany); Christensen, L. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; De, S. [Aarhus Univ. (Denmark). Dept. of Chemistry; Saha Inst. of Nuclear Physics, Kolkata (India); Trippel, S. [Center for Free-Electron Laser Science (CFEL), Hamburg (Germany); Küpper, J. [Center for Free-Electron Laser Science (CFEL) and Univ. of Hamburg, Hamburg (Germany). Dept. of Physics, Center for Ultrafast Imaging; Stapelfeldt, H. [Aarhus Univ. (Denmark). Dept. of Chemistry; Wada, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Hiroshima Univ., Higashi-Hiroshima (Japan), Dept. of Physical Science; Ueda, K. [Tohoku Univ., Sendai (Japan). IMRAM; Swiggers, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Messerschmidt, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source; Schröter, C. D. [Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Moshammer, R. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Schlichting, I. [Max Planck Society, Hamburg (Germany); Max Planck Inst. for Medical Rearch, Heidelburg (Germany); Ullrich, J. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); National Institute for Physics and Technology, Braunschweig (Germany); Rudenko, A. [Max Planck Society, Hamburg (Germany). Max Planck Inst. for Nuclear Physics; Max Planck Inst. for Nuclear Physics, Heidelberg (Germany); Kansas State Univ., Manhattan, KS (United States). Dept. of Physics

    2013-08-28

    The ionization and fragmentation of two selenium containing hydrocarbon molecules, methylselenol (CH3SeH) and ethylselenol (C2H5SeH), by intense (>1017 W cm-2 ) 5 fs x-ray pulses with photon energies of 1.7 and 2 keV has been studied by means of coincident ion momentum spectroscopy. Measuring charge states and ion kinetic energies, we find signatures of charge redistribution within the molecular environment. Furthermore, by analyzing fragment ion angular correlations, we can determine the laboratory-frame orientation of individual molecules and thus investigate the fragmentation dynamics in the molecular frame. This allows distinguishing protons originating from different molecular sites along with identifying the reaction channels that lead to their emission.

  12. Inner-Shell Multiple Ionization of Polyatomic Molecules With an Intense X-Ray Free-Electron Laser Studied By Coincident Ion Momentum Imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erk, B.; Rolles, D.; Foucar, L.; Rudek, B.; Epp, S. W.; Cryle, M.; Bostedt, C.; Schorb, S.; Bozek, J.; Rouzee, A.; et al

    2013-08-28

    The ionization and fragmentation of two selenium containing hydrocarbon molecules, methylselenol (CH3SeH) and ethylselenol (C2H5SeH), by intense (>1017 W cm-2 ) 5 fs x-ray pulses with photon energies of 1.7 and 2 keV has been studied by means of coincident ion momentum spectroscopy. Measuring charge states and ion kinetic energies, we find signatures of charge redistribution within the molecular environment. Furthermore, by analyzing fragment ion angular correlations, we can determine the laboratory-frame orientation of individual molecules and thus investigate the fragmentation dynamics in the molecular frame. This allows distinguishing protons originating from different molecular sites along with identifying the reactionmore »channels that lead to their emission.« less

  13. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect (OSTI)

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  14. Lattice coupling to electronic and magnetic instabilities in high magnetic fields

    SciTech Connect (OSTI)

    Thompson, J.D.; Graf, T.; Hundley, M.; Neumeier, J. [Los Alamos National Lab., NM (United States); Lacerda, A. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lawrence, J. [California Univ., Irvine, CA (United States); Phillips, N. [California Univ., Berkeley, CA (United States)

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project focused on understanding electronic and magnetic instabilities in broad classes of materials in which the instabilities are coupled to the underlying crystallographic structure. Explaining these properties of materials poses outstanding theoretical and experimental challenges that are at the forefront of materials science/condensed matter physics. Very high magnetic fields available at the Los Alamos National High Magnetic Field Laboratory (NHMFL) are a key parameter in helping to provide this understanding. We have developed new experimental capabilities (thermal- expansion/magnetostriction, uniaxial stress and high-field heat capacity) needed to characterize how structure couples to the instabilities.

  15. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki, E-mail: yoshi-miyamoto@aist.go.jp; Miyazaki, Takehide [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takeuchi, Daisuke; Yamasaki, Satoshi [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); JST, ALCA, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-09-28

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  16. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    SciTech Connect (OSTI)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; Buck, Jens; Ilchen, Markus; Vodungbo, Boris; Mahne, Nicola; Svetina, Cristian; Spezzani, Carlo; Di Mitri, Simone; Penco, Giuseppe; Trovó, Mauro; Fawley, William M.; Rebernik, Primoz R.; Gauthier, David; Grazioli, Cesare; Coreno, Marcello; Ressel, Barbara; Kivimäki, Antti; Mazza, Tommaso; Glaser, Leif; Scholz, Frank; Seltmann, Joern; Gessler, Patrick; Grünert, Jan; De Fanis, Alberto; Meyer, Michael; Knie, André; Moeller, Stefan P.; Raimondi, Lorenzo; Capotondi, Flavio; Pedersoli, Emanuele; Plekan, Oksana; Danailov, Miltcho B.; Demidovich, Alexander; Nikolov, Ivaylo; Abrami, Alessandro; Gautier, Julien; Lüning, Jan; Zeitoun, Philippe; Giannessi, Luca

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  17. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo; Finetti, Paola; Mahieu, Benoît; Viefhaus, Jens; Zangrando, Marco; De Ninno, Giovanni; Lambert, Guillaume; Ferrari, Eugenio; et al

    2014-12-02

    The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore »instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less

  18. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect (OSTI)

    Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

    2011-01-03

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  19. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    SciTech Connect (OSTI)

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao Zhang, Jie; Cao, Jianming

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5?MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  20. Electronic imaging system and technique

    DOE Patents [OSTI]

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  1. Electronic imaging system and technique

    DOE Patents [OSTI]

    Bolstad, Jon O. (Idaho Falls, ID)

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  2. Free Electron Lasers Seeded by ir Laser Driven High-order Harmonic Generation

    SciTech Connect (OSTI)

    Wu, Juhao; Bolton, Paul R.; /SLAC; Murphy, James B.; /BNL, NSLS; Zhong, Xinming; /Beijing Normal U.

    2007-03-12

    Coherent x-ray production by a seeded free electron laser (FEL) is important for next generation synchrotron light sources. We examine the feasibility and features of FEL emission seeded by a high-order harmonic of an infrared laser (HHG). In addition to the intrinsic FEL chirp, the longitudinal profile and spectral bandwidth of the HHG seed are modified significantly by the FEL interaction well before saturation. This smears out the original attosecond pulselet structure. We introduce criteria for this smearing effect on the pulselet and the stretching effect on the entire pulse. We discuss the noise issue in such a seeded FEL.

  3. Inclusive electron scattering at high Q/sup 2/ in the region 1 < x < 3

    SciTech Connect (OSTI)

    Day, D.

    1987-01-01

    New inclusive electron scattering data at high Q/sup 2/ from nuclei taken in the x range unavailable to the free nucleon are presented. The ratios of cross section per nucleon, (4/56)d sigma/sup Fe//d sigma/sup He/, show a plateau for 1.3 < x < 2.0 which has been suggested as a signature of quark clusters in nuclei. The subtraction of the quasielastic cross section from the inclusive spectra reveals that the data scale in x at low momentum transfer. A proposal for a new experiment is discussed. 16 refs., 6 figs.

  4. High-temperature electron emission from diamond films Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235

    E-Print Network [OSTI]

    Walker, D. Greg

    High-temperature electron emission from diamond films S. H. Shin Department of Mechanical This work examines electron field-emission characteristics of polycrystalline diamond films at elevated-enhanced chemical-vapor deposition. To investigate the effect of increased temperatures on field emission, current

  5. Investigation of the effect of temperature during off-state degradation of AlGaN/GaN High Electron Mobility Transistors

    E-Print Network [OSTI]

    Florida, University of

    , creating both electron traps and increasing electron tunneling through the defect states [4Investigation of the effect of temperature during off-state degradation of AlGaN/GaN High Electron 2011 a b s t r a c t AlGaN/GaN High Electron Mobility Transistors were found to exhibit a negative

  6. High-Speed Real-Time Digital Emulation for Hardware-in-the-Loop Testing of Power Electronics: A New Paradigm in the Field of

    E-Print Network [OSTI]

    Sanders, Seth

    High-Speed Real-Time Digital Emulation for Hardware-in-the-Loop Testing of Power Electronics: A New Paradigm in the Field of Electronic Design Automation (EDA) for Power Electronics Systems Michel A. Kinsy-time emulation for Hardware-in-the-Loop (HiL) testing and design of high-power power electronics systems. Our

  7. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    DOE Patents [OSTI]

    Crewe, Albert V. (Dune Acres, IN)

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  8. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  9. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  10. Effect of varying gate-drain distance on the RF power performance of pseudomorphic high electron mobility transistors

    E-Print Network [OSTI]

    Wong, Melinda F

    2005-01-01

    AIGaAs/lnGaAs Pseudomorphic High Electron Mobility Transistors (PHEMTs) are widely used in satellite communications, military and commercial radar, cellular telephones, and other RF power applications. One key figure of ...

  11. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect (OSTI)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  12. On a mechanism of high-temperature superconductivity: Spin-electron acoustic wave as a mechanism for the Cooper pair formation

    E-Print Network [OSTI]

    Andreev, Pavel A; Kuz'menkov, L S

    2015-01-01

    We found a mechanism of the electron Cooper pair formation via the electron interaction by means of the spin-electron acoustic waves. This mechanism exists in metals with the rather high spin polarization like ferromagnetic and ferrimagnetic materials. The spin-electron acoustic wave mechanism gives the transition temperature 100 times larger than the transition temperature given by the electron-phonon interaction. Therefore, spin-electron acoustic waves give explanation for the high-temperature superconductivity. We find that the transition temperature has strong dependence on the electron concentration and the spin polarization of the electrons.

  13. Impact of Dose to the Bladder Trigone on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Munck af Rosenschöld, Per; Oh, Jung Hun; Hunt, Margie [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura; Yorke, Ellen; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Jackson, Andrew, E-mail: jacksona@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-02-01

    Purpose: To determine the potential association between genitourinary (GU) toxicity and planning dose–volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. Methods and Materials: A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose–volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ?10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. Results: Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ?10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ?10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ?10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ?10 (P=.001; odds ratio 5.19). Conclusions: The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the bladder trigone seems to be associated with a reduction in late GU toxicity.

  14. High-Speed Real-Time Digital Emulation for Hardware-in-the-Loop Testing of Power Electronics: A New Paradigm in the Field of Electronic Design Automation (EDA) for Power Electronics Systems

    E-Print Network [OSTI]

    Kinsy, Michel A.

    This paper details the design and application of a new ultra-high speed real-time simulation for Hardware-in-the-Loop (HiL) testing and design of high-power power electronics systems. Our real-time hardware emulation for ...

  15. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect (OSTI)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chang, Ting-Chang [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen [Device Department, United Microelectronics Corporation, Tainan Science Park, Tainan, Taiwan (China)

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  16. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.

    2014-09-15

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  17. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    SciTech Connect (OSTI)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-05-15

    The evolution of the runaway electron (RE) energy distribution function f{sub ?} during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f{sub ?} is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle ? is not uniform, but tends to be large at low energies and small ????0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  18. Correlation and Finite Interaction-Range Effects in High-Energy Electron Inclusive Scattering

    E-Print Network [OSTI]

    Akihisa Kohama; Koichi Yazaki; Ryoichi Seki

    2000-01-19

    We calculate cross sections of high energy electron inclusive scattering off nuclear matter in a new and consistent formulation based on the Green's function method with the Glauber approximation, which is an extension of our previous work on the nuclear transparency in (e, e'p) reaction. The comparison with other approaches is discussed. In this framework, we study the finite-range effect of the nucleon-nucleon interaction in the final-state interactions, and the effect of the nuclear short-range correlation. We propose a zero-range approximation, which works well when correlation and finite interaction-range effects are included. It greatly reduces the numerical work, while maintaining a reasonable accuracy.

  19. Highly Efficient Midinfrared On-Chip Electrical Generation of Graphene Plasmons by Inelastic Electron Tunneling Excitation

    E-Print Network [OSTI]

    Ooi, Kelvin J A; Hsieh, Chang Yu; Tan, Dawn T H; Ang, Lay Kee

    2015-01-01

    Inelastic electron tunneling provides a low-energy pathway for the excitation of surface plasmons and light emission. We theoretically investigate tunnel junctions based on metals and graphene. We show that graphene is potentially a highly efficient material for tunneling excitation of plasmons because of its narrow plasmon linewidths, strong emission, and large tunability in the midinfrared wavelength regime. Compared to gold and silver, the enhancement can be up to 10 times for similar wavelengths and up to 5 orders at their respective plasmon operating wavelengths. Tunneling excitation of graphene plasmons promises an efficient technology for on-chip electrical generation and manipulation of plasmons for graphene-based optoelectronics and nanophotonic integrated circuits.

  20. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    SciTech Connect (OSTI)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ?1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ?2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  1. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    SciTech Connect (OSTI)

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. A radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.

  2. 600-T Magnetic Fields due to Cold Electron Flow in a simple Cu-Coil irradiated by High Power Laser pulses

    E-Print Network [OSTI]

    Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie

    2015-01-01

    A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.

  3. A high intensity 200 mA proton source for the FRANZ-Project (Frankfurt-Neutron-Source at the Stern-Gerlach-Center)

    SciTech Connect (OSTI)

    Schweizer, W. Ratzinger, U.; Klump, B.; Volk, K.

    2014-02-15

    At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up to 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.

  4. Peculiarities of the Light Absorption and Emission by Free Electrons in Multivalley Semiconductors

    E-Print Network [OSTI]

    P. M. Tomchuk

    2008-11-18

    General expressions are obtained for the coefficient of light absorption by free carriers as well as the intensity of the spontaneous light emission by hot electrons in multivalley semiconductors. These expressions depend on the electron concentration and electron temperature in the individual valleys. An anisotropy of the dispersion law and electron scattering mechanisms is taken into account. Impurity-related and acoustic scattering mechanisms are analyzed. Polarization dependence of the spontaneous emission by hot electrons is found out. At unidirectional pressure applied or high irradiation intensities, the polarization dependence also appears in the coefficient of light absorption by free electrons.

  5. Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams

    E-Print Network [OSTI]

    Valfells, Ágúst

    -charge-dominated electron beams Y. Cui, Y. Zou, A. Valfells, M. Reiser, M. Walter, I. Haber, R. A. Kishek, S. Bernal, and P with electron beams of several keV, in which space-charge effects play an important role. A cylindrical focusing, high-energy colliders, free electron lasers, and other applications require high-quality intense beams

  6. A Comparison of Volumetric Modulated Arc Therapy and Conventional Intensity-Modulated Radiotherapy for Frontal and Temporal High-Grade Gliomas

    SciTech Connect (OSTI)

    Shaffer, Richard [Department of Radiation Oncology, BC Cancer Agency, Vancouver, British Columbia (Canada); Nichol, Alan M., E-mail: anichol@bccancer.bc.c [Department of Radiation Oncology, BC Cancer Agency, Vancouver, British Columbia (Canada); Vollans, Emily [Department of Medical Physics, BC Cancer Agency, Vancouver, British Columbia (Canada); Fong Ming; Nakano, Sandy [Department of Radiation Therapy, BC Cancer Agency, Vancouver, British Columbia (Canada); Moiseenko, Vitali; Schmuland, Moira [Department of Medical Physics, BC Cancer Agency, Vancouver, British Columbia (Canada); Ma, Roy; McKenzie, Michael [Department of Radiation Oncology, BC Cancer Agency, Vancouver, British Columbia (Canada); Otto, Karl [Department of Medical Physics, BC Cancer Agency, Vancouver, British Columbia (Canada)

    2010-03-15

    Purpose: Volumetric modulated arc therapy (VMAT), the predecessor to Varian's RapidArc, is a novel extension of intensity-modulated radiotherapy (IMRT) wherein the dose is delivered in a single gantry rotation while the multileaf collimator leaves are in motion. Leaf positions and the weights of field samples along the arc are directly optimized, and a variable dose rate is used. This planning study compared seven-field coplanar IMRT (cIMRT) with VMAT for high-grade gliomas that had planning target volumes (PTVs) overlapping organs at risk (OARs). Methods and Materials: 10 previously treated patients were replanned to 60 Gy in 30 fractions with cIMRT and VMAT using the following planning objectives: 98% of PTV covered by 95% isodose without violating OAR and hotspot dose constraints. Mean OAR doses were maximally decreased without reducing PTV coverage or violating hotspot constraints. We compared dose-volume histogram data, monitor units, and treatment times. Results: There was equivalent PTV coverage, homogeneity, and conformality. VMAT significantly reduced maximum and mean retinal, lens, and contralateral optic nerve doses compared with IMRT (p < 0.05). Brainstem, chiasm, and ipsilateral optic nerve doses were similar. For 2-Gy fractions, mean monitor units were as follows: cIMRT = 789 +- 112 and VMAT = 363 +- 45 (relative reduction 54%, p = 0.002), and mean treatment times (min) were as follows: cIMRT = 5.1 +- 0.4 and VMAT = 1.8 +- 0.1 (relative reduction 65%, p = 0.002). Conclusions: Compared with cIMRT, VMAT achieved equal or better PTV coverage and OAR sparing while using fewer monitor units and less time to treat high-grade gliomas.

  7. Ultra-short channel GaN high electron mobility transistor-like...

    Office of Scientific and Technical Information (OSTI)

    based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In...

  8. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y., E-mail: yingge.du@pnnl.gov; Varga, T. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Zhang, K. H. L.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  9. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  10. Long-term Survival and Toxicity in Patients Treated With High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Spratt, Daniel E.; Pei, Xin; Yamada, Josh; Kollmeier, Marisa A.; Cox, Brett; Zelefsky, Michael J.

    2013-03-01

    Purpose: To report long-term survival and toxicity outcomes with the use of high-dose intensity modulated radiation therapy (IMRT) to 86.4 Gy for patients with localized prostate cancer. Methods and Materials: Between August 1997 and December 2008, 1002 patients were treated to a dose of 86.4 Gy using a 5-7 field IMRT technique. Patients were stratified by prognostic risk group based on National Comprehensive Cancer Network risk classification criteria. A total of 587 patients (59%) were treated with neoadjuvant and concurrent androgen deprivation therapy. The median follow-up for the entire cohort was 5.5 years (range, 1-14 years). Results: For low-, intermediate-, and high-risk groups, 7-year biochemical relapse-free survival outcomes were 98.8%, 85.6%, and 67.9%, respectively (P<.001), and distant metastasis-free survival rates were 99.4%, 94.1%, and 82.0% (P<.001), respectively. On multivariate analysis, T stage (P<.001), Gleason score (P<.001), and >50% of initial biopsy positive core (P=.001) were predictive for distant mestastases. No prostate cancer-related deaths were observed in the low-risk group. The 7-year prostate cancer-specific mortality (PCSM) rates, using competing risk analysis for intermediate- and high-risk groups, were 3.3% and 8.1%, respectively (P=.008). On multivariate analysis, Gleason score (P=.004), percentage of biopsy core positivity (P=.003), and T-stage (P=.033) were predictive for PCSM. Actuarial 7-year grade 2 or higher late gastrointestinal and genitourinary toxicities were 4.4% and 21.1%, respectively. Late grade 3 gastrointestinal and genitourinary toxicity was experienced by 7 patients (0.7%) and 22 patients (2.2%), respectively. Of the 427 men with full potency at baseline, 317 men (74%) retained sexual function at time of last follow-up. Conclusions: This study represents the largest cohort of patients treated with high-dose radiation to 86.4 Gy, using IMRT for localized prostate cancer, with the longest follow-up to date. Our findings indicate that this treatment results in excellent clinical outcomes with acceptable toxicity.

  11. GHz Laser-free Time-resolved Transmission Electron Microscopy: a Stroboscopic High-duty-cycle Method

    E-Print Network [OSTI]

    Qiu, Jiaqi; Jing, Chunguang; Baryshev, Sergey V; Reed, Bryan W; Zhu, Yimei; Lau, June W

    2015-01-01

    A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second (100 fs to 10 ps) electron pulse sequences at >1 GHz repetition rates. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source, a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are exte...

  12. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOE Patents [OSTI]

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  13. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect (OSTI)

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  14. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  15. GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora... K on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed from 10­40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy

  16. Quantum radiation reaction in laser-electron beam collisions

    E-Print Network [OSTI]

    T. G. Blackburn; C. P. Ridgers; J. G. Kirk; A. R. Bell

    2015-03-03

    It is possible using current high intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of $10^9$ 1 GeV electrons colliding with a 30 fs laser pulse of intensity $10^{22}~\\text{Wcm}^{-2}$ will emit 6300 photons with energy greater than 700 MeV, $60\\times$ the number predicted by classical theory.

  17. All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

    E-Print Network [OSTI]

    Jackel, O.

    We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central ...

  18. Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach

    E-Print Network [OSTI]

    Chu, Shih-I; Tong, Xiao-Min

    2001-06-12

    We present a detailed study of the multiphoton ionization and high-order harmonic generation (HHG) processes of rare-gas atoms (He, Ne, and Ar) in intense pulsed laser fields by means of a self-interaction-free time-dependent density...

  19. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-07

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  20. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    DOE Patents [OSTI]

    de Jonge, Niels (Oak Ridge, TN) [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  1. FELIX: a High-Throughput Network Approach for Interfacing to Front End Electronics for ATLAS Upgrades

    E-Print Network [OSTI]

    Anderson, John Thomas; The ATLAS collaboration; Boterenbrood, Hendrik; Chen, Hucheng; Chen, Kai; Drake, Gary; Francis, David; Gorini, Benedetto; Lanni, Francesco; Lehmann Miotto, Giovanna; Levinson, Lorne; Narevicius, Julia; Plessl, Christian; Roich, Alexander; Ryu, Soo; Schreuder, Frans Philip; Schumacher, Jorn; Vandelli, Wainer; Vermeulen, Jos; Zhang, Jinlong

    2015-01-01

    The ATLAS experiment at CERN is planning full deployment of a new unified optical link technology for connecting detector front end electronics on the timescale of the LHC Run 4 (2025). It is estimated that roughly 8000 GBT (GigaBit Transceiver) links, with transfer rates up to 10.24~Gbps, will replace existing links used for readout, detector control and distribution of timing and trigger information. A new class of devices will be needed to interface many GBT links to the rest of the trigger, data-acquisition and detector control systems. In this paper FELIX (Front End LInk eXchange) is presented, a PC-based device to route data from and to multiple GBT links via a high-performance general purpose network capable of a total throughput up to O(20 Tbps). FELIX implies architectural changes to the ATLAS data acquisition system, such as the use of industry standard COTS components early in the DAQ chain. Additionally the design and implementation of a FELIX demonstration platform is presented, and hardware and ...

  2. High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels

    SciTech Connect (OSTI)

    Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

    1991-09-01

    The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

  3. An improved measurement of electron-ion recombination in high-pressure xenon gas

    E-Print Network [OSTI]

    NEXT Collaboration; L. Serra; M. Sorel; V. Álvarez; F. I. G. Borges; M. Camargo; S. Cárcel; S. Cebrián; A. Cervera; C. A. N. Conde; T. Dafni; J. Díaz; R. Esteve; L. M. P. Fernandes; P. Ferrario; A. L. Ferreira; E. D. C. Freitas; V. M. Gehman; A. Goldschmidt; J. J. Gómez-Cadenas; D. González-Díaz; R. M. Gutiérrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; I. G. Irastorza; L. Labarga; A. Laing; I. Liubarsky; N. Lopez-March; D. Lorca; M. Losada; G. Luzón; A. Marí; J. Martín-Albo; G. Martínez-Lema; A. Martínez; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muńoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; J. Pérez; J. L. Pérez Aparicio; M. Querol; J. Renner; L. Ripoll; A. Rodríguez; J. Rodríguez; F. P. Santos; J. M. F. dos Santos; D. Shuman; A. Simón; C. Sofka; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; J. A. Villar; R. Webb; J. T. White; N. Yahlali

    2015-02-03

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coeffcients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8 % FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be $0.561\\pm 0.045$, translating into an average energy to produce a primary scintillation photon of $W_{\\rm ex}=(39.2\\pm 3.2)$ eV.

  4. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Jaideep T. [University of Virginia, Charlottesville, VA (United States); Argonne National Lab., Argonne, IL (United States); Technische Universitat Munchen, Exzellenzcluster Universe, Garching, Germany (Europe); Dolph, Peter A.M. [University of Virginia, Charlottesville, VA (United States); Tobias, William Al [University of Virginia, Charlottesville, VA (United States); Averett, Todd D. [College of William and Mary, Williamsburg, VA (United States); Kelleher, Aiden [College of William and Mary, Williamsburg, VA (United States); Mooney, K. E. [University of Virginia, Charlottesville, VA (United States); Nelyubin, Vladimir V. [University of Virginia, Charlottesville, VA (United States); Wang, Yunxiao [University of Virginia, Charlottesville, VA (United States); Zheng, Yuan [University of Virginia, Charlottesville, VA (United States); Cates, Gordon D. [University of Virginia, Charlottesville, VA (United States)

    2015-05-01

    We present the development of high-performance polarized łHe targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized łHe targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable łHe polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- łHe spin-exchange rate coefficient $k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.

  5. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    SciTech Connect (OSTI)

    Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne

    2014-06-17

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  6. Photo-stimulated low electron temperature high current diamond film field emission cathode

    DOE Patents [OSTI]

    Shurter; Roger Philips (Los Alamos, NM), Devlin; David James (Santa Fe, NM), Moody; Nathan Andrew (Los Alamos, NM), Taccetti; Jose Martin (Santa Fe, NM), Russell; Steven John (Los Alamos, NM)

    2012-07-24

    An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

  7. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOE Patents [OSTI]

    University of Illinois (Urbana, IL)

    2009-04-21

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  8. Stretchable form of single crystal silicon for high performance electronics on rubber substrates

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Sun, Yugang (Naperville, IL); Menard, Etienne (Durham, NC)

    2012-06-12

    The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  9. High-power magnetron transmitter as an RF source for the electron collider ring of the MEIC facility

    E-Print Network [OSTI]

    Kazakevich, G

    2014-01-01

    A novel concept of high-power transmitters utilizing the Continuous Wave (CW) magnetrons, frequency-locked by phase-modulated signals has been proposed to compensate energy losses caused by Synchrotron Radiation (SR) in the electron ring of the MEIC facility. At operating frequency of about 750 MHz the SR losses are ~2 MW. They can be compensated by some number of Superconducting RF (SRF) cavities at the feeding power of about 100-200 kW per cavity. A high-power CW transmitters, based on magnetrons, frequency-locked by phase-modulated signal, allowing a wide-band control in phase and power, and associated with a wide-band closed feedback loop are proposed to feed the SRF cavities to compensate the SR losses of the electron beam in the MEIC collider electron ring.

  10. Harmonic content and time variation of electron energy distributions in high-plasma-density, low-pressure inductively coupled discharges

    E-Print Network [OSTI]

    Kushner, Mark

    Harmonic content and time variation of electron energy distributions in high-plasma-density, low-the-fly'' OTF Monte Carlo method. The OTF method directly computes the harmonic content of the EEDs using was incorporated into a two-dimensional plasma equipment model to investigate the harmonic content of the EEDs

  11. A Failure of Continuum Theory: Temperature Dependence of the Solvent Reorganization Energy of Electron Transfer in Highly Polar Solvents

    E-Print Network [OSTI]

    Matyushov, Dmitry

    A Failure of Continuum Theory: Temperature Dependence of the Solvent Reorganization Energy of Electron Transfer in Highly Polar Solvents Peter Vath and Matthew B. Zimmt* Department of Chemistry, Brown ReceiVed: February 9, 1999; In Final Form: April 26, 1999 The temperature dependence of the solvent

  12. Abstract --Research on silicon carbide (SiC) power electronics has shown their advantages in high temperature

    E-Print Network [OSTI]

    Tolbert, Leon M.

    in switching applications such as AC motor control, motion/servo control, uninterruptible power suppliesAbstract -- Research on silicon carbide (SiC) power electronics has shown their advantages in high is verified to have low power loss, fast switching characteristics at 650 V dc bus voltage, 60 A drain current

  13. SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications

    E-Print Network [OSTI]

    Florida, University of

    for spacecraft and other long-term sensing applications. However, hydrogen is a dangerous gas for storage for monitoring leakage of hydrogen storage equipment and fuel tanks for spacecraft and hydrogen fuel cellSnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications

  14. High-resolution scanning electron microscopy of an ultracold quantum gas

    E-Print Network [OSTI]

    Loss, Daniel

    ­9 is particularly attractive as it allows for single-atom detection with almost 100% efficiency. It has been applied to isolated thermal atoms at low densities but has not yet been extended to single- atom detection in quantum to the detection of ultracold atoms (Fig. 1). A focused electron beam with 6 keV electron energy, a full

  15. Controllable high-quality electron beam generation by phase slippage effect in layered targets

    SciTech Connect (OSTI)

    Yu, Q.; Li, X. F.; Huang, S.; Zhang, F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2014-11-15

    The bubble structure generated by laser-plasma interactions changes in size depending on the local plasma density. The self-injection electrons' position with respect to wakefield can be controlled by tailoring the longitudinal plasma density. A regime to enhance the energy of the wakefield accelerated electrons and to improve the beam quality is proposed and achieved using layered plasmas with increasing densities. Both the wakefield size and the electron bunch duration are significantly contracted in this regime. The electrons remain in the strong acceleration phase of the wakefield, while their energy spread decreases because of their tight spatial distribution. An electron beam of 0.5?GeV with less than 1% energy spread is obtained through 2.5D particle-in-cell simulations.

  16. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized łHe targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized łHe targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorlymore »understood spin-relaxation mechanism that limits the maximum achievable łHe polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- łHe spin-exchange rate coefficient $k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.« less

  17. Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma

    SciTech Connect (OSTI)

    Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

  18. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    E-Print Network [OSTI]

    Wang, Zhong L.

    electron beam irradiation Yong Ding, Ying Liu, Simiao Niu, Wenzhuo Wu, and Zhong Lin Wang Citation: JournalO nanobelts under high-energy electron beam irradiation Yong Ding,a) Ying Liu, Simiao Niu, Wenzhuo Wu is created around the electron probe due to local beam heating effect, which gener- ates a unidirectional

  19. Highly efficient electron vortex beams generated by nanofabricated phase holograms Vincenzo Grillo, Gian Carlo Gazzadi, Ebrahim Karimi, Erfan Mafakheri, Robert W. Boyd, and Stefano Frabboni

    E-Print Network [OSTI]

    Boyd, Robert W.

    Highly efficient electron vortex beams generated by nanofabricated phase holograms Vincenzo Grillo membranes using electron-beam lithography J. Vac. Sci. Technol. B 31, 06F402 (2013); 10.1063/1.4810917 Ion and electron beam nanofabrication of the which-way double-slit experiment in a transmission

  20. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Ĺ to above 300 Ĺ. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 ?m wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Ĺ above 100 Ĺ, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  1. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS[subscript 2

    E-Print Network [OSTI]

    Baugher, Britton W. H.

    We report electronic transport measurements of devices based on monolayers and bilayers of the transition-metal dichalcogenide MoS[subscript 2]. Through a combination of in situ vacuum annealing and electrostatic gating ...

  2. A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas

    SciTech Connect (OSTI)

    Bedington, R., E-mail: r.bedington@stp.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210 (Japan); Kataria, D. O.; Smith, A. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)] [Mullard Space Science Laboratory, University College London, Holmbury St. Mary RH5 6NT (United Kingdom)

    2014-02-15

    MEMS (Micro Electro-Mechanical Systems) plasma analyzers are a promising possibility for future space missions but conventional instrument designs are not necessarily well suited to micro-fabrication. Here, a candidate design for a MEMS-based instrument has been prototyped using electron-discharge machining. The device features 10 electrostatic analyzers that, with a single voltage applied to it, allow five different energies of electron and five different energies of positive ion to be simultaneously sampled. It has been simulated using SIMION and the electron response characteristics tested in an instrument calibration chamber. Small deviations found in the electrode spacing of the as-built prototype were found to have some effect on the electron response characteristics but do not significantly impede its performance.

  3. Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure

    SciTech Connect (OSTI)

    Bia?ek, M. Witowski, A. M.; Grynberg, M.; ?usakowski, J.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Umansky, V.

    2014-06-07

    In order to characterize magnetic field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the magnetoplasmon resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.

  4. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers

    SciTech Connect (OSTI)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi [CEEE of Huazhong University of Science and Technology, Wuhan 430074 (China) [CEEE of Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Wuhan 430074 (China)

    2013-07-15

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  5. Terahertz-driven linear electron acceleration

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  6. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    E-Print Network [OSTI]

    Backfish, Michael; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and ...

  7. 1 GeV Electron Beams from a Laser-Driven Channel-Guided Accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    energy lasers. The radiation pressure of an intense laser pulse drives a space charge wave in a plasma [1 particle accelerators for radiation sources, high-energy physics, and other applications are typically machines. A different technology for generating intense energetic electron beams and synchronized

  8. 3-D readout-electronics packaging for high-bandwidth massively paralleled imager

    DOE Patents [OSTI]

    Kwiatkowski, Kris (Los Alamos, NM); Lyke, James (Albuquerque, NM)

    2007-12-18

    Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.

  9. Nuclear Instruments and Methods in Physics Research A 528 (2004) 1518 First lasing at the high-power free electron laser at Siberian

    E-Print Network [OSTI]

    Kozak, Victor R.

    2004-01-01

    in April 2003 on a high-power free electron laser (FEL) constructed at the Siberian CenterNuclear Instruments and Methods in Physics Research A 528 (2004) 15­18 First lasing at the high-power free electron laser at Siberian center for photochemistry research E.A. Antokhin, R.R. Akberdin, V

  10. Characteristics of InGaP/InGaAs pseudomorphic high electron mobility transistors with triple delta-doped sheets

    SciTech Connect (OSTI)

    Chu, Kuei-Yi; Chiang, Meng-Hsueh Cheng, Shiou-Ying; Liu, Wen-Chau

    2012-02-15

    Fundamental and insightful characteristics of InGaP/InGaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with graded and uniform triple {delta}-doped sheets are coomprehensively studied and demonstrated. To gain physical insight, band diagrams, carrier densities, and direct current characteristics of devices are compared and investigated based on the 2D semiconductor simulator, Atlas. Due to uniform carrier distribution and high electron density in the double InGaAs channel, the DCPHEMT with graded triple {delta}-doped sheets exhibits better transport properties, higher and linear transconductance, and better drain current capability as compared with the uniformly triple {delta}-doped counterpart. The DCPHEMT with graded triple {delta}-doped structure is fabricated and tested, and the experimental data are found to be in good agreement with simulated results.

  11. Hydrogen production by high-temperature water splitting using electron-conducting membranes

    DOE Patents [OSTI]

    Lee, Tae H.; Wang, Shuangyan; Dorris, Stephen E.; Balachandran, Uthamalingam

    2004-04-27

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at disassociation temperatures the hydrogen from the disassociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the disassociation of steam producing hydrogen and oxygen.

  12. Electronic Structure of LaOFeP - a Different Type of High Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic Structure and Magnetism inElectronic

  13. Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation

    E-Print Network [OSTI]

    Tong, Xiao-Min; Chu, Shih-I

    1998-01-01

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for nonperturbative treatment of multiphoton processes of many-electron atomic systems in intense laser fields. The theory is based on the ...

  14. Precision electroweak studies using parity violation in electron scattering

    SciTech Connect (OSTI)

    Paschke, Kent D,

    2013-11-01

    The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.

  15. Laser intensity effects in noncommutative QED

    E-Print Network [OSTI]

    Thomas Heinzl; Anton Ilderton; Mattias Marklund

    2010-02-17

    We discuss a two-fold extension of QED assuming the presence of strong external fields provided by an ultra-intense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, the photons change significantly in character: they acquire a quasi-momentum that is no longer light-like. We study the consequences of this combined noncommutative strong-field effect for basic lepton-photon interactions.

  16. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  17. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  18. Power Electronic Topologies with High Density Power Conversion and Galvanic Isolation for Utility Interface 

    E-Print Network [OSTI]

    Krishnamoorthy, Harish Sarma

    2015-01-26

    the transformers, inductors and DC electrolytic capacitors. Instead of using a line frequency transformer to interface any power electronic system with the utility grid directly, it is possible to use a power converter to transform the line frequency AC into a...

  19. Radiochemical Transformation of High Pressure Methane under Gamma, Electron, and Neutron Irradiation 

    E-Print Network [OSTI]

    Clemens, Jeffrey Tyler

    2014-05-01

    , especially Mickey Speakmon and Dr. Suresh Pilla for their guidance and patience. vi NOMENCLATURE NSC Nuclear Science center NSCR Nuclear Science Center Reactor MCNP Monte Carlo N-Particle Transport RGA Residual Gas Analyzer GTL Gas... and hydrogen in ___________Electron Beam run #4 ................................................................................. 72 Figure 4-14 Experiment geometry as simulated by MCNP ........................................... 74 Figure 4...

  20. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  1. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    SciTech Connect (OSTI)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-07-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  2. Connecting Renewables Directly to the Grid: Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

    SciTech Connect (OSTI)

    2012-01-23

    GENI Project: GE is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid’s network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.

  3. Hydrogen production by high temperature water splitting using electron conducting membranes

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Wang, Shuangyan; Dorris, Stephen E.; Lee, Tae H.

    2006-08-08

    A device and method for separating water into hydrogen and oxygen is disclosed. A first substantially gas impervious solid electron-conducting membrane for selectively passing protons or hydrogen is provided and spaced from a second substantially gas impervious solid electron-conducting membrane for selectively passing oxygen. When steam is passed between the two membranes at dissociation temperatures the hydrogen from the dissociation of steam selectively and continuously passes through the first membrane and oxygen selectively and continuously passes through the second membrane, thereby continuously driving the dissociation of steam producing hydrogen and oxygen. The oxygen is thereafter reacted with methane to produce syngas which optimally may be reacted in a water gas shift reaction to produce CO2 and H2.

  4. Pulse shapes from electron and photon induced events in segmented high-purity germanium detectors

    E-Print Network [OSTI]

    I. Abt; A. Caldwell; K. Kröninger; J. Liu; X. Liu; B. Majorovits

    2007-04-23

    Experiments built to search for neutrinoless double beta-decay are limited in their sensitivity not only by the exposure but also by the amount of background encountered. Radioactive isotopes in the surrounding of the detectors which emit gamma-radiation are expected to be a significant source of background in the GERmanium Detector Array, GERDA. Methods to select electron induced events and discriminate against photon induced events inside a germanium detector are presented in this paper. The methods are based on the analysis of the time structure of the detector response. Data were taken with a segmented GERDA prototype detector. It is shown that the analysis of the time response of the detector can be used to distinguish multiply scattered photons from electrons.

  5. Recent Progress in Chromatic Aberration Corrected High-Resolution and Lorentz Transmission Electron Microscopy

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    80 and 65 pm detail at 80 and 300 kV, respectively. Figure 2 shows CC and CS corrected energy. 58 (2009) 147. [3] R. Leary and R. Brydson. Advances in Imaging and Electron Physics 165 (2011) 73. The smallest detected image spacing at 80 kV (left) is ~80 pm and at 300 kV (right) is ~65 pm. FIG. 2. Atomic

  6. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore »greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ?–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ?–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  7. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  8. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect (OSTI)

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  9. Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons

    SciTech Connect (OSTI)

    Meneghini, M. Bisi, D.; Meneghesso, G.; Zanoni, E.

    2014-04-07

    This paper describes an extensive analysis of the role of off-state and semi-on state bias in inducing the trapping in GaN-based power High Electron Mobility Transistors. The study is based on combined pulsed characterization and on-resistance transient measurements. We demonstrate that—by changing the quiescent bias point from the off-state to the semi-on state—it is possible to separately analyze two relevant trapping mechanisms: (i) the trapping of electrons in the gate-drain access region, activated by the exposure to high drain bias in the off-state; (ii) the trapping of hot-electrons within the AlGaN barrier or the gate insulator, which occurs when the devices are operated in the semi-on state. The dependence of these two mechanisms on the bias conditions and on temperature, and the properties (activation energy and cross section) of the related traps are described in the text.

  10. VHEeP: A very high energy electron-proton collider based on proton-driven plasma wakefield acceleration

    E-Print Network [OSTI]

    Caldwell, Allen

    2015-01-01

    Based on current CERN infrastructure, an electron-proton collider is proposed at a centre-of-mass energy of about 9 TeV. A 7 TeV LHC bunch is used as the proton driver to create a plasma wakefield which then accelerates electrons to 3 TeV, these then colliding with the other 7 TeV LHC proton beam. The basic parameters of the collider are presented, which although of very high energy, has integrated luminosities of the order of 1 pb$^{-1}$/year. For such a collider, with a centre-of-mass energy 30 times greater than HERA, parton momentum fractions, $x$, down to about $10^{-8}$ are accessible for $Q^2$ of 1 GeV$^2$ and could lead to effects of saturation or some other breakdown of DGLAP being observed. The total photon-proton cross section can be measured up to very high energies and also at different energies as the possibility of varying the electron beam energy is assumed; this could have synergy with cosmic-ray physics. Other physics which can be pursued at such a collider are contact interaction searches, ...

  11. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  12. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    SciTech Connect (OSTI)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A.; Adikimenakis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300?nm GaN/ 200?nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8?×?10{sup 12} to 2.1 × 10{sup 13} cm{sup ?2} as the AlN barrier thickness increased from 2.2 to 4.5?nm, while a 4.5?nm AlN barrier would result to 3.1?×?10{sup 13} cm{sup ?2} on a GaN buffer layer. The 3.0?nm AlN barrier structure exhibited the highest 2DEG mobility of 900?cm{sup 2}/Vs for a density of 1.3?×?10{sup 13} cm{sup ?2}. The results were also confirmed by the performance of 1??m gate-length transistors. The scaling of AlN barrier thickness from 1.5?nm to 4.5?nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63?A/mm. The maximum drain-source current was 1.1?A/mm for AlN barrier thickness of 3.0?nm and 3.7?nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0?nm AlN barrier.

  13. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  14. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01

    Raman Spectroscopy and Thermal Properties of Graphenegraphite heat spreaders for thermal management of high-powerthe Raman spectroscopy and thermal properties of a novel

  15. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C. (Livermore, CA)

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  16. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics

    E-Print Network [OSTI]

    Sanders, Simon; Cabrero-Vilatela, Andrea; Kidambi, Piran R.; Alexander-Webber, Jack A.; Weijtens, Christ; Braeuninger, Philipp; Aria, Adrianus I.; Qasim, Malik M.; Wilkinson, Timothy D.; Robertson, John; Hofmann, Stephan; Meyer, Jens

    2015-07-06

    including organic photovoltaic cells and organic light emitting diodes (OLEDs).1–8 Most of these applications require low sheet resistances and detailed band engineering to optimize charge injection/extraction.1–8 Hence effective doping and the controlled... to applications but also as a model system to develop a detailed understanding of the n-doping mechanisms for organic electronics in general. Here, we focus on the n-type doping of monolayer graphene with an alkali metal compound i.e. cesium carbonate (Cs2CO3...

  17. High stability electron field emitters made of nanocrystalline diamond coated carbon nanotubes

    SciTech Connect (OSTI)

    Sankaran, K. J.; Tai, N. H., E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Srinivasu, K.; Leou, K. C. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)] [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Lin, I. N., E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2013-12-16

    We report enhanced life-time stability for the electron field emitters prepared by coating nanocrystalline diamond (NCD) on carbon nanotubes (CNTs). Upon overcoming the problem of poor stability in CNTs, the NCD-CNTs exhibit excellent life-time stability of 250 min tested at different applied voltages of 600 and 900?V. In contrast, the life-time stability of CNTs is only 33 min even at relatively low voltage of 360?V and starts arcing at 400?V. Hence, the NCD-CNTs with improved life-time stability have great potential for the applications as cathodes in flat panel displays and microplasma display devices.

  18. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOE Patents [OSTI]

    Isenberg, A.O.

    1992-04-21

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.

  19. Electron kinetic effects on interferometry and polarimetry in high temperature fusion plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAwardElectron Trapping byvvmirnov IP

  20. Electron kinetic effects on interferometry and polarimetry in high temperature fusion plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAwardElectron Trapping byvvmirnov IP196

  1. International Journal of High Speed Electronics and Systems Vol. 21, No. 1 (2012) 1250001 (32 pages)

    E-Print Network [OSTI]

    Luryi, Serge

    2012-01-01

    @ece.sunysb.edu High radiative efficiency in moderately doped n-InP results in the transport of holes dominated collection efficiency and hence high energy resolution. Finally, we discuss a possibility to increase from the ratio of transmitted and reflected luminescence spectra, measured in samples of different

  2. Measurement and interpretation of the polarization of the x-ray line emission of heliumlike Fe XXV excited by an electron beam

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    intensities for such diagnostic purposes. In virtually all cases where excitation by an electron beam plays excited by an electron beam P. Beiersdorfer, D. A. Vogel,* K. J. Reed, V. Decaux, J. H. Scofield, and K by a monoenergetic electron beam. The measurement was carried out with a high-resolution x-ray spec- trometer

  3. Modification of polymer velvet cathode via metallic Mo coating for enhancement of high-current electron emission performances

    SciTech Connect (OSTI)

    Xiong, Ying; Wang, Bing; Yi, Yong; Xia, Liansheng; Zhang, Huang

    2013-09-15

    The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (?0.40 Pa L), slower cathode plasma expansion velocity (?2.30 cm/?s), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacent pulses is significantly improved in double-pulsed emission mode with ?500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.

  4. Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors

    SciTech Connect (OSTI)

    Dyakonova, N.; Teppe, F.; Lusakowski, J.; Knap, W.; Levinshtein, M.; Dmitriev, A.P.; Shur, M.S.; Bollaert, S.; Cappy, A.

    2005-06-01

    The influence of the magnetic field on the excitation of plasma waves in InGaAs/AlInAs lattice matched high electron mobility transistors is reported. The threshold source-drain voltage of the excitation of the terahertz emission shifts to higher values under a magnetic field increasing from 0 to 6 T. We show that the main change of the emission threshold in relatively low magnetic fields (smaller than approximately 4 T) is due to the magnetoresistance of the ungated parts of the channel. In higher magnetic fields, the effect of the magnetic field on the gated region of the device becomes important.

  5. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect (OSTI)

    Keenan, Cameron; Chandril, Sandeep; Lederman, David [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Myers, T. H. [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Materials Science, Engineering, and Commercialization Program, Texas State University-San Marcos, San Marcos, Texas 78666 (United States)

    2011-06-01

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  6. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  7. Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    -resolution transmission electron microscopy W. Qian, G. S. Rohrer, and M. Skowronski Department of Materials Science. K. Gaskill Laboratory for Advanced Material Synthesis, Naval Research Laboratory, Washington, DC of organometallic vapor phase epitaxy grown -GaN films using high-resolution transmission electron microscopy

  8. High-power terahertz radiation from relativistic electrons G. L. Carr*, Michael C. Martin, Wayne R. McKinney, K. Jordan,

    E-Print Network [OSTI]

    and, more recently, by table-top laser-driven sources4­6 and by short electron bunches in accelerators the production of high-power broadband THz radiation from sub-picosecond electron bunches in an accelerator with the advent of coherent THz radiation emission from photocarriers in biased semiconductors. Table-top systems

  9. 504 IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 4, APRIL 2012 Ultrathin-Body High-Mobility InAsSb-on-Insulator

    E-Print Network [OSTI]

    Javey, Ali

    504 IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 4, APRIL 2012 Ultrathin-Body High-Mobility In- effect transistors (FETs) with ultrahigh electron mobilities are reported. The devices are obtainedAsSb-on-insulator FETs exhibit an effective mobility of 3400 cm2 /V · s for a body thickness of 7 nm, which rep- resents

  10. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect (OSTI)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  11. Investigation of electron temperature gradient driven micro-reconnecting modes in toroidal high-energy plasmas

    E-Print Network [OSTI]

    Takasaki, Kevin T. (Keven Takao)

    2007-01-01

    Experiments carried out with magnetically confined, high temperature plasmas have revealed important effects that have yet to be justified by existing theory. In particular, there arises an anomalous particle inflow in the ...

  12. Design of a miniature high-speed carbon-nanotube-enhanced ultracapacitor for electronics applications

    E-Print Network [OSTI]

    D'Asaro, Matthew E. (Matthew Eric)

    2012-01-01

    Electrolytic capacitors, the current standard for high-value capacitors, are one of the most challenging components to miniaturize, accounting for up to 1/3 of the volume in some power devices, and are the weak link with ...

  13. Investigation of the formation and energy density of high-current pulsed electron beams

    E-Print Network [OSTI]

    Daichi, Yoshiaki; WANG, ZHIGANG; Yamazaki, Kazuo; Sano, Sadao

    2007-01-01

    of the formation and energy density of high-current pulsednot clear about the energy density of HCPEB under differentof HCPEB and its energy density. Then, effects of argon gas

  14. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    SciTech Connect (OSTI)

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.

  15. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore »can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  16. Calculation of integrated intensities in aberration-corrected Z-contrast images

    SciTech Connect (OSTI)

    Molina, S. I. [Universidad de Cadiz, Spain; Guerrero, M. P. [Universidad de Cadiz, Spain; Galindo, Pedro [Universidad de Cadiz, Spain; Sales, David [Universidad de Cadiz, Spain; Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL

    2011-01-01

    Inclusion of spatial incoherence has been shown to give quantitative agreement between non-aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images and theoretical simulations. Here we show that, using the same approach, a significant improvement in the correlation between calculated and experimental normalized integrated intensities is obtained in the InAsP ternary semiconductor alloy, but residual discrepancies remain. We have demonstrated, in good agreement with experimental intensities obtained in calibrated samples, that normalized integrated intensities show a low dependence on the sample thickness over a wide range of thickness values. This behaviour does not occur in conventional (non-aberration-corrected) images and constitutes a powerful tool for straightforward interpretation of high-resolution images in terms of atomic column-resolved compositional maps.

  17. Nickel-Catalyzed Mizoroki-Heck Reaction of Aryl Sulfonates and Chlorides with Electronically Unbiased Terminal Olefins: High Selectivity for Branched Products

    E-Print Network [OSTI]

    Tasker, Sarah Z.

    Achieving high selectivity in the Heck reaction of electronically unbiased alkenes has been a longstanding challenge. Using a nickel-catalyzed cationic Heck reaction, we were able to achieve excellent selectivity for ...

  18. Electron capture from H-2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV 

    E-Print Network [OSTI]

    Weinberg, G.; Beck, B. R.; Steiger, J.; Church, David A.; McDonald, J.; Schneider, D.

    1998-01-01

    Ions with charge states as high as 80+, produced in the Lawrence Livermore National Laboratory electron beam ion trap were extracted and transferred to a Penning ion trap (RETRAP). RETRAP was operated at cryogenic temperature in the field of a...

  19. Investigation Of Plasma Produced By High-Energy Low-Intensity Laser Pulses For Implantation Of Ge Ions Into Si And Sio2 Substrates

    SciTech Connect (OSTI)

    Rosinski, M.; Wolowski, J.; Badziak, J.; Parys, P.; Boody, F. P.; Gammino, S.; Krasa, J.; Laska, L.; Pfeifer, M.; Rohlena, K.; Ullschmied, J.; Mezzasalma, A.; Torrisi, L.

    2006-01-15

    The development of implantation techniques requires investigation of laser plasma as a potential source of multiply charged ions. The laser ion source delivers ions with kinetic energy and a charge state dependent on the irradiated target material and the parameters of the laser radiation used. By the focusing the laser beam on the solid target the higher current densities of ions than by using other currently available ion sources can be produced. The crucial issue for efficiency of the ion implantation technology is selection of proper laser beam characteristics. Implantation of different kinds of laser-produced ions into metals and organic materials were performed recently at the PALS Research Center in Prague, in cooperative experiments using 0.4-ns iodine laser pulses having energies up to 750 J at wavelength of 1315 nm or up to 250 J at wavelength of 438 nm. In this contribution we describe the characterization and optimization of laser-produced Ge ion streams as well as analysis of the direct implantation of these ions into Si and SiO2 substrates. The Ge target was irradiated with the use of laser pulses of energy up to 50 J at radiation intensities of {approx}1011 W/cm2 and {approx}2'1013 W/cm2. The implanted samples were placed along the target normal at distances of 17, 31 and 83 cm from the target surface. The ion stream parameters were measured using the time-of-fight method. The depth of ion implantation was determined by the Rutherford backscattering method (RBS). The maximum depth of implantation of Ge ions was {approx}450 nm. These investigations were carried out for optimization of low and medium energy laser-generated Ge ion streams, suitable for specific implantation technique, namely for fabrication of semiconductor nanostructures within the SRAP 'SEMINANO' project.

  20. Building dependability arguments for software intensive systems

    E-Print Network [OSTI]

    Seater, Robert Morrison

    2009-01-01

    A method is introduced for structuring and guiding the development of end-to-end dependability arguments. The goal is to establish high-level requirements of complex software-intensive systems, especially properties that ...

  1. Computational phase imaging based on intensity transport

    E-Print Network [OSTI]

    Waller, Laura A. (Laura Ann)

    2010-01-01

    Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

  2. High transition temperature superconductor/insulator bilayers for the development of ultra-fast electronics

    SciTech Connect (OSTI)

    Sirena, M.; Félix, L. Avilés; Instituto Balseiro, Universidad Nacional de Cuyo and CNEA, 8400 Bariloche ; Haberkorn, N.

    2013-07-29

    High transition temperature superconductor (HTc)/SrTiO{sub 3} (STO) bilayers were fabricated by sputtering deposition on (100) STO substrates. Their transport and morphological properties were characterized using conductive atomic force microscopy. The STO barriers present good insulating properties, with long attenuation lengths (? ? 1 nm) which reduce the junction resistance and increase the operating critical current. The samples present roughness values smaller than 1 nm, with an extremely low density of surface defects (?5 × 10{sup ?5} defects/?m{sup 2}). The high control of the barrier quality over large defect free surfaces is encouraging for the development of microelectronics devices based in HTc Josephson junctions.

  3. Research and Development towards a Detector for a High Energy Electron-Positron Linear Collider

    E-Print Network [OSTI]

    Bruce A. Schumm

    2001-11-01

    This exposition provides a detailed picture of ongoing and planned activities towards the development of a detector for a high-energy Linear Collider. Cases for which research and development activity does not exist, or needs to be bolstered, are identified for the various subsystems. The case is made that the full exploitation of the potential of a high-energy Linear Collider will require the augmentation of existing detector technology and simulation capability, and that this program should become a major focus of the worldwide particle physics community should the construction of a Linear Collider become likely.

  4. W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun

    SciTech Connect (OSTI)

    Cho, Boklae; Shigeru, Kokubo; Oshima, Chuhei

    2013-01-15

    An extremely high vacuum cold-field electron emission (CFE) gun operating at pressures ranging from {approx}10{sup -8} Pa to {approx}10{sup -10} Pa was constructed. Only the CFE current emitting from W(310) surfaces revealed the existence of a 'stable region' with high current angular density just after tip flash heating. In the 'stable region,' the CFE current was damped very slowly. The presence of non-hydrogen gas eliminated this region from the plot. Improvement of the vacuum prolonged the 90% damping time of the CFE current from {approx}10 min to 800 min. The current angular density I{sup Prime} of CFE current was 60 and 250 {mu}A/sr in the 'stable region' for total CFE currents of 10 and 50 {mu}A, respectively. These results were about three times larger than I{sup Prime} when measured after the complete damping of the CFE current. The CFE gun generated bright scanning transmission electron microscopy images of a carbon nanotube at 30 kV.

  5. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOE Patents [OSTI]

    Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  6. Electron Beam Lithography Method for Sub-50 nm Isolated Trench With High Aspect Ratio

    E-Print Network [OSTI]

    Brankovic, Stanko R.

    the narrow trench with a high magnetic moment material. In this work, the narrow trenches were electroplated from the resist top coat (RTC) experiments. With our new narrow trench process, we demonstrated, resist residual, proximity effect, data storage, thin film heads, Electroplating. 1. INTRODUCTION

  7. Proceedings of the seventh international conference on high voltage electron microscopy

    SciTech Connect (OSTI)

    Fisher, R.M.; Gronsky, R.; Westmacott, K.H. (eds.)

    1983-01-01

    Eight-four papers are arranged under the following headings: high resolution, techniques and instrumentation, radiation effects, in-situ and phase transformations, minerals and ceramics, and semiconductors and thin films. Twenty-three papers were abstracted separately for the data base; three of the remainder had previously been abstracted. (DLC)

  8. Studies of Charge Exchange in a High?Pressure Pulsed Electron Impact Source

    E-Print Network [OSTI]

    Sharma, D. K. Sen; Hierl, Peter M.; Franklin, J. L.

    1972-01-01

    A high pressure pulsed ion source has been used in a time?of?flight mass spectrometer in order to study the charge exchangereactions in Ar–H2 and Ar–D2 systems using the ion source in the ?ermák mode of operation. As the source was used in a pulsed...

  9. Searching for Lepton Flavor Violation at a Future High Energy Electron-Positron Collider

    E-Print Network [OSTI]

    Brandon Murakami; Tim M. P. Tait

    2014-10-06

    We consider theories where lepton flavor is violated, in particular concentrating on the four fermion operator consisting of three electrons and a tau. Strong constraints are available from existing searches for tau -> eee, requiring the scale of the contact interaction to be less than ~(9 TeV)^-2. We reexamine this type of physics, assuming that the particles responsible are heavy (with masses greater than ~TeV) such that a contact interaction description continues to be applicable at the energies for a future e+e- collider. We find that the process e+e- -> e tau can be a very sensitive probe of this kind of physics (even for very conservative assumptions about the detector performance), already improving upon the tau decay bounds to less than ~(11 TeV)^-2 at collider energy sqrt(s) 500 GeV, or reaching beyond ~(35 TeV)^-2 for sqrt(s) = 3 TeV. Even stronger bounds are possible at e-e- colliders in the same energy range.

  10. Inclusive Electron Scattering From Nuclei at x >1 and High Q^2

    SciTech Connect (OSTI)

    John Arrington

    1998-06-02

    CEBAF experiment e89-008 measured inclusive electron scattering from nuclei in a Q{sup 2} range between 0.8 and 7.3 (GeV/c){sup 2} for x{sub Bjorken} approximately greater than 1. The cross sections for scattering from D C, Fe, and Au were measured. The C, Fe, and Au data have been analyzed in terms of F(y) to examine y-scaling of the quasielastic scattering, and to study the momentum distribution of the nucleons in the nucleus. The data have also been analyzed in terms of the structure function vW{sub 2} to examine scaling of the inelastic scattering in x and xi and to study the momentum distribution of the quarks. In the regions where quasielastic scattering dominates the cross section (low Q{sup 2} or large negative values of y), the data are shown to exhibit y-scaling. However, the y-scaling breaks down once the inelastic contributions become large. The data do not exhibit x-scaling, except at the lowest values of x, while the structure function does appear to scale in the Nachtmann variable, xi.

  11. High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom

    DOE Patents [OSTI]

    Riedel, Richard A. (Knoxville, TN) [Knoxville, TN; Wintenberg, Alan L. (Knoxville, TN) [Knoxville, TN; Clonts, Lloyd G. (Knoxville, TN) [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2010-09-21

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  12. Hidden-Sector Higgs Bosons at High-Energy Electron-Positron Colliders

    E-Print Network [OSTI]

    Jack H. Collins; James D. Wells

    2012-09-30

    The possibility of a scalar messenger that can couple the Standard Model (SM) to a hidden sector has been discussed in a variety of contexts in the literature in recent years. We consider the case that a new scalar singlet charged under an exotic spontaneously broken Abelian gauge symmetry mixes weakly with the SM Higgs resulting in two scalar mass states, one of which has heavily suppressed couplings to the SM particles. Previous phenomenological studies have focussed on potential signatures for such a model at the Large Hadron Collider (LHC). However, there are interesting regions of the parameter space in which the heavier Higgs state would be out of reach for LHC searches if its mass is greater than 1 TeV. We therefore investigate the discovery potential for such a particle at a 3 TeV electron-positron collider, which is motivated by the recent developments of the Compact Linear Collider (CLIC). We find that such an experiment could substantially extend our discovery reach for a heavy, weakly coupled Higgs boson, and we discuss three possible search channels.

  13. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  14. Development of hollow electron beams for proton and ion collimation

    SciTech Connect (OSTI)

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  15. 2d-PIC simulation of atomic clusters in intense laser fields F. Greschik and H.-J. Kull,

    E-Print Network [OSTI]

    Kull, Hans-Jörg

    Title page Full title 2d-PIC simulation of atomic clusters in intense laser fields Authors F of atomic clusters in intense laser fields Abstract Collective absorption of intense laser pulses by atomic by electron emission increases as a power law with the laser intensity. The absorbed energy per electron

  16. Using XFELs for Probing of Complex Interaction Dynamics of Ultra-Intense Lasers with Solid Matter

    E-Print Network [OSTI]

    Kluge, Thomas; Huang, Lingen; Metzkes, Josefine; Schramm, Ulrich; Bussmann, Michael; Cowan, Thomas E

    2013-01-01

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advancethe understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena may become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. We demonstrate the potentials of XFEL plasma probing for high power laser matter interactions using exemplary the small angle X-ray scattering technique, focusing on general considerations for XFEL probing.

  17. Multiparameter Intelligent Monitoring in Intensive Care Ii (Mimic-Ii): A Public-Access Intensive Care Unit Database

    E-Print Network [OSTI]

    Saeed, Mohammed

    Objective: We sought to develop an intensive care unit research database applying automated techniques to aggregate high-resolution diagnostic and therapeutic data from a large, diverse population of adult intensive care ...

  18. Enhancement of the helium resonance lines in the solar atmosphere by suprathermal electron excitation II: non-Maxwellian electron distributions

    E-Print Network [OSTI]

    G. R. Smith

    2003-06-20

    In solar EUV spectra the He I and He II resonance lines show unusual behaviour and have anomalously high intensities compared with other transition region lines. The formation of the helium resonance lines is investigated through extensive non-LTE radiative transfer calculations. The model atmospheres of Vernazza, Avrett & Loeser are found to provide reasonable matches to the helium resonance line intensities but significantly over-estimate the intensities of other transition region lines. New model atmospheres have been developed from emission measure distributions derived by Macpherson & Jordan, which are consistent with SOHO observations of transition region lines other than those of helium. These models fail to reproduce the observed helium resonance line intensities by significant factors. The possibility that non-Maxwellian electron distributions in the transition region might lead to increased collisional excitation rates in the helium lines is studied. Collisional excitation and ionization rates are re-computed for distribution functions with power law suprathermal tails which may form by the transport of fast electrons from high temperature regions. Enhancements of the helium resonance line intensities are found, but many of the predictions of the models regarding line ratios are inconsistent with observations. These results suggest that any such departures from Maxwellian electron distributions are not responsible for the helium resonance line intensities.

  19. Spectroscopy at the high-energy electron beam ion trap (Super EBIT)

    SciTech Connect (OSTI)

    Widmann, K.; Beiersdorfer, P.; Crespo Lopez-Urrutia, J.R.

    1996-07-10

    The following progress report presents some of the x-ray measurements performed during the last year on the Livermore SuperEBIT facility. The measurements include: direct observation of the spontaneous emission of the hyperfine transition in ground state hydrogenlike holmium, {sup 165}Ho{sup 66{plus}}; measurements of the n {equals} 2 {r_arrow} 2 transition energies in neonlike thorium, Th{sup 80{plus}}, through lithiumlike thorium, Th{sup 87{plus}}, testing the predictions of quantum electrodynamical contributions in high-Z ions up to the 0.4{percent} level; measurements of the isotope shift of the n= 2 {r_arrow} 2 transition energies between lithiumlike through carbonize uranium, {sup 233}U{sup 89{plus}...86{plus}} and {sup 238}U{sup 89{plus}...86{plus}}, inferring the variation of the mean- square nuclear charge radius; and high-resolution measurements of the K{alpha} radiation of heliumlike xenon, Xe{sup 52 {plus}}, using a transmission-type crystal spectrometer, resolving for the first time the ls2p{sup 3}P{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} and ls2s{sup 3}S{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} transitions individually. 41 refs., 9 figs., 1 tab.

  20. High-Temperature SiC Power Module with Integrated SiC Gate Drivers for Future High-Density Power Electronics Applications

    SciTech Connect (OSTI)

    Whitaker, Mr. Bret [APEI, Inc.; Cole, Mr. Zach [APEI, Inc.; Passmore, Mr. Brandon [APEI, Inc.; Martin, Daniel [APEI, Inc.; Mcnutt, Tyler [APEI, Inc.; Lostetter, Dr. Alex [APEI, Inc.; Ericson, Milton Nance [ORNL; Frank, Steven Shane [ORNL; Britton Jr, Charles L [ORNL; Marlino, Laura D [ORNL; Mantooth, Alan [University of Arkansas; Francis, Dr. Matt [University of Arkansas; Lamichhane, Ranjan [University of Arkansas; Shepherd, Dr. Paul [University of Arkansas; Glover, Dr. Michael [University of Arkansas

    2015-01-01

    This paper presents the testing results of an all-silicon carbide (SiC) intelligent power module (IPM) for use in future high-density power electronics applications. The IPM has high-temperature capability and contains both SiC power devices and SiC gate driver integrated circuits (ICs). The high-temperature capability of the SiC gate driver ICs allows for them to be packaged into the power module and be located physically close to the power devices. This provides a distinct advantage by reducing the gate driver loop inductance, which promotes high frequency operation, while also reducing the overall volume of the system through higher levels of integration. The power module was tested in a bridgeless-boost converter to showcase the performance of the module in a system level application. The converter was initially operated with a switching frequency of 200 kHz with a peak output power of approximately 5 kW. The efficiency of the converter was then evaluated experimentally and optimized by increasing the overdrive voltage on the SiC gate driver ICs. Overall a peak efficiency of 97.7% was measured at 3.0 kW output. The converter s switching frequency was then increased to 500 kHz to prove the high frequency capability of the power module was then pushed to its limits and operated at a switching frequency of 500 kHz. With no further optimization of components, the converter was able to operate under these conditions and showed a peak efficiency of 95.0% at an output power of 2.1 kW.