Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Impact Technology Catalyst | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies...

2

High Impact Technology (HIT) Catalyst  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department of4 Energy SolutionsHigh

3

Request for Information: High Impact Commercial Building Technology...  

Energy Savers [EERE]

U.S. Department of Energy's (DOE) Building Technologies Office (BTO) is developing a pipeline of high impact, cost-effective, energy saving and underutilized commercial building...

4

High Impact Technology Catalyst | Department of Energy  

Energy Savers [EERE]

Shading Attachments and Awnings Refrigeration Controls & Display Case Retrofits Heat Pump Water Heaters Commercial Fans and Blowers TECHNOLOGY DEMONSTRATION REPORTS Field...

5

High Impact Technology Catalyst Industry Roundtable | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department of4 Energy SolutionsHigh16,

6

Impact of New Irrigation Technology on the Texas High Plains: 1980-2020  

E-Print Network [OSTI]

, encourages greater use, overall. Advanced technology, however, is important to the future of crop production in the region, since it increased the level of production, and net revenue. Further, the impact of technology was proportionally greater under the low...

Reneau, D. R.; Lacewell, R. D.; Ellis, J. R.

7

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

8

Impact of new pollution control technologies on all emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new pollution control technologies on...

9

The FreedomCAR & Vehicle Technologies Health Impacts Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

10

Discovery Park Impact Network for Photovoltaic Technology  

E-Print Network [OSTI]

Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

Holland, Jeffrey

11

Impact of Alternative Energy Prices, Tenure Arrangements and Irrigation Technologies on a Typical Texas High Plains Farm  

E-Print Network [OSTI]

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production...

Petty, J. A.; Lacewell, R. D.; Hardin, D. C.; Whitson, R. E.

12

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

13

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts...  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519 Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement...

14

Vehicle Technologies Office Merit Review 2014: Impacts of Advanced...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Advanced Combustion Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines Presentation given by Oak Ridge National Laboratory at...

15

High Efficiency Engine Technologies Program  

SciTech Connect (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

16

High impact resistant ceramic composite  

DOE Patents [OSTI]

A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

Derkacy, J.A.

1991-07-16T23:59:59.000Z

17

Climate impact metrics for energy technology evaluation  

E-Print Network [OSTI]

The climate change mitigation potential of energy technologies depends on how their lifecycle greenhouse gas emissions compare to global climate stabilization goals. Current methods for comparing technologies, which assess ...

Edwards, Morgan Rae

2013-01-01T23:59:59.000Z

18

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

19

Technical and economic impact of crosswell technology: Progress report  

SciTech Connect (OSTI)

Conoco`s Crosswell Reservoir Characterization (CRC) team is using Decision and Risk Analysis (D and RA) to evaluate the potential economic impact of the authors` projects. D and RA can be a useful tool for refining the direction of a project and communicating the value of information in economic terms. Initial studies show that CRC has high potential economic value. Three steps were used to analyze the value of the CRC project. A high-level, industry-wide model was developed to look at the technical, application, and commercialization success of the technology. The team considered an infill drilling decision in shallow shelf carbonates as a detailed case. For that case, fully integrating crosswell information with supporting data (well logs, cores, production information, etc.) leads to a three-fold increase in expected value. The third step, a portfolio analysis of all crosswell applications, was initiated, but not completed. Given the potential broad application of CRC and the value obtained by the one detailed case, the technology is expected to have a very high value.

Sinton, J.B.; Skinner, D.; Ballard, J.; Beier, R.; Queen, J.; Ragland, D.; Rizer, W. [Conoco, Inc., Ponca City, OK (United States)

1994-12-31T23:59:59.000Z

20

HighImpact Practices Simon Fraser University  

E-Print Network [OSTI]

associations with student learning and retention, certain undergraduate opportunities are designated "high-impact." High-impact practices (HIPs) share several traits: They demand considerable time and effort, facilitate, the HIP questions are not limited to the current school year. Thus, seniors' responses include

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Essays on impact of information technology  

E-Print Network [OSTI]

The five essays in this dissertation look at how specific information technologies (such as Electronic Document Management (EDM), Semantic Web and RuleML) and IT in general can be used to automate and standardize data and ...

Bhansali, Sumit Milap

2007-01-01T23:59:59.000Z

22

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

23

High Performance Networks for High Impact Science  

SciTech Connect (OSTI)

This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

Scott, Mary A.; Bair, Raymond A.

2003-02-13T23:59:59.000Z

24

Vehicle Technologies Office Merit Review 2014: Impact of Advanced Technologies on Engine Targets  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the impact of...

25

Impact of Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In About |Imaging ImagingIMPACT

26

Climate Change: High Water Impacts and Adaptation  

E-Print Network [OSTI]

Climate Change: High Water Impacts and Adaptation David S. Liebl and Kenneth W. Potter Co of global climate change­ WICCI Stormwater Working Group #12;Projected Climate Change 200-2100 What Global

Sheridan, Jennifer

27

NREL: Technology Deployment - Market Impact Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NRELIncorporatesTechnologies Conducted

28

Impact of PMU Technology in State Estimation  

SciTech Connect (OSTI)

Recent blackouts and the need to manage larger and larger power systems closer to their stability limits are driving electricity utilities to deploy synchronized phasor measurements (PMU) for wide area monitoring and control. At the same time, modern TSOs need accurate, fast and reliable estimation of their networks' real-time conditions. State Estimator (SE), a fundamental function in dispatching control centers, is expected to perform reliably around the clock since it provides the foundation for subsequent critical security analyses, market revenue calculations, etc. PMU technology provides accurate, satellite-synchronized measurements of both magnitude and angle, which naturally fit in the SE algorithm and enhance its robustness and the quality of the results. This paper presents current results of ongoing experiences with electric utilities on the usage of PMU data in state estimation. It focuses on practical implementation aspects, such as data communication and interfacing to the control center EMS, metrics for evaluation of State Estimator results and improvements in state estimation behavior and results thanks to PMU data.

Avila-Rosales, Rene [AREVA T& D; Rice, Mark [AREVA T& D; Lopez, Rafael [AREVA T& D; Beard, Lisa [Tennessee Valley Authority (TVA); Mathur, Tanya [Tennessee Valley Authority (TVA); Galvan, Floyd [Entergy; Gupta, Vinit [Entergy; James, Lambert [Manitoba Hydro; Graffy, James [Bonneville Power Administration (BPA); Papic, Milorad [Idaho Power Company

2008-01-01T23:59:59.000Z

29

Measuring the Impacts of Speed Reduction Technologies  

E-Print Network [OSTI]

-Seoud, Edward Anderson #12;Background Identified as a problem area Sharp curve & excessive speed High crash;Comparison of Mean Zones - Southbound, Commercial Vehicles 45 46 47 48 49 50 51 52 53 54 55 -1300 -1100 -900-70 Speed Category Before After #12;At nearest rest area

Bertini, Robert L.

30

High Impact Technology Catalyst | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHotOctoberRequest for

31

Network for Photovoltaic TechnologyNEED IMPACT STATEMENT  

E-Print Network [OSTI]

Network for Photovoltaic TechnologyNEED IMPACT STATEMENT INITIATIVE In early 2009, the Discovery graduate students have received several best poster and paper awards; A hub for photovoltaic research://nanohub.org/groups/PVWorkshop The NPT is becoming an international center for photovoltaic research to connect islands of excellence

Ginzel, Matthew

32

The Roles and Economic Impacts of Technology Infrastructure  

E-Print Network [OSTI]

The Roles and Economic Impacts of Technology Infrastructure (version 3) Gregory Tassey Senior billion in economic benefits. Beyond measurement activities within an industry, increased specialization the need for interoperability for a wide range of information flows. NIST economic studies have shown

33

IMPACT OF NEW LIGHTING TECHNOLOGIES ON OFFICE ERGONOMICS  

E-Print Network [OSTI]

The goal of this study was to find the impact of cutting-edge light-emitting diodes (LED) lighting technologies on the office ergonomics in modern offices. An experiment was conducted in a windowless office at the University of Kansas...

Li, Linjie

2013-12-31T23:59:59.000Z

34

Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System  

E-Print Network [OSTI]

worldwide, there has been an increase in the support of renewable energy. Latin America has not beenTechnological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D- Renewable energy has had a steady growth in power systems worldwide. The high uncertainty about what type

Catholic University of Chile (Universidad Católica de Chile)

35

Low technology high tritium breeding blanket concept  

SciTech Connect (OSTI)

The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of approx.2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs.

Gohar, Y.; Baker, C.C.; Smith, D.L.; Billone, M.C.; Cha, Y.S.; Clemmer, R.; Finn, P.A.; Hassanein, A.M.; Johnson, C.E.; Liu, Y.

1987-10-01T23:59:59.000Z

36

Thomas Jefferson High School for Science & Technology National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

37

Vehicle Technologies Office: Materials for High-Efficiency Combustion...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

38

Vehicle Technologies Office Merit Review 2014: High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Vehicle Technologies Office Merit...

39

Application of Synergistic Technologies to Achieve High Levels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

40

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

42

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

43

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

44

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

45

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network [OSTI]

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

46

Quantifying Technology Infusion and Policy Impact on Low Earth Orbit Communication  

E-Print Network [OSTI]

Quantifying Technology Infusion and Policy Impact on Low Earth Orbit Communication Satellite Students #12;2 #12;Quantifying Technology Infusion and Policy Impact on Low Earth Orbit Communication-Master of Science in Aeronautics and Astronautics and Technology and Policy Program Abstract Technology infusion

47

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

48

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

Linderman, R; Smith, B; Michel, B

2008-01-01T23:59:59.000Z

49

High-energy electron beam technology  

SciTech Connect (OSTI)

A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

1994-09-01T23:59:59.000Z

50

Detecting Fractures Using Technology at High Temperatures and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

51

Investigation of a hydraulic impact a technology in rock breaking  

E-Print Network [OSTI]

in mining industry. The impact process of a high speed piston on liquid water, previously introduced on the environment such as fly rocks, air blast, noise pollution and toxic fumes. When blasting occurs close to residential areas, or during tunnel construction, environmental protection regulation could seriously affect

52

Potential impact of high temperature superconductors on maglev transportation  

SciTech Connect (OSTI)

This report describes the potential impact that high-temperature superconductors (HTSs) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTSs is described. Areas identified for possible impact on maglev technology are (1) liquid-nitrogen-cooled levitation magnets, (2) magnetic-field shielding of the passenger compartment, (3) superconducting magnetic energy storage for wayside power, (4) superconducting bearings for flywheel energy storage for wayside power, (5) downleads to continuously powered liquid-helium-cooled levitation magnets, and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTSs in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

Hull, J.R.

1992-02-01T23:59:59.000Z

53

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

54

Impact of Control System Technologies on Industrial Energy Savings  

E-Print Network [OSTI]

Modify temperature and pressure setpoints to meet requirements while optimizing energy use CHILLER ROOM TB Static Pressure Setpoint Reset Thermostatic Temperature Setpoint ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology... Conference New Orleans, LA. May 20-23, 2014 1. HVAC: Seasonal Temperature Resets I. SETPOINT ADJUSTMENT Low payback, high savings! Image: http://www.ncelectriccooperatives.com/electricity/homeEnergy/thermostats_intro.htm Average Savings: $10,000 per year...

Parikh, P.; Pasmussen, B. P.

2014-01-01T23:59:59.000Z

55

Quantifying technology infusion and policy impact on low earth orbit communication satellite constellations  

E-Print Network [OSTI]

Technology infusion and policy implementation bring impacts to the trade space of complex engineering systems. This work describes in detail the frameworks for quantitative analyses on these impacts, demonstrates their use ...

Chang, Darren Datong, 1977-

2004-01-01T23:59:59.000Z

56

Vehicle Technologies Office Merit Review 2014: Studies on High...  

Broader source: Energy.gov (indexed) [DOE]

Studies on High Capacity Cathodes for Advanced Lithium-ion Systems Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems...

57

Vehicle Technologies Office Merit Review 2014: High-Temperature...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

58

Thomas Jefferson High School for Science & Technology Takes 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Takes 2015 Virginia Science Bowl 2014 Virginia High School Science Bowl The team from Thomas Jefferson High School for Science and Technology, Alexandria, swept through the...

59

Thomas Jefferson High School for Science and Technology from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of science and math questions and answers, the winning team was Thomas Jefferson High School for Science and Technology from Alexandria. Team captain and high school senior,...

60

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

62

Vehicle Technologies Office Merit Review 2014: High Compression...  

Broader source: Energy.gov (indexed) [DOE]

High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine...

63

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless...

64

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous...

65

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

66

The Impact of Control Technology on the Demand Response Potential of  

E-Print Network [OSTI]

LBNL-5750E The Impact of Control Technology on the Demand Response Potential of California was sponsored in part by the Demand Response Research Center which is funded

67

Vehicle Technologies Office Merit Review 2014: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impact analysis...

68

Evaluating the income and employment impacts of gas cooling technologies  

SciTech Connect (OSTI)

The purpose of this study is to estimate the potential employment and income benefits of the emerging market for gas cooling products. The emphasis here is on exports because that is the major opportunity for the U.S. heating, ventilating, and air-conditioning (HVAC) industry. But domestic markets are also important and considered here because without a significant domestic market, it is unlikely that the plant investments, jobs, and income associated with gas cooling exports would be retained within the United States. The prospects for significant gas cooling exports appear promising for a variety of reasons. There is an expanding need for cooling in the developing world, natural gas is widely available, electric infrastructures are over-stressed in many areas, and the cost of building new gas infrastructure is modest compared to the cost of new electric infrastructure. Global gas cooling competition is currently limited, with Japanese and U.S. companies, and their foreign business partners, the only product sources. U.S. manufacturers of HVAC products are well positioned to compete globally, and are already one of the faster growing goods-exporting sectors of the U.S. economy. Net HVAC exports grew by over 800 percent from 1987 to 1992 and currently exceed $2.6 billion annually (ARI 1994). Net gas cooling job and income creation are estimated using an economic input-output model to compare a reference case to a gas cooling scenario. The reference case reflects current policies, practices, and trends with respect to conventional electric cooling technologies. The gas cooling scenario examines the impact of accelerated use of natural gas cooling technologies here and abroad.

Hughes, P.J. [Oak Ridge National Lab., TN (United States); Laitner, S.

1995-03-01T23:59:59.000Z

69

Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1  

E-Print Network [OSTI]

Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1 Karen;1 Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth ABSTRACT What are the drivers of future global carbon dioxide (CO2) emissions growth and how would the availability of key

Wing, Ian Sue

70

Nuclear power high technology colloquium: proceedings  

SciTech Connect (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

71

Impact of High Solar Penetration in the Western Interconnection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy...

72

EA-1867: Scale-up of High-Temperature Syngas Cleanup Technology, Polk County, Florida  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to provide cost-shared funding to RTI International (RTI) for its proposed project to demonstrate the precommercial scale-up of RTIs high-temperature syngas cleanup and carbon capture and sequestration technologies.

73

Impacts of high energy prices on long-term energy-economic scenarios for Germany  

E-Print Network [OSTI]

Impacts of high energy prices on long-term energy-economic scenarios for Germany Volker Krey1 , Dag and Technology Evaluation (IEF-STE), 52425 Jülich, Germany 2) DIW Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany 3) ?ko-Institut, Novalisstr. 10, 10115 Berlin, Germany Abstract Prices of oil and other fossil

74

High-Performance Home Technologies: Solar Thermal & Photovoltaic...  

Broader source: Energy.gov (indexed) [DOE]

in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

75

Thomas Jefferson High School for Science & Technology Wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology...

76

Thomas Jefferson High School for Science & Technology wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in second place was the...

77

Detecting Fractures Using Technology at High Temperatures and...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug (Baker Hughes...

78

Novel Manufacturing Technologies for High Power Induction and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Power Induction and Permanent Magnet Electric Motors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

79

New Technology@Home: Impacts on Usage Behavior and Social Structures  

E-Print Network [OSTI]

New Technology@Home: Impacts on Usage Behavior and Social Structures Jan Hess, Benedikt Ley.wulf}@uni-siegen.de ABSTRACT Studying domestic usage contexts has become an important field in research. Recent technological. The adoption and appropriation of new devices and technologies has led to a more flexible usage behavior

80

Thomas Jefferson High School for Science & Technology Snaps Up...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office Merit Review 2014: High Energy, Long...  

Broader source: Energy.gov (indexed) [DOE]

High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV...

82

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

83

Enabling Technologies for High Penetration of Wind and Solar Energy  

SciTech Connect (OSTI)

High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

Denholm, P.

2011-01-01T23:59:59.000Z

84

Vehicle Technologies Office Merit Review 2014: Impact Analysis...  

Energy Savers [EERE]

Impact Analysis: VTO Baseline and Scenario (BaSce) Activities Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

85

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network [OSTI]

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

86

Impact of information and communications technologies on residental customer energy services  

SciTech Connect (OSTI)

This study analyzes the potential impact of information and communications technologies on utility delivery of residential customer energy services. Many utilities are conducting trials which test energy-related and non-energy services using advanced communications systems.

Goldman, C.; Kempton, W.; Eide, A.; Iyer, M. [and others

1996-10-01T23:59:59.000Z

87

THE IMPACT OF NEW TECHNOLOGIES IN PUBLIC FINANCIAL MANAGEMENT AND PERFORMANCE  

E-Print Network [OSTI]

1 THE IMPACT OF NEW TECHNOLOGIES IN PUBLIC FINANCIAL MANAGEMENT AND PERFORMANCE: AGENDA FOR PUBLIC FINANCIAL MANAGEMENT REFORMANCE IN THE CONTEXT OF GLOBAL BEST PRACTICES Prof. Amos DAVID ..................................................................... 3 III . The effective and the perceived performance of public services

Paris-Sud XI, Université de

88

Informational Webinar on Bat Impact Minimization Technologies Funding Opportunity (DE-FOA-0001181)  

Broader source: Energy.gov [DOE]

The Department of Energy's Wind and Water Power Technologies Office is hosting an informational webinar on a recently announced funding opportunity, DE-FOA-0001181: Wind Energy - Bat Impact...

89

Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impacts of...

90

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

Energy Usage and Conservation Technologies Used in Fruit andThe Impact of Control Technology on the Demand ResponsePrepared By VaCom Technologies La Verne, California July 30,

Scott, Doug

2014-01-01T23:59:59.000Z

91

DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center  

SciTech Connect (OSTI)

A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

Farnsworth, R.K.; Mishima, J.

1988-12-01T23:59:59.000Z

92

Numerical Prediction of High-Impact Local Weather: A  

E-Print Network [OSTI]

Chapter 6 Numerical Prediction of High-Impact Local Weather: A Driver for Petascale Computing Ming winds, lightning, hurricanes and winter storms, cause hundreds of deaths and average annual economic of mitigating the impacts of such events on the economy and society is obvious, our ability to do so

Xue, Ming

93

EERE Takes Important Steps to Ensure Maximum Impact of Technology...  

Office of Environmental Management (EM)

and led by EERE's Jeff Dowd and Yaw Agyeman from Lawrence Berkeley National Laboratory (LBNL), both of whom have developed and supervised impact analysis for EERE before, and also...

94

Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint  

SciTech Connect (OSTI)

This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

Wagner, M. J.; Kutscher, C. F.

2010-10-01T23:59:59.000Z

95

Sciences: Launching New Technology in the MarketplaceNEED IMPACT STATEMENT  

E-Print Network [OSTI]

Sciences: Launching New Technology in the MarketplaceNEED IMPACT STATEMENT INITIATIVE Over the last and new machine tool builders. To date, M4 Sciences has sold drilling systems in 12 major market countries two decades, the Purdue Center for Materials Processing and Technology (CMPT) (originally part

Ginzel, Matthew

96

Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production  

Broader source: Energy.gov [DOE]

A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energys National Energy Technology Laboratory

97

Impact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams Impact Strength of High Relative Density  

E-Print Network [OSTI]

is an increased glass transition temperature (T,), thus requiring higher foaming temperatures. Baldwin and SuhImpact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams ImpactTerephthalate) Microcellular Foams Vipin KurnaW, Richard P Juntunena, and Chris Barlowb University of Washington, Seattle

Kumar, Vipin

98

Impact of coal quality and gasifier technology on IGCC performance  

E-Print Network [OSTI]

02139, USA Abstract Integrated coal gasification combined cycle (IGCC) plants withpre Plus and combined with GTPRO, mass and energy balances were computed. Two gasification technologies quality, efficiency Introduction Integrated coal gasification combined cycle (IGCC) has emerged

99

The impacts of technology on global unconventional gas supply  

E-Print Network [OSTI]

, tight sands, and shales. Whereas these resources are abundant, they have largely been overlooked and understudied, especially outside of North America. New technologies, including those needed to unlock unconventional gas (UCG) resources, have been...

Yanty, Evi

2009-06-02T23:59:59.000Z

100

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect (OSTI)

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Technology School-to-Work Program at Argonne  

ScienceCinema (OSTI)

Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

None

2013-04-19T23:59:59.000Z

102

Patent Litigation for High Technology and Life Sciences Companies  

E-Print Network [OSTI]

Patent Litigation for High Technology and Life Sciences Companies #12;© 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

Shamos, Michael I.

103

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

104

The Surprising Impact of Technology on Real Estate  

E-Print Network [OSTI]

1993 Transactions 8,132,000 1993 Sales Volume $473 million 2012 Transactions 9,380,000 2012 Sales ZipRealty Redfin #12;Today Top 10 Real Estate Websites by US Market Share of Visits (%) November 2012 impacts? Brokerage firms and sales professionals have shifted over 75% of their advertising and marketing

Stephens, Graeme L.

105

High Efficiency Engine Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency

106

Environmental Impact on Applied Technology- Global Warming CFCs & VOCs  

E-Print Network [OSTI]

admit: environmental issues get an awful lot more attention than basic energy technology. Maybe it's because we associate more personal risk with our groundwater or air being polluted (e.g., Love Canal). Maybe it's because we have a large group...

Gilbert, J. S.

107

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

SciTech Connect (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

108

Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

109

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

110

Microfluidic Technologies for High-Throughput Screening Applications  

E-Print Network [OSTI]

Microfluidic Technologies for High-Throughput Screening Applications Thesis by Todd Thorsen, patiently giving me advice on a large variety of subjects, ranging from microfluidics to optics of microfluidic devices for high-throughput screening applications, such as mutant enzyme libraries expressed

Quake, Stephen R.

111

High energy density capacitors using nano-structure multilayer technology  

SciTech Connect (OSTI)

Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1992-08-01T23:59:59.000Z

112

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

113

Impact of Utility Costs on the Economics of Energy Cost Reduction & Conservation Technologies  

E-Print Network [OSTI]

IMPACT OF UTILITY COSTS ON THE ECONOMICS OF ENERGY COST REDUCTION & CONSERVATION TECHNOLOGIES Saidas M. Ranade Senior Process Engineer ARCO Chemical Company Channelview,Texas ABSTRACT This paper summarizes some key results obtained from... to ARCO Chemical Company for providing the time and space required to complete thi paper. REFERENCES 1. N. R. Friedman, Co eneration: Impacts on Utility Operations and Marketing. EPRI Conference on Placing Industrial Cogeneration in Perspective...

Ranade, S. M.; Chao, Y. T.

114

Klamath Falls: High-Power Acoustic Well Stimulation Technology  

SciTech Connect (OSTI)

Acoustic well stimulation (AWS) technology uses high-power sonic waves from specific frequency spectra in an attempt to stimulate production in a damaged or low-production wellbore. AWS technology is one of the most promising technologies in the oil and gas industry, but it has proven difficult for the industry to develop an effective downhole prototype. This collaboration between Klamath Falls Inc. and the Rocky Mountain Oilfield Testing Center (RMOTC) included a series of tests using high-power ultrasonic tools to stimulate oil and gas production. Phase I testing was designed and implemented to verify tool functionality, power requirements, and capacity of high-power AWS tools. The purpose of Phase II testing was to validate the production response of wells with marginal production rates to AWS stimulation and to capture and identify any changes in the downhole environment after tool deployment. This final report presents methodology and results.

Black, Brian

2006-07-24T23:59:59.000Z

115

An example of remediation of mercury impacted soil using high vacuum low temperature thermal desorption  

SciTech Connect (OSTI)

The purpose of this paper is to describe a high vacuum, low temperature thermal desorption (LTTD) technology which has been used to remediate soil impacted with elemental mercury and to present the results of pre-treatment and post-treatment soil sampling. The general operating principles of this high vacuum LTTD technology, the IRHV-200, are: (a) depression of the boiling points of the target compounds by lowering the ambient pressure within the treatment chamber using a vacuum pump; (b) use of infrared radiation to generate a thermal gradient in the top several inches of non-liquid material contained within the treatment chamber and use of a carrier gas to transport the desorbed contaminants from the treatment chamber to a pollution control system. The overall effect of these parameters is a batch treatment system capable of desorbing target contaminants from soil under anaerobic conditions and low temperature such that the desorbed contaminants do not degrade and generate thermal or oxidative by-products. Essentially, the desorbed contaminants undergo a reversible phase change from liquid to vapor in the treatment chamber and are condensed back to liquid in the pollution control system. Results of bench top testing are compared to full scale remediations of significant volumes of soil to demonstrate remediation of mercury impacted soil. This technology is also applicable for soils impacted with other higher boiling point organics, such as, PCP, PCBs, PAHs, PNAs, pesticides and herbicides.

Dagdigian, J.V. [McLaren/Hart, Irvine, CA (United States)

1997-12-31T23:59:59.000Z

116

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

117

Call for Proposals College High-Impact Research Program 2012  

E-Print Network [OSTI]

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have royalty potential. The following considerations will be used in assessing research projects. 2. For projects that do not have royalty potential, publication of the results in a top

Hart, Gus

118

Call for Proposals College High-Impact Research Program  

E-Print Network [OSTI]

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have significant royalty potential. The following considerations will be used. For projects that do not have royalty potential, publication of the results in a top-tier venue is necessary

Hart, Gus

119

Call for Proposals College High-Impact Research Program  

E-Print Network [OSTI]

for high impact. Since the ongoing viability of CHIRP relies on royalty income, about half of CHIRP funds will go to projects that have significant royalty potential. The following considerations will be used than most research projects. 2. For projects that do not have royalty potential, publication

Hart, Gus

120

TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain  

E-Print Network [OSTI]

TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain our nation://www.fs.fed.us/rm/boise/AWAE_home.shtml BACKGROUND The Rocky Mountain Research Station has a long his- tory of developing tools that meet the needs. Existing tools have been optimized to answer particular man- agement questions at specific spatial scales

Fried, Jeremy S.

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network [OSTI]

McNally, MASc Candidate Bruce Hellinga, PhD, PEng Department of Civil Engineering University of Transportation Engineers to be held May 12-15, 2002 in Ottawa Ontario #12;1 Estimating the Impact of Demographics and Automotive Technologies on Greenhouse Gas Emissions Ryan McNally, MASc Candidate Bruce Hellinga, PhD, PEng

Hellinga, Bruce

122

Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants  

E-Print Network [OSTI]

Impact of Advanced Physics and Technology on the Attractiveness of Tokamak Fusion Power Plants--During the past ten years, the ARIES Team has studied a variety of tokamak power plants with different degrees to apply lessons learned from each ARIES design to the next. The results of ARIES tokamak power plant

Najmabadi, Farrokh

123

DOE Announces Webinars on High Impact Building Technologies,...  

Energy Savers [EERE]

typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars November 4: Finding the Next Big Thing(s)...

124

High Impact Technology - Request for Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHotOctoberRequest for Information

125

High Impact Technologies Forum: Harnessing American Ingenuity and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping to Finance theHenry

126

Request for Information: High Impact Commercial Building Technology  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply Comments ofDepartment ofPublicDepartment

127

Request for Information: High Impact Commercial Building Technology  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx MoreNovemberSummaries: Federal RegisterIssues |Deployment

128

Technology-to-Market Portfolio  

Broader source: Energy.gov [DOE]

BTOs Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

129

High Level Waste System Impacts from Acid Dissolution of Sludge  

SciTech Connect (OSTI)

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

130

Characterization of high molecular weight compounds -- Implications for advanced-recovery technologies  

SciTech Connect (OSTI)

Crude oils with high pour points and undesired flow properties commonly contain a diverse assemblage of high molecular weight (HMW) compounds. The negative economic impact these compounds impose is manifested by the requisite for expensive well treatments to alleviate the impact from increased equipment failure, reduced well productivity, and lower ultimate recoveries. The failure of traditional methods to predict the precipitation of solid phases can be partially attributed to an inaccurate understanding of the molecular composition of the HMW components. This paper reports the authors progress in developing analytical techniques for direct determination of compounds up to C{sub 90} with readily available instrumentation. They believe this technology will help lead to production strategies that are more efficient and allow better estimates of production costs by more accurate forecasting of production problems.

Wavrek, D.A.; Dahdah, N.F. [Univ. of South Carolina, Columbia, SC (United States); [Univ. of Utah, Salt Lake City, UT (United States)

1995-11-01T23:59:59.000Z

131

Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

132

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

-Enhanced PCCI - Mixed Mode Combustion Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Turbo Technology...

133

High Technology Centrifugal Compressor for Commercial Air Conditioning Systems  

SciTech Connect (OSTI)

R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

Ruckes, John

2006-04-15T23:59:59.000Z

134

Energy and global warming impacts of next generation refrigeration and air conditioning technologies  

SciTech Connect (OSTI)

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1996-10-01T23:59:59.000Z

135

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

136

Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures  

SciTech Connect (OSTI)

On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, standard and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

2009-12-10T23:59:59.000Z

137

Development of High Temperature Capacitor Technology and Manufacturing Capability  

SciTech Connect (OSTI)

The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

None

2011-05-15T23:59:59.000Z

138

The Impact of Emerging Technologies: Proteins' Baby Pictures -Techno... http://www.technologyreview.com/BioTech-Genomics/wtr_16635,312,p... 1 of 2 3/30/2006 9:06 AM  

E-Print Network [OSTI]

The Impact of Emerging Technologies: Proteins' Baby Pictures - Techno... http://www.technologyreview.com/BioTech-Genomics in looking at low-activity genes. Much of the genome, however, is not highly active. In his experiments, Xie Technologies: Proteins' Baby Pictures - Techno... http://www.technologyreview.com/BioTech-Genomics/wtr_16635

Heller, Eric

139

Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about biofuel impacts...

140

Advancement of High Temperature Black Liquor Gasification Technology  

SciTech Connect (OSTI)

Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Department of Energys Industrial Technologies Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

Weakley, Steven A.; Brown, Scott A.

2011-05-20T23:59:59.000Z

142

U.S. Department of Energys Industrial Technology Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

Weakley, Steven A.; Roop, Joseph M.

2010-05-15T23:59:59.000Z

143

High temperature solar thermal technology: The North Africa Market  

SciTech Connect (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

144

Impact of 2001 Building Technology, state and community programs on United States employment and wage income  

SciTech Connect (OSTI)

The Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the potential economic impacts of its portfolio of programs on national employment and income. A special purpose version of the IMPLAN input-output model allied In Build is used in this study of all 38 BTS programs included in the FY2001 federal budget. Energy savings, investments, and impacts on U.S. national employment and wage income are reported by program for selected years to the year 2030. Energy savings from these programs have the potential of creating a total of nearly 332,000 jobs and about $5.3 billion in wage income (1995$) by the year 2030. Because the required investments to achieve these savings are capital intensive, the net effect after investment is 304,000 jobs and $5.0 billion.

MJ Scott; DJ Hostick; DB Elliott

2000-03-20T23:59:59.000Z

145

Impact of the FY 2005 Building Technologies Program on United States Employment and Earned Income  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose version of the IMPLAN input-output model called ImBuild II is used in this study of all 21 Building Technologies Program subprograms in the EERE final FY 2005 budget request to the Office of Management and Budget on February 2, 2004. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2030. Energy savings and investments from these subprograms have the potential of creating a total of 396,000 jobs and about $5.6 billion in earned income (2003$) by the year 2030.

Scott, Michael J.; Anderson, Dave M.; Belzer, David B.; Cort, Katherine A.; Dirks, James A.; Elliott, Douglas B.; Hostick, Donna J.

2004-08-31T23:59:59.000Z

146

Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potential of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.

Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.; Dirks, James A.; Cort, Katherine A.

2008-06-17T23:59:59.000Z

147

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network [OSTI]

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

148

DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies  

SciTech Connect (OSTI)

The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

Deb, S. K.

2005-01-01T23:59:59.000Z

149

ImSET 3.1: Impact of Sector Energy Technologies Model Description and User's Guide  

SciTech Connect (OSTI)

This 3.1 version of the Impact of Sector Energy Technologies (ImSET) model represents the next generation of the previously-built ImSET model (ImSET 2.0) that was developed in 2005 to estimate the macroeconomic impacts of energy-efficient technology in buildings. In particular, a special-purpose version of the Benchmark National Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE)developed energy-saving technologies. In comparison with the previous versions of the model, this version features the use of the U.S. Bureau of Economic Analysis 2002 national input-output table and the central processing code has been moved from the FORTRAN legacy operating environment to a modern C++ code. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act. While it does not include the ability to model certain dynamic features of markets for labor and other factors of production featured in the more complex models, for most purposes these excluded features are not critical. The analysis is credible as long as the assumption is made that relative prices in the economy would not be substantially affected by energy efficiency investments. In most cases, the expected scale of these investments is small enough that neither labor markets nor production cost relationships should seriously affect national prices as the investments are made. The exact timing of impacts on gross product, employment, and national wage income from energy efficiency investments is not well-enough understood that much special insight can be gained from the additional dynamic sophistication of a macroeconomic simulation model. Thus, we believe that this version of ImSET is a cost-effective solution to estimating the economic impacts of the development of energy-efficient technologies.

Scott, Michael J.; Livingston, Olga V.; Balducci, Patrick J.; Roop, Joseph M.; Schultz, Robert W.

2009-05-22T23:59:59.000Z

150

APPLICATION OF HIGH TECHNOLOGY POLYMERS FOR THE IMMOBILIZATION AND SOLIDIFICATION OF COMPLEX LIQUID RADWASTE TYPES  

SciTech Connect (OSTI)

The Cold War era created a massive build-up of nuclear weapon stockpiles in the former Soviet Union and the United States. The primary objective during this period was the development of nuclear technologies for weapons, space and power with lack of attention to the impact of radioactive and hazardous waste products on the environment. Effective technologies for radioactive and hazardous waste treatment and disposal were not well investigated or promoted during the arms build-up; and consequently, environmental contamination has become a major problem. These problems in Russia and the United States are well documented. Significant amounts of liquid radwaste have existed since the 1950's. The current government of the Russian Federation is addressing the issues of land remediation and permanent storage of radwaste resulting from internal and external pressures for safe cleanup and storage. The Russian government seeks new technologies from internal sources and from the West that will provide high performance, long term stability, safe for transport and for long-term storage of liquid radwaste at a reasonable economic cost. With the great diversity of liquid chemical compositions and activity levels, it is important to note that these waste products cannot be processed with commonly used methods. Different techniques and materials can be used for this problem resolution including the use of polymer materials that are capable of forming chemically stable, solidified waste products. In 2001, the V.G. Khlopin Radium Institute (St. Petersburg, Russia) and Pacific World Trade (Indianapolis, Indiana) began an extensive research and test program to determine the effectiveness and performance of high technology polymers for the immobilization and solidification of complex liquid radwaste types generated by the Ministry of Atomic Energy (Minatom), Russia, organization. The high tech polymers used in the tests were provided by Nochar, Inc. (Indianapolis, Indiana).

Kelley, Dennis; Brunkow, Ward; Pokhitonov, Yuri; Starchenko, Vadim

2003-02-27T23:59:59.000Z

151

Combined technologies enable high-pressure slickline work  

SciTech Connect (OSTI)

Operators conducting wireline operations can combine the attributes of the slickline grease head and conventional stuffing box to enable work in gas wells at wellhead pressures above 15,000 psi. Wireline/slickline work in high-pressure wells requires meeting the dual challenges of well control and freedom of movement (up and down) for the lines. In a notable application of the combined-technology technique, an operator offshore Louisiana attempted to conduct wireline operations in an 18,000-ft gas and condensate well with 15,600 psi wellhead pressure, using a standard slickline stuffing box to contain the pressure. The standard equipment could not perform the needed function, which involved several trips to depths of 5,000 ft and 18,000 ft. Using a combined-technology, flow-tube stuffing box, the operator was able to conduct the wireline operation without incident; the control arrangement resulted in use of only 3 gal of lubricating oil throughout the job. Post-job analysis of the packing showed only the minimal wear normally associated with low-pressure wireline operations. Although slickline work can be performed in low-pressure gas wells without using the flow-tube stuffing box, the device and the oil used with it isolate the stuffing-box packing from the dry gases, reducing friction swell. This isolation speeds up the operation and reduces packing wear.

Davis, G. [Halliburton Energy Services Inc., Dallas, TX (United States); West, T. [Halliburton Energy Services Inc., Houma, LA (United States)

1998-10-01T23:59:59.000Z

152

Emergent process methods for high-technology ceramics  

SciTech Connect (OSTI)

The present conference covers colloidal processing of advanced ceramics, novel power-forming and powder-processing methods, the derivation of ceramics by polymer processing, chemical vapor deposition techniques, ion beam deposition methods, the laser and ion beam modification of surfaces, hot isostatic pressing and dynamic compaction, shock conditioning and subsequent densification of ceramics, and very high pressure processing methods. Specific attention is given to the preparation of shaped glasses by the sol-gel method, the synthesis of powders and thin films by laser-induced gas phase reactions, the plasma sintering of ceramics, laser chemical vapor deposition, the microstructure and mechanical properties of ion-implanted ceramics, a computer simulation of dynamic compaction, shock-induced modification of inorganic powders, and diamond anvil technology.

Davis, R.F.; Palmour, H. III; Porter, R.L.

1984-01-01T23:59:59.000Z

153

Summary of multiterminal high-voltage direct current transmission technology  

SciTech Connect (OSTI)

This report summarizes the present state of multiterminal (MT) high-voltage direct current (HVDC) power transmission. The purpose is to reassess the need for HVDC circuit breakers and to identify needed research for MT HVDC. The fundamentals of this technology are presented, and previous research and development is reviewed. Although no MT HVDC systems have yet been built, many concepts have been proposed. Some require a dc breaker, and others do not. Both options have advantages and disadvantages for various applications, so the selection will depend on the proposed application. Research is needed to define operating characteristics of various MT HVDC systems. In some applications, dc breakers will be useful, so research into HVDC interruption should continue. Also, dc fault detection and control algorithms for MT systems should be studied.

Biggs, R.B.; Jewell, W.T.

1984-05-01T23:59:59.000Z

154

High-lift chemical heat pump technologies for industrial processes  

SciTech Connect (OSTI)

Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

Olszewski, M.; Zaltash, A.

1995-03-01T23:59:59.000Z

155

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

Comments Barriers Approach Performance Measures and Accomplishments Technology Transfer Collaborations PublicationsPatents Plans for Next Fiscal Year ...

156

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

for Efficiency Improvement Controls Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Integration of Cummins...

157

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Broader source: Energy.gov (indexed) [DOE]

On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

158

Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III  

SciTech Connect (OSTI)

The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1997-06-01T23:59:59.000Z

159

3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS  

SciTech Connect (OSTI)

This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

Marzolf, A.; Folsom, M.

2010-08-31T23:59:59.000Z

160

Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology  

Broader source: Energy.gov [DOE]

Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High-Performance Secure Database Access Technologies for HEP Grids  

SciTech Connect (OSTI)

The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids) are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-based event data, LHC data processing applications require access to large amounts of data in relational databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance of grid computing applications in LHC physics research where world-wide remote participation is vital to their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure of distributed databases cross-cuts a multi-tier hierarchy of computational grids. The crosscutting allows separation of concerns across both the global environment of a federation of computational grids and the local environment of a physicists computer used for analysis. Very few efforts are on-going in the area of database and grid integration research. Most of these are outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security layer separate from the database system core, preventing efficient data transfers. Our findings are shared by the Database Access and Integration Services Working Group of the Global Grid Forum, who states that "Research and development activities relating to the Grid have generally focused on applications where data is stored in files. However, in many scientific and commercial domains, database management systems have a central role in data storage, access, organization, authorization, etc, for numerous applications. There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-performance secure database access technologies for grid computing. We believe that an innovative database architecture where the secure authorization is pushed into the database engine will eliminate inefficient data transfer bottlenecks. Furthermore, traditionally separated database and security layers provide an extra vulnerability, leaving a weak clear-text password authorization as the only protection on the database core systems. Due to the legacy limitations of the systems security models, the allowed passwords often can not even comply with the DOE password guideline requirements. We see an opportunity for the tight integration of the secure authorization layer with the database server engine resulting in both improved performance and improved security. Phase I has focused on the development of a proof-of-concept prototype using Argonne National Laboratorys (ANL) Argonne Tandem-Linac Accelerator System (ATLAS) project as a test scenario. By developing a grid-security enabled version of the ATLAS projects current relation database solution, MySQL, PIOCON Technologies aims to offer a more efficient solution to secure database access.

Matthew Vranicar; John Weicher

2006-04-17T23:59:59.000Z

162

Vehicle Technologies Office Merit Review 2014: Enhanced High...  

Broader source: Energy.gov (indexed) [DOE]

Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enhanced...

163

Vehicle Technologies Office Merit Review 2014: High Speed Joining...  

Energy Savers [EERE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

164

Impact of Gender on Patient Preferences for Technology-Based Behavioral Interventions  

E-Print Network [OSTI]

patientst preferences for technology-based behavioralemergency department technology-based behavioral healthNoell J, Glasgow RE. Interactive technology applications for

Kim, David J.; Choo, Esther K.; Ranney, Megan L.

2014-01-01T23:59:59.000Z

165

Accounting for Technological Change in Regulatory Impact Analyses: The Learning Curve Technique  

E-Print Network [OSTI]

learning curves for energy technology policy: A component-publicly supported energy technologies." Energy Policy 37(in renewable energy technologies." Energy Policy 34(2006):

Taylor, Margaret

2014-01-01T23:59:59.000Z

166

The potential impact of externalities considerations on the market for biomass power technologies  

SciTech Connect (OSTI)

This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

Swezey, B.G.; Porter, K.L.; Feher, J.S.

1994-02-01T23:59:59.000Z

167

Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement  

SciTech Connect (OSTI)

In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

N /A

2005-06-30T23:59:59.000Z

168

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

E-Print Network [OSTI]

Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

Johnstone, Peter

2009-01-01T23:59:59.000Z

169

On the Impact of Information Technologies on Society: an Historical Perspective through the Game of Chess  

E-Print Network [OSTI]

The game of chess as always been viewed as an iconic representation of intellectual prowess. Since the very beginning of computer science, the challenge of being able to program a computer capable of playing chess and beating humans has been alive and used both as a mark to measure hardware/software progresses and as an ongoing programming challenge leading to numerous discoveries. In the early days of computer science it was a topic for specialists. But as computers were democratized, and the strength of chess engines began to increase, chess players started to appropriate to themselves these new tools. We show how these interactions between the world of chess and information technologies have been herald of broader social impacts of information technologies. The game of chess, and more broadly the world of chess (chess players, literature, computer softwares and websites dedicated to chess, etc.), turns out to be a surprisingly and particularly sharp indicator of the changes induced in our everyday life by ...

Prost, Frederic

2012-01-01T23:59:59.000Z

170

Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis  

SciTech Connect (OSTI)

With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

2011-04-15T23:59:59.000Z

171

Tensile and impact testing of an HFBR (High Flux Beam Reactor) control rod follower  

SciTech Connect (OSTI)

The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (K{sub I}) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with K{sub max} values of 24.8 {plus minus} 1.0 Ksi{radical}in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs.

Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.; Milian, L.W.

1989-08-01T23:59:59.000Z

172

Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

173

High efficiency coarse-grained customised dynamically reconfigurable architecture for digital image processing and compression technologies  

E-Print Network [OSTI]

Digital image processing and compression technologies have significant market potential, especially the JPEG2000 standard which offers outstanding codestream flexibility and high compression ratio. Strong demand for ...

Zhao, Xin

2012-06-25T23:59:59.000Z

174

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

175

Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

176

Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

177

Technology Transfer Webinar on November 12: High-Performance...  

Broader source: Energy.gov (indexed) [DOE]

DOEOE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and...

178

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

efficient highway transportation technologies to reduce petroleum consumption, operating cost, fuel consumption, environmental impact, and time to market for high risk high...

179

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte  

Broader source: Energy.gov [DOE]

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

180

Magnetospheric application of high-altitude long-duration balloon technology: Daylight auroral observations  

E-Print Network [OSTI]

Magnetospheric application of high-altitude long-duration balloon technology: Daylight auroral; accepted 12 February 2007 Abstract Daylight auroral imaging is a proposed application of the NASA high

Lummerzheim, Dirk

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect (OSTI)

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

182

THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS  

E-Print Network [OSTI]

THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS Photonic Crystals: Part I.J. Malloy1 1Center for High Technology Materials University of New Mexico 2Lockheed Martin Denver, Colorado 3Electrical and Computer Engineering Department University of New Mexico #12;THE UNIVERSITY OF NEW

Mojahedi, Mohammad

183

Droplet microfluidic technology for single-cell high-throughput screening  

E-Print Network [OSTI]

Droplet microfluidic technology for single-cell high-throughput screening Eric Brouzesa,b,1 (received for review March 31, 2009) We present a droplet-based microfluidic technology that enables high our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range

Perrimon, Norbert

184

High-Tech Tools for Teaching Physics: the Physics Education Technology Project  

E-Print Network [OSTI]

MS #06-020 High-Tech Tools for Teaching Physics: the Physics Education Technology Project Noah Teaching and Learning September 15, 2006 #12;MS #06-020 High-Tech Tools for Teaching Physics: the Physics the Physics Education Technology (PhET) project, identifies features of these educational tools

Colorado at Boulder, University of

185

INTRODUCTION The high-energy bolide impact at Chicxulub  

E-Print Network [OSTI]

of the Campeche Escarpment (Alvarez et al., 1992). The age of proposed K-T boundary deposits on the shelf) is used to identify units associated with the impact Geology; April 1998; v. 26; no. 4; p. 331334; 4

Bralower, Timothy J.

186

New and Underutilized Technology: High Bay LED Lighting  

Broader source: Energy.gov [DOE]

The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

187

Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector  

SciTech Connect (OSTI)

The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

2010-05-03T23:59:59.000Z

188

Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

189

Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options  

SciTech Connect (OSTI)

Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

Wang, M.Q.

1997-05-20T23:59:59.000Z

190

Exide eyeing technology for high-powered battery  

SciTech Connect (OSTI)

Exide Corp. said recently it may soon produce a graphite battery with more than three times the power of today's most advanced production batteries--but with half their weight, far smaller size, and only a third the cost. The Reading-based Exide, the world's largest maker of lead-acid batteries, said it has preliminarily agreed to pay $20 million for a controlling interest in Lion Compact Energy, a privately held company that's researching dual-graphite battery technology said to be cleaner cheaper and more efficient. Exide hopes to turn the technology into the products; it said initial applications include smaller battery-operated devices such as cell phones, cameras, laptop computers, power tools and certain military equipment. Larger devices would follow, and could include wheel chairs, motorcycles, replacement for lead-acid batteries in cars and trucks and, potentially, all-electric vehicles.

NONE

1999-11-01T23:59:59.000Z

191

Thomas Jefferson High School for Science & Technology wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bowl February 15, 2006 TJHSST Finishing in first place at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and...

192

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

high BMEP * Robust combustion control - Transient control of HCCI - Combustion feedback sensors - Combustion mode switching Gap Analysis * Evaluate Production readiness *...

193

High-level waste vitrification off-gas cleanup technology  

SciTech Connect (OSTI)

This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements.

Hanson, M.S.

1980-01-01T23:59:59.000Z

194

MURRAY, UNIVERSITY LEADERS AND TECHNOLOGY EXECUTIVES OPEN MASSACHUSETTS GREEN HIGH  

E-Print Network [OSTI]

Green High Performance Computing Center (MGHPCC). The new Center will keep Massachusetts have come together to support the creation of the Massachusetts Green High Performance Computing Center.C. "The Massachusetts Green High Performance Computing Center is an indicator of the great potential

Needleman, Daniel

195

Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective  

SciTech Connect (OSTI)

Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

2013-10-19T23:59:59.000Z

196

Extreme Co-movements and Extreme Impacts in High Frequency Data in Finance  

E-Print Network [OSTI]

Extreme Co-movements and Extreme Impacts in High Frequency Data in Finance Zhengjun Zhang, 2006 Abstract Extreme co-movement and extreme impact problems are inherently stochastic control in the future. Extreme co-movements among financial assets have been reported in the literature. However

Zhang, Zhengjun

197

OCIO Technology Summit: High Performance Computing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOakscience-based, applied engineeringTVAOCIO Technology

198

The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector  

E-Print Network [OSTI]

This paper presents an analysis of possible uses of climate policy instruments for the decarbonisation of the global electricity sector in a non-equilibrium economic and technology innovation-diffusion perspective. Emissions reductions occur through changes in technology and energy consumption; in this context, investment decision-making opportunities occur periodically, which energy policy can incentivise in order to transform energy systems and meet reductions targets. Energy markets are driven by innovation, dynamic costs and technology diffusion; yet, the incumbent systems optimisation methodology in energy modelling does not address these aspects nor the effectiveness of policy onto decision-making since the dynamics modelled take their source from the top-down `social-planner' assumption. This leads to an underestimation of strong technology lock-ins in cost-optimal scenarios of technology. Our approach explores the global diffusion of low carbon technology in connection to a highly disaggregated sector...

Mercure, J -F; Foley, A M; Chewpreecha, U; Pollitt, H

2013-01-01T23:59:59.000Z

199

How Do High Levels of Wind and Solar Impact the Grid? The Western...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study Debra Lew National Renewable Energy Laboratory Dick Piwko, Nick Miller, Gary...

200

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sales Tax Exemption for Wind Energy Business Designated High Impact Business  

Broader source: Energy.gov [DOE]

A business establishing a new wind power facility in Illinois that will not be located in an Enterprise Zone* may be eligible for designation as a "High Impact Business." After receiving the...

202

Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics  

SciTech Connect (OSTI)

This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

Bebic, J.

2008-02-01T23:59:59.000Z

203

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

SciTech Connect (OSTI)

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

204

Judging the Impact of Conference and Journal Publications in High Performance Computing  

E-Print Network [OSTI]

Judging the Impact of Conference and Journal Publications in High Performance Computing dimensions that count most, conferences are superior. This is particularly true in high performance computing and are never published in journals. The area of high performance computing is broad, and we divide venues

Zhou, Yuanyuan

205

Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0  

SciTech Connect (OSTI)

The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

2010-11-09T23:59:59.000Z

206

Machine integrated compaction monitoring technologies for self-propelled non-vibratory impact rollers.  

E-Print Network [OSTI]

??In this study, prototype machine integrated compaction monitoring technologies were evaluated for self-propelled non-vibratory soil compactors. Monitoring technologies included roller walkout, rolling radius, machine energy, (more)

Fleming, Bradley Jon

2009-01-01T23:59:59.000Z

207

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network [OSTI]

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

208

Variables Affecting Smooth Particle Hydrodynamics Simulation of High-Velocity Flyer Plate Impact Experiments  

SciTech Connect (OSTI)

This paper describes our work to characterize the variables affecting the smoothed particle hydrodynamics (SPH) method in the LS-DYNA package for simulating high-velocity flyer plate impact experiments. LS-DYNA simulations are compared with one-dimensional experimental data of an oxygen-free high-conductivity (OFHC) copper flyer plate impacting another plate of the same material. The comparison is made by measuring the velocity of a point on the back surface of the impact plate using the velocity interferometer system for any reflector (VISAR) technique.

Somasundaram, Deepak S [UNLV; Trabia, Mohamed [UNLV; O'Toole, Brendan [UNLV; Hixson, Robert S [NSTec

2014-01-23T23:59:59.000Z

209

On advancement of high speed atomic force microscope technology  

E-Print Network [OSTI]

High speed atomic force microscopy (AFM) is a developing process in which nanoscale objects, such as crystal structures or strands of DNA, can be imaged at rates fast enough to watch processes as they occur. Although current ...

SooHoo, Kimberly E

2008-01-01T23:59:59.000Z

210

Fuel Cells - The Reality of a High Technology  

E-Print Network [OSTI]

A fuel cell power plant is an energy conversion device which can continuously transform the chemical energy of natural gas into utility grade electricity and usable heat. The characteristics of high electrical conversion efficiencies (40 to 55...

Cuttica, J. J.

1984-01-01T23:59:59.000Z

211

Computing for Development A New High-Impact Research Area  

E-Print Network [OSTI]

... but can't afford a house In Bangladesh: Poorest devote 7 percent income to communications (Grameen Computing: Design with minimal resources Low-cost high-bandwidth connectivity Appropriate Design

212

Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

213

Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor  

Broader source: Energy.gov [DOE]

Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

214

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

215

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

216

Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

217

Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

218

Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

219

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

SciTech Connect (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

220

Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Binghamton University-SUNY at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal-based high...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office Merit Review 2014: High-Capacity Polyanion Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by The University of Texas at Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

222

High energy density capacitors for power electronic applications using nano-structure multilayer technology  

SciTech Connect (OSTI)

Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

Barbee, T.W. Jr.; Johnson, G.W.

1995-09-01T23:59:59.000Z

223

Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

224

High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint  

SciTech Connect (OSTI)

This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

Basso, T. S.

2008-05-01T23:59:59.000Z

225

The productivity impact and determinants of international technology transfer in China.  

E-Print Network [OSTI]

??Cette thse tudie les dterminants des transferts internationaux de technologie ainsi que leurs impacts sur la productivit en Chine. A travers une analyse de la (more)

Zhou, Wei

2012-01-01T23:59:59.000Z

226

High Speed Rail in Greece : methods for evaluating economic impacts  

E-Print Network [OSTI]

High Speed Rail is a mode that gains popularity every day. Many countries have such a network and others are on the way to adopting one. Greece, which is part of the European Union, is one of those countries that are looking ...

Radopoulou, Stefania Christina

2010-01-01T23:59:59.000Z

227

Impact of High Solar Penetration in the Western Interconnection  

SciTech Connect (OSTI)

This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

2010-12-01T23:59:59.000Z

228

Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector  

SciTech Connect (OSTI)

This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

Jones, Carol C.; Richman, Eric E.

2005-12-30T23:59:59.000Z

229

Failure Rate Data Analysis for High Technology Components  

SciTech Connect (OSTI)

Understanding component reliability helps designers create more robust future designs and supports efficient and cost-effective operations of existing machines. The accelerator community can leverage the commonality of its high-vacuum and high-power systems with those of the magnetic fusion community to gain access to a larger database of reliability data. Reliability studies performed under the auspices of the International Energy Agency are the result of an international working group, which has generated a component failure rate database for fusion experiment components. The initial database work harvested published data and now analyzes operating experience data. This paper discusses the usefulness of reliability data, describes the failure rate data collection and analysis effort, discusses reliability for components with scarce data, and points out some of the intersections between magnetic fusion experiments and accelerators.

L. C. Cadwallader

2007-07-01T23:59:59.000Z

230

Emergent process methods for high-technology ceramics  

SciTech Connect (OSTI)

Sixty-eight papers are arranged under the headings of: science of colloidal processing, novel powder-forming and powder-processing methods, ceramics derived by polymer processing, chemical vapor deposition, ion-beam deposition, laser and ion-beam modification of surfaces, hot isostatic pressing, dynamic compaction, shock synthesis (shock conditioning and subsequent densification), and very high pressure processing. Seven of the papers are abstracted separately; four of the remaining have been previously abstracted. (DLC)

Davis, R.F.; Palmour, H. III; Porter, R.L. (eds.)

1984-01-01T23:59:59.000Z

231

High-Efficiency Engine Technologies Session Introduction | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCEDOEDepartment

232

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect (OSTI)

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

233

Advanced Technology Briefing to VLT/PAC  

E-Print Network [OSTI]

Advanced Technology Briefing to VLT/PAC Mohamed Abdou VLT, San Diego December 10, 1998 #12;M. Abdou VLT/PAC Meeting, Dec. 10, 1998 Advanced Technology Scope Advanced technology is concerned with the longer-term technologies for high power density fusion systems that will have the greatest impact

California at Los Angeles, University of

234

A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves  

E-Print Network [OSTI]

The empirical and theoretical justification of Gartner hype curves is a very relevant open question in the field of Technological Life Cycle analysis. The scope of the present paper is to introduce a simple model describing the growth of scientific/technological research impact, in the specific case where science is the main source of a new idea driving a technological development, leading to hype-type evolution curves. The main idea of the model is that, in a first stage, the growth of the scientific interest of a new specific field (as can be measured by publication numbers) basically follows the classical logistic growth curve. At a second stage, starting at a later trigger time, the technological development based on that scientific idea (as can be measured by patent deposits) can be described as the integral (in a mathematical sense) of the first curve, since technology is based on the overall accumulated scientific knowledge. The model is tested through a bibliometric analysis of the publication and pat...

Campani, Marco

2014-01-01T23:59:59.000Z

235

Tech-X Corporation has accessed the high performance computing (HPC) facilities at the Science and Technology Facilities Council's (STFC)  

E-Print Network [OSTI]

Tech-X Corporation has accessed the high performance computing (HPC) facilities at the Science high performance computing (HPC) and simulation technology. A research collaboratory in association

Zharkova, Valentina V.

236

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

237

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

238

High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology  

SciTech Connect (OSTI)

This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

Bernacki, Bruce E.

2012-10-05T23:59:59.000Z

239

technology offer SandTES -High Temperature Sand Thermal Energy Storage  

E-Print Network [OSTI]

technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential

Szmolyan, Peter

240

Carbon nanotube synthesis and detection : limiting the environmental impact of novel technologies  

E-Print Network [OSTI]

Driven by commercial promise, the carbon nanotube (CNT) industry is growing rapidly, yet little is known about the potential environmental impacts of these novel materials. In particular, there are no methods to detect ...

Plata, Desire L

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

From the lab to the land : social impact technology dissemination in rural southern India  

E-Print Network [OSTI]

Despite their growing popularity, bottom-up, innovation-based development efforts are failing to make a significant social impact at the Bottom of the Pyramid (BOP). Merely inventing widgets for development - like affordable ...

Jue, Diana M

2012-01-01T23:59:59.000Z

242

Effect of Impact and Penetration on Microstructural Evolution of High-performance Concretes  

SciTech Connect (OSTI)

Due to the increased concern of public safety in recent years, blast resistance of infrastructures has become an emerging research focus in the cement and concrete industry. Ultra High Performance Concrete (UHPC) with fiber reinforcement usually possesses compressive strengths greater than 200 MPa, which makes them promising candidates for blast-resistant building materials. In the current project, two UHPC materials, Ductal and ERDC-M, were subject to projectile penetration testing. The microstructural evolution due to projectile impact was examined via scanning electron microscopy and X-ray diffraction. Possible phase changes were observed in the impact volume, which was likely a result of the high temperature and high pressure induced by the impact.

Ren, Fei [ORNL; Mattus, Catherine H [ORNL; Wang, Jy-An John [ORNL; Dipaolo, Beverly P [ORNL

2013-01-01T23:59:59.000Z

243

Methods and technologies for high-throughput and high-content small animal screening  

E-Print Network [OSTI]

High-throughput and high-content screening (HTS and HCS) of whole animals requires their immobilization for high-resolution imaging and manipulation. Here we present methods to enable HTS and HCS of the nematode Caenorhabditis ...

Rohde, Christopher, 1979-

2012-01-01T23:59:59.000Z

244

Stress Management as an Enabling Technology for High-Field Superconducting Dipole Magnets  

E-Print Network [OSTI]

-Pounds HD High field Dipole HGQ High Gradient Quadrupole HQ High field Quadrupole HT Heat Treatment IC Critical Current IFCC Inter-Filament Coupling Currents ITER International Thermonuclear Experimental Reactor vi LARP LHC Accelerator... pressure impregnation (VPI) vessel using NbTi conductor [1, 2]. TAMU2 verified the heat treatment equipment and tested the stress management technology at low field using low Jc Nb3Sn conductor from the International Thermonuclear Experimental Reactor...

Holik, Eddie Frank

2014-06-03T23:59:59.000Z

245

Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale development in the early decade, as defined by the scenario, will produce growth primarily

Rotariu,, G. J.

1982-02-01T23:59:59.000Z

246

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

247

Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan  

E-Print Network [OSTI]

One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

Breznitz, Dan

2005-01-01T23:59:59.000Z

248

Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap  

SciTech Connect (OSTI)

Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

2013-11-01T23:59:59.000Z

249

IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN  

E-Print Network [OSTI]

IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN L. G. KOCHAROV and J. TORSTI Space Research Laboratory, Department of Physics, SF-20014 Turku University, Finland F. TANG and H. ZIRIN Big Bear Solar Observatory, Caltech, Pasadena CA 91125, U.S.A. G. A. KOVALTSOV and I

Usoskin, Ilya G.

250

INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION  

E-Print Network [OSTI]

INNER SHELL EXCITATION OF ATOMS AND MOLECULES BY ELECTRON IMPACT WITH HIGH ENERGY RESOLUTION F. H resolution energy loss spectra for inner shell excited states, (2) the observa- tion of inner shell excited are the subject of the present review. The inner shell states that can usefully be studied with energy resolutions

Paris-Sud XI, Université de

251

Impact of High Wind Penetration on the Voltage Profile of Distribution Systems  

E-Print Network [OSTI]

of wind generator the voltage of the system may become lower than acceptable voltage level due and wind generator is presented. Simulation results are given in Section III which shows the impact of high--In this paper, simulation results showing the effect of lower and higher penetration of distributed wind

Pota, Himanshu Roy

252

The College of Engineering's Impact on Prosperity Translational Research High Performance Workforce  

E-Print Network [OSTI]

societal and market needs are important drivers of economic development. Colleges of engineering haveProsperity The College of Engineering's Impact on Prosperity Translational Research · High Performance Workforce New Venture Development COLLEGE OF ENGINEERING #12;Since launching in 2006, CloudSat has

253

BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT  

E-Print Network [OSTI]

2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

Paris-Sud XI, Université de

254

Table of Contents Page 2National High Magnetic Field Laboratory and Its Forecasted Impact on the Florida Economy  

E-Print Network [OSTI]

Impact on the Florida Economy History and Evaluation of the Economic Impact of the Magnet Lab Forecasted Impact on the Florida Economy The National Science Foundation (NSF) awarded the National High generated by Magnet Lab activities across the broader statewide economy. Since 1990, the Magnet Lab has

Weston, Ken

255

Effect of commercial polymerization conditions on rubber particle size and efficiency in high impact polystyrene  

E-Print Network [OSTI]

Calculations. . . . . Page 20 21 25 . 77 77 . . . 79 . . . 85 CHAPTER I INTRODUCTION High impact polystyrene (HIPS) is a rubber toughened polymer, a special class of materials prepared by blending a high modulus, glassy polymer with a soft, rubber... with rubber phase volume (the volume occupied by the rubber phase, including occluded polystyrene) (Baer, 1972). The rubber phase volume (RPV) of commercial resins may be increased as much as four times the rubber volume by trapping polystyrene inside...

Klussmann, Bradley Ryan

1997-01-01T23:59:59.000Z

256

Thematic note to substantiate Ris's strategy impact on society Emerging energy technologies  

E-Print Network [OSTI]

sustainable as well as reducing energy consumption: · Fusion · Solar cells · Cleaner energy technologies problems in the current energy production and to increasing the efficiency of energy consumption. Sub cheaper, while their manufacture requires considerably less energy than that of conventional solar cells

257

A Model of the Impact of Corporate Culture on Information Technology Adoption  

E-Print Network [OSTI]

is used to speed communications between trading partners, shorten product life cycle, establish better of adequately trained information technology staff, expense of IOS development (Vlosky 2000a, Juslin and Hansen system of a company, and that its excellence determines a company's competitiveness. Companies using

258

Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.  

SciTech Connect (OSTI)

At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

Wang, M. Q.

1998-12-16T23:59:59.000Z

259

High Current Effects in Silicide Films for Sub-0.25 pm VLSI Technologies  

E-Print Network [OSTI]

to the increased use of silicided metalization schemes for low-resistivity gates, interconnections and contacts between the metal and Si. Currently, self aligned silicide (salicide) processes are widely usedHigh Current Effects in Silicide Films for Sub-0.25 pm VLSI Technologies Kaustav Banerjee

260

OVERVIEW OF SELECTED SURROGATE TECHNOLOGIES FOR HIGH-TEMPORAL RESOLUTION SUSPENDED-SEDIMENT MONITORING  

E-Print Network [OSTI]

OVERVIEW OF SELECTED SURROGATE TECHNOLOGIES FOR HIGH- TEMPORAL RESOLUTION SUSPENDED-SEDIMENT for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assessment of the high temperature fission chamber technology for the French fast reactor program  

SciTech Connect (OSTI)

High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l'Energie Atomique, CEA (France)

2011-07-01T23:59:59.000Z

262

Proceedings HTR2006: International Topical Meeting on High Temperature Reactor Technology  

E-Print Network [OSTI]

Proceedings HTR2006: 3rd International Topical Meeting on High Temperature Reactor Technology be effectively modeled using computational fluid dynamics. The NACOK test facility at the Julich Research Center TESTS USING COMPUTATIONAL FLUID DYNAMICS Marie-Anne Brudieu Department of Nuclear Engineering

263

Rare Earth Elements--Critical Resources for High Technology U.S. Department of the Interior  

E-Print Network [OSTI]

Rare Earth Elements--Critical Resources for High Technology U.S. Department of the Interior U H The rare earth elements (REE) form the largest chemically coherent group in the periodic table of hydrogen for a post-hydro- carbon economy). Some Applications of the Rare Earth Elements Many applications

264

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

265

Technology Solutions for Mitigating Environmental Impacts of Oil and Gas E&P Activity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About | Careers

266

Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

267

Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

268

Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials  

Broader source: Energy.gov [DOE]

Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

269

Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint  

SciTech Connect (OSTI)

This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

2012-09-01T23:59:59.000Z

270

Thematic note to substantiate Ris's strategy impact on society Competence platforms and exchange of knowledge  

E-Print Network [OSTI]

of knowledge Impact: Competitive power as high-technology society Introduction The basis of Risø's strategic and will have an impact on Denmark's comparative advantage as a high-technology society: o MaterialsThematic note to substantiate Risø's strategy ­ impact on society Competence platforms and exchange

271

APEX and ALPS, high power density technology programs in the U.S.  

SciTech Connect (OSTI)

In fiscal year (FY) 1998 two new fusion technology programs were initiated in the US, with the goal of making marked progress in the scientific understanding of technologies and materials required to withstand high plasma heat flux and neutron wall loads. APEX is exploring new and revolutionary concepts that can provide the capability to extract heat efficiently from a system with high neutron and surface heat loads while satisfying all the fusion power technology requirements and achieving maximum reliability, maintainability, safety, and environmental acceptability. ALPS program is evaluating advanced concepts including liquid surface limiters and divertors on the basis of such factors as their compatibility with fusion plasma, high power density handling capabilities, engineering feasibility, lifetime, safety and R and D requirements. The APEX and ALPS are three-year programs to specify requirements and evaluate criteria for revolutionary approaches in first wall, blanket and high heat flux component applications. Conceptual design and analysis of candidate concepts are being performed with the goal of selecting the most promising first wall, blanket and high heat flux component designs that will provide the technical basis for the initiation of a significant R and D effort beginning in FY2001. These programs are also considering opportunities for international collaborations.

Wong, C. [General Atomics, San Diego, CA (United States). Fusion Group; Berk, S. [Dept. of Energy, Washington, DC (United States). Office of Fusion Energy Sciences; Abdou, M. [Univ. of California, Los Angeles, CA (United States). School of Engineering and Applied Science; Mattas, R. [Argonne National Lab., IL (United States). Fusion Power Program

1999-02-01T23:59:59.000Z

272

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

273

The impact of high-speed rail and low-cost carriers on European air passenger traffic  

E-Print Network [OSTI]

The impact of high-speed rail and low-cost carriers on European air passenger traffic Regina R, and market characteristics on air traffic; and 2) the impact of high-speed rail and low-cost in system-wide air travel demand, whereas the expansion of low-cost carriers has led to a significant

Gummadi, Ramakrishna

274

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint  

SciTech Connect (OSTI)

An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

2011-04-01T23:59:59.000Z

275

Quantifying the Impacts of Timebased Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines  

E-Print Network [OSTI]

based Rates, Enabling Technology, and Other Treatments inEnvironmental Energy Technologies Division June 2013 Thisbased Rates, Enabling Technology, and Other Treatments in

Cappers, Peter

2014-01-01T23:59:59.000Z

276

Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

NONE

1997-09-01T23:59:59.000Z

277

High Temperature Electrolysis for Hydrogen Production from Nuclear Energy TechnologySummary  

SciTech Connect (OSTI)

The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

2010-02-01T23:59:59.000Z

278

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies  

SciTech Connect (OSTI)

It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

2011-06-01T23:59:59.000Z

279

The structural impact of commodity farm programs on farms in the Southern Texas High Plains  

E-Print Network [OSTI]

OPTIMIZATION OF A HYBRID SOLAR ENERGY COLLECTOR SYSTEM A Thesis by ALAN M. SHI NEMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree MASTER OF SCIENCE May 1981 Major Subject...: Mechanical Engineering 1981 Thesis 5558 THE STRUCTURAL IMPACT OP COMMODITY FARM PROGRAMS ON FARMS IN THE SOUTHERN TEXAS HIGH PLAINS A Thesis by CHRISTINA KAY SHIRLEY Submitted to the Graduate College of Texas AAM University in partial fulfillment...

Shirley, Christina Kay

1981-01-01T23:59:59.000Z

280

Development Impacts of high-speed rail : megalopolis formation and implications for Portugal's Lisbon-Porto High-Speed Rail Link  

E-Print Network [OSTI]

High-speed rail (HSR) has been gaining acceptance worldwide with development of rail technology and rising concerns over climate change and congestion in airports and on roads. The implementation of high-speed rail lines ...

Melibaeva, Sevara (Sevara Mukhtarovna)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The impact of competitive bidding on the market prospects for renewable electric technologies  

SciTech Connect (OSTI)

This report examines issues regarding the ability of renewable-energy-based generation projects to compete fossil-fuel-based projects in competitive bidding solicitations. State and utility bidding results revealed that on a relative basis, utilities contract for less renewable-energy-based capacity under competitive bidding than under past methods of qualifying facility contracting. It was concluded that renewables are not being chosen more often under competitive bidding because it emphasizes price and operating considerations over other attributes of renewables, such as environmental considerations, fuel diversity, and fuel price stability. Examples are given of bidding approaches used by some states and utilities that have resulted in renewables-based projects winning generation bids. In addition, the appendix summarizes, by state, competitive bidding activities and results for supply-side solicitations that were open to all fuels and technologies.

Swezey, B.G.

1993-09-01T23:59:59.000Z

282

The critical role of manufacturing-process innovation on product development excellence in high-technology companies  

E-Print Network [OSTI]

Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

Duarte, Carlos E. A., 1962-

2004-01-01T23:59:59.000Z

283

Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits  

SciTech Connect (OSTI)

The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

1981-10-13T23:59:59.000Z

284

High performance computing and communications: Advancing the frontiers of information technology  

SciTech Connect (OSTI)

This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

NONE

1997-12-31T23:59:59.000Z

285

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

286

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

SciTech Connect (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

287

International Conference on Environmental Health and Technology As we rise to the challenge of making a healthier society, the ancillary impact of the  

E-Print Network [OSTI]

International Conference on Environmental Health and Technology 15 - 17th As we rise to the challenge of making a healthier society, the ancillary impact of the economic growth in the country as we make economic advancements. Keeping in view the above agenda the Centre for Environmental Science

Srivastava, Kumar Vaibhav

288

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect (OSTI)

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

289

EIS-0481: Engineered High Energy Crop Programs Programmatic Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Draft PEIS: Public Comment Period Ends 03/17/15This Programmatic EIS (PEIS) will evaluate the potential environmental impacts of implementing one or more programs to catalyze the deployment of engineered high energy crops (EHEC). A main component of the proposed EHEC programs would be providing financial assistance to funding recipients, such as research institutions, independent contract growers, or commercial entities, for field trials to evaluate the performance of EHECs. Confined field trials may range in size and could include development-scale (up to 5 acres), pilot-scale (up to 250 acres), or demonstration-scale (up to 15,000 acres). This PEIS will assess the potential environmental impacts of such confined field trials in the southeastern United States. DOEs proposed action under this PEIS will be limited to the states of Alabama, Florida (excluding the Everglades/Southern Florida coastal plain ecoregion), Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia.

290

EIS-0481: Test Engineered High Energy Crop Programs Programmatic Environmental Impact Statement, Southeastern United States  

Broader source: Energy.gov [DOE]

This Programmatic EIS (PEIS) will evaluate the potential environmental impacts of implementing one or more programs to catalyze the deployment of engineered high energy crops (EHECs). A main component of the proposed EHEC programs would be providing financial assistance to funding recipients, such as research institutions, independent contract growers, or commercial entities, for field trials to evaluate the performance of EHECs. Confined field trials may range in size and could include development-scale (up to 5 acres), pilot-scale (up to 250 acres), or demonstration-scale (up to 15,000 acres). This PEIS will assess the potential environmental impacts of such confined field trials in the southeastern United States. DOEs proposed action under this PEIS will be limited to the states of Alabama, Florida (excluding the Everglades/Southern Florida coastal plain ecoregion), Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia.

291

Innovative Water Management Technology to Reduce Environment Impacts of Produced Water  

SciTech Connect (OSTI)

Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.

Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

2013-05-15T23:59:59.000Z

292

Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water  

SciTech Connect (OSTI)

Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post-reverse osmosis produced water was designed to promote oxidizing conditions within the first wetland cell for nitrification of ammonia, and the subsequent three cells were designed to promote reducing conditions for denitrification of nitrate. By incorporating multiple wetland cells in a CWTS, the conditions within each cell can be modified for removal of specific COCs. In addition, a CWTS designed with multiple cells allows for convenient sample collection points so that biogeochemical conditions of individual cells can be monitored and performance evaluated. Removal rate coefficients determined from the pilot-scale CWTS experiments and confirmed by the demonstration system can be used to calculate HRTs required to treat COCs in full-scale CWTSs. The calculated HRTs can then be used to determine the surface area or ?footprint? of a full-size CWTS for a given inflow rate of produced water.

Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

2013-05-15T23:59:59.000Z

293

Impact of new pollution control technologies on all emissions: the specific  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4Fuel Consumptionproblem of high

294

The Impact of New Technologies on Radiation Oncology Events and Trends in the Past Decade: An Institutional Experience  

SciTech Connect (OSTI)

Purpose: To review the type and frequency of patient events from external-beam radiotherapy over a time period sufficiently long to encompass significant technology changes. Methods and Materials: Ten years of quality assurance records from January 2001 through December 2010 were retrospectively reviewed to determine the frequency of events affecting patient treatment from four radiation oncology process steps: simulation, treatment planning, data entry/transfer, and treatment delivery. Patient events were obtained from manual records and, from May 2007 onward, from an institution-wide database and reporting system. Events were classified according to process step of origination and segregated according to the most frequently observed event types. Events from the institution-wide database were evaluated to determine time trends. Results: The overall event rate was 0.93% per course of treatment, with a downward trend over time led by a decrease in treatment delivery events. The frequency of certain event types, particularly in planning and treatment delivery, changed significantly over the course of the study, reflecting technologic and process changes. Treatments involving some form of manual intervention carried an event risk four times higher than those relying heavily on computer-aided design and delivery. Conclusions: Although the overall event rate was low, areas for improvement were identified, including manual calculations and data entry, late-day treatments, and staff overreliance on computer systems. Reducing the incidence of pretreatment events is of particular importance because these were more likely to occur several times before detection and were associated with larger dosimetric impact. Further improvements in quality assurance systems and reporting are imperative, given the advent of electronic charting, increasing reliance on computer systems, and the potentially severe consequences that can arise from mistakes involving complex intensity-modulated or image-guided treatments.

Hunt, Margie A., E-mail: huntm@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pastrana, Gerri [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Amols, Howard I. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Killen, Aileen [Quality of Care Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Quality of Care Initiative, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Alektiar, Kaled [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

2012-11-15T23:59:59.000Z

295

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

SciTech Connect (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

296

DOE Announces Webinars on High Impact Building Technologies, a New Better  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergy Efficiency ConservationConsiderations,

297

Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing  

SciTech Connect (OSTI)

The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

298

High voltage power supply systems for electron beam and plasma technologies. Its new element base  

SciTech Connect (OSTI)

Transforming technique and high voltage technique supplementing each other more and more unite in indivisible constructions of modern apparatuses and systems and applicated in modern technologies providing its high efficiency. Specially worked out, ecologically clean, inertial, inflammable perfluororganic liquid is used in elements and electronic apparatuses simultaneously as insulating and cooling media. This liquid is highly fluid, fills tiny cavities in construction elements and in the places of high concentration of losses, where maximum local overheating of active parts or apparatus constructions takes place, it transforms to boiling state with highly intensive taking off of heat energy from cooled surface point. For instance, being cooled by mentioned perfluororganic liquid, copper wire can conduct current to 50 A/mm{sup 2} density, but in ordinary conditions of transformers, reactors and busses, current density can reach only few Amperes. Possibility of considerable increasing of current density, that is reached by means of intensive cooling, provided by worked out liquid, and taking into account its incredibly high insulating features (liquid has electric strength to 50 KV/mm) allows to provide optimum heat regime of active parts of transformers. reactors, condenser, semiconductor devices, resistors, construction elements and electrotechnical apparatus in general. Particularly high effect of decreasing of weight and dimensions characteristics of elements and electrotechnical apparatus in general can be reached under working out of special constructions of each element and apparatus details, adapted to use of mentioned liquid as insulating and cooling media.

Dermengi, P.G.; Kureghan, A.S.; Pokrovsky, S.V.; Tchvanov, V.A.

1994-12-31T23:59:59.000Z

299

Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint  

SciTech Connect (OSTI)

This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

Bank, J.; Mather, B.

2013-03-01T23:59:59.000Z

300

A Phenomenological Study of High-Impact Practices: Exploring Learning Through Coupling Internships and Service-Learning  

E-Print Network [OSTI]

This study describes the experiences of college-age students (1824 years) engaged in multiple high-impact practices simultaneously in an internship experience in Washington, DC, and in a service-learning experience. They reflected weekly...

Shehane, Melissa Renee'

2014-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of emerging parallel optical link technology for high energy physics  

SciTech Connect (OSTI)

Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

2012-01-01T23:59:59.000Z

302

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)  

E-Print Network [OSTI]

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

Hu, Wenchuang "Walter"

303

A high-speed, low-power analog-to-digital converter in fully depleted silicon-on-insulator technology  

E-Print Network [OSTI]

This thesis demonstrates a one-volt, high-speed, ultra-low-power, six-bit flash analog-to-digital converter fabricated in a fully depleted silicon-on-insulator CMOS technology. Silicon-on-insulator CMOS technology provides ...

Lundberg, Kent Howard

2002-01-01T23:59:59.000Z

304

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EVs Based on Novel, High Voltage Cathode Material Systems  

Broader source: Energy.gov [DOE]

Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

305

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect (OSTI)

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

306

Identification of Market Requirements of Smart Buildings Technologies for High Rise Office Buildings  

E-Print Network [OSTI]

practices of utilizing hi-tech smart building technologies in office buildings, required additional features of smart building technologies for office buildings, challenges for integrating smart building technologies for office buildings, major benefits...

Reffat, R. M.

2010-01-01T23:59:59.000Z

307

Vehicle Technologies Office Merit Review 2014: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-dilution...

308

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

309

Dispersed concentration of high-tech jobs in the new economy : the paradox of new information and communication technologies  

E-Print Network [OSTI]

More high-tech firms are conducting their business over long distances due to the use of new information and communication technologies (ICT). However, regional scientists articulate that geographic proximity is still ...

Kang, Myoung-Gu, 1970-

2006-01-01T23:59:59.000Z

310

Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

311

Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

312

Management of intermediated channels for high technology firms : achieving success in a dynamic and rapidly changing marketplace  

E-Print Network [OSTI]

One of the most challenging problems for high technology firms in an increasingly global marketplace is the effective utilization of intermediated sales channels. As product development cycles shorten, there can be a ...

Gorsky, John Paul

2005-01-01T23:59:59.000Z

313

Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

314

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

315

Key technological issues in LMFBR high-temperature structural design - the US perspective  

SciTech Connect (OSTI)

The purpose of this paper is: (1) to review the key technological issues in LMFBR high-temperature structural design, particularly as they relate to cost reduction; and (2) to provide an overview of activities sponsored by the US Department of Energy to resolve the issues and to establish stable, standardized, and defensible structural design methods and criteria. Specific areas of discussion include: weldments, structural validation tests, simplified design analysis procedures, design procedures for piping, validation of the methodology for notch-like geometries, improved life assessment procedures, thermal striping, extension of the methodology to new materials, and ASME high-temperature Code reform needs. The perceived problems and needs in each area are discussed, and the current status of related US activities is given.

Corum, J.M.

1984-01-01T23:59:59.000Z

316

High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology  

SciTech Connect (OSTI)

Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

2010-12-31T23:59:59.000Z

317

Vehicle Technologies Office Merit Review 2014: Design and Scalable Assembly of High Density Low Tortuosity Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

318

The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract The impact of instrument choice on investment in abatement technologies: a case study of tax versus trade incentives for CCS and Biomass for electricity EPRG... for electricity and coal with carbon capture and storage. For both technologies we find that cap-and-trade schemes generate greater mean returns to such an investment than taxes, but with a wider distribution. We find that introducing price floors increase...

Laing, T; Grubb, Michael

319

AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS  

E-Print Network [OSTI]

cases, act to increase energy awareness and energy self-impacts of certain energy awareness and education projects

Lucarelli, Bart

2013-01-01T23:59:59.000Z

320

CBI Technology Impact Framework  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones | Department of Energy Volunteerism

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Quantifying the Impacts of Timebased Rates, Enabling Technology, and Other Treatments in Consumer Behavior Studies: Protocols and Guidelines  

E-Print Network [OSTI]

and enabling technologies on electricity usage are based ontechnology, and various other treatments on customers levels and patterns of electricity usage.technology, and various other treatments on customers levels and patterns of electricity usage.

Cappers, Peter

2014-01-01T23:59:59.000Z

322

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

323

Benchmark of the IMPACT Code for High Intensity Beam DynamicsSimulation  

SciTech Connect (OSTI)

The IMPACT (Integrated Map and Particle Accelerator Tracking) code was first developed under Computational Grand Challenge project in the mid 1990s [1]. It started as a three-dimensional (3D) data parallel particle-in-cell (PIC) code written in High Performance Fortran. The code used a split-operator based method to solve the Hamiltonian equations of motion. It contained linear transfer maps for drifts, quadrupole magnets and rf cavities. The space-charge forces were calculated using an FFT-based method with 3D open boundary conditions and longitudinal periodic boundary conditions. This code was completely rewritten in the late 1990s based on a message passing parallel programming paradigm using Fortran 90 and MPI following an object-oriented software design. This improved the code's scalability on large parallel computer systems and also gave the code better software maintainability and extensibility [2]. In the following years, under the SciDAC-1 accelerator project, the code was extended to include more accelerating and focusing elements such as DTL, CCL, superconducting linac, solenoid, dipole, multipoles, and others. Besides the original split-operator based integrator, a direct integration of Lorentz equations of motion using a leap-frog algorithm was also added to the IMPACT code to handle arbitrary external nonlinear fields. This integrator can read in 3D electromagnetic fields in a Cartesian grid or in a cylindrical coordinate system. Using the Lorentz integrator, we also extended the original code to handle multiple charge-state beams. The space-charge solvers were also extended to include conducting wall effects for round and rectangular pipes with longitudinal open and periodic boundary conditions. Recently, it has also been extended to handle short-range wake fields (longitudinal monopole and transverse dipole) and longitudinal coherent synchrotron radiation wake fields. Besides the parallel macroparticle tracking code, an rf linac lattice design code, an envelope matching and analysis code, and a number of pre- and post-processing codes were also developed to form the IMPACT code suite. The IMPACT code suite has been used to study beam dynamics in the SNS linac, the J-PARC linac commissioning, the CERN superconducting linac design, the Los Alamos Low Energy Demonstration Accelerator (LEDA) halo experiment, the Rare Isotope Accelerator (RIA) driver linac design, and the FERMI{at}Elettra FEL linac design [3-8]. It has also been used to study space-charge resonance in anisotropic beams [9-11].

Qiang, J.; Ryne, R.D.

2006-11-16T23:59:59.000Z

324

Impact of recent lake eutrophication on microbial community changes as revealed by high resolution lipid biomarkers in Rotsee (Switzerland)  

E-Print Network [OSTI]

Impact of recent lake eutrophication on microbial community changes as revealed by high resolution t The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Swit- zerland

Gilli, Adrian

325

Low background high efficiency radiocesium detection system based on positron emission tomography technology  

SciTech Connect (OSTI)

After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 50 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)] [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

2013-09-15T23:59:59.000Z

326

Experimental hydrodynamics of spherical projectiles impacting on a free surface using high speed imaging techniques  

E-Print Network [OSTI]

This thesis looks at the hydrodynamics of spherical projectiles impacting the free surface using a unique experimental WebLab facility. Experiments were performed to determine the force impact coefficients of spheres and ...

Laverty, Stephen Michael

2005-01-01T23:59:59.000Z

327

Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics  

SciTech Connect (OSTI)

A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTEs using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTEs and found relatively low TRLs for each of them: Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 Feeding, melting, and pouring: TRL-1 Glass ceramic formulation: TRL-1 Canister cooling and crystallization: TRL-1 Canister decontamination: TRL-4 Although the TRLs are low for most of these CTEs (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRLs are listed below: Complete this TMP Perform a preliminary engineering study Characterize, estimate, and simulate waste to be treated Laboratory scale glass ceramic testing Melter and off-gas testing with simulants Test the mixing, sampling, and analyses Canister testing Decontamination system testing Issue a requirements document Issue a risk management document Complete preliminary design Integrated pilot testing Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

2012-09-30T23:59:59.000Z

328

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

329

From enthusiasm to practice : users, systems, and technology in high-end audio  

E-Print Network [OSTI]

This is a story about technology, users, and music. It is about an approach to the design, manipulation, and arrangement of technologies in small-scale systems to achieve particular aesthetic goals - goals that are at once ...

Downes, Kieran

2009-01-01T23:59:59.000Z

330

Overview of the DOE High Efficiency Engine Technologies R&D  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

331

Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

332

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect (OSTI)

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

333

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

334

Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up  

SciTech Connect (OSTI)

Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of radiative trapping of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.

Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

2014-09-30T23:59:59.000Z

335

Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement  

SciTech Connect (OSTI)

The U.S. Atomic Energy Commission, a U.S. Department of Energy (DOE) predecessor agency, established the Savannah River Site (SRS) near Aiken, South Carolina, in the early 1950s. The primary mission of SRS was to produce nuclear materials for national defense. With the end of the Cold War and the reduction in the size of the United States stockpile of nuclear weapons, the SRS mission has changed. While national defense is still an important facet of the mission, SRS no longer produces nuclear materials and the mission is focused on material stabilization, environmental restoration, waste management, and decontamination and decommissioning of facilities that are no longer needed. As a result of its nuclear materials production mission, SRS generated large quantities of high-level radioactive waste (HLW). The HLW resulted from dissolving spent reactor fuel and nuclear targets to recover the valuable radioactive isotopes. DOE had stored the HLW in 51 large underground storage tanks located in the F- and H-Area Tank Farms at SRS. DOE has emptied and closed two of those tanks. DOE is treating the HLW, using a process called vitrification. The highly radioactive portion of the waste is mixed with a glass like material and stored in stainless steel canisters at SRS, pending shipment to a geologic repository for disposal. This process is currently underway at SRS in the Defense Waste Processing Facility (DWPF). The HLW tanks at SRS are of four different types, which provide varying degrees of protection to the environment due to different degrees of containment. The tanks are operated under the authority of the Atomic Energy Act of 1954 (AEA) and DOE Orders issued under the AEA. The tanks are permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) under South Carolina wastewater regulations, which require permitted facilities to be closed after they are removed from service. DOE has entered into an agreement with the U.S. Environmental Protection Agency (EPA) and SCDHEC to close the HLW tanks after they have been removed from service. Closure of the HLW tanks would comply with DOE's responsibilities under the AEA and the South Carolina closure requirements and be carried out under a schedule agreed to by DOE, EPA, and SCDHEC. There are several ways to close the HLW tanks. DOE has prepared this Environmental Impact Statement (EIS) to ensure that the public and DOE's decision makers have a thorough understanding of the potential environmental impacts of alternative means of closing the tanks. This Summary: (1) describes the HLW tanks and the closure process, (2) describes the National Environmental Policy Act (NEPA) process that DOE is using to aid in decision making, (3) summarizes the alternatives for closing the HLW tanks and identifies DOE.s preferred alternative, and (4) identifies the major conclusions regarding environmental impacts, areas of controversy, and issues that remain to be resolved as DOE proceeds with the HLW tank closure process.

N /A

2002-05-31T23:59:59.000Z

336

Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics  

DOE Patents [OSTI]

An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

Jody, Bassam J. (Chicago, IL); Arman, Bayram (Amherst, NY); Karvelas, Dimitrios E. (Downers Grove, IL); Pomykala, Jr., Joseph A. (Crest Hill, IL); Daniels, Edward J. (Oak Lawn, IL)

1997-01-01T23:59:59.000Z

337

Mass-Transport-Limited Electrodeposition of High-Surface-Area Coatings for Surface Acoustic Wave Sensor Technology  

SciTech Connect (OSTI)

The sensitivity of surface acoustic wave (SAW) sensors has been enhanced by increasing the active surface area of these devices. Electrodepositions of Ni, Pd, and Pt in a mass-transport-limited mode with trace foreign metals yield highly dendritic crystal structures of uniform macroscopic thickness. The concentration of metal ions, supporting electrolyte, agitation, and additives greatly impact the crystal morphology of the deposit. This methodology can be used simply and economically to provide high-area films in selective regions.

Ricco, Antonio J.; Staton, Alan W.; Yelton, W. Graham

1999-06-10T23:59:59.000Z

338

Mass-Transport-Limited Electrodeposition of High-Surface-Area Coatings for Surface Acoustic Wave Sensor Technology  

SciTech Connect (OSTI)

The sensitivity of surface acoustic wave (SAW) sensors has been enhanced by increasing the active surface area of these devices, Electrodepositions of Ni, Pd, and Pt in a mass-transport-limited mode with trace foreign metals yield highly dendritic crystal structures of uniform macroscopic thickness. The concentration of metal ions, supporting electrolyte, agitation, and additives greatly impact the crystal morphology of the deposit. This methodology can be used simply and economically to provide high-area films in selective regions.

Ricco, A.J.; Staton, A.W.; Yelton, W.G.

1999-06-07T23:59:59.000Z

339

Vehicle Technologies Office Merit Review 2014: Optimization of Ion Transport in High Energy Composite Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by University of California San Diego at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

340

Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office Merit Review 2014: Development of High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

342

Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

343

Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

344

Vehicle Technologies Office Merit Review 2014: Alloy Development for High-Performance Cast Crankshafts  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied alloy...

345

Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non...

346

Vehicle Technologies Office Merit Review 2014: Development of Silicon-based High Capacity Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

347

Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

348

Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design and...

349

Smart Grid Demos Provide Guidance on Integrating DER and RES into the Distribution System with Consideration of Transmission Impacts, Market Signals, and Technologies  

SciTech Connect (OSTI)

This paper describes the overall process for developing a planning criteria and deployment strategy for technology applications under the US Department of Energy (USDOE) and Electric Power Research Institute (EPRI) Smart Grid programs. These activities described provide an understanding of each demonstration and how they individually and as group further industry knowledge of Distributed Energy Resources (DER) and Renewable Energy Sources (RES) impact the grid and how the distribution grid can interact with DER and RES in smart ways. Both USDOE through its Renewable and Distributed Systems Integration (RDSI) and EPRI via its Smart Grid Demonstration Program both assess how DER and RES can be integrated and operated to lower the carbon footprint.

Kueck, John D [ORNL] [ORNL; Hamilton, Stephanie [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Smith, Merrill [U.S. Department of Energy] [U.S. Department of Energy

2010-01-01T23:59:59.000Z

350

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network [OSTI]

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

351

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

SciTech Connect (OSTI)

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

352

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High-Efficiency Sub-5 keV Electron Detection  

E-Print Network [OSTI]

Versatile Silicon Photodiode Detector Technology for Scanning Electron Microscopy with High for Scanning Electron Microscopy, based on ultrashallow p+ n boron-layer photodiodes, features nm-thin anodes, closely-packed photodiodes and through-wafer apertures allow flexible configurations for optimal material

Technische Universiteit Delft

353

HIGH-FIELD-SIDE PELLET INJECTION TECHNOLOGY S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge,  

E-Print Network [OSTI]

HIGH-FIELD-SIDE PELLET INJECTION TECHNOLOGY S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge, T of pellets, composed of frozen hydrogen isotopes and multimillimeter in size, is com- monly used for core tubes have typically been used to trans- port/deliver pellets from the acceleration device to the out

354

Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems  

E-Print Network [OSTI]

, use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

355

Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines  

Broader source: Energy.gov [DOE]

A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

356

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network [OSTI]

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

357

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

358

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

SciTech Connect (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

359

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect (OSTI)

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic dead layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE damaged layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

360

High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

SciTech Connect (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

362

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

SciTech Connect (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

363

The climate impacts of high-speed rail and air transportation : a global comparative analysis  

E-Print Network [OSTI]

Growing concerns about the energy use and climate impacts of the transportation sector have prompted policymakers to consider a variety of options to meet the future mobility needs of the world's population, while ...

Clewlow, Regina Ruby Lee

2012-01-01T23:59:59.000Z

364

Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

365

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

SciTech Connect (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

366

OVERVIEW OF IMPACTS OF TECHNOLOGY DEPLOYMENT ON THE MISSION OF THE DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT  

SciTech Connect (OSTI)

The Environmental Management (EM) mission is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. The EM program has embraced a mission completion philosophy based on reducing risk and environmental liability over a 40-50 year lifecycle. The Department has made great progress toward safely disposing of its legacy nuclear waste. EM Research and Development (R&D) program management strategies have driven numerous technology and engineering innovations to reduce risk, minimize cleanup costs, and reduce schedules. Engineering and technology investments have provided the engineering foundation, technical assistance, approaches, and technologies that have contributed to moving the cleanup effort forward. These successes include start-up and operation of several waste treatment facilities and processes at the sites.

McCabe, D.; Chamberlain, G.; Looney, B.; Gladden, J.

2010-11-30T23:59:59.000Z

367

Page 7 The Coronal Courant The field of space weather studies the technological and societal impacts of the solar terrestrial  

E-Print Network [OSTI]

impacts of the solar terrestrial relationship. This emerging field of space science has become power distribution systems. Solar storms (such as coronal mass ejections and solar flares) can cause systems, sicken or kill astronauts and cause power blackouts. Though the current solar minimum

Eustice, Ryan

368

Physics is the liberal arts of high tech Physics and Technology for Future Presidents? Yes, that is a serious title. Energy, global  

E-Print Network [OSTI]

Preface Physics is the liberal arts of high tech Physics and Technology for Future Presidents? Yes studied physics, and do not understand science and technology. Even my school, the University of California at Berkeley, doesn't require physics. Physics and Technology for Future Presidents, PTff

Landweber, Laura

369

Overview oi the DOE High Efficiency Engine Technologies R&D  

Broader source: Energy.gov (indexed) [DOE]

Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains For Light-Duty Vehicles (ATP-LD) *Baseline is state-of-the-art port-fuel injected gasoline engine Vehicle...

370

The Impact of STEM PBL Teacher Professional Development on Student Mathematics Achievement in High Schools  

E-Print Network [OSTI]

This dissertation consists of three articles that explore the effect of professional development (PD) on teachers understanding and implementation of Science, Technology, Engineering, and Mathematics (STEM) project based learning (PBL...

Han, Sun Young

2013-05-20T23:59:59.000Z

371

Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy  

SciTech Connect (OSTI)

The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5?mg Nylon 6/6 right-cylinders to speeds between 5?km/s and 7?km/s to impact 1.5?mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250?000?rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 610??s after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1?mmHg atmosphere inside the target chamber. A comparison of the data to down-range emission spectra also revealed differences in the relative intensities of the atomic/molecular composition of the observed vapor clouds.

Tandy, J. D., E-mail: jt245@le.ac.uk [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom); Mihaly, J. M.; Adams, M. A.; Rosakis, A. J. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

2014-07-21T23:59:59.000Z

372

Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program  

SciTech Connect (OSTI)

The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

Vohra, Yogesh, K.

2009-10-28T23:59:59.000Z

373

INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS  

SciTech Connect (OSTI)

The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

2008-09-23T23:59:59.000Z

374

Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System  

SciTech Connect (OSTI)

IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATKs design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

None

2010-07-01T23:59:59.000Z

375

Technology Assessment: NREL Provides Know-How for Highly Energy-Efficient Data Centers (Fact Sheet)  

SciTech Connect (OSTI)

NREL leads the effort to change how energy is used worldwide by helping identify and eliminate barriers to energy efficiency and clean energy technology deployment. The laboratory takes a portfolio approach that explores the full range of technology options for developing and implementing innovative energy performance solutions. The Research Support Facility (RSF) data center is a prime example of NREL's capabilities and expertise in energy efficiency. But, more important, its features can be replicated. NREL provides custom technical assistance and training for improved data center performance to help our customers realize cost savings.

Not Available

2012-05-01T23:59:59.000Z

376

Estimated impacts of climate warming on Californias high-elevation hydropower  

E-Print Network [OSTI]

on high elevation hydropower generation in CaliforniasCalifornias high-elevation hydropower Kaveh Madani Jay R.Abstract Californias hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

377

A framework for selecting strategies to impact the success of high volume roadway projects  

E-Print Network [OSTI]

that summarize the research findings. A general matrix was created to show the motivating project conditions that warrant the use of each strategy. A public relations matrix was created to display the influence the impacted road user groups have on public...

Chabannes, Clayton C.

2006-08-16T23:59:59.000Z

378

Abstract--This paper describes a spreadsheet model for estimating the impact of High Temperature Supercon-  

E-Print Network [OSTI]

Supercon- ducting (HTS) power devices on the national electric grid. The distribution of losses savings achievable by the many sizes of HTS generators, transformers, cables and motors are then computed--Analysis tool, projections of market for HTS power devices, impact of cooling, and conductor cost I

379

Thematic note to substantiate Ris's strategy impact on society Customer-driven activities  

E-Print Network [OSTI]

: Competitive power as high-technology society Introduction Customer-driven activities are activities undertakenThematic note to substantiate Risø's strategy ­ impact on society Customer-driven activities Impact and embedding Risø's research in society and thereby having significant impact. To Risø, the activities provide

380

High-Q operation of SRF cavities: The potential impact of thermocurrents on the RF surface resistance  

E-Print Network [OSTI]

For many new accelerator applications, superconducting radio frequency (SRF) systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [1], a procedure of warming up a cavity after initial cooldown to about 20K and cooling it down again. In subsequent studies [2], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature depende...

Vogt, J -M; Knobloch, J

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

NONE

1995-06-01T23:59:59.000Z

382

IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES  

SciTech Connect (OSTI)

This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

Fox, K.; Edwards, T.

2012-01-11T23:59:59.000Z

383

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

384

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

385

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

386

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

SciTech Connect (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

387

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect (OSTI)

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

None

2010-09-01T23:59:59.000Z

388

SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS) is a technology with the potential  

E-Print Network [OSTI]

#12;SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS-of-way. The Department of Energy's efforts to advance High Temperature Superconductivity combine major national strengths: the Superconductivity Partnership Initiative (SPI), the 2nd Generation Wire Initiative

389

Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology  

SciTech Connect (OSTI)

In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a backstop to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

2014-02-07T23:59:59.000Z

390

The impact of high frequency/low energy seismic waves on unreinforced masonry  

E-Print Network [OSTI]

Traditionally, the high frequency components of earthquake loading are disregarded as a source of structural damage because of their small energy content and because their frequency is too high to resonate with the natural ...

Meyer, Patrik K. (Patrik Kristof)

2006-01-01T23:59:59.000Z

391

Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider  

E-Print Network [OSTI]

The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

2012-01-01T23:59:59.000Z

392

THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS"  

E-Print Network [OSTI]

and High Energy Physics Laboratory I. INTRODUCTION In the history of nuclear and high energy physics ENERGY PHYSICS" H. Alan Schwettmant Stanford University Stanford, California Department of Physics there have been a few pioneer- The High Energy Physics Laboratory (HEPL) at Stanford ing laboratories which

Ohta, Shigemi

393

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect (OSTI)

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

394

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

SciTech Connect (OSTI)

The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

2009-02-11T23:59:59.000Z

395

Overview of the DOE High Efficiency Engine Technologies R&D | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSemprius Confidentialand

396

Overview of the DOE High Efficiency Engine Technologies R&D | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSemprius ConfidentialandEnergy 1 DOE

397

Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book  

SciTech Connect (OSTI)

Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

1997-10-21T23:59:59.000Z

398

Impact of high energy ball milling on the nanostructure of magnetitegraphite and magnetitegraphitemolybdenum disulphide blends  

SciTech Connect (OSTI)

Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS{sub 2} powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mssbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. - Highlights: Characterization of microstructural changes induced by high energy ball milling Assessment of the potential of different characterization methods Impact of mechanical alloying on tribological performance revealed by tests Preparation of an artificial third body resembling the one formed during braking.

sterle, W., E-mail: Werner.oesterle@bam.de [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Orts-Gil, G.; Gross, T.; Deutsch, C. [BAM Federal Institute for Materials Research and Testing, 12200 Berlin (Germany); Hinrichs, R. [Instituto de Geocincias, UFRGS, P.O. Box 15001, 91501-970 Porto Alegre (Brazil); Vasconcellos, M.A.Z. [Instituto de Fsica, UFRGS, P.O. Box 15051, 91501-970 Porto Alegre (Brazil); Zoz, H.; Yigit, D.; Sun, X. [Zoz Group, 57482 Wenden (Germany)

2013-12-15T23:59:59.000Z

399

Assessment of energy and economic impacts of particulate-control technologies in coal-fired power generation  

SciTech Connect (OSTI)

Under contract to Argonne National Laboratory, Midwest Research Institute has derived models to assess the economic and energy impacts of particulate-control systems for coal-fired power plants. The models take into account the major functional variables, including plant size and location, coal type, and applicable particulate-emission standards. The algorithms obtained predict equipment and installation costs, as well as operating costs (including energy usage), for five control devices: (1) cold-side electrostatic precipitators, (2) hot-side electrostatic precipitators, (3) reverse-flow baghouses, (4) shake baghouses, and (5) wet scrubbers. A steam-generator performance model has been developed, and the output from this model has been used as input for the control-device performance models that specify required design and operating parameters for the control systems under study. These parameters then have been used as inputs to the cost models. Suitable guideline values have been provided for independent variables wherever necessary, and three case studies are presented to demonstrate application of the subject models. The control-equipment models aggregate the following cost items: (1) first costs (capital investment), (2) total, first-year annualized costs, and (3) integrated cost of ownership and operation over any selected plant lifetime. Although the models have been programmed for rapid computation, the algorithms can be solved with a hand calculator.

Not Available

1980-04-01T23:59:59.000Z

400

The impact of high-frequency sedimentation cycles on stratigraphic interpretation  

SciTech Connect (OSTI)

Global cyclostratigraphy, a methodology that utilizes climate change to evaluate sediment flux, characterizes the impact of sediment cycles on stratigraphy. Climatic succession, sediment yield cycles, and the phase relationship of sediment cycles to eustatic cycles are all determined in the early stages of basin analysis. Sedimentologic information is then used to assist in sequence evaluations. Climatic successions are intrinsically associated with global position (paleogeography) and are not necessarily synchronous with glacioeustatic sea-level cycles. A preliminary evaluation of the effect of climate on sediment supply from modem river systems indicates that sediment yield may vary by well over two orders of magnitude during one climate cycle. Consequently, basins in different climatic belts can have distinctly different volumes and lithologies for systems tracts that have similar base-level changes. The stratigraphic computer program Sedpak was utilized to examine the possible impact of different sedimentation cycles on sequence interpretation and reservoir forecasts. The effect of sedimentation cycles on reservoir distribution in real world sequences is demonstrated with a comparison of the Miocene section of the Surma basin, Bangladesh, and the Plio-Pleistocene section of the Gulf of Mexico. In the Surma basin, reservoirs are most likely to occur in transgressive and highstand systems tracts, while reservoirs in the Gulf of Mexico are more likely in lowstand prograding complexes.

Perlmutter, M.A. [Argonne National Lab., IL (United States); Radovich, B.J.; Matthews, M.D. [Texaco Central Exploration Division, Bellaire, TX (United States)] [and others

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

THE RADIOLOGICAL IMPACT OF HIGH-ENERGY ACCELERATORS ON THE ENVIRONMENT  

E-Print Network [OSTI]

High-Energy Accelerators . . 3.1 Introduction . . . .Energy Accelerators . . 4.1 Introduction . . . . . . .Produced in Air by Accelerator Operation . (a) Radionuclides

Thomas, R.H.

2011-01-01T23:59:59.000Z

402

Performance of the online track reconstruction and impact on hadronic triggers at the CMS High Level Trigger  

E-Print Network [OSTI]

The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with the detector readout, offline storage and analysis capabilities. The CMS experiment has been designed with a two-level trigger system: the Level 1 (L1) Trigger, implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS reconstruction and analysis software running on a computer farm. The software-base HLT requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. This is going to be even more challenging during Run II, with a higher centre-of-mass energy, a higher instantaneous luminosity and pileup, and the impact of out-of-time pileup due to the 25 ns bunch spacing. The online algorithms need to be optimised for such a complex environment in order to keep the output rate under control without impacting the physics efficiency of the online selection. Tracking, for instance, will play an even more important role in the event reconstruction. In this poster we will present the performance of the online track and vertex reconstruction algorithms, and their impact on the hadronic triggers that make use of b-tagging and of jets reconstructed with the Particle Flow technique. We will show the impact of these triggers on physics performance of the experiment, and the latest plans for improvements in view of the Run II data taking in 2015.

Valentina Gori

2014-09-09T23:59:59.000Z

403

Radiological Impact Associated to Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) from Coal-Fired Power Plants Emissions - 13436  

SciTech Connect (OSTI)

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased human exposure to naturally occurring radioactive materials. A methodology was developed to assess the radiological impact due to natural radiation background. The developed research was applied to a specific case study, the Sines coal-fired power plant, located in the southwest coastline of Portugal. Gamma radiation measurements were carried out with two different instruments: a sodium iodide scintillation detector counter (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). Two circular survey areas were defined within 20 km of the power plant. Forty relevant measurements points were established within the sampling area: 15 urban and 25 suburban locations. Additionally, ten more measurements points were defined, mostly at the 20-km area. The registered gamma radiation varies from 20 to 98.33 counts per seconds (c.p.s.) corresponding to an external gamma exposure rate variable between 87.70 and 431.19 nGy/h. The highest values were measured at locations near the power plant and those located in an area within the 6 and 20 km from the stacks. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (Pb-212, Pb-2142, Ra-226, Th-232, Ac-228, Th-234, Pa-234, U- 235, etc.). According to the results, an influence from the stacks emissions has been identified both qualitatively and quantitatively. The developed methodology accomplished the lack of data in what concerns to radiation rate in the vicinity of Sines coal-fired power plant and consequently the resulting exposure to the nearby population. (authors)

Dinis, Maria de Lurdes; Fiuza, Antonio; Soeiro de Carvalho, Jose; Gois, Joaquim [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)] [Geo-Environment and Resources Research Centre (CIGAR), Porto University, Faculty of Engineering - FEUP, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Meira Castro, Ana Cristina [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)] [School of Engineering Polytechnic of Porto - ISEP, Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072, Porto (Portugal)

2013-07-01T23:59:59.000Z

404

DOE Initiates Environmental Impact Statement for Global Nuclear...  

Office of Environmental Management (EM)

Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership...

405

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

406

Identify types of development and climate impacts that are country...  

Open Energy Info (EERE)

qualitatively development and climate impacts of LEDS technologies and measures Key Products Qualitative impact assessment of priority improved practices or technologies List...

407

Impact of Biodiesel Metals on the Performance and Durability...  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies...

408

Engineering at Illinois delivers successful partnerships that impact businesses. Illinois has a strong track record of technology innovation and commercialization. We also lead the nation in funding from the National Science  

E-Print Network [OSTI]

» Dow Chemical » Intel » Bloom Energy » BP » Flex-n-Gate » PayPal » Yelp » YouTube Illinois Talent BuiltEngineering at Illinois delivers successful partnerships that impact businesses. Illinois has areas including: Big Data/Data Analytics/ Computing, Biomedical/Bioengineering, and Energy Technologies

Lewis, Jennifer

409

Winner of the 2014 $500,000 Lemelson-MIT Prize Dr. Sangeeta BhaCa Bha$a's combined clinical and engineering perspec$ve targets the development of miniaturized technologies to impact human  

E-Print Network [OSTI]

$a and her trainees have launched ten companies with more than 70 products. She technologies to impact human health in areas ranging from drug toxicity, $ssue$on with probio$c vehicles to fine-tune dosing and delivery control. Methods to improve

Reif, Rafael

410

Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues  

SciTech Connect (OSTI)

Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia's system of Children's Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. (Morehouse Coll., Atlanta, GA (United States). School of Medicine); Crandall, L.A.; Moseley, R.E.; Armotrading, D. (Florida Univ., Gainesville, FL (United States). Coll. of Medicine)

1993-01-01T23:59:59.000Z

411

UC Santa Cruz Information Technology Strategic Plan 2014 The primary mission of ITS is to provide high quality infrastructure, support, and innovation in the delivery of information  

E-Print Network [OSTI]

of resources resulted in an organization more well-situated to manage infrastructure, systems, and services high quality infrastructure, support, and innovation in the delivery of information technology products and directives for the organization and management of information technology at UCSC. This ITS Strategic Plan

California at Santa Cruz, University of

412

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

413

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect (OSTI)

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

414

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows  

SciTech Connect (OSTI)

Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

Kwak, B.; Joshi, Ajey

2013-03-31T23:59:59.000Z

415

High Burnup Effects Program A State-of-the-Technology Assessment  

SciTech Connect (OSTI)

Various analytical models and empirical correlations describing the fission gas release phenomenon were examined. An evaluation was made of the current pertinent experimental data on the subject of high burnup fission gas release. Data reported by individual investigators were compared and evaluated in relation to their applicability to the content and scope of the High Burnup Effects Program. These evaluations then form the bases for defining the data needs, and the selection of variables to be studied in this program.

Rising, K. H.; Bradley, E. R.; Williford, R. E.; Freshley, M D.

1982-06-01T23:59:59.000Z

416

Impact of quasi-dc currents on three-phase distribution transformer installations. Power Systems Technology Program  

SciTech Connect (OSTI)

This report summarizes a series of tests designed to determine the response of quasi-dc currents on three-phase power distribution transformers for electric power systems. In general, if the dc injection is limited to the primary side of a step-down transformer, significant harmonic distortion is noted and an increase in the reactive power demand results. For dc injection on the secondary (load) side of the step-down transformer the harmonic content at the secondary side is quite high and saturation occurs with a relatively low level of dc injection; however, the reactive power demand is significantly lower. These tests produced no apparent damage to the transformers. Transformer damage is dependent on the duration of the dc excitation, the level of the excitation, and on thermal characteristics of the transfer. The transformer response time is found to be much shorter than seen in power transformer tests at lower dc injection levels. This shorter response time suggests that the response time is strongly dependent on the injected current levels, and that higher levels of dc injection for shorter durations could produce very high reactive power demands and harmonic distortion within a few tenths of a second. The added reactive power load could result in the blowing of fuses on the primary side of the transformer for even moderate dc injection levels, and neutral currents are quite large under even low-level dc injection. This ``smoking neutral`` results in high-level harmonic injection into equipment via the neutral and in possible equipment failure.

McConnell, B.W.; Barnes, P.R. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Schafer, D.A. [Mission Research Corp., Albuquerque, NM (United States)

1992-06-01T23:59:59.000Z

417

A versatile, high-power proton linac for accelerator driven transmutation technologies  

SciTech Connect (OSTI)

We are applying the new coupled-cavity drift-tube linac (CCDTL) to a conceptual design of a high-current, CW accelerator for transmutation applications. A 350-MHz RFQ followed by 700--MHz structures accelerates a 100-mA proton beam to I GeV. Several advantages stem from four key features: (1) a uniform focusing lattice from the start of the CCDTL at about 7 MeV to the end of the linac, (2) external location and separate mechanical support of the electromagnetic quadrupole magnets, (3) very flexible modular physics design and mechanical implementation, and (4) compact, high-frequency structures. These features help to reduce beam loss and, hence, also reduce potential radioactivation of the structure. They result in easy alignment, fast serviceability, and high beam availability. Beam funneling, if necessary, is possible at any energy after the RFQ.

Billen, J.H.; Nath, S.; Stovall, J.E.; Takeda, H.; Wood, R.L.; Young, L.M.

1995-05-01T23:59:59.000Z

418

Tropical coasts are highly vulnerable to climatic pressures, the future impacts of which are projected to propagate  

E-Print Network [OSTI]

the resilience of the whole system. Risks related to climate change are frequently examined in isolation through of illustrating the potential impacts of climate change in a holistic and systemic way. An impact chain represents the climate change impact chains in tropical coastal areas based on a literature review of 289 papers. Impact

Boyer, Edmond

419

The Impact of Doppler Spreading on Delay Performance over Multi-hop Wireless Communications  

E-Print Network [OSTI]

promising technologies to provide high data rate transmission through wireless link in multi-hop networks-to-end delay performance over multi-hop wireless transmission. In this paper, we study the impact of Doppler communications are very promising technologies for next generation network to provide high data rate transmission

Haddadi, Hamed

420

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hafnium-doped tantalum oxide high-k gate dielectric films for future CMOS technology  

E-Print Network [OSTI]

of the doped films were explained by their compositions and bond structures. The Hf-doped TaOx film is a potential high-k gate dielectric for future MOS transistors. A 5 ?? tantalum nitride (TaNx) interface layer has been inserted between the Hf-doped Ta...

Lu, Jiang

2007-04-25T23:59:59.000Z

422

On the fast track: Collaboration expedites adoption of efficient irrigation technologies in the High Plains  

E-Print Network [OSTI]

12 tx H2O Summer 2013 Story by Leslie Lee ] The High Plains of Texas have been nagged by severe drought for two years straight, with very li#22;le rainfall or relief from harsh weather. As agriculture producers in the region use every tool...

Lee, Leslie

2013-01-01T23:59:59.000Z

423

Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks  

SciTech Connect (OSTI)

The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

Derr, Dan

2013-12-30T23:59:59.000Z

424

Impacts of Farm Policies and Technology on the Economic Viability of Texas Southern High Plains Wheat Farms.  

E-Print Network [OSTI]

in the Southern Plains. The farms--initially operating 1,280, 1,920, and 3,200 acres--had debt to asset ratios typical of farms in the area, owned the necessary machinery complement, and farmed both owned and leased cropland. The results indicate that under... recapture, and extended depreciation period) slowed the average annual growth rate and net income more for the two larger farms than for the smallest farm. Farm growth occurred more often by leasing cropland than by purchasing land due to reduced cash...

Richardson, James W.; Smith, Edward G.

1985-01-01T23:59:59.000Z

425

'Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care  

E-Print Network [OSTI]

the system of governance also serves other, more institutional purposes. The prospect of internet-based marketing corporations using access to research data and to electronic health records as an op- portunity to market more products seems both manipu- lative...

Clarke, Angus J; Cooper, David N; Krawczak, Michael; Tyler-Smith, Chris; Wallace, Helen M; Wilkie, Andrew O M; Raymond, Frances L; Chadwick, Ruth; Craddock, Nick; John, Ros; Gallacher, John; Chiano, Mathias

2012-08-02T23:59:59.000Z

426

Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events  

SciTech Connect (OSTI)

This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

2013-10-04T23:59:59.000Z

427

Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam  

E-Print Network [OSTI]

The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

2013-01-01T23:59:59.000Z

428

Recycling used engine coolant using high-volume stationary, multiple technology equipment  

SciTech Connect (OSTI)

Recycling used engine coolant has become increasingly desirable due to two significant factors. First, engine coolant frequently merits designation as a hazardous waste under the Federal Clean Water Act. Federal and some state environmental protection agencies have instituted strict regulation of the disposal of used engine coolant. In some cases, the disposal of engine coolant requires imposition of waste disposal fees and surcharges. Secondly, ethylene glycol, the principal cost component of engine coolant, has experienced dramatic price fluctuations and occasional shortages in supply. Therefore, there are both environmental and economic pressures to recycle engine coolant and recover the ethylene glycol component in an efficient and cost-effective manner. This paper discusses a multistage apparatus and a process for recycling used engine coolant that employs a combination of filtration, centrifugation (hydrocyclone separation), dissolved air flotation, nanofiltration, reverse osmosis, continuous deionization, and ion exchange processes for separating ethylene glycol and water from used engine coolant. The engine coolant is prefiltered through a series of filters. The filters remove particulate contaminates. This filtered fluid is then subjected to dissolved air flotation and centrifugation to remove petroleum. Then it is heated and pressurized prior to being passed over a series of two different sets of semipermeable membranes. The membrane technologies separate the feed stream into a permeate solution of ethylene glycol and water and a concentrate waste solution. The concentrate solution is returned to a concentrate tank for continuous circulation through the apparatus. The permeate solution is subjected to final refining by continuous deionization followed by a cation and anion ion exchange polishing process. The continuous deionization reduces ionic contaminants, and the ion exchange system eliminates any ionic contaminants left by the previous purification methods. A mechanical blender is used to mix the purified recovered fluid with fresh ethylene glycol (to adjust freeze point) and performance enhancing chemicals.

Haddock, M.E. [Recycled Engine Coolants, Inc., Austin, TX (United States); Eaton, E.R. [Penray Companies, Inc., Elk Grove Village, IL (United States)

1999-08-01T23:59:59.000Z

429

Technology for processing ammonium rhodanide of coking plants into high-purity ammonium thiocyanate and thiourea  

SciTech Connect (OSTI)

The regularities of the reversible reaction of isomerization of ammonium thiocyanate (NH{sub 4}NCS) into thiourea (NH{sub 2}){sub 2}CS, and the reverse reaction, were analyzed. An ecologically clean and highly efficient method for the extraction, purification, separation, and production of isomers from the coal byproduct ammonium thiocyanate was developed based on the measured volatilities of NH{sub 4}NCS and (NH{sub 2}){sub 2}CS.

Urakaev, F.K. [Institute of Geology & Mineral SB RAS, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

430

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology  

SciTech Connect (OSTI)

Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

2013-11-01T23:59:59.000Z

431

The design, construction, and operation of long-distance high-voltage electricity transmission technologies.  

SciTech Connect (OSTI)

This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

2008-03-03T23:59:59.000Z

432

Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A: Handling of4,3,Science Bowl; Warwick High

433

Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action.

N /A

1999-08-13T23:59:59.000Z

434

High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density  

SciTech Connect (OSTI)

Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 23 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

Grierson, B. A., E-mail: bgriers@pppl.gov; Grisham, L. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Crowley, B.; Scoville, J. T. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2014-10-15T23:59:59.000Z

435

Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection  

SciTech Connect (OSTI)

In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to these same feature surfaces to withstand the pulsating UHIP diesel injection without fatigue failure, through the expected life of the fuel system's components (10,000 hours for the pump and common rail, 5000 hours for the injector). The potential to Caterpillar of this fueling approach and the overall emissions reduction system is the cost savings of the fuel, the cost savings of not requiring a full emissions module and other emissions hardware, and the enabling of the use of biodiesel fuel due to the reduced dependency on after-treatment. A proprietary production CRS generating process was developed to treat the interior of the sac-type injector nozzle tip region (particularly for the sac region). Ninety-five tips passed ultra high pulsed pressure fatigue testing with no failures assignable to treated surfaces or materials. It was determined that the CRS impartation method does not weaken the tip internal seat area. Caterpillar Fuel Systems - Product Development accepts that the CRS method initial production technical readiness level has been established. A method to gage CRS levels in production was not yet accomplished, but it is believed that monitoring process parameters call be used to guarantee quality. A precision profiling process for injector seat and sac regions has been shown to be promising but not yet fully confirmed. It was demonstrated that this precision profiling process can achieve form and geometry to well under an aggressively small micron peak-to-valley and that there are no surface flaws that approach an even tighter micron peak-to-valley tolerance. It is planned to purchase machines to further develop and move the process towards production. The system is targeted towards the high-power diesel electric power generators and high-power diesel marine power generators, with displacement from 20 liters to 80 liters and with power from 800 brake horsepower (BHP) to 3200BHP (0.6 megawatts to 2.4 megawatts). However, with market adoption, this system has the potential to meet EPA exhaust standards for all diesel engines nine liters and up, or 300B

Grant, Marion B.

2012-04-30T23:59:59.000Z

436

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect (OSTI)

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

437

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this environmental impact statement (EIS) is to provide information on potential environmental impacts that could result from a Proposed Action to construct, operate and monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nye County, Nevada. The EIS also provides information on potential environmental impacts from an alternative referred to as the No-Action Alternative, under which there would be no development of a geologic repository at Yucca Mountain.

N /A

2002-10-25T23:59:59.000Z

438

Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes  

SciTech Connect (OSTI)

This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

L.E. Demick

2011-10-01T23:59:59.000Z

439

MR-Guided High-Intensity Focused Ultrasound: Current Status of an Emerging Technology  

SciTech Connect (OSTI)

The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance-guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.

Napoli, Alessandro, E-mail: napoli.alessandro@gmail.com; Anzidei, Michele, E-mail: michele.anzidei@gmail.com; Ciolina, Federica, E-mail: federica.ciolina@gmail.com; Marotta, Eugenio, E-mail: eugenio.marotta@gmail.com; Cavallo Marincola, Beatrice, E-mail: beatrice.cavalloamarincola@gmail.com; Brachetti, Giulia, E-mail: giuliabrachetti@gmail.com; Mare, Luisa Di, E-mail: luisadimare@gmail.com; Cartocci, Gaia, E-mail: gaia.cartocci@gmail.com; Boni, Fabrizio, E-mail: fabrizioboni00@gmail.com; Noce, Vincenzo, E-mail: vinc.noce@hotmail.it; Bertaccini, Luca, E-mail: lucaone84@libero.it; Catalano, Carlo, E-mail: carlo.catalano@uniroma1.it [Sapienza, University of Rome, Department of Radiological Sciences (Italy)] [Sapienza, University of Rome, Department of Radiological Sciences (Italy)

2013-10-15T23:59:59.000Z

440

Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments  

SciTech Connect (OSTI)

Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handle the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology "Relay Race" Against Cancer | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE Scientists in Technology "Relay Race" Against Cancer GE Scientists in Technology "Relay Race" Against Cancer GE technologies being developed to impact every stage of cancer...

442

VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres  

E-Print Network [OSTI]

Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....

Venot, Olivia; Bnilan, Yves; Gazeau, Marie-Claire; Hbrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck

2015-01-01T23:59:59.000Z

443

Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287  

SciTech Connect (OSTI)

Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

2013-07-01T23:59:59.000Z

444

Technology and apparatus for solidification of radioactive wastes from nuclear fuel cycle by high temperature adsorption of metals on inorganic matrices  

SciTech Connect (OSTI)

This study deals with the investigation of high-level waste (HLW) solidification by high-temperature adsorption of radionuclides on porous inorganic matrices. An appropriate drum-type apparatus using magnetic gear drive was designed and tested. The report contains the test results of the solidification process of high-level radioactive raffinate from the first regeneration extraction cycle of irradiated fuel elements from nuclear power plants. Industrial-scale tests of the HLW solidification process (technology and equipment) are planned.

Nardova, A.K.; Philipov, E.A.; Kudriavtsev, Y.G.; Dzekun, E.G.; Parfanovitch, B.N. [Russian Research Inst. of Chemical Technology, Moscow (Russian Federation)

1993-12-31T23:59:59.000Z

445

Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report  

SciTech Connect (OSTI)

The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

1993-05-14T23:59:59.000Z

446

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report  

SciTech Connect (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

447

Assessing the Impacts of Wind Integration in the Western Provinces Amy Sopinka  

E-Print Network [OSTI]

Assessing the Impacts of Wind Integration in the Western Provinces by Amy Sopinka B.A., Queen the Impacts of Wind Integration in the Western Provinces by Amy Sopinka B.A., Queen's University, 1992 M and utilize high levels of renewable energy technology, such as wind power, depends upon the composition

Victoria, University of

448

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

449

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

450

Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.  

E-Print Network [OSTI]

This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

CERN. Geneva

2013-01-01T23:59:59.000Z

451

ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS  

SciTech Connect (OSTI)

Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

Chiswell, S

2009-01-11T23:59:59.000Z

452

Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report  

SciTech Connect (OSTI)

The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

1994-08-01T23:59:59.000Z

453

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

454

Vehicle Technologies Office Merit Review 2014: Enabling Materials for High Temperature Power Electronics (Agreement ID:26461) Project ID:18516  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling...

455

Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Stanford University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wiring up silicon...

456

Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

457

Environmental control technology survey of selected US strip mining sites. Volume 2B. Alabama. Water quality impacts and overburden chemistry of Alabama study site  

SciTech Connect (OSTI)

As part of a program to examine the ability of existing control technologies to meet federal guidelines for the quality of aqueous effluents from coal mines, an intensive study of water, coal, and overburden chemistry was conducted at a surface coal mine in Alabama from May 1976 through July 1977. Sampling sites included the pit sump, a stream downgrade from the mine, the discharge from the water treatment facility, and a small stream outside the mine drainage. Water samples were collected every two weeks by Argonne subcontractors at the Alabama Geological Survey and analysed for the following parameters: specific conductance, pH, temperature, acidity, bicarbonate, carbonate, chloride, total dissolved solids, suspended solids, sulfate, and 20 metals. Analysis of the coal and overburden shows that no potential acid problem exists at this mine. Water quality is good in both streams sampled, and high levels of dissolved elements are found only in water collected from the pit sump. The mine effluent is in compliance with Office of Surface Mining water quality standards.

Henricks, J D; Bogner, J E; Olsen, R D; Schubert, J P; Sobek, A A; Johnson, D O

1980-05-01T23:59:59.000Z

458

Solid-state lighting technology perspective.  

SciTech Connect (OSTI)

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

459

A HIGH ASPECT RATIO, FLEXIBLE, TRANSPARENT AND LOW-COST PARYLENE-C SHADOW MASK TECHNOLOGY FOR MICROPATTERNING APPLICATIONS  

E-Print Network [OSTI]

(HAR) structures. The potential applications of this stencil technology are numerous including. Sridhar3 , A. Khademhosseini4 , A. Busnaina2 , and M. R. Dokmeci1,* 1 Department of Electrical) up to 9 times. This technology has potential applications for patterning proteins, cells and organic

Dokmeci, Mehmet

460

LOW TECHNOLOGY HIGH TRITIUM BREEDING BLANKET CONCEPT* Y. Gohar, C. C. Baker, D. L. Smith, M. C. Billone, Y. S. Cha,  

E-Print Network [OSTI]

of beryllium and 6 cm of solid breeder (LI20, LIA102, or LiASi04) both with a 0.8 density factor. This blanket the chances for water-breeder interaction. This improves the safety and environmental aspects of the blanketLOW TECHNOLOGY HIGH TRITIUM BREEDING BLANKET CONCEPT* Y. Gohar, C. C. Baker, D. L. Smith, M. C

Harilal, S. S.

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups  

SciTech Connect (OSTI)

This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

Wilson, K.L. (ed.)

1985-10-01T23:59:59.000Z

462

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

463

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1  

SciTech Connect (OSTI)

The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

Hofmann, P.L.; Breslin, J.J. (eds.)

1981-01-01T23:59:59.000Z

464

Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

465

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect (OSTI)

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

466

Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994  

SciTech Connect (OSTI)

Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

Amrhein, G.T.

1994-12-23T23:59:59.000Z

467

Surface and Coatings Technology 169170 (2003) 379383 0257-8972/03/$ -see front matter 2003 Elsevier Science B.V. All rights reserved.  

E-Print Network [OSTI]

Surface and Coatings Technology 169­170 (2003) 379­383 0257-8972/03/$ - see front matter 2003­650 km) is rich in atomic oxygen. This highly reactive element impacts satellites at relative velocities

468

Vehicle Technologies Office Merit Review 2014: In-situ Solvothermal Synthesis of Novel High-Capacity Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about in-situ...

469

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network [OSTI]

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

470

Women & early-stage entrepreneurship : examining the impact of the venture funding crisis on male and female-led technology start-ups  

E-Print Network [OSTI]

Women in technology have always been a minority and the number of women who are founders of venture backed start-ups is even lower. This research empirically investigates venture capital funding received by entrepreneurs ...

Swaminathan, Shuba

2010-01-01T23:59:59.000Z

471

Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986  

SciTech Connect (OSTI)

This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update. (LSP)

Watson, R.D. (ed.)

1986-09-01T23:59:59.000Z

472

Waiting to learn a new use of technology: motivation source and its impact on anticipated effect, time pressure and subjective norms  

E-Print Network [OSTI]

with the uncertainty regarding the technology (Bjornstad et al. 2001, Sirmans and Yavas 2001), i.e. managers place higher value on waiting when less is known about the technology. The value of waiting is directly influenced by the likelihood that the new... of immediate failure (b), and the cost of deferral (c) ((Bjornstad et al. 2001, Sirmans and Yavas 2001). These values are subjective in an individual decision context. Thus, I investigate the intrinsic valuations of these three components by utilizing...

Loraas, Tina Marie

2005-11-01T23:59:59.000Z

473

ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES  

SciTech Connect (OSTI)

FMC Lithium Division has successfully completed the project Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

Yakovleva, Marina

2012-12-31T23:59:59.000Z

474

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion...

475

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

476

Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

NONE

1996-10-01T23:59:59.000Z

477

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

478

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

479

Cathodes - Technological review  

SciTech Connect (OSTI)

Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

Cherkouk, Charaf; Nestler, Tina [Institut fr Experimentelle Physik, Technische Universitt Bergakademie Freiberg, Leipziger Strae 23, 09596 Freiberg (Germany)

2014-06-16T23:59:59.000Z

480

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2  

SciTech Connect (OSTI)

The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

Hofmann, P.L. (ed.)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high impact technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Finding the Next Big Thing(s) in Building Energy Efficiency: HIT Catalyst and the Technology Demo Program  

Broader source: Energy.gov [DOE]

Learn how the Department prioritizes high impact technologies (HITs) to advance energy efficiency. Hear from a Better Buildings program participant who is working with Department staff to test promising technologies in buildings. Learn what they are finding and how you can get involved.

482

Quality, Performance, and Emission Impacts of Biofuels and Biofuel...  

Broader source: Energy.gov (indexed) [DOE]

Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends 2010 DOE Vehicle Technologies...

483

education. Our co-op program is closely associated with the Canadian high technology industry, giving you valuable work  

E-Print Network [OSTI]

of diverse areas including aerospace systems, satellite systems, space applications, mechatronics, robotics, security, etc. Canadian industry in computer-based systems is recognized worldwide for its impressive track of the Communications Research Centre, the National Research Council Canada and local technology companies. Your co

484

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

485

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

486

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

487

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

488

A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US  

SciTech Connect (OSTI)

To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.

Oubeidillah, Abdoul A [ORNL] [ORNL; Kao, Shih-Chieh [ORNL] [ORNL; Ashfaq, Moetasim [ORNL] [ORNL; Naz, Bibi S [ORNL] [ORNL; Tootle, Glenn [University of Alabama, Tuscaloosa] [University of Alabama, Tuscaloosa

2014-01-01T23:59:59.000Z

489

Impact of Biodiesel on Modern Diesel Engine Emissions  

Broader source: Energy.gov (indexed) [DOE]

Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

490

Buildings sector demand-side efficiency technology summaries  

SciTech Connect (OSTI)

This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

1994-03-01T23:59:59.000Z

491

Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

NONE

1995-12-31T23:59:59.000Z

492

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

493

The dynamics of technology di?usion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector  

E-Print Network [OSTI]

, for instance windy areas for wind power, or natural water basins and rivers for hydroelectric dams. Higher productivity sites offer lower costs of electricity production and tend to be chosen first by developers. Assuming this, the progression of renewable... reside in China (79%), where the lock-in of coal technology is very difficult to break given the near absence of alternatives (with the exception of hydroelectricity, which is driven to its natural resource limits). The choice of investors thus needs...

Mercure, J.-F.; Pollitt, H.; Chewpreecha, U.; Salas, P.; Foley, A. M.; Holden, P. B.; Edwards, N. R.

2014-07-16T23:59:59.000Z