National Library of Energy BETA

Sample records for high gradient wakefield

  1. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, J. B.; Andonian, G.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Muggli, P.; Yakimenko, V.

    2010-11-04

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  2. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  3. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect (OSTI)

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  4. Argonne Wakefield Accelerator Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities 4 Tesla Magnet Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility In order to achieve the high accelerating gradients needed to produce the tremendous energies required by a future particle accelerator, scientists have been looking for new ideas and solutions. Wakefield acceleration offers a potentially bold new path for the construction of the next generation of particle accelerators. The Argonne Wakefield

  5. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  6. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  7. Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime

    SciTech Connect (OSTI)

    Lemery, F.; Mihalcea, D.; Piot, P.; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; Osterhoff, J.; Stoltz, P.

    2011-09-07

    Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

  8. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; et al

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  9. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  10. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  11. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  12. Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration

    SciTech Connect (OSTI)

    Desforges, F. G.; Paradkar, B. S. Ju, J.; Audet, T. L.; Maynard, G.; Cros, B.; Hansson, M.; Senje, L.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Dobosz-Dufrénoy, S.; Monot, P.; Vay, J.-L.

    2014-12-15

    The dynamics of ionization-induced electron injection in high density (∼1.2 × 10{sup 19} cm{sup −3}) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism.

  13. Coreless Concept for High Gradient Induction Cell

    SciTech Connect (OSTI)

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  14. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    SciTech Connect (OSTI)

    Jing, C.; Power, J.; Zholents, A. )

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  15. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  16. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  17. Theory of factors limiting high gradient operation of warm acceleratin...

    Office of Scientific and Technical Information (OSTI)

    Theory of factors limiting high gradient operation of warm accelerating structures Citation Details In-Document Search Title: Theory of factors limiting high gradient operation of ...

  18. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  19. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  20. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    SciTech Connect (OSTI)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin; Zhang, Zhimeng; Zhao, Zongqing; Zhou, Weimin; Hong, Wei; Cao, Leifeng; Gu, Yuqiu

    2014-12-15

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoid the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.

  1. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C. -H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; et al

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  2. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  3. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  4. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  5. High-gradient compact linear accelerator

    DOE Patents [OSTI]

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  6. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size Illinois: High-Energy,...

  7. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    SciTech Connect (OSTI)

    Masson-Laborde, P. E. Teychenné, D.; Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  8. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  9. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a high-energy, concentration-gradient cathode material for plug-in hybrid and all-electric vehicles. ... market growth, leading to reductions in carbon pollution and imported oil. ...

  10. New High Energy Gradient Concentration Cathode Material | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 6_amine_2011_p.pdf (1.42 MB) More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D Design of Safer High-Energy Density Materials for Lithium-Ion Cells Developing new high energy gradient concentration cathode material

  11. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  12. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    SciTech Connect (OSTI)

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  13. High and ulta-high gradient quadrupole magnets

    SciTech Connect (OSTI)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  14. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect (OSTI)

    Hovater, J. Curt; Allison, Trent L.; Bachimanchi, Ramakrishna; Daly, Edward F.; Drury, Michael A.; Lahti, George E.; Mounts, Clyde I.; Nelson, Richard M.; Plawski, Tomasz E.

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  15. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  16. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  17. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  18. Wakefield generation in magnetized plasmas

    SciTech Connect (OSTI)

    Holkundkar, Amol; Brodin, Gert; Marklund, Mattias

    2011-09-15

    We consider wakefield generation in plasmas by electromagnetic pulses propagating perpendicular to a strong magnetic field, in the regime where the electron cyclotron frequency is equal to or larger than the plasma frequency. Particle-in-cell simulations reveal that for moderate magnetic field strengths previous results are reproduced, and the wakefield wave number spectrum has a clear peak at the inverse skin depth. However, when the cyclotron frequency is significantly larger than the plasma frequency, the wakefield spectrum becomes broadband, and simultaneously the loss rate of the driving pulse is much enhanced. A set of equations for the scalar and vector potentials reproducing these results are derived, using only the assumption of a weakly nonlinear interaction.

  19. Charged particle beam scanning using deformed high gradient insulator

    DOE Patents [OSTI]

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  20. Modified Magnicon for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-19

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  1. Modeling high gradient magnetic separation from biological fluids.

    SciTech Connect (OSTI)

    Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

    2006-01-01

    A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

  2. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    SciTech Connect (OSTI)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  3. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Latest Plasma Wakefield Acceleration Results from the FACET Project Citation Details In-Document Search Title: Latest Plasma Wakefield Acceleration Results from the FACET Project...

  4. Dechirper Wakefields for Short Bunches (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dechirper Wakefields for Short Bunches Citation Details In-Document Search Title: Dechirper Wakefields for Short Bunches Authors: Bane, Karl ; Stupakov, Gennady ;...

  5. Dechirper Wakefields for Short Bunches (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dechirper Wakefields for Short Bunches Citation Details In-Document Search Title: Dechirper Wakefields for Short Bunches You are accessing a document from the...

  6. Analytical theory of coherent synchrotron radiation wakefield...

    Office of Scientific and Technical Information (OSTI)

    Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by ... Word Cloud More Like This Full Text preview image File size NAView Full Text View Full ...

  7. Wakefield Municipal Gas & Light Department - Residential Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats: 25 Water Heater: 100 Summary The Wakefield Municipal Gas & Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric...

  8. A high-gradient high-duty-factor Rf photo-cathode electron gun

    SciTech Connect (OSTI)

    Rimmer, Robert A.; Hartman, Neal; Lidia, Steven M.; Wang, Shaoheng

    2002-05-22

    We describe the analysis and preliminary design of a high-gradient, high-duty factor RF photocathode gun. The gun is designed to operate at high repetition rate or CW, with high gradient on the cathode surface to minimize emittance growth due to space charge forces at high bunch charge. The gun may also be operated in a solenoidal magnetic field for emittance compensation. The design is intended for use in short-pulse, high-charge, and high-repetition rate applications such as linac based X-ray sources. We present and compare the results of gun simulations using different codes, as well as RF and thermal analysis of the structure.

  9. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect (OSTI)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

    2013-06-01

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

  10. Overview of high gradient SRF R&D for ILC cavities at Jefferson...

    Office of Scientific and Technical Information (OSTI)

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF ...

  11. High-Gradient Tests of the Single-Cell SC Cavity with a Feedback Waveguide

    SciTech Connect (OSTI)

    Yakovlev, V.; Solyak, N.; Wu, G.; Ge, M.; Gonin, I.; Khabiboulline, T.; Ozelis, J.; Rowe, A. [Fermilab, Batavia, IL 60510 (United States); Avrakhov, P.; Kanareykin, A. [Euclid TechLabs, LLC, Solon, Ohio 44139 (United States); Rathke, J. [AES, Medford, NY 11763 (United States)

    2010-11-04

    Use of a superconducting (SC) traveling-wave accelerating (STWA) structure with a small phase advance per cell, rather than a standing-wave structure, may provide a significant increase in the accelerating gradient in the ILC linac [1]. For the same surface electric and magnetic fields, the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing-wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

  12. Measured and theoretical characterization of the RF properties of stacked, high-gradient insulator material

    SciTech Connect (OSTI)

    Houck, T. L., LLNL

    1997-05-09

    Recent high-voltage breakdown experiments of periodic metallic-dielectric insulating structures have suggested several interesting high-gradient applications. One such area is the employment of high-gradient insulators in high-current, electron-beam, accelerating induction modules. For this application, the understanding of the rf characteristics of the insulator plays an important role in estimating beam-cavity interactions. In this paper, we examine the rf properties of the insulator comparing simulation results with experiment. Different insulator designs are examined to determine their rf transmission properties in gap geometries.

  13. New results of development on high efficiency high gradient superconducting rf cavities

    SciTech Connect (OSTI)

    Geng, Rongli; Li, Z.; Hao, K.; Liu, K.-X.; Zhao, H.-Y.; Adolphsen, C.

    2015-09-01

    We report on the latest results of development on high efficiency high gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  14. High gradient rf gun studies of CsBr photocathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  15. High gradient rf gun studies of CsBr photocathodes

    SciTech Connect (OSTI)

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; Corbett, Jeff; Hartmann, Nick; Pianetta, Piero A.; Hesselink, Lambertus; Schmerge, John F.

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 210?? torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  16. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  17. Probing the laser wakefield in underdense plasmas by induced terahertz emission

    SciTech Connect (OSTI)

    Hu, Z. D.; Wang, W. M.; Chen, L. M.; Li, Y. T.; Sheng, Z. M.; Zhang, J.; Key Laboratory for Laser Plasmas and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240

    2013-08-15

    Terahertz (THz) radiation can be produced from a laser wakefield driven in underdense plasmas in the presence of a transverse DC magnetic field. It is shown that the radiation usually contains a component at the electron plasma frequency and its harmonics when the wakefield is excited at high amplitudes. In the highly nonlinear bubble/blowout regime, the radiation contains a smooth component peaked at the reduced electron plasma frequency and an irregular spectrum extending to tens of the electron plasma frequency. The latter is due to the broken-wave structure behind the bubble. A theoretical model is presented and validated via two-dimensional particle-in-cell simulations. The measurement of such THz emission may provide a diagnostic of the laser wakefield structure.

  18. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect (OSTI)

    Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; Novitski, Igor; Zlobin, Alexander; McInturff, Alfred; Sabbi, GianLuca

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  19. AWAKE -- A Proton-driven Plasma Wakefield Experiment at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AWAKE -- A Proton-driven Plasma Wakefield Experiment at CERN Swapan Chattopadhyay Fermilab March 9, 2016 4:00 p.m. - Wilson Hall, One West High energy intense proton beams such as the in the 7 TeV x 7 TeV Large Hadron Collider at CERN have sufficient energy stored per proton bunch to power and accelerate an electron beam to an energy of 600 GeV if a suitable mechanism could be found to transform all the stored proton beam energy into the electrons. A suitably designed plasma column could be such

  20. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect (OSTI)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  1. A Meter-Scale Plasma Wakefield Accelerator (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: A Meter-Scale Plasma Wakefield Accelerator Citation Details In-Document Search Title: A Meter-Scale Plasma Wakefield Accelerator No abstract prepared. Authors:...

  2. Positron jitter and wakefield effects in the SLC injector linac

    SciTech Connect (OSTI)

    Tian, F.; McCormick, D.; Ross, M.

    1994-06-01

    The positron beam in the SLC injector linac is a high current (7*10{sup 10} particles/bunch), large universe emittance ({gamma}{var_epsilon} = .01 m-rad) and long bunch length ({approximately}4 mm) beam. A large 5% positron intensity jitter was observed and correlated with the accelerating phase of the RF cavities in the positron source linac. For high transmission, the positron jitter must be reduced and strong wakefield effects cannot be ignored. A code was written to study causes of the positron jitter and wakefields in the SLC injector linac. The tracking results show that when the bunch lengths are 1.5, 2.1, 3.0, 4.0 mm, the injection apertures (leading to 30% loss) are 1.8, 1,6, 1.2, 1.0 sigma of transverse size at the beginning of the sector respectively. For the long bunches, the nominal 20% of beam size transverse pulse to pulse jitter causes an additional 3% loss. Also the bunch energy spread is more sensitive to the accelerating phase of the RF cavities.

  3. Role of stochastic heating in wakefield acceleration when optical injection is used

    SciTech Connect (OSTI)

    Rassou, S.; Bourdier, A.; Drouin, M.

    2014-08-15

    The dynamics of an electron in two counterpropagating waves is investigated. Conditions for stochastic acceleration are derived. The possibility of stochastic heating is confirmed when two waves interact with low density plasma by performing PIC (Particle In Cell) code simulations. It is shown that stochastic heating can play an important role in laser wakefield acceleration. When considering low density plasma interacting with a high intensity wave perturbed by a low intensity counterpropagating wave, stochastic heating can provide electrons with the right momentum for trapping in the wakefield. The influence of stochastic acceleration on the trapping of electrons is compared to the one of the beatwave force which is responsible for cold injection. To do so, several polarizations for the colliding pulses are considered. For some value of the plasma density and pulse duration, a transition from an injection due to stochastic acceleration to a cold injection dominated regime—regarding the trapped charge—has been observed from 2D and 3D PIC code simulations. This transition is ruled by the ratio of the interaction length of the pulses to the longitudinal size of the bubble. When the interaction length of the laser pulses reaches the radius of the accelerating cavity stochastic heating becomes dominant, and might be necessary to get electrons trapped into the wakefield, when wakefield inhibition grows with plasma density.

  4. Wakefield Municipal Gas & Light Department- Residential Conservation Services Program

    Broader source: Energy.gov [DOE]

    The Wakefield Municipal Gas & Light Department (WMGLD), offers the "Incentive Rebate Program" to encourage residential customers to improve the energy efficiency of their homes. After a home...

  5. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOE Patents [OSTI]

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  6. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    SciTech Connect (OSTI)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-12-31

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz.

  7. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect (OSTI)

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  8. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Decker, Derek E. (Livermore, CA)

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  9. Latest Results of ILC High-Gradient R&D 9-cell Cavities at JLAB

    SciTech Connect (OSTI)

    Rongli Geng

    2008-02-11

    It has been over a year since JLAB started processing and testing ILC 9-cell cavities in the frame work of ILC high-gradient cavity R&D, aiming at the goal of a 35 MV/m gradient at a Q #4; of 1E10 with a yield of 90%. The necessary cavity processing steps include field flatness tuning, electropolishing (EP), hydrogen out-gassing under vacuum, high-pressure water rinsing, clean room assembly, and low temperature bake. These are followed by RF test at 2 Kelvin. Ultrasonic cleaning with Micro-90, an effective post-EP rinsing recipe discovered at JLAB, is routinely used. Seven industry manufactured 9-cell TESLAshape cavities are processed and tested repeatedly. So far, 33 EP cycles are accumulated, corresponding to more than 65 hours of active EP time. An emphasis put on RF testing is to discern cavity quench characteristics, including its nature and its location. Often times, the cavity performance is limited by thermal-magnetic quench instead of field emission. The quench field in some cavities is lower than 20 MV/m and remains unchanged despite repeated EP, implying material and/or fabrication defects. The quench field in some other cavities is high but changes unpredictably after repeated EP, suggesting processing induced defects. Based on our experience and results, several areas are identified where improvement is needed to improve cavity performance as well as yield.

  10. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab

    SciTech Connect (OSTI)

    Geng, Rongli [JLAB

    2009-11-01

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF testing has been enhanced with added surface mapping and T-mapping instrumentations. 12 new 9-cell cavities (10 of them are baseline fine-grain TESLA-shape cavities: 5 built by ACCEL/Research Instruments, 4 by AES and 1 by JLab; 2 of them are alternative cavities: 1 fine-grain ICHIRO-shape cavity built by KEK/Japan industry and 1 large-grain TESLA-shape cavity built by JLab) are EP processed and tested. 76 EP cycles are accumulated, corresponding to more than 200 hours of active EP time. Field emission (FE) and quench behaviors of electropolished 9-cell cavities are studied. EP process continues to be optimized, resulting in advanced procedures and hence improved cavity performance. Several 9-cell cavities reached 35 MV/m after the first light EP processing. FE-free performance has been demonstrated in 9-cell cavities in 35-40 MV/m range. 1-cell cavity studies explore new techniques for defect removal as well as advanced integrated cavity processing. Surface studies of niobium samples electropolished together with real cavities provide new insight into the nature of field emitters. Close cooperation with the US cavity fabrication industry has been undertaking with the successful achievement of 41 MV/m for the first time in a 9-cell ILC cavity built by AES. As the size of the data set grows, it is now possible to construct gradient yield curves, from which one can see that significant progress has been made in raising the high gradient yield.

  11. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  12. Wakefields of Sub-Picosecond Electron Bunches

    SciTech Connect (OSTI)

    Bane, Karl L.F.; /SLAC

    2006-04-19

    We discuss wakefields excited by short bunches in accelerators. In particular, we review some of what has been learned in recent years concerning diffraction wakes, roughness impedance, coherent synchrotron radiation wakes, and the resistive wall wake, focusing on analytical solutions where possible. As examples, we apply formulas for these wakes to various parts of the Linac Coherent Light Source (LCLS) project. The longitudinal accelerator structure wake of the SLAC linac is an important ingredient in the LCLS bunch compression process. Of the wakes in the undulator region, the dominant one is the resistive wall wake of the beam pipe.

  13. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    SciTech Connect (OSTI)

    Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.

    2012-12-21

    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.

  14. Laser wakefield acceleration of electrons with ionization injection in a pure N{sup 5+} plasma waveguide

    SciTech Connect (OSTI)

    Goers, A. J.; Yoon, S. J.; Elle, J. A.; Hine, G. A.; Milchberg, H. M.

    2014-05-26

    Ionization injection-assisted laser wakefield acceleration of electrons up to 120?MeV is demonstrated in a 1.5?mm long pure helium-like nitrogen plasma waveguide. The guiding structure stabilizes the high energy electron beam pointing and reduces the beam divergence. Our results are confirmed by 3D particle-in-cell simulations.

  15. Dual effects of stochastic heating on electron injection in laser wakefield acceleration

    SciTech Connect (OSTI)

    Deng, Z. G.; Wang, X. G.; Yang, L.; Zhou, C. T.; Yu, M. Y.; Ying, H. P.

    2014-08-15

    Electron injection into the wakefield of an intense short laser pulse by a weaker laser pulse propagating in the opposite direction is reconsidered using two-dimensional (2D) particle-in-cell simulations as well as analytical modeling. It is found that for linearly polarized lasers the injection efficiency and the quality of the wakefield accelerated electrons increase with the intensity of the injection laser only up to a certain level, and then decreases. Theory and simulation tracking test electrons originally in the beat region of the two laser pulses show that the reduction of the injection efficiency at high injection-laser intensities is caused by stochastic overheating of the affected electrons.

  16. Heavy medium recovery in coal washing by continuous high gradient magnetic separation. Final report

    SciTech Connect (OSTI)

    Kelland, D.R.

    1983-09-01

    We have adapted high grade magnetic separation (HGMS) for magnetite recovery because of its insensitivity to coal/magnetite ratio and slurry density and its ability to capture fine magnetite at high velocity. An open vertical matrix able to capture 10 ..mu..m (avg. size) magnetite without entraining 2 mm coal has been incorporated in a 1.85 m diameter continuous high gradient magnetic separator. Three-quarter ton samples of magnetite (in 1000 gallons of water) have been recovered with the matrix ring turning at 40 cm/s through a field of 6 kOe. A laminated core demagnetizing coil followed by water sprays removes the recovered magnetite. The recovery is high, particularly for two passes which could be accomplished by two magnet heads on a single carousel ring. Coal entrainment is low for a wide range of operating conditions. A 4.8 m diameter separator, the largest currently available, with multiple heads, should be able to treat 350 tons of magnetite and coal per hour. 29 references, 52 figures, 13 tables.

  17. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect (OSTI)

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  18. 9 GeV energy gain in a beam-driven plasma wakefield accelerator...

    Office of Scientific and Technical Information (OSTI)

    9 GeV energy gain in a beam-driven plasma wakefield accelerator Citation Details In-Document Search Title: 9 GeV energy gain in a beam-driven plasma wakefield accelerator An ...

  19. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory...

    Office of Scientific and Technical Information (OSTI)

    A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Citation Details In-Document Search Title: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs ...

  20. Angular Dependence of Betatron X-Ray Spectra from a Laser Wakefield...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Spectra from a Laser Wakefield Accelerator Citation Details In-Document Search Title: Angular Dependence of Betatron X-Ray Spectra from a Laser Wakefield Accelerator ...

  1. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; Bullington, Amber; Di Nicola, Jean -Michel G.; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I.; Smith, Cal

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  2. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  3. Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » 07.01.13 Two GeV Electrons Achieved

  4. Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator

    SciTech Connect (OSTI)

    Oulianov, Dmitri A.; Crowell, Robert A.; Gosztola, David J.; Shkrob, Ilya A.; Korovyanko, Oleg J.; Rey-de-Castro, Roberto C.

    2007-03-01

    We report ultrafast pulse radiolysis transient absorption (TA) spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC subpicosecond pulses of multi-mega-electron-volt electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic TA measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Normalization of the TA signal leads to an improvement in the signal to noise ratio by a factor of 5 to 6. Due the pointing instability of the laser this improvement was limited to a 5 to 10 min acquisition period, requiring periodic recalibration and realignment. Time resolution, defined by the rise time of TA signal from hydrated electron in pulse radiolysis of liquid water, of a few picoseconds, has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensitivity. Subpicosecond time resolution can be achieved by using thinner samples, more sensitive detection techniques, and improved electron beam quality.

  5. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    SciTech Connect (OSTI)

    Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.

    2014-09-15

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.

  6. Modeling laser wakefield accelerators in a Lorentz boosted frame

    SciTech Connect (OSTI)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  7. The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng Wang, Wentao; Zhang, Zhijun; Chen, Qiang; Tian, Ye; Qi, Rong; Yu, Changhai; Wang, Cheng; Li, Ruxin Xu, Zhizhan; Tajima, T.

    2014-03-03

    An electron beam with the maximum energy extending up to 1.8?GeV, much higher than the dephasing limit, is experimentally obtained in the laser wakefield acceleration with the plasma density of 3.5??10{sup 18}?cm{sup ?3}. With particle in cell simulations and theoretical analysis, we find that the laser intensity evolution plays a major role in the enhancement of the electron energy gain. While the bubble length decreases due to the intensity-decay of the laser pulse, the phase of the electron beam in the wakefield can be locked, which contributes to the overcoming of the dephasing. Moreover, the laser intensity evolution is described for the phase-lock acceleration of electrons in the uniform plasma, confirmed with our own simulation. Since the decaying of the intensity is unavoidable in the long distance propagation due to the pump depletion, the energy gain of the high energy laser wakefield accelerator can be greatly enhanced if the current process is exploited.

  8. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect (OSTI)

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.

    2014-08-15

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  9. Spectral diagnostics of laser wakefield in capillary tubes

    SciTech Connect (OSTI)

    Andreev, N.E.; Chegotov, M.V.; Cros, B.; Mora, P.; Vieux, G.

    2006-05-15

    The modification of the spectrum of a probe pulse traveling in a linear plasma wave created in the wake of a pump pulse guided inside a capillary tube is analyzed for the cases of narrow or broad chirped probe spectra. It is shown that in both cases the measurement of the spectrum can be used as a diagnostic for the amplitude of the plasma wave. The results of full-scale numerical modeling confirm the developed analytical theory of wake-field diagnostics.

  10. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    DOE Patents [OSTI]

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  11. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

    SciTech Connect (OSTI)

    Corde, Sebastien; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lipkowitz, N.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.; Yocky, G.; Clayton, C. E.

    2015-08-26

    New accelerator concepts must be developed to make future particle colliders more compact and affordable. The Plasma Wakefield Accelerator (PWFA) is one such concept, where the electric field of a plasma wake excited by a charged-particle bunch is used to accelerate a trailing bunch of particles. To apply plasma acceleration to particle colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas1. While substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch 2, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFA where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered – self-loaded – so that about a billion positrons gain five gigaelectronvolts (GeV) of energy with a narrow energy spread in a distance of just 1.3 meters. They extract about 30% of the wake’s energy and form a spectrally distinct bunch with as low as a 1.8% r.m.s. energy spread. This demonstrated ability of positron-driven plasma wakes to efficiently accelerate a significant number of positrons with a small energy spread may overcome the long-standing challenge of positron acceleration in plasma-based accelerators.

  12. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; et al

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  13. Multi-MW K-Band 7th Harmonic Multiplier for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Solyak, N.A.; Yakovlev, V.P.; Hirschfield, J.L.; Kazakevich, G.M.; LaPointe, M.A.; /Yale U.

    2009-05-01

    A preliminary design and current status are presented for a two-cavity 7th harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power in K-band using as its RF driver an XK-5 S-band klystron (2.856 GHz). The multiplier is to be built with a TE{sub 111} rotating mode input cavity and interchangeable output cavities, a principal example being a TE{sub 711} rotating mode cavity running at 20 GHz. The design that is described uses a 250 kV, 20 A injected laminar electron beam. With 8.5 MW of S-band drive power, 4.4 MW of 20-GHz output power is predicted. The design uses a gun, magnetic coils, and beam collector from an existing waveguide 7th harmonic multiplier. The gun has been re-conditioned and the desired operating parameters have been achieved.

  14. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    SciTech Connect (OSTI)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  15. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect (OSTI)

    Albert, F; Thomas, A G; Mangles, S P; Banerjee, S; Corde, S; Flacco, A; Litos, M; Neely, D; Viera, J; Najmudin, Z; Bingham, R; Joshi, C; Katsouleas, T

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future eff orts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefi eld accelerators for these specifi c applications.

  16. HIGH AVERAGE CURRENT LOW EMITTANCE BEAM EMPLOYING CW NORMAL CONDUCTING GUN.

    SciTech Connect (OSTI)

    CHANG,X.; BEN-ZVI, I.; KEWISCH, J.; PAI, C.

    2007-06-25

    CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (Em) project.

  17. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    2014-11-05

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  18. Collimator Wakefield Calculations for ILC-TRC Report(LCC-0101)

    SciTech Connect (OSTI)

    Tenenbaum, P

    2003-10-07

    We summarize the formalism of collimator wakefields and their effect on beams that are near the center of the collimator gap, and apply the formalism to the TESLA, NLC, and CLIC collimation systems.

  19. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory...

    Office of Scientific and Technical Information (OSTI)

    A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Summarized for CSS2013 E. Adli, J.P.Delahaye, S.J.Gessner, M.J. Hogan, T. Raubenheimer (SLAC) W.An,...

  20. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    SciTech Connect (OSTI)

    Jeon, Jong Ho Nakajima, Kazuhisa Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo; Rhee, Yong Joo; Shin, Jung Hun; Jo, Sung Ha; Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  1. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density

    Office of Scientific and Technical Information (OSTI)

    Profile at the Plasma Boundary (Conference) | SciTech Connect Conference: Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary Citation Details In-Document Search Title: Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense plasma regime, the drive beam creates an ion channel

  2. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  3. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect (OSTI)

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  4. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuschel, S.; Hollatz, D.; Heinemann, T.; Karger, O.; Schwab, M. B.; Ullmann, D.; Knetsch, A.; Seidel, A.; Rodel, C.; Yeung, M.; et al

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  5. The development of a high-throughput gradient array apparatus for the study of porous polymer networks.

    SciTech Connect (OSTI)

    Majumdar, Partha; Lee, Elizabeth; Chisholm, Bret J.; Dirk, Shawn M.; Weisz, Michael; Bahr, James; Schiele, Kris

    2010-01-01

    A gradient array apparatus was constructed for the study of porous polymers produced using the process of chemically-induced phase separation (CIPS). The apparatus consisted of a 60 element, two-dimensional array in which a temperature gradient was placed in the y-direction and composition was varied in the x-direction. The apparatus allowed for changes in opacity of blends to be monitored as a function of temperature and cure time by taking images of the array with time. The apparatus was validated by dispense a single blend composition into all 60 wells of the array and curing them for 24 hours and doing the experiment in triplicate. Variations in micron scale phase separation were readily observed as a function of both curing time and temperature and there was very good well-to-well consistency as well as trial-to-trial consistency. Poragen of samples varying with respect to cure temperature was removed and SEM images were obtained. The results obtained showed that cure temperature had a dramatic affect on sample morphology, and combining data obtained from visual observations made during the curing process with SEM data can enable a much better understanding of the CIPS process and provide predictive capability through the relatively facile generation of composition-process-morphology relationships. Data quality could be greatly enhanced by making further improvements in the apparatus. The primary improvements contemplated include the use of a more uniform light source, an optical table, and a CCD camera with data analysis software. These improvements would enable quantification of the amount of scattered light generated from individual elements as a function of cure time. In addition to the gradient array development, porous composites were produced by incorporating metal particles into a blend of poragen, epoxy resin, and crosslinker. The variables involved in the experiment were metal particle composition, primary metal particle size, metal concentration

  6. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    SciTech Connect (OSTI)

    Bane, K.L.F.; Adolphsen, C.; Li, Z.; Dohlus, M.; Zagorodnov, I.; Gonin, I.; Lunin, A.; Solyak, N.; Yakovlev, V.; Gjonaj, E.; Weiland, T.; /Darmstadt, Tech. Hochsch.

    2008-07-07

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm.

  7. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    SciTech Connect (OSTI)

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  8. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect (OSTI)

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  9. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to

    Office of Scientific and Technical Information (OSTI)

    Multi-TeV (Conference) | SciTech Connect Conference: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Citation Details In-Document Search Title: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Authors: Adli, E ; Delahaye, J.P. ; Gessner, S.J. ; Hogan, M.J. ; Raubenheimer, T. ; /SLAC ; An, W. ; Joshi, C. ; Mori, W. ; /UCLA, Los Angeles Publication Date: 2013-09-30 OSTI Identifier: 1074154 Report Number(s): SLAC-PUB-15426 DOE

  10. Flow directions and hydraulic gradients in the variable density flow system at the proposed high-level nuclear waste repository site in the Texas panhandle

    SciTech Connect (OSTI)

    Bair, E.S.; O'Donnell, T.P.

    1985-01-01

    Bedded salt, welded tuff, and basalt are the three rock types proposed as possible host rock for the nation's first high-level nuclear waste repository. Regional flow at the proposed bedded salt site in the Texas Panhandle is unique because it contains waters with highly variable fluid density. The site area is underlain by three regional hydrostratigraphic units: a shallow aquifer system developed in the Ogallala Formation and Dockum Group containing waters with less than 1500 mg/1 TDS, a shale and evaporite aquitard associated with the target salt horizon commonly containing waters with 300,000 mg/1 TDS, and a deep aquifer system developed in the Wolfcamp Series and Pennsylvanian System commonly containing waters with 50,000 to 200,000 mg/1 TDS. The associated fluid density variations can lead to miscalculation of flow directions, hydraulic gradients, and travel times. Pressure-depth diagrams based on shut-in pressure and specific-gravity data from drill-stem tests indicate that regionally the potential for downward flow exists in the shale and evaporite aquitard and the potential for horizontal flow exists in the deep aquifer system. Determination of the direction and magnitude of the vertical hydraulic gradient across the target salt horizon based on a method that solely uses pressure data and which incorporates the effects of variable fluid density indicates a downward-oriented hydraulic gradient at the proposed Texas Panhandle site. These methods do not require calculation of hydraulic head and, therefore, are a more realistic way of determining flow characteristics in variable density flow systems.

  11. The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

    SciTech Connect (OSTI)

    Jones, B. Harvey-Thompson, A. J.; Ampleford, D. J.; Jennings, C. A.; Hansen, S. B.; Moore, N. W.; Lamppa, D. C.; Johnson, D.; Jones, M. C.; Waisman, E. M.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ouart, N. D.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.; and others

    2015-02-15

    Argon gas puffs have produced 330 kJ ± 9% of x-ray radiation above 3 keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

  12. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    SciTech Connect (OSTI)

    Ng, C. K.; Bane, K. L.F.

    2015-06-09

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters long in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.

  13. Wakefields generated by collisional neutrinos in neutral-electron-positron plasma

    SciTech Connect (OSTI)

    Tinakiche, Nouara

    2013-02-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in this plasma.

  14. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    SciTech Connect (OSTI)

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  15. Gradient Resources | Open Energy Information

    Open Energy Info (EERE)

    Gradient Resources Jump to: navigation, search Logo: Gradient Resources Name: Gradient Resources Address: 9670 Gateway Drive, Suite 200 Place: Reno, Nevada Zip: 89521 Region:...

  16. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect (OSTI)

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-06-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  17. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  18. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    SciTech Connect (OSTI)

    Tinakiche, Nouara

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  19. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect (OSTI)

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  20. Simulation of quasimonoenergetic electron beams produced by colliding pulse wakefield acceleration

    SciTech Connect (OSTI)

    Davoine, X.; Lefebvre, E.; Lifschitz, A.

    2008-11-15

    The collision of two laser pulses can inject electrons into a wakefield accelerator, and has been found to produce stable and tunable quasimonoenergetic electron beams [J. Faure et al., Nature 444, 737 (2006)]. This colliding pulse scheme is studied here with 3D particle-in-cell simulations. The results are successfully compared with experimental data, showing the accuracy of the simulations. The involved mechanisms (laser propagation, wake inhibition, electron heating and trapping, beam loading) are presented in detail. We explain their interplay effects on the beam parameters. The experimental variations of beam charge and energy with collision position are explained.

  1. Experimental validation of a radio frequency photogun as external electron injector for a laser wakefield accelerator

    SciTech Connect (OSTI)

    Stragier, X. F. D.; Luiten, O. J.; Geer, S. B. van der; Wiel, M. J. van der; Brussaard, G. J. H.

    2011-07-15

    A purpose-built RF-photogun as external electron injector for a laser wakefield accelerator has been thoroughly tested. Different properties of the RF-photogun have been measured such as energy, energy spread and transverse emittance. The focus of this study is the investigation of the smallest possible focus spot and focus stability at the entrance of the plasma channel. For an electron bunch with 10 pC charge and 3.7 MeV kinetic energy, the energy spread was 0.5% with a shot-to-shot stability of 0.05%. After focusing the bunch by a pulsed solenoid lens at 140 mm from the middle of the lens, the focal spot was 40 {mu}m with a shot-to-shot stability of 5 {mu}m. Higher charge leads to higher energy spread and to a larger spot size, due to space charge effects. All properties were found to be close to design values. Given the limited energy of 3.7 MeV, the properties are sufficient for this gun to serve as injector for one particular version of laser wakefield acceleration, i.e., injection ahead of the laser pulse. These measured electron bunch properties were then used as input parameters for simulations of electron bunch injection in a laser wakefield accelerator. The arrival time jitter was deduced from measurements of the energy fluctuation, in combination with earlier measurements using THz coherent transition radiation, and is around 150 fs in the present setup. The bunch length in the focus, simulated using particle tracking, depends on the accelerated charge and goes from 100 fs at 0.1 pC to 1 ps at 50 pC. When simulating the injection of the 3.7 MeV electron bunch of 10 pC in front of a 25 TW laser pulse with a waist of 30 {mu}m in a plasma with a density of 0.7 x 10{sup 24} m{sup -3}, the maximum accelerated charge was found to be 1.2 pC with a kinetic energy of {approx}900 MeV and an energy spread of {approx}5%. The experiments combined with the simulations show the feasibility of external injection and give a prediction of the output parameters that can

  2. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bettoni, S.; Craievich, P.; Lutman, A. A.; Pedrozzi, M.

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  3. Sound beam manipulation based on temperature gradients

    SciTech Connect (OSTI)

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  4. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect (OSTI)

    Paradkar, B. S.; Cros, B.; Maynard, G.; Mora, P.

    2013-08-15

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (∼1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (∼5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  5. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  6. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  7. Sources of stress gradients in electrodeposited Ni MEMS. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Sources of stress gradients in electrodeposited Ni MEMS. The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex ...

  8. Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes

    SciTech Connect (OSTI)

    Ju, J.; Doepp, A.; Cassou, K.; Neveu, O.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlstroem, C.-G.; Ferrari, H. E.

    2012-05-07

    Electrons accelerated in the nonlinear regime in a laser wakefield accelerator experience transverse oscillations inside the plasma cavity, giving rise to ultra-short pulsed x-rays, also called the betatron radiation. We show that the fluence of x-ray can be enhanced by more than one order of magnitude when the laser is guided by a 10 mm long capillary tube instead of interacting with a 2 mm gas jet. X-rays with a synchrotron-like spectrum and associated critical energy {approx}5 keV, with a peak brightness of {approx}1x10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW, were achieved by employing 16 TW laser pulses.

  9. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  10. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect (OSTI)

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/ω{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  11. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect (OSTI)

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (∼100–1000 m)

  12. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    SciTech Connect (OSTI)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Sheng, Z. M.; Zhang, J.

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  13. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Froula, D H; Clayton, C E; Doppner, T; Fonseca, R A; Marsh, K A; Barty, C J; Divol, L; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C; Silva, L O; Wang, T

    2009-06-02

    A laser wakefield acceleration study has been performed in the matched, self-guided, blow-out regime where a 10 J, 60 fs laser produced 720 {+-} 50 MeV quasi-monoenergetic electrons with a divergence of {Delta}{theta} = 2.85 {+-} 0.15 mRad. While maintaining a nearly constant plasma density (3 x 10{sup 18} cm{sup -3}), a linear electron energy gain was measured from 100 MeV to 700 MeV when the plasma length was scaled from 3 mm to 8 mm. Absolute charge measurements indicate that self-injection occurs when P/P{sub cr} > 4 and saturates around 100 pC for P/P{sub cr} > 12. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  14. Energy in density gradient

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  15. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (OSTI)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  16. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  17. EA-2010: Alternating Gradient Synchrotron Complex Improvements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gradient Synchrotron Complex Improvements at Brookhaven National Laboratory; Upton, New York EA-2010: Alternating Gradient Synchrotron Complex Improvements at Brookhaven ...

  18. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect (OSTI)

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  19. Optimization of Drive-Bunch Current Profile for Enhanced Transformer Ratio in Beam-Driven Acceleration Techniques

    SciTech Connect (OSTI)

    Lemery, F.; Mihalcea, D.; Prokop, C.R.; Piot, P.; /Northern Illinois U. /Fermilab

    2012-07-08

    In recent years, wakefield acceleration has gained attention due to its high acceleration gradients and cost effectiveness. In beam-driven wakefield acceleration, a critical parameter to optimize is the transformer ratio. It has been shown that current shaping of electron beams allows for enhanced (> 2) transformer ratios. In this paper we present the optimization of the pulse shape of the drive bunch for dielectric-wakefield acceleration.

  20. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    SciTech Connect (OSTI)

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC

    2009-06-19

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.

  1. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  2. New High Energy Gradient Concentration Cathode Material

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. New High Energy Gradient Concentration Cathode Material

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Shielding effect and wakefield pattern of a moving test charge in a non-Maxwellian dusty plasma

    SciTech Connect (OSTI)

    Ali, S.; Khan, S.; Department of Physics, Gomal University, Dera Ismail Khan 29050

    2013-07-15

    By using the Vlasov-Poisson equations, we calculate an expression for the electrostatic potential caused by a test charge in an unmagnetized non-Maxwellian dusty plasma, whose constituents are the superthermal hot-electrons, the mobile cold-electrons with a neutralizing background of cold ions, and charge fluctuating isolated dust grains. The superthermality effects due to hot electrons not only modify the dielectric constant of the electron-acoustic waves but also significantly affect the electrostatic potential. The latter can be decomposed into the Debye-Hckel and oscillatory wake potentials. Analytical and numerical results reveal that the Debye-Hckel and wakefield potentials converge to the Maxwellian case for large values of superthermality parameter. Furthermore, the plasma parameters play a vital role in the formation of shielding and wakefield pattern in a two-electron temperature plasma. The present results should be important for laboratory and space dusty plasmas, where hot-electrons can be assumed to follow the non-Maxwellian distribution function.

  5. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  6. Electron acceleration by laser wakefield and x-ray emission at moderate intensity and density in long plasmas

    SciTech Connect (OSTI)

    Ferrari, H. E.; Lifschitz, A. F.; Maynard, G.; Cros, B.

    2011-08-15

    The dynamics of electron acceleration by laser wakefield and the associated x-rays emission in long plasmas are numerically investigated for parameters close to the threshold of laser self-focusing. The plasma length is set by the use of dielectric capillary tubes that confine the gas and the laser energy. Electrons self-injection and acceleration to the 170 MeVs are obtained for densities as low as 5 x 10{sup 18} cm{sup -3} and a moderate input intensity (0.77 x 10{sup 18} W/cm{sup 2}). The associated x-ray emission at the exit of the capillary tube is shown to be an accurate diagnostic of the electrons self-injection and acceleration process.

  7. New results of development on high efficiency high gradient supercondu...

    Office of Scientific and Technical Information (OSTI)

    Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) SLAC National Accelerator Lab., Menlo Park, CA (United States) Peking Univ., Beijing (China) OTIC, ...

  8. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-15

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  9. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  10. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  11. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect (OSTI)

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  12. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Argonne maintains two state-of-the-art facilities for high-energy physics research. The Argonne Wakefield Accelerator Facility is home to technology that produces high accelerating gradients that could form the basis of the next generation of particle accelerators. Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility Learn More » Argonne Wakefield Accelerator

  13. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);High Energy Physics (HEP) Country of Publication: United States ...

  14. SW New Mexico BHT geothermal gradient calculations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  15. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2012-02-07

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  16. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2010-02-16

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  17. Novel concepts in weld science: Role of gradients and composite structure

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1992-08-31

    The effects of compositional and microstructural gradients on weld metal properties were investigated. The effects of compositional gradients were analyzed using thermodynamic and composite models. Brittle and ductile cracking behavior were investigated using both binary alloy single crystals and large grain castings. In both cases, the crack propagated along regions where the compositional gradients were the steepest. High temperature deformation of large wavelength compositonally modulated structures vas investigated to understand creep behavior in veld metal. At moderate temperatures, the creep behavior of cored materials was found to follow predictions based on the rule of mixtures composite analysis. At higher temperatures with the advent of dynamic mass transport the creep process is influenced by diffusion-promoted vacancy flow and time-dependent compositional gradient. The investigation found the critical gradient which will promote Kirkendall voids and has reported a creep rate behavior that suggests strong structural dependence, localized stress and vacancy transport influence. Weld metal, based on metal matrix composite, was also demonstrated.

  18. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  19. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    in category "Thermal Gradient Holes" This category contains only the following page. T Thermal Gradient Holes Retrieved from "http:en.openei.orgwindex.php?titleCategory:T...

  20. Gradient-Enhanced Universal Kriging for Uncertainty Propagation...

    Office of Scientific and Technical Information (OSTI)

    Gradient-Enhanced Universal Kriging for Uncertainty Propagation Citation Details In-Document Search Title: Gradient-Enhanced Universal Kriging for Uncertainty Propagation Authors: ...

  1. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  2. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  3. Novel concepts in weld science: Role of gradients and composite structure. Final report

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1994-03-01

    The effects of compositional and microstructural gradients on weld metal and simulated weld metal properties were evaluated in this multi-part study. The results obtained on single phase solid solution systems were used as a basis for a fundamental study of the effects of compositional gradients on crack growth, both at low temperatures, in fatigue and at high temperatures during creep. Methods to physically simulate gradients in weld metals with roll bonded laminate composites were applied to analyses of ferrite-austenite and ferrite-sigma-austenite multiphase systems. Finally, results of the physical simulation analyses were utilized to predict the effects of weld process parameters on weld metal properties.

  4. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  5. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect (OSTI)

    Downer, Michael C.

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  6. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  7. Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks

    SciTech Connect (OSTI)

    Tan, Ing Hwie

    1992-05-01

    Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes.

  8. Gradient zone-boundary control in salt-gradient solar ponds

    DOE Patents [OSTI]

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  9. Laser Wakefield Particle Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in new capability for rapid data exploration and analysis. Investigators: Cameron Geddes, Jean-Luc Vay, Carl Schroeder, E. Cormier-Michel, E. Esarey, W.P. Leemans (LBNL); D.L....

  10. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  11. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  12. Longitudinal Bunch Lengthening Compensation in High Charge RF Photoinjector

    SciTech Connect (OSTI)

    Pei, S.; Adolphsen, C.; /SLAC

    2008-10-03

    In high charge RF photoinjectors for wakefield two beam acceleration studies, due to the strong longitudinal space charge, bunch lengthening between the photocathode and photoinjector exit is a critical issue. We present beam dynamics studies of bunch lengthening in an RF photoinjector for a high charge electron beam and describe methods to compensate the bunch lengthening to various degrees. In particular, the beam dynamics for bunch charge from 1nC to 30nC are studied for an S-band 2856 MHz photoinjector.

  13. High-gradient two-beam electron accelerator

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  14. Developing new high energy gradient concentration cathode material

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  15. Novel concepts in weld science: Role of gradients and composite structure. Technical progress report, June 1, 1990--August 31, 1992

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1992-08-31

    The effects of compositional and microstructural gradients on weld metal properties were investigated. The effects of compositional gradients were analyzed using thermodynamic and composite models. Brittle and ductile cracking behavior were investigated using both binary alloy single crystals and large grain castings. In both cases, the crack propagated along regions where the compositional gradients were the steepest. High temperature deformation of large wavelength compositonally modulated structures vas investigated to understand creep behavior in veld metal. At moderate temperatures, the creep behavior of cored materials was found to follow predictions based on the rule of mixtures composite analysis. At higher temperatures with the advent of dynamic mass transport the creep process is influenced by diffusion-promoted vacancy flow and time-dependent compositional gradient. The investigation found the critical gradient which will promote Kirkendall voids and has reported a creep rate behavior that suggests strong structural dependence, localized stress and vacancy transport influence. Weld metal, based on metal matrix composite, was also demonstrated.

  16. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect (OSTI)

    Ju, J.; Döpp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Ferrari, H.

    2013-08-15

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  17. Constant field gradient planar coupled cavity structure

    DOE Patents [OSTI]

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  18. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect (OSTI)

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  19. Reversal of the cosmic ray density gradient perpendicular to the ecliptic plane

    SciTech Connect (OSTI)

    Swinson, D.B.; Kananen, H.

    1982-03-01

    Annual averages of the diurnal variation in cosmic ray intensity from neutron monitors in Deep River and Oulu and underground muon telescopes in Bolivia and at Embudo and Socorro, New Mexico, have been determined as a function of the sense of the interplantary magnetic field for the years 1965--1975. These data point to a cosmic ray density gradient, perpendicular to the ecliptic plane, pointing southward prior to 1969 and changing to a northward pointing gradient after the reversal of the sun's polar magnetic field in 1969--1971. This result supports numerical calculations for the prereversal and postreversal field configurations at intermediate and high cosmic ray rigidities.

  20. Laboratory experiment on EM backscatter from Farley-Buneman and gradient drift waves

    SciTech Connect (OSTI)

    Alport, M.J.; D'Angelo, N.; Pecseli, H.L.

    1981-09-01

    Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent ideas on EM scattering equatorial and high-latitude ionospheric waves and irregularities.

  1. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  2. Millisecond ordering of block-copolymer films via photo-thermal gradients

    SciTech Connect (OSTI)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in less than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.

  3. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  4. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  5. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  6. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  7. Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010...

    Open Energy Info (EERE)

    Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the...

  8. Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  9. Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  10. Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Newberry Caldera Area (DOE GTP)...

  11. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Flint Geothermal Area (DOE GTP)...

  12. Comparative systems biology across an evolutionary gradient within...

    Office of Scientific and Technical Information (OSTI)

    Comparative systems biology across an evolutionary gradient within the Shewanella genus Citation Details In-Document Search Title: Comparative systems biology across an ...

  13. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W., 1977)...

  14. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Thermal gradient wells were drilled for initial exploration and assessment of the North Brawley Geothermal Area. Notes Union Oil Company...

  15. Permafrost and organic layer interactions over a climate gradient...

    Office of Scientific and Technical Information (OSTI)

    in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships...

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  17. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) |...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At San Emidio Desert Area (DOE GTP)...

  18. Numerical Simulation of Ni Grain Growth in a Thermal Gradient

    Office of Scientific and Technical Information (OSTI)

    665C Numerical Simulation of Ni Grain Growth in a Thermal Gradient Sandia National Laboratories John A. Mitchell and Veena Tikare Sandia National Laboratories, Albuquerque New ...

  19. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  20. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  1. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    crust. The boreholes which exhibited the lowest average gradient were several kilometers from the hot springs and up-dip. None of them penetrated the Dakota Sandstone ....

  2. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details...

  3. Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity...

  4. Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity...

  5. Thermal Gradient Holes At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  6. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  7. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  8. Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details...

  9. Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al...

    Open Energy Info (EERE)

    Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along...

  10. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  11. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  12. Gradient maintenance: A new algorithm for fast online replanning

    SciTech Connect (OSTI)

    Ahunbay, Ergun E. Li, X. Allen

    2015-06-15

    Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan quality of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by

  13. Mineral density volume gradients in normal and diseased human tissues

    SciTech Connect (OSTI)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  14. Mineral density volume gradients in normal and diseased human tissues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  15. Shape measurement biases from underfitting and ellipticity gradients

    SciTech Connect (OSTI)

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF) and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.

  16. Shape measurement biases from underfitting and ellipticity gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 103 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  17. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect (OSTI)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  18. Impurity effects on short wavelength ion temperature gradient mode in elongated tokamak plasmas

    SciTech Connect (OSTI)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.

    2015-02-15

    The effects of impurity ions on the short wavelength ion temperature gradient (SWITG) driven instability in elongated tokamak plasmas are numerically investigated with the gyrokinetic integral eigenmode equation. It is found that for a moderate electron density gradient, the SWITG mode is first destabilized and then stabilized with increasing elongation ?, which is different from the conventional long wavelength ITG mode. For a large electron density gradient, the elongation can effectively stabilize the SWITG mode. Moreover, the low Z impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the SWITG modes in elongated plasmas. Interestingly, the high Z tungsten impurity ions with inwardly peaked density profiles play a stronger stabilizing role in the SWITG modes than the low Z impurity ions (such as carbon and oxygen) do. In particular, the high Z tungsten impurity ions with a weakly outwardly peaked density profile still have a stabilizing effect. Finally, the critical threshold of impurity density gradient scale length for exciting impurity mode is also numerically obtained, indicating that the impurity mode is harder to be excited in elongated plasmas than in circular ones.

  19. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    SciTech Connect (OSTI)

    Cheng, Hemeng; Li, Changan; Song, Yun; Ma, Tianxing; Wang, Li-Gang; Lin, Hai-Qing

    2014-08-18

    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  20. Influence of composition gradients on weld metal creep behavior: An analysis based on laminate composites

    SciTech Connect (OSTI)

    Choi, I.

    1989-01-01

    The effects of weld metal microsegregation, as altered by post-weld heat treatments, on both low and high temperatures tensile properties were investigated on Monel alloy 400. Flat, all weld metal, tensile specimens were machined from single pass GTA welds and were heat treated in vacuum in the range of 600 C to 1000 C to produce samples with different composition gradients. Short-time tensile tests were run at room temperature and elevated temperature. Long-time constant load creep tests were performed at 500 C. The room temperature mechanical properties of the as-welded specimen and heat treated specimens were similar and thus unaffected by variations in composition gradients. In contrast, at high temperatures the steady state creep rates decreased, rupture strains increased, and rupture lives decreases with increases in heat treatment temperature, that is, with decreases in the amplitudes of composition gradients. The deformation behavior of solidified dendritic structure was modeled based on results obtained on laminate composites of nickel and copper. The laminates, prepared by roll bonding, were annealed to produce controlled composition gradients with dimensions equivalent to those observed in the weld metal. The steady state creep rates of laminate composites decreased with increases in heat treatment time, that is, with decreases in the amplitudes of composition gradients. To rationalize the creep properties of each component in laminate composites, nickel-copper solid solutions having systematic compositional variations were prepared and tested under the same conditions as the laminate composites. The creep rates of nickel-copper solid solutions showed a minimum with nickel composition.

  1. Critical gradients and plasma flows in the edge plasma of Alcator C-Mod

    SciTech Connect (OSTI)

    LaBombard, B.; Hughes, J. W.; Smick, N.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Graf, A.; Zweben, S. J.

    2008-05-15

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields--a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when Bx{nabla}B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and 'critical gradient' values in the edge plasma.

  2. Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator...

    Office of Scientific and Technical Information (OSTI)

    Title: Edge Temperature Gradient as Intrinsic Rotation Drive in Alcator C -Mod Tokamak Plasmas Authors: Rice, J. E. ; Hughes, J. W. ; Diamond, P. H. ; Kosuga, Y. ; Podpaly, Y. A. ; ...

  3. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference LibraryAdd to...

  4. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    small diameter temperature gradient wells have been drilled ranging in depth from 152-607 m. These wells were drilled across the Neal Hot Springs area in order to gather more...

  5. Observation of 690 MV m^-1 Electron Accelerating Gradient with...

    Office of Scientific and Technical Information (OSTI)

    Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure Citation Details In-Document Search Title: Observation of 690 MV m-1...

  6. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240Ckm to 450 0Ckm. References...

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    consisting of several holes including: The CH8-10 thermal-gradient holes drilled by the U.S. Geological Survey prior to 1978 to relatively shallow depths ranging from about 55 to...

  8. Reduction of particle deposition on substrates using temperature gradient control

    DOE Patents [OSTI]

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  9. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect (OSTI)

    Park, Sang-Gil; Jeong, Ki-Hun; Lee, Kanghee; Han, Daehoon; Ahn, Jaewook

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  10. Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC...

    Office of Scientific and Technical Information (OSTI)

    Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC-Mod Tokamak Plasmas Citation Details In-Document Search Title: Edge Temperature Gradient as Intrinsic Rotation...

  11. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    SciTech Connect (OSTI)

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, where the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F2 molecule being a notable outlier.

  12. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore » the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F2 molecule being a notable outlier.« less

  13. High power test results of the first SRRC/ANL high current L-band RF gun.

    SciTech Connect (OSTI)

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  14. Development of Ti/Ti{sub 3}Sn functionally gradient material produced by eutectic bonding method

    SciTech Connect (OSTI)

    Kirihara, S.; Takeda, M.; Tsujimoto, T. [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering] [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering

    1996-07-15

    Although many materials which have a single function have been developed, future needs are anticipated to include materials which have various functions. A functionally gradient material (FGM) which has characteristics of two different materials is a promising candidate for multi-functional material. The present methods for production of FGM, however, are very complicated and costly. In this study the authors answer the serious problem of high production cost by fabricating the FGM by a eutectic bonding method. This fabrication method includes structural control of FGM by changing the cooling process. They describe Ti/Ti{sub 3}Sn FGM obtained by the eutectic bonding method, and tell how the structure of its composition gradient part is changed by controlling the cooling process.

  15. Enhanced magnetic reconnection in the presence of pressure gradients

    SciTech Connect (OSTI)

    Pueschel, M. J.; Terry, P. W.; Told, D.; Jenko, F.

    2015-06-15

    Magnetic reconnection in the presence of background pressure gradients is studied, with special attention to parallel (compressional) magnetic fluctuations. A process is reported that reconnects fields through coupling of drift-wave-type instabilities with current sheets. Its time scale is set not by the reconnecting field but by inhomogeneities of the background density or temperature. The observed features can be attributed to a pressure-gradient-driven linear instability which interacts with the reconnecting system but is fundamentally different from microtearing. In particular, this mode relies on parallel magnetic fluctuations and the associated drift. For turbulent reconnection, similar or even stronger enhancements are reported. In the solar corona, this yields a critical pressure gradient scale length of about 200 km below which this new process becomes dominant over the tearing instability.

  16. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  17. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  18. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging

    SciTech Connect (OSTI)

    Kaethner, Christian Ahlborg, Mandy; Buzug, Thorsten M.; Knopp, Tobias; Sattel, Timo F.

    2014-01-28

    Magnetic Particle Imaging (MPI) is a tomographic imaging modality capable to visualize tracers using magnetic fields. A high magnetic gradient strength is mandatory, to achieve a reasonable image quality. Therefore, a power optimization of the coil configuration is essential. In order to realize a multi-dimensional efficient gradient field generator, the following improvements compared to conventionally used Maxwell coil configurations are proposed: (i) curved rectangular coils, (ii) interleaved coils, and (iii) multi-layered coils. Combining these adaptions results in total power reduction of three orders of magnitude, which is an essential step for the feasibility of building full-body human MPI scanners.

  19. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  20. Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome

    SciTech Connect (OSTI)

    Wang, Hong; Yang, Yanling; Li, Yuxin; Bai, Bing; Wang, Xusheng; Tan, Haiyan; Liu, Tao; Beach, Thomas G.; Peng, Junmun; Wu, Zhiping

    2015-02-06

    Development of high resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase column (100 μm x 150 cm) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phase fractionation of peptide ions further increased the number of peptide identification by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed.

  1. Diffraction Profiles of Elasticity Bent Single Crystals with Constant Strain Gradients

    SciTech Connect (OSTI)

    Yan,H.; Kalenci, O.; Noyan, I.

    2007-01-01

    This work presents a set of equations that can be used to predict the dynamical diffraction profile from a non-transparent single crystal with a constant strain gradient examined in Bragg reflection geometry with a spherical incident X-ray beam. In agreement with previous work, the present analysis predicts two peaks: a primary diffraction peak, which would have still been observed in the absence of the strain gradient and which exits the specimen surface at the intersection point of the incident beam with the sample surface, and a secondary (mirage) peak, caused by the deflection of the wavefield within the material, which exits the specimen surface further from this intersection point. The integrated intensity of the mirage peak increases with increasing strain gradient, while its separation from the primary reflection peak decreases. The directions of the rays forming the mirage peak are parallel to those forming the primary diffraction peak. However, their spatial displacement might cause (fictitious) angular shifts in diffractometers equipped with area detectors or slit optics. The analysis results are compared with experimental data from an Si single-crystal strip bent in cantilever configuration, and the implications of the mirage peak for Laue analysis and high-precision diffraction measurements are discussed.

  2. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  3. Density gradient effects on transverse shear driven lower hybrid waves

    SciTech Connect (OSTI)

    DuBois, Ami M.; Thomas, Edward; Amatucci, William E.; Ganguli, Gurudas

    2014-06-15

    Shear driven instabilities are commonly observed in the near-Earth space, particularly in boundary layer plasmas. When the shear scale length (L{sub E}) is much less than the ion gyro-radius (?{sub i}) but greater than the electron gyro-radius (?{sub e}), the electrons are magnetized in the shear layer, but the ions are effectively un-magnetized. The resulting shear driven instability, the electron-ion hybrid (EIH) instability, is investigated in a new interpenetrating plasma configuration in the Auburn Linear EXperiment for Instability Studies. In order to understand the dynamics of magnetospheric boundary layers, the EIH instability is studied in the presence of a density gradient located at the boundary layer between two plasmas. This paper reports on a recent experiment in which electrostatic lower hybrid waves are identified as the EIH instability, and the effect of a density gradient on the instability properties are investigated.

  4. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  5. Radiography to measure the longitudinal density gradients of Pd compacts

    SciTech Connect (OSTI)

    Back, D.D.

    1992-05-14

    This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.

  6. Atmospheric gradients and the stability of expanding jets. [Astrophysics

    SciTech Connect (OSTI)

    Hardee, P.E.; Koupelis, T.; Norman, M.L.; Clarke, D.A. Illinois, University, Urbana )

    1991-05-01

    Numerical simulations of adiabatically expanding slab jets in initial static pressure balance with an external atmosphere have been performed and compared to predictions made by a linear analysis of the stability of expanding jets. It is found that jets are stabilized by jet expansion as predicted by the linear analysis. It is also found that an expanding jet can be destabilized by a positive temperature gradient or temperature jump in the surrounding medium which lowers the Mach number defined by the external sound speed. A temperature gradient or jump is more destabilizing than would be predicted by a linear stability analysis. The enhanced instability compared to an isothermal atmosphere with identical pressure gradient is a result of the reduced external Mach number and a result of a higher jet density relative to the density in the external medium and higher ram speed. Other differences between predictions made by the linear theory and the simulations can be understood qualitatively as a result of a change in wave speed as the wave amplitude increases. 12 refs.

  7. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    SciTech Connect (OSTI)

    Bakosi, Jozsef; Ristorcelli, Raymond J

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  8. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  9. Microfluidic device having an immobilized pH gradient and page...

    Office of Scientific and Technical Information (OSTI)

    pH gradient and page gels for protein separation and analysis Citation Details In-Document Search Title: Microfluidic device having an immobilized pH gradient and page gels ...

  10. R655-1-8 Temperature Gradient Wells | Open Energy Information

    Open Energy Info (EERE)

    R655-1-8 Temperature Gradient Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: R655-1-8 Temperature Gradient...