National Library of Energy BETA

Sample records for high flux beam

  1. HFBR handbook, 1992: High flux beam reactor

    SciTech Connect (OSTI)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

  2. EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York

    Broader source: Energy.gov [DOE]

    The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

  3. TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-07-09

    5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

  4. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    SciTech Connect (OSTI)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  5. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect (OSTI)

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  6. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-12-15

    5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

  7. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-11-03

    5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

  8. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect (OSTI)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Universitŕ degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Universitŕ degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  9. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect (OSTI)

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ?4 × 10{sup 19} m{sup ?2} s{sup ?1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  10. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect (OSTI)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  11. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  12. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  13. Type A verification report for the high flux beam reactor stack and grounds, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    Harpenau, Evan M.

    2012-01-13

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA). The HFBR Stack and Grounds surveys began in June 2011 and were completed in September 2011. Survey activities by BSA included gamma walkover scans and sampling of the as-left soils in accordance with the BSA Work Procedure (BNL 2010a). The Field Sampling Plan - Stack and Remaining HFBR Outside Areas (FSP) stated that gamma walk-over surveys would be conducted with a bare sodium iodide (NaI) detector, and a collimated detector would be used to check areas with elevated count rates to locate the source of the high readings (BNL 2010b). BSA used the Mult- Agency Radiation Survey and Site Investigation Manual (MARSSIM) principles for determining the classifications of each survey unit. Therefore, SUs 6 and 7 were identified as Class 1 and SU 8 was deemed Class 2 (BNL 2010b). Gamma walkover surveys of SUs 6, 7, and 8 were completed using a 2?2 NaI detector coupled to a data-logger with a global positioning system (GPS). The 100% scan surveys conducted prior to the final status survey (FSS) sampling identified two general soil areas and two isolated soil locations with elevated radioactivity. The general areas of elevated activity identified were investigated further with a collimated NaI detector. The uncollimated average gamma count rate was less than 15,000 counts per minute (cpm) for the SU 6, 7, and 8 composite area (BNL 2011a). Elevated count rates were observed in portions of each survey unit. The general areas of elevated counts near the Building 801 ventilation and operations and the entry to the Stack were determined to be directly related to the radioactive processes in those structures. To compensate for this radioactive shine, a collimated or shielded detector was used to lower the background count rate (BNL 2011b and c). This allowed the surveyor(s) to distinguish between background and actual radioactive contamination. Collimated gamma survey count rates in these shine affected areas were below 9,000 cpm (BNL 2011a). The average background count rate of 7,500 cpm was reported by BSA for uncollimated NaI detectors (BNL 2011d). The average collimated background ranged from 4,500-6,500 cpm in the westernmost part of SU 8 and from 2,000-3,500 cpm in all other areas (BNL 2011e). Based on these data, no further investigations were necessary for these general areas. SU 8 was the only survey unit that exhibited verified elevated radioactivity levels. The first of two isolated locations of elevated radioactivity had an uncollimated direct measurement of 50,000 cpm with an area background of 7,500 cpm (BNL 2011f). The second small area exhibiting elevated radiation levels was identified at a depth of 6 inches from the surface. The maximum reported count rate of 28,000 cpm was observed during scanning (BNL 2011g). The affected areas were remediated, and the contaminated soils were placed in an intermodal container for disposal. BSA's post-remediation walkover surveys were expanded to include a 10-foot radius around the excavated locations, and it was determined that further investigation was not required for these areas (BNL 2011 f and g). The post-remediation soil samples were collected and analyzed with onsite gamma spectroscopy equipment. These samples were also included with the FSS s

  14. High flux reactor

    DOE Patents [OSTI]

    Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  15. TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-11-30

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  16. Design and characterization of 2.45 GHz electron cyclotron resonance plasma source with magnetron magnetic field configuration for high flux of hyperthermal neutral beam

    SciTech Connect (OSTI)

    Kim, Seong Bong [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Kim, Dae Chul; Yoo, Suk Jae [Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Namkung, Won; Cho, Moohyun [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

    2010-08-15

    A 2.45 GHz electron cyclotron resonance (ECR) source with a magnetron magnetic field configuration was developed to meet the demand of a hyperthermal neutral beam (HNB) flux on a substrate of more than 1x10{sup 15} cm{sup -2} s{sup -1} for industrial applications. The parameters of the operating pressure, ion density, electron temperature, and distance between the neutralization plate and the substrate for the HNB source are specified in a theoretical analysis. The electron temperature and the ion density are measured to characterize the ECR HNB source using a Langmuir probe and optical emission spectroscopy. The parameters of the ECR HNB source are in good agreement with the theoretically specified parameters.

  17. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  18. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  19. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  20. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  1. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  2. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  3. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  4. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  5. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  6. High Flux Ti Nanofiltration Membrane

    Broader source: Energy.gov (indexed) [DOE]

    heat exchangers. Success would lead to a US-manufactured high performance nano-ceramic coating that could be exported and contribute to the growth of the US manufacturing sector of...

  7. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-Print Network [OSTI]

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  8. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  9. Plasma focus ion beam fluence and flux—For various gases

    SciTech Connect (OSTI)

    Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  10. Upgrading scientific capabilities at the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    West, C.D.; Farrar, M.B.

    1997-07-14

    Following termination of the Advanced Neutron Source (ANS) Project, a program of upgrades to the Department of Energy`s High Flux Isotope Reactor (HFIR) was devised by a team of researchers and reactor operators and has been proposed to the department. HFIR is a multipurpose research reactor, commissioned in 1965, with missions in four nationally important areas: isotope production, especially transuranic isotopes; neutron scattering; neutron activation analysis; and irradiation testing of materials. For neutron scattering, there are two major enhancements and several smaller ones. The first is the installation of a small, hydrogen cold neutron source in one of the four existing beam tubes: because of the high reactor power, and the use of new design concepts developed for ANS, the cold source will be as bright as, or brighter than, the Institute Laue Langevin liquid deuterium vertical cold source, although space limitations mean that there will be far fewer cold beams and instruments at HFIR. This project is underway, and the cold source is expected to come on line following an extended shutdown in 1999 to replace the reactor`s beryllium reflector. The second major change proposed would put five thermal neutron guides at an existing beam port and construct a new guide hall to accommodate instruments on these very intense beams.

  11. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOE Patents [OSTI]

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  12. Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam source

    E-Print Network [OSTI]

    Economou, Demetre J.

    Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam-4004 Received 21 April 2006; accepted 6 July 2006; published 7 August 2006 The energy distribution and flux into fast neutrals. The neutral energy distribution was always shifted to lower energies compared

  13. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  14. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  15. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  16. A high-flux BEC source for mobile atom interferometers

    E-Print Network [OSTI]

    Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel

    2015-06-16

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.

  17. Electron beam diagnostic for profiling high power beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  18. High energy laser beam dump

    DOE Patents [OSTI]

    Halpin, John (Tracy, CA)

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  19. MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS

    E-Print Network [OSTI]

    Liang, Shunlin

    Chapter 6 MAPPING HIGH-RESOLUTION LAND SURFACE RADIATIVE FLUXES FROM MODIS: ALGORITHMS.1007/978-1-4419-0050-0_6, #12;142 Mapping Radiative Fluxes There are several global radiative flux data sets derived from either. For example, the CERES team uses the predefined albedo and emissivity maps to calculate surface radiative

  20. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlationHigh flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford · Radiation Cooling · Forced Convection · Nucleate Boiling · Critical Heat Flux · Other ideas · Summary #12

  1. FAST observations of the solar illumination dependence of downgoing auroral electron beams: Relationship to electron energy flux

    E-Print Network [OSTI]

    Carlson, Charles W.

    FAST observations of the solar illumination dependence of downgoing auroral electron beams] The dependence of the occurrence frequency of downgoing auroral electron beams on solar illumination almost no effect on the occurrence frequency of electron beams with energy flux less than or equal

  2. Holographic generation of highly twisted electron beams

    E-Print Network [OSTI]

    Vincenzo Grillo; Gian Carlo Gazzadi; Erfan Mafakheri; Stefano Frabboni; Ebrahim Karimi; Robert W. Boyd

    2014-12-11

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction, and thus may be used in the study of the magnetic properties of materials and for manipulating nano-particles.

  3. High power linear pulsed beam annealer

    DOE Patents [OSTI]

    Strathman, Michael D. (Concord, CA); Sadana, Devendra K. (Berkeley, CA); True, Richard B. (Sunnyvale, CA)

    1983-01-01

    A high power pulsed electron beam is produced in a system comprised of an electron gun having a heated cathode, control grid, focus ring, and a curved drift tube. The drift tube is maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring and to thereby eliminate space charge. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube and imparts motion on electrons in a spiral path for shallow penetration of the electrons into a target. The curvature of the tube is selected so there is no line of sight between the cathode and a target holder positioned within a second drift tube spaced coaxially from the curved tube. The second tube and the target holder are maintained at a reference voltage that decelerates the electrons. A second coil surrounding the second drift tube maintains the electron beam focused about the axis of the second drift tube and compresses the electron beam to the area of the target. The target holder can be adjusted to position the target where the cross section of the beam matches the area of the target.

  4. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements

    E-Print Network [OSTI]

    Burg, Brian R.

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions ...

  5. Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

    2012-01-01

    The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

  6. HIGHLY COMPRESSED ION BEAMS FOR HIGH ENERGY DENSITY SCIENCE

    E-Print Network [OSTI]

    Wurtele, Jonathan

    HIGHLY COMPRESSED ION BEAMS FOR HIGH ENERGY DENSITY SCIENCE A. Friedman1,2 , J.J.Barnard1,2 , R Energy Density regimes required for Inertial Fu- sion Energy and other applications. An interim goal we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto

  7. Inverse Free Electron Laser Interactions with Sub-Picosecond High Brightness Electron Beams

    E-Print Network [OSTI]

    Moody, Joshua Timothy

    2014-01-01

    Accelerated Electron Beam Spectrum . . . . . . . . . . . .2 High Brightness Electron Beams Produced in thetion of Uniformly Filled Ellipsoidal Electron Beam: Method-

  8. High gradient lens for charged particle beam

    SciTech Connect (OSTI)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  9. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect (OSTI)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  10. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  11. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  14. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  15. Formation of compressed flat electron beams with high transverse-emittance ratios

    SciTech Connect (OSTI)

    Zhu, J.; Piot, P.; Mihalcea, D.; Prokop, C. R.

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ?37??MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25???m (emittance ratio is ?400), 0.13????m, 15 nm before compression, and 0.41???m, 0.20???m, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2?nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  16. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  17. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  18. The Dynamics of Flux Tubes in a High Beta Plasma

    E-Print Network [OSTI]

    E. T. Vishniac

    1994-07-21

    We suggest a new model for the structure of a magnetic field embedded high $\\beta$ turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter the macroscopic properties of the fluid or the large scale magnetic field. In either case we show that the Sweet-Parker reconnection rate is much faster than an eddy turnover time. Realistic stellar plasmas are expected to either be in the ideal limit (e.g. the solar photosphere) or the resistive limit (most of the solar convection zone). All current numerical simulations of three dimensional MHD turbulence are in the viscous regime and are inapplicable to stars or accretion disks.

  19. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  20. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, George P. (Arlington, VA)

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  1. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  2. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ;...

  3. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  4. Coherent beam combiner for a high power laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  5. High resolving power spectrometer for beam analysis

    SciTech Connect (OSTI)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs.

  6. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  7. LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS

    E-Print Network [OSTI]

    McDonald, Kirk

    LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS G. I. Silvestrov, Budker Institute for Nuclear Physics Novosibirsk, August 1998. #12;1 LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS target of liquid metal. The technical solution is producing the target in the form of flat jet flowing

  8. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A. [School of Physics and Technologies, V.N. Karazin Kharkiv National University, Kharkiv, 61022 (Ukraine); Gutkin, M. [Micron Surface Technologies, 5033 Dantes View Dr., Calabasas, California 91301 (United States); Sleptsov, V. [Moscow State Aviation Technological University, Moscow 121552 (Russian Federation)

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  9. High-flux solar photon processes: Opportunities for applications

    SciTech Connect (OSTI)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  10. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  11. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  12. Performance and safety parameters for the high flux isotope reactor

    SciTech Connect (OSTI)

    Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

    2012-07-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

  13. Performance and Safety Parameters for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

    2012-01-01

    A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

  14. Electron beam enhanced surface modification for making highly resolved structures

    DOE Patents [OSTI]

    Pitts, John R. (Golden, CO)

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  15. High Intensity Muon Beams in Osaka -MuSIC

    E-Print Network [OSTI]

    McDonald, Kirk

    High Intensity Muon Beams in Osaka - MuSIC Yoshitaka Kuno Osaka Unviersity, Osaka, Japan ! THB2014 ·Muon Transport ·COMET ·MuSIC facility at Osaka University ·MuSIC stage-I for µSR ·PRISM demonstration at MuSIC ·Phase Rotation at FFAG ·Summary #12;Muon Beam Sources #12;ISIS EM, RIKEN-RAL J-PARC, MUSE

  16. Self-pinched transport of a high ?/? electron beam

    SciTech Connect (OSTI)

    Myers, M. C.; Wolford, M. F.; Sethian, J. D. [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States)] [U.S. Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave., SW, Washington DC 20375 (United States); Rose, D. V. [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States)] [Voss Scientific, 418 Washington St. SE, Albuquerque, New Mexico 87108 (United States); Hegeler, F. [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)] [Commonwealth Technology Inc., 5875 Barclay Drive, Alexandria, Virginia 22315 (United States)

    2013-10-15

    The self-pinched transport of a 0.5 MeV, 18 kA cylindrical electron beam has been studied experimentally and computationally. The relatively low voltage and high current required for materials surface modification applications leads to complicated beam dynamics as the Alfven limit is approached. Transport and focusing of the high ?/? beam was done in a sub-Torr, neutral gas-filled, conducting tube in the ion-focused regime. In this regime, beam space charge forces are progressively neutralized to allow focusing of the beam by its self-magnetic field. The beam exhibits stable envelope oscillations as it is efficiently and reproducibly propagated for distances greater than a betatron wavelength. Experimental results follow the trends seen in 2-D particle-in-cell simulations. Results show that the input electron beam can be periodically focused to a peaked profile with the beam half-current radius decreased by a factor of 2.84. This results in an increase of a factor of 8 in beam current density. This focusing is sufficient to produce desired effects in the surface layers of metallic materials.

  17. Calculation of Beam Loss Induced Particle Flux for CTF3 Matthew Wood

    E-Print Network [OSTI]

    . Any future beam loss monitoring system will depend on an understanding of how beam losses translate of quadrupole magnets each of length 20 cm, and one beam position monitor of length 10 cm. Those regions between of energy greater than approximately 5 MeV can also induce the production of secondary neutrons and pions

  18. Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects

    E-Print Network [OSTI]

    Fangyu Li; Robert M L Baker Jr.; Zhenyun Fang; Gary V. Stephenson; Zhenya Chen

    2008-06-12

    We consider the electromagnetic (EM) perturbative effects produced by the high-frequency gravitational waves (HFGWs) in the GHz band in a special EM resonance system, which consists of fractal membranes, a Gaussian beam (GB) passing through a static magnetic field. It is predicted, under the synchroresonance condition, coherence modulation of the HFGWs to the preexisting transverse components of the GB produces the transverse perturbative photon flux (PPF),which has three novel and important properties: (1)The PPF has maximum at a longitudinal symmetrical surface of the GB where the transverse background photon flux (BPF) vanishes; (2) the resonant effect will be high sensitive to the propagating directions of the HFGWs; (3) the PPF reflected or transmitted by the fractal membrane exhibits a very small decay compared with very large decay of the much stronger BPF. Such properties might provide a new way to distinguish and display the perturbative effects produced by the HFGWs. We also discuss the high-frequency asymptotic behavior of the relic GWs in the microwave band and the positive definite issues of their energy-momentum pseudo-tensor.

  19. Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet

    SciTech Connect (OSTI)

    Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

    2010-11-16

    Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

  20. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  1. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect (OSTI)

    Evtushenko, Pavel [JLAB; Douglas, David R. [JLAB; Legg, Robert A. [JLAB; Tennant, Christopher D. [JLAB

    2013-05-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  2. High Dynamic Range Beam Imaging with Two Simultaneously Sampling CCDs

    SciTech Connect (OSTI)

    Evtushenko, Pavel E. [JLAB; Douglas, David R. [JLAB

    2013-06-01

    Transverse beam profile measurement with sufficiently high dynamic range (HDR) is a key diagnostic to measure the beam halo, understand its sources and evolution. In this contribution we describe our initial experience with the HDR imaging of the electron beam at the JLab FEL. On contrary to HDR measurements made with wire scanners in counting mode, which provide only two or three 1D projections of transverse beam distribution, imaging allows to measure the distribution itself. That is especially important for non-equilibrium beams in the LINACs. The measurements were made by means of simultaneous imaging with two CCD sensors with different exposure time. Two images are combined then numerically in to one HDR image. The system works as an online tool providing HDR images at 4 Hz. An optically polished YAG:Ce crystal with the thickness of 100 {micro}m was used for the measurements. When tested with a laser beam images with the DR of about 10{sup 5} were obtained. With the electron beam the DR was somewhat smaller due to the limitations in the time structure of the tune-up beam macro pulse.

  3. Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2009-11-01

    An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

  4. High photon flux table-top coherent extreme ultraviolet source

    E-Print Network [OSTI]

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  5. High Flux Isotope Reactor named Nuclear Historic Landmark | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A major upgrade to HFIR in 2007 provided improved beam lines, new instruments and a cold source that expanded its research capabilities by literally chilling, or removing...

  6. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  7. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  8. Fabrication of control rods for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  9. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  10. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    SciTech Connect (OSTI)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.; Mishagin, V.V.; Sorokin, A.V.; Stupishin, N.V

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.

  11. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  12. High power linear pulsed beam annealer. [Patent application

    DOE Patents [OSTI]

    Strathman, M.D.; Sadana, D.K.; True, R.B.

    1980-11-26

    A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.

  13. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  14. High-intensity beam collimation and targetry

    SciTech Connect (OSTI)

    Mokhov, N.V.; /Fermilab

    2006-11-01

    Principles, design criteria and realization of reliable collimation systems for the high-power accelerators and hadron colliders are described. Functionality of collimators as the key elements of the machine protection system are discussed along with the substantial progress on the crystal collimation front. The key issues are considered in design of high-power target systems and achieving their best performance. Simulation code requirements are presented.

  15. Extinction Monitor by Using a Dissociation of Hydrogen Molecule to Atoms with High Energy Proton Beam

    E-Print Network [OSTI]

    Itahashi, I; Arimoto, Y; Kuno, Y; Sato, A; Yoshida, M Y

    2008-01-01

    Extinction Monitor by Using a Dissociation of Hydrogen Molecule to Atoms with High Energy Proton Beam

  16. Generation of High Efficiency Longitudinally Polarized Beam using High NA Lens Axicon and Dedicated Phase Filter

    SciTech Connect (OSTI)

    Rajesh, K. B.; Mohankumar, R.; Prathibajanet, C. Amala; Pillai, T. V. S. [Department of Physics, Anna University of Technology Tirunelveli (India); Jaroszewicz, Z. [Institute of Applied Optics, Department of Physical Optics, Warsaw (Poland)

    2011-10-20

    We propose to use pure phase filter in combination with high NA lens axicon to achieve high efficient longitudinally polarized beam with a subwavelength spot size and large depth of focus using hyper geometric Gaussian beam. Using this system, the spot size is reduced to 0.392 {lambda} and the depth of focus is increased to 7 {lambda}. The efficiency of such system is found to be 87%. This high efficient longitudinally polarized beam generated by hyper geometric Gaussian beam is useful for most of the near-field optics applications.

  17. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  18. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - Ă?Â?165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  19. Adaptive RF Transient Reduction for HIGH Intensity Beams with Gaps

    E-Print Network [OSTI]

    Tückmantel, Joachim

    2006-01-01

    When a high-intensity beam with bunch-trains and gaps passes a cavity with a high-gain vector feedback enforcing a constant voltage, large transients appear, stressing the RF high power hardware and increasing the trip rate. By modulating the cavity voltage with a varying periodic waveform (set-function), the RF power can be made constant while still preserving the high feedback gain. The average cavity voltage is conserved but bunches have to settle at slightly shifted positions. A method is derived to obtain this set-function in practice while making no assumptions or measurements of the beam or RF parameters. Adiabatic iterations are made including the whole machine as an analog computing device, using all parameters as they are. A computer simulation shows the success of the method.

  20. High energy photon production in strong colliding laser beams

    E-Print Network [OSTI]

    Michael Kuchiev; Julian Ingham

    2015-07-21

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  1. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    E-Print Network [OSTI]

    Scoby, Cheyne Matthew

    2012-01-01

    111 Transverse electron beamfemtosecond relativistic electron beams . . Organization offields of a relativistic electron beam. Phys. Rev. Lett. ,

  2. Translational symmetry of high order tokamak flux surface shaping in gyrokinetics

    E-Print Network [OSTI]

    Ball, Justin; Barnes, Michael

    2015-01-01

    A particular translational symmetry of the local nonlinear $\\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally translating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal translation of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by translating the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which ...

  3. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect (OSTI)

    Grierson, B. A., E-mail: bgriers@pppl.gov; Grisham, L. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Crowley, B.; Scoville, J. T. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2–3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  4. Project Profile: High-Flux Microchannel Solar Receiver | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-temperature solar receivers by applying microchannel heat-transfer technology to solar-receiver design. The extremely high heat-transfer rates afforded by microchannels...

  5. Design and optimization of a high thermal flux research reactor via Kriging-based algorithm

    E-Print Network [OSTI]

    Kempf, Stephanie Anne

    2011-01-01

    In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

  6. High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

    E-Print Network [OSTI]

    High Heat Flux Exposure Tests on 10mm Beryllium Tiles Brazed on Actively Cooled Vapotron made from CUCRZR

  7. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  8. Pattern transfer of electron beam modified self-assembled monolayers for high-resolution lithography

    E-Print Network [OSTI]

    Parikh, Atul N.

    Pattern transfer of electron beam modified self-assembled monolayers for high-resolution electron beam lithography. Focused electron beams from 1 to 50 keV and scanning tunneling microscopy at 10 of electron beam damage on the monolayers and the subsequent etching reactions has been explored through x

  9. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $?$ Beams of High Intensity and Large Brilliance

    E-Print Network [OSTI]

    D. Habs; U. Köster

    2010-09-08

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with $\\gamma$ beams allow to produce certain radioisotopes, e.g. $^{47}$Sc, $^{44}$Ti, $^{67}$Cu, $^{103}$Pd, $^{117m}$Sn, $^{169}$Er, $^{195m}$Pt or $^{225}$Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example $^{195m}$Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like $^{47}$Sc, $^{67}$Cu and $^{225}$Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.

  10. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  11. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect (OSTI)

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  12. THE CONTROL OF A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT REGULATION

    E-Print Network [OSTI]

    Lietzke, A.F.

    2010-01-01

    A HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENTA HIGH-POWER NEUTRAL BEAM GENERATOR BY MEANS OF ARC-CURRENT

  13. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE ButtonFSOWiki AppsAboutHigh

  14. High Heat Flux Thermoelectric Module Using Standard Bulk Material |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJian Li,1 DOEFuel

  15. Possible explanation for the low flux of high energy astrophysical muon neutrinos

    SciTech Connect (OSTI)

    Pakvasa, Sandip

    2013-05-23

    I consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the lack of high energy muon events in the Icecube detector.

  16. High-energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory

    E-Print Network [OSTI]

    Sukanta Panda; Sergei I. Sinegovsky

    2008-02-04

    We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behaviour of hadronic cross-sections relevant at very high energies.

  17. High speed two-dimensional optical beam position detector

    SciTech Connect (OSTI)

    Rutten, Paul Edmond

    2011-07-15

    Disclosed is the design of a high speed two-dimensional optical beam position detector which outputs the X and Y displacement and total intensity linearly. The experimental detector measures the displacement from DC to 123 MHz and the intensity of an optical spot in a similar way as a conventional quadrant photodiode detector. The design uses four discrete photodiodes and simple dedicated optics for the position decomposition which enables higher spatial accuracy and faster electronic processing than conventional detectors. Measurements of the frequency response and the spatial sensitivity demonstrate high suitability for atomic force microscopy, scanning probe data storage applications, and wideband wavefront sensing. The operation principle allows for position measurements up to 20 GHz and more in bandwidth.

  18. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1997-03-11

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.

  19. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  20. Measured Properties of the DUVFEL High Brightness, Ultrashort Electron Beam

    SciTech Connect (OSTI)

    Emma, Paul J

    2002-08-20

    The DUVFEL electron linac is designed to produce sub-picosecond, high brightness electron bunches to drive an ultraviolet FEL. The accelerator consists of a 1.6 cell S-band photoinjector, variable pulse length Ti:Sapp laser, 4 SLAC-type S-band accelerating sections, and 4-dipole chicane bunch compressor. In preparation for FEL operation, the compressed electron beam has been fully characterized. Measurement of the beam parameters and simulation of the beam are presented. The properties of the laser and photoinjector are summarized in Table 1. In typical running, 10 mJ of IR light is produced by the Spectraphyics Tsunami Ti:Sapphire oscillator and TSA50 amplifier, which is frequency tripled to produce 450 uJ of UV light. After spatial filtering and aperturing of the gaussian mode to produce a nearly uniform laser spot, about 200-300 uJ is delivered to the cathode. This produces 300 pC of charge at the accelerating phase of 30 degrees. The RF cavity is a Gun IV [1] with copper cathode that has been modified for better performance [2]. In principle, the laser pulse length may be adjusted from 100 fs to 10 ps, however there are practical limitations on the range of adjustment due to dispersion characteristics and efficiency of the BBO crystals. The thickness of the harmonic crystals is optimized for pulse lengths from 1-5 ps. Within this range of pulse lengths there is evidence [3] of variations in the time profile of the UV light that are sensitive to the phase-matching angle of the crystal.

  1. High-gradient two-beam electron accelerator

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  2. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    magnetic flux expansion and partial detachment of the outer strike point at several D2 injection rates of acceptable divertor plate material erosion rates and heat fluxes to q 10 MW/m2 , a limit imposedDivertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus

  3. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  4. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Overholt, Andrew; Atri, Dimitra

    2013-01-01

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV...

  5. High quality YBa2Cu307 Josephson junctions made by direct electron beam writing

    E-Print Network [OSTI]

    Nadgorny, Boris

    High quality YBa2Cu307 Josephson junctions made by direct electron beam writing S. K. Tolpygo, S beam writing over YBa,C&O, thin-tilm microbridges, using scanning transmission electron microscope fabricated by the technologically attractive method of direct electron beam writing. The idea of using

  6. Measurement of the flux of ultra high energy cosmic rays using data from very inclined air

    E-Print Network [OSTI]

    Hebbeker, Thomas

    Measurement of the flux of ultra high energy cosmic rays using data from very inclined air showers.1.2 Cosmic rays above 100 TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Extensive air-model of the hadronic cascade . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Very inclined air showers

  7. Dynamic Motor Parameter Identification for High Speed Flux Weakening Operation of Brushless Permanent Magnet Synchronous Machines

    E-Print Network [OSTI]

    Szabados, Barna

    Permanent Magnet Synchronous Machines Abstract: An experimental investigation is conducted to determine the behaviour of brushless PM synchronous machine parameters in the high speed flux weakening operating range synchronous machines. Special computer assisted measuring techniques are employed using an experimental vector

  8. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  9. Be7(p,gamma)B8 and the high-energy solar neutrino flux

    E-Print Network [OSTI]

    Attila Csoto

    1997-04-23

    The importance of the Be7(p,gamma)B8 reaction in predicting the high-energy solar neutrino flux is discussed. I present a microscopic eight-body model and a potential model for the calculation of the Be7(p,gamma)B8 cross section.

  10. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  11. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  14. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  16. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  17. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  19. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  20. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  2. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  5. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  6. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. Generation of high-purity higher-order Laguerre-Gauss beams at high laser power

    E-Print Network [OSTI]

    L. Carbone; C. Bogan; P. Fulda; A. Freise; B. Willke

    2013-03-14

    We have investigated the generation of highly pure higher-order Laguerre-Gauss (LG) beams at high laser power of order 100W, the same regime that will be used by 2nd generation gravitational wave interferometers such as Advanced LIGO. We report on the generation of a helical type LG33 mode with a purity of order 97% at a power of 83W, the highest power ever reported in literature for a higher-order LG mode.

  8. The neutral hydrogen beam experiment in the Columbia High Beta Tokamak HBT''

    SciTech Connect (OSTI)

    Wang, Jian-Hua; Marshall, T.C.

    1991-01-01

    This report discusses the design of the beam system and the orbit simulation of fast ions in the Columbia High Beat Tokamak. (LSP).

  9. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    E-Print Network [OSTI]

    Henestroza, E.

    2012-01-01

    kinematic manipulator", or hexapod. Our current targetarm with a manually adjustable hexapod on top. A long vacuumchamber. The miniature hexapod and the beam diagnostics must

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    E-Print Network [OSTI]

    Bieniosek, F.M.

    2008-01-01

    kinematic manipulator", or hexapod. Our current targetarm with a manually adjustable hexapod on top. A long vacuumchamber. The miniature hexapod and the beam diagnostics must

  11. A Wavefront-Based Gaussian Beam Method for Computing High Frequency Wave Propagation Problems

    E-Print Network [OSTI]

    Runborg, Olof

    A Wavefront-Based Gaussian Beam Method for Computing High Frequency Wave Propagation Problems, Sweden Abstract We present a novel wavefront method based on Gaussian beams for computing high frequency of the method is illustrated with two numerical examples. Keywords: wave propagation, high frequency, asymptotic

  12. High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1)

    E-Print Network [OSTI]

    Glebov, Leon

    High-power laser beam control by PTR Bragg gratings Igor Ciapurin(1) , Vadim Smirnov(1,2) , George is a photo-thermo-refractive (PTR) glass, and used for high-power laser beam control. Exceptionally narrow combining (SBC) is considered as a promising way for high power laser systems design in numerous

  13. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect (OSTI)

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  14. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  15. Device and method for electron beam heating of a high density plasma

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  16. Signal photon flux generated by high-frequency relic gravitational waves

    E-Print Network [OSTI]

    Xin Li; Sai Wang; Hao Wen

    2015-08-26

    The power spectrum of primordial tensor perturbations $\\mathcal{P}_t$ increases rapidly in high frequency region if the spectral index $n_t>0$. It is shown that the amplitude of relic gravitational wave $h_t$($5\\times10^9$Hz) varies from $10^{-36}$ to $10^{-25}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. High frequency gravitational waves detector that is proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between the relic gravitational waves and electromagnetic system. It is shown that the perturbative photon flux $N_x^1$($5\\times10^9$Hz) varies from $1.40\\times10^{-4}\\rm s^{-1}$ to $2.85\\times10^{7}\\rm s^{-1}$ while $n_t$ varies from $-6.25\\times 10^{-3}$ to $0.87$. Correspondingly, the ratio of the transverse perturbative photon flux $N_x^1$ to the background photon flux varies from $10^{-28}$ to $10^{-16}$.

  17. Modeling high-energy cosmic ray induced terrestrial and atmospheric neutron flux: A lookup table

    E-Print Network [OSTI]

    Andrew Overholt; Adrian Melott; Dimitra Atri

    2013-06-05

    Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies solar flares, supernovae and gamma ray bursts produce high energy cosmic rays (HECRs) with drastically higher energies. The Earth is likely episodically exposed to a greatly increased HECR flux from such events, some of which lasting thousands to millions of years. The air showers produced by HECRs ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Neutrons currently contribute a significant radiation dose at commercial passenger airplane altitude. With higher cosmic ray energies, these effects will be propagated to ground level. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to high energy cosmic rays at various primary energies and altitudes. We provide here lookup tables that can be used to determine neutron fluxes from primaries with total energies 1 GeV - 1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. Our results demonstrate that deducing the nature of primaries from ground level neutron enhancements would be very difficult.

  18. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOE Patents [OSTI]

    Petersen, Holly E. (Tracy, CA); Goward, William D. (Antioch, CA); Dijaili, Sol P. (Moraga, CA)

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  19. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect (OSTI)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  20. An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About of Physics An optical parametric oscillator as a high-flux source of two-mode light for quantum lithography

  1. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing, and fracture toughness master curve issues.

  2. INITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    is equipped with adequate beam instrumentation and diagnostics enabling the above mentioned studiesINITIAL BEAM RESULTS FROM THE CORNELL HIGH-CURRENT ERL INJECTOR PROTOTYPE I. Bazarov, S, Newport News, VA 23606, U.S.A Abstract Cornell University has built a high average current electron

  3. PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda

    E-Print Network [OSTI]

    PLASMA FOCUSING OF HIGH ENERGY DENSITY ELECTRON AND POSITRON BEAMS \\Lambda J.S.T. Ng, P. Chen, W present results from the SLAC E­150 experiment on plasma focusing of high energy density electron and experiments to test this con­ cept were carried out with low energy density electron beams [2]. The goals

  4. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  5. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    E-Print Network [OSTI]

    Fangyu Li; Hao Wen; Zhenyun Fang

    2015-10-20

    Interaction of very low-frequency primordial(relic) gravitational waves(GWs) to cosmic microwave background(CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic(EM) response to high-frequency GWs(HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes, and study the duality and high complementarity between such two B-modes. Based on this quasi-B-mode in HFGWs, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  6. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    SciTech Connect (OSTI)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  7. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  8. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Betzler, Benjamin R; Ade, Brian J; Chandler, David; Ilas, Germina; Sunny, Eva E

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  9. Production of a beam of highly vibrationally excited CO using perturbations

    E-Print Network [OSTI]

    Bartels, Nils

    An intense molecular beam of CO (X[superscript 1]?[superscript +]) in high vibrational states (v = 17, 18) was produced by a new approach that we call PUMP – PUMP – PERTURB and DUMP. The basic idea is to access high ...

  10. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency

    E-Print Network [OSTI]

    Logan, B. Grant

    2008-01-01

    Fusion at High Coupling Efficiency B.G. Logan 1, L.J.fusion at high coupling efficiency B. G. Logan , L . J.Issues with coupling efficiency, beam illumination symmetry

  11. Thermal imaging diagnostics of high-current electron beams

    SciTech Connect (OSTI)

    Pushkarev, A.; Kholodnaya, G.; Sazonov, R.; Ponomarev, D. [Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2012-10-15

    The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm{sup 2}, the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm{sup 2} (or with current density over 10 A/cm{sup 2}, pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.

  12. Perturbative photon flux generated by high-frequency relic gravitational waves and utilization of them for their detection

    E-Print Network [OSTI]

    Fangyu Li; R. M. L. Baker, Jr.; Zhenya Chen

    2006-04-26

    There exist corresponding metric perturbations of the relic gravitational waves (GWs) in the region of approximately h~10^(-30)-10^(-32)in the GHz band. A detector for these GWs is described in which we measure the perturbative photon flux (PPF) or signal generated by such high-frequency relic GWs (HFRGWs) via a coupling system of fractal membranes and a Gaussian beam (GB) passing through a static magnetic field. It is found that under the synchro-resonance condition in which the frequency of the GB is set equal to the frequency of the expected HFRGWs (h~2.00*10^(-31), v_g=10^10Hz in the quintessential inflationary models (QIM) and h~6.32*10^(-31), v_g=10^10Hz in the pre-big bang scenario (PBBS) may produce the PPFs of ~4.04*10^2/s and ~1.27*10^3/s in a surface of 100cm^2 area at the waist of the GB, respectively. The relatively weak first-order PPF, directed at right angles to the expected HFRGWs, is reflected by fractal membrane and the resulting reflected PPF (signal) exhibits a very small decay in transit to the detector (tunable microwave receiver) compared with the much stronger background photon flux, which allows for detection of the reflected PPF with signal to background noise ratios greater than one at the distance of the detector. We also discuss the selection capability of system and directional sensitivity for the resonance components from the stochastic relic GW background. The resolution of tiny difference between the PPFs generated by the relic GWs in the QIM and in the PBBS may be established and will be of cosmological significance. PACS numbers: 04.30.Nk, 04.30.Db, and 98.80.Cq.

  13. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    SciTech Connect (OSTI)

    Crapo, A.D.; Lloyd, J.D. (Emerson Electric Co., St. Louis, MO (US))

    1991-03-01

    This paper reports on two motors designed and built for use with high temperature superconductor (HTSC) materials. They are a homopolar DC motor that will use HTSC field windings and a brushless DC motor that will use bulk HTSC material to trap flux in steel rotor poles. The HTSC field windings of the homopolar DC motor are designed to operate at 1000 Amperes/cm{sup 2} in a 0.010 Tesla (100 Gauss) field. In order to maximize torque in the homopolar DC motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar DC motor has been tested while the authors wait for 575 Ampere turn HTSC coils.

  14. Mechanical beam isolator for high-power laser systems

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA); Vann, Charles S. (Fremont, CA)

    1998-01-01

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape.

  15. Mechanical beam isolator for high-power laser systems

    DOE Patents [OSTI]

    Post, R.F.; Vann, C.S.

    1998-07-07

    A mechanical beam isolator uses rod-shaped elements having a Gaussian configuration to interrupt the path of a beam of photons or particles when the time-scale of the needed interruption is of the order of a microsecond or less. One or more of these rods is mounted transversely to, and penetrates through, a rotating shaft supported by bearings. Owing to the Gaussian geometry of the rods, they are able to withstand much higher rotation speeds, without tensile failure, than rods having any other geometrical shape. 3 figs.

  16. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect (OSTI)

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Max Planck Institute for Physics, 80805 Munich (Germany); University of California Los Angeles, Los Angeles, CA 90095 (United States); Tsinghua University, Beijing (China)

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  17. The neutral hydrogen beam experiment in the Columbia High Beta Tokamak ``HBT``. Part 1, The design of the beam system: Part 2, The orbit simulation of fast ions

    SciTech Connect (OSTI)

    Wang, Jian-Hua; Marshall, T.C.

    1991-12-01

    This report discusses the design of the beam system and the orbit simulation of fast ions in the Columbia High Beat Tokamak. (LSP).

  18. Nanotube diameter optimal for channeling of high-energy particle beam

    E-Print Network [OSTI]

    V. M. Biryukov; S. Bellucci

    2002-06-04

    Channeling of particle beam in straight and bent single-wall nanotubes has been studied in computer simulations. We have found that the nanotubes should be sufficiently narrow in order to steer efficiently the particle beams, with preferred diameter in the order of 0.5-2 nm. Wider nanotubes, e.g. 10-50 nm, appear rather useless for channeling purpose because of high sensitivity of channeling to nanotube curvature. We have compared bent nanotubes with bent crystals as elements of beam steering technique, and found that narrow nanotubes have an efficiency of beam bending similar to that of crystals.

  19. HIGH-EFFICIENCY BEAM EXTRACTION AND COLLIMATION USING CHANNELING IN VERY SHORT BENT CRYSTALS

    E-Print Network [OSTI]

    Titov, Anatoly

    321 HIGH-EFFICIENCY BEAM EXTRACTION AND COLLIMATION USING CHANNELING IN VERY SHORT BENT CRYSTALS Yu of beam extraction from accelerator ring based on using bent crystals is successfully developed through crystal, and this part is further decreased due to dechanneling process in lengthy and bent

  20. IDENTIFICATION AND CONTROL METHODS FOR HIGH POWER ELECTRON BEAM-DRIVEN MICROWAVE TUBES

    E-Print Network [OSTI]

    IDENTIFICATION AND CONTROL METHODS FOR HIGH POWER ELECTRON BEAM-DRIVEN MICROWAVE TUBES C. Abdallah systems community, but have not yet been fully exploited within the HPM community. The simpler electron beam accelerator. We present simulation rlesults which show that a simple nonlinear model using

  1. Beam-line considerations for experiments with highly-charged ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1990-01-01

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations.

  2. Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

    SciTech Connect (OSTI)

    Cipiccia, S.; Wiggins, S. M.; Brunetti, E.; Vieux, G.; Yang, X.; Welsh, G. H.; Anania, M.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)] [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Maneuski, D.; Montgomery, R.; Smith, G.; Hoek, M.; Hamilton, D. J.; Shea, V. O. [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)] [Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Issac, R. C. [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom) [Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Research Department of Physics, Mar Athanasius College, Kothamangalam 686666, Kerala (India); Lemos, N. R. C.; Dias, J. M. [GoLP/Instituto de Plasmas eFusăo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal)] [GoLP/Instituto de Plasmas eFusăo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Symes, D. R. [Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX Didcot (United Kingdom)] [Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX Didcot (United Kingdom); and others

    2013-11-15

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.

  3. Abstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate the neutron production target. To mitigate the effect of the high power, and high intensity beam on the target we propose to reduce the intensity of the beam by un

    E-Print Network [OSTI]

    McDonald, Kirk

    the neutron production target. To mitigate the effect of the high power, and high intensity beam on the targetAbstract The Accelerator Driven Systems (ADS) require high power beam (>10 MW) to irradiate a High-Power Beam* M. Haj Tahar, F Meot, P. Pile, *N. Tsoupas Brookhaven National Laboratory Upton, NY

  4. Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

    E-Print Network [OSTI]

    Theoretical and Experimental Studies on Molybdenum and Stainless Steel Mirrors Cleaning by High Repetition Rate Laser Beam

  5. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  6. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect (OSTI)

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  7. The progress of funnelling gun high voltage condition and beam test

    SciTech Connect (OSTI)

    Wang, E.; Ben-Zvi, I.; Gassner, D. M.; Lambiase, R.; Meng, W.; Rahman, O.; Pikin, A.; Rao, T.; Sheehy, B.; Skaritka, J.; Pietz, J.; Ackeret, M.; Yeckel, C.; Miller, R.; Dobrin, E.; Thompson, K.

    2015-05-03

    A prototype of a high average current polarized electron funneling gun as an eRHIC injector has been built at BNL. The gun was assembled and tested at Stangenes Incorporated. Two beams were generated from two GaAs photocathodes and combined by a switched combiner field. We observed the combined beams on a YAG crystal and measured the photocurrent by a Faraday cup. The gun has been shipped to Stony Brook University and is being tested there. In this paper we will describe the major components of the gun and recent beam test results. High voltage conditioning is discussed as well.

  8. Simulation of the Beam Dump for a High Intensity Electron Gun

    E-Print Network [OSTI]

    Doebert, S; Lefevre, T; Pepitone, K

    2014-01-01

    The CLIC Drive Beam is a high-intensity pulsed electron beam. A test facility for the Drive Beam electron gun will soon be commissioned at CERN. In this contribution we outline the design of a beam dump / Faraday cup capable of resisting the beam’s thermal load. The test facility will operate initially up to 140 keV. At such low energies, the electrons are absorbed very close to the surface of the dump, leading to a large energy deposition density in this thin layer. In order not to damage the dump, the beam must be spread over a large surface. For this reason, a small-angled cone has been chosen. Simulations using Geant4 have been performed to estimate the distribution of energy deposition in the dump. The heat transport both within the electron pulse and between pulses has been modelled using finite element methods to check the resistance of the dump at high repetition rates. In addition, the possibility of using a moveable dump to measure the beam profile and emittance is discussed.

  9. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Cook, David Howard

    2009-01-01

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities.

  10. Analysis of Longitudinal Beam Dynamics Behavior and RF System Operative Limits at High Beam Currents in Storage Rings

    SciTech Connect (OSTI)

    Mastorides, T; Rivetta, C.; Fox, J.D.; Winkle, D.Van; /SLAC; Tytelman, D.; /Dimtel, Redwood City

    2008-07-07

    A dynamics simulation model is used to estimate limits of performance of the Positron-Electron Project (PEP-II). The simulation captures the dynamics and technical limitations of the Low Level Radio Frequency (LLRF) system, the high-power RF components and the low-order mode coupled bunch longitudinal beam dynamics. Simulation results showing the effect of non-linearities on the LLRF loops, and studies of the effectiveness of technical component upgrades are reported, as well as a comparison of these results with PEP-II measurements. These studies have led to the estimation of limits and determining factors in the maximum stored current that the Low Energy Ring/High Energy Ring (LER/HER) can achieve, based on system stability for different RF station configurations and upgrades. In particular, the feasibility of the PEP-II plans to achieve the final goal in luminosity, which required an increase of the beam currents to 4A for LER and 2.2A for HER, is studied. These currents are challenging in part because they would push the longitudinal low-order beam mode stability to the limit, and the klystron forward power past a level of satisfactory margin. An acceptable margin is defined in this paper, which in turn determines the corresponding klystron forward power limitation.

  11. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    SciTech Connect (OSTI)

    Rahman, O.; Ben-Zvi, I.; Degen, C.; Gassner, D. M.; Lambiase, R.; Meng, W.; Pikin, A.; Rao, T.; Sheehy, B.; Skaritka, J.; Wang, E.; Pietz, J.; Ackeret, M.; Yeckel, C.; Miller, R.; Dobrin, E.; Thompson, K.

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  12. Nanofluid-based receivers for high-temperature, high-flux direct solar collectors

    E-Print Network [OSTI]

    Lenert, Andrej

    2010-01-01

    Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

  13. Long distance nu_e -> nu_mu transitions and CP-violation with high intensity beta-beams

    E-Print Network [OSTI]

    Carlo Rubbia

    2013-06-10

    The recent experimental determinations of a large theta_13 angle have opened the way to a determination of the mass hierarchy and of the CP-violating phase. Experiments based on horn produced (anti-)neutrino conventional beams are presently under development. The event rates are marginal for a definitive search, since they require very intense beams and extremely large detector masses. Zucchelli has proposed a method in which pure (anti-)nu_e beams are generated by the beta-decay of relativistic radio-nuclides stored in a high energy storage ring pointing towards a far away neutrino detector. Since they have a much smaller transverse momentum distribution, the neutrino flux will be much more narrowly concentrated than with a horn. The isomeric doublet Li-8 (anti-nu_e, tau_1/2=0.84s) and B-8 (nu_e, tau_1/2=0.77s) has been studied. Neutrino and antineutrino beams are produced with an average transverse momentum of about 6.5 MeV/c. Radioactive ions may be generated with a dedicated table-top storage ring to supply a suitable ion source to be accelerated at high energies either at FNAL or at CERN. Ions should then extracted from the accelerator and accumulated in a decay storage ring with a long straight section pointing toward the neutrino detector. A massive detector based on liquid Argon technology is probably offering the best opportunities for such future programme. The present ICARUS LAr-TPC experiment has already collected at LNGS events in the relevant neutrino energy region. They should provide a first evidence for a conclusive experimental study of the competing signals and more generally for the actual feasibility of the beta-beam option in a search of the CP violating phase. Additional data may be provided in the near future with the ICARUS and MicroBooNe neutrino experiments located at a short distance neutrino beam and that will collect a much larger number of neutrino events.

  14. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    E-Print Network [OSTI]

    Bieniosek, F.M.

    2010-01-01

    for high energy density physics and fusion applications,IFSA 2007, Journal of Physics, Conference Series 112 (2008)high energy density physics experiments F. M. Bieniosek, E.

  15. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    SciTech Connect (OSTI)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  16. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma acceleratorsa...

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Production of high-quality electron bunches by dephasing and beam loading in channeled beams, with a few 109 electrons within a few percent of the same energy above 80 MeV, were produced with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping

  17. IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY

    E-Print Network [OSTI]

    IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY Jens , Ruediger Meyer 3 1) Fraunhofer Institute for Electron Beam and Plasma Technology (FEP), Winterbergstr. 28 Through (RISE EWT) solar cells by electron beam high-rate evaporation of aluminum. In stationary

  18. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    SciTech Connect (OSTI)

    Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A.G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R.G.; al Yahyaoui, R.

    2010-04-02

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath theMoon?s surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequencywindow for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a samplingfrequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, thedetection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit onthe UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  19. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect (OSTI)

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  20. T-junction waveguide-based combining high power microwave beams

    SciTech Connect (OSTI)

    Zhang Qiang; Yuan Chengwei; Liu Lie [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2011-08-15

    Waveguide-based combining microwave beams is an attractive technique for enhancing the output capacities of narrow-band high power microwave devices. A specific T-junction combiner is designed for combining the X/X band microwave beams, and the detailed combining method and experimental results are presented. In the experiments, two microwave sources which can generate gigawatt level microwaves are driven by a single accelerator simultaneously, and their operation frequencies are 9.41 and 9.60 GHz, respectively. The two microwave beams with durations of about 35 ns have been successfully combined, and no breakdown phenomenon occurs.

  1. Observations of the filamentation of high-intensity laser-produced electron beams

    SciTech Connect (OSTI)

    Wei, M.S.; Beg, F.N.; Dangor, A.E.; Gopal, A.; Tatarakis, M.; Krushelnick, K. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Clark, E.L.; Evans, R.G. [Blackett Laboratory, Imperial College London SW7 2BZ (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Ledingham, K.W.D. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Plasma Physics Department, AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); McKenna, P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Norreys, P.A. [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 OQX (United Kingdom); Zepf, M. [Department of Physics, The Queen's University, University Road, Belfast BT7 1NN (United Kingdom)

    2004-11-01

    Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

  2. Neutral beam dump with cathodic arc titanium gettering

    SciTech Connect (OSTI)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.; Krivenko, A. S.; Murakhtin, S. V.; Savkin, V. Ya.

    2011-03-15

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  3. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect (OSTI)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances.

  4. High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from

    E-Print Network [OSTI]

    High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from, Darmstadt, Germany 2 GSI, Darmstadt, Germany 3 Université de Provence et CNRS, Marseille, France 4, Albuquerque, New Mexico. ~Received 21 February 2005; Accepted 20 April 2005! Abstract High energy heavy ions

  5. Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye

    E-Print Network [OSTI]

    of Physics and Nevis Laboratory, New York, New York, USA 6) University of New Mexico, Department of PhysicsMeasurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High of Utah, Department of Physics and High Energy Astrophysics Institute, Salt Lake City, Utah, USA 2

  6. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect (OSTI)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  7. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    E-Print Network [OSTI]

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  8. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect (OSTI)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  9. Combining gigawatt level X-band high power microwave beams with an overmoded circular waveguide diplexer

    SciTech Connect (OSTI)

    Li, Jiawei; Song, Wei; Huang, Wenhua; Shao, Hao; Huang, Huijun; Shi, Yanchao; Huo, Shaofei; Deng, Yuqun [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)] [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Zhang, Zhiqiang [Northwest Institute of Nuclear Technology, Xi'an 710024 (China) [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi'an 710071 (China)

    2014-02-15

    The high power microwave (HPM) beam combining results at X-band with an overmoded waveguide diplexer are presented. As the key device for the beam combining experiments, the diplexer is designed, fabricated, and tested. Then the beam combining experiments under short and long pulses are performed at HPM source, respectively. The experiment results reveal that short and long pulse HPM beams have been successfully operated without microwave breakdown at 3-GW with pulse duration of 25?ns and 1.3-GW with pulse duration of 96?ns. According to the experiments, conservative breakdown thresholds for the diplexer are concluded to be 800?kV/cm and 550?kV/cm, respectively, under the short and long pulse HPM conditions.

  10. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect (OSTI)

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (?100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5?MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  11. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    SciTech Connect (OSTI)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju (Korea, Republic of)] [MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 ?W, under an acceleration of 0.1g.

  12. Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System

    E-Print Network [OSTI]

    Venturini, G; Dehning, B; Effinger, E

    2010-01-01

    The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...

  13. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect (OSTI)

    Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng [Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 ?W?cm{sup ?3} volume power density at 170–206 Hz.

  14. Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High-Intensity Laser Pulses

    E-Print Network [OSTI]

    Umstadter, Donald

    Laser-Energy Transfer and Enhancement of Plasma Waves and Electron Beams by Interfering High%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam

  15. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  16. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1996-10-15

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  17. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1996-01-01

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  18. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    E-Print Network [OSTI]

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A

    2015-01-01

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  19. Evolution of electron beam phase space distribution in a high-gain FEL

    SciTech Connect (OSTI)

    Webb,S.D.; Litvinenko, V. N.

    2009-08-23

    FEL-based coherent electron cooling (CEC) offers a new avenue to achieve high luminosities in high energy colliders such as RHIC, LHC, and eRHIC. Traditional treatments consider the FEL as an amplifier of optical waves with specific initial conditions, focusing on the resulting field. CEC requires knowledge of the phase space distribution of the electron beam in the FEL. We present 1D analytical results for the phase space distribution of an electron beam with an arbitrary initial current profile, and discuss approaches of expanding to 3D results.

  20. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    E-Print Network [OSTI]

    Gambhir Ranjit; David P. Atherton; Jordan H. Stutz; Mark Cunningham; Andrew A. Geraci

    2015-04-03

    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  1. MATERIAL STUDIES FOR PULSED HIGH-INTENSITY PROTON BEAM TARGETS

    E-Print Network [OSTI]

    McDonald, Kirk

    as high-Z target to be evaluated for effects of irradiation on CTE, fracture toughness and ductility loss or strength) degrade with radiation is unknown. Titanium Ti-6Al-4V alloy The evaluation of the fracture toughness changes due to irradiation is of interest regarding this alloy that combines good tensile strength

  2. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect (OSTI)

    Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  3. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  4. Limits on the Transient Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts (GRB) Derived from RICE Data

    E-Print Network [OSTI]

    D. Besson; S. Razzaque; J. Adams; P. Harris

    2006-07-24

    We present limits on ultra-high energy (UHE; E(nu)>1 PeV) neutrino fluxes from gamma-ray bursts (GRBs), based on recently presented data, limits, and simulations from the RICE experiment. We use data from five recorded transients with sufficient photon spectral shape and redshift information to derive an expected neutrino flux, assuming that the observed photons are linked to neutrino production through pion decay via the well-known 'Waxman-Bahcall' prescription. Knowing the declination of the observed burst, as well as the RICE sensitivity as a function of polar angle and the previously published non-observation of any neutrino events allows an estimate of the sensitivity to a given neutrino flux. Although several orders of magnitude weaker than the expected fluxes, our GRB neutrino flux limits are nevertheless the first in the PeV--EeV energy regime. For completeness, we also provide a listing of other bursts, recorded at times when the RICE experiment was active, but requiring some assumptions regarding luminosity and redshift to permit estimates of the neutrino flux.

  5. High Precision Tune and Coupling Feedback and Beam Transfer Function Measurements in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schultheiss, C.; Wilinski, M.

    2010-05-23

    Precision measurement and control of the betatron tunes and betatron coupling in the Relativistic Heavy Ion Collider (RHIC) are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  6. Calculation of synchrotron radiation from high intensity electron beam at eRHIC

    SciTech Connect (OSTI)

    Jing Y.; Chubar, O.; Litvinenko, V.

    2012-05-20

    The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

  7. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    E-Print Network [OSTI]

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  8. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect (OSTI)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  9. Spin rotation of polarized beams in high energy storage ring

    E-Print Network [OSTI]

    V. G. Baryshevsky

    2006-03-23

    The equations for spin evolution of a particle in a storage ring are obtained considering contributions from the tensor electric and magnetic polarizabilities of the particle along with the contributions from spin rotation and birefringence effect in polarized matter of an internal target. % Study of the spin rotation and birefringence effects for a particle in a high energy storage ring provides for measurement both the spin-dependent real part of the coherent elastic zero-angle scattering amplitude and tensor electric (magnetic) polarizabilities.

  10. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M. H.; Chen, M. H.; Hatchett, S. P.; Hill, J. M.; King, J. A.; MacKinnon, A. J.; Patel, P.; Phillips, T.; Snavely, R. A.; Town, R. [University of California, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Adam, J. C.; Heron, A. [Centre de Physique Theorique (UPR14 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France); Akli, K. U.; Stephens, R. [General Atomics, San Diego, California 92186 (United States); Borghesi, M.; Romagnani, L.; Zepf, M. [Department of Pure and Applied Physics, Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Evans, R. G. [Blackett Laboratory, Imperial College of Science Technology and Medicine, London SW7 2BZ (United Kingdom); Freeman, R. R. [The Ohio State University, Columbus, Ohio 34210 (United States); Habara, H. [Rutherford Appleton Laboratory, Chilton, Oxon, OX11OQX (United Kingdom)] (and others)

    2008-02-15

    An integrated experiment relevant to fast ignition . A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  11. Fast ignition relevant study of the flux of high intensity laser-generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect (OSTI)

    Key, M

    2007-11-20

    An integrated experiment relevant to fast ignition. A Cu-doped deuterated polymer spherical shell target with an inserted hollow Au cone is imploded by a six-beam 900-J, 1-ns laser. A 10-ps, 70-J laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{sub {alpha}} fluorescence by comparison with a Monte Carlo model. The electrons are estimated to carry about 15% of the laser energy. Collisional and Ohmic heating are modeled, and Ohmic effects are shown to be relatively unimportant. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is calculated in the model. Enhanced scattering by instability-induced magnetic fields is suggested. An extension of this fluor-based technique to measurement of coupling efficiency to the ignition hot spot in future larger-scale fast ignition experiments is outlined.

  12. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  13. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  14. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  15. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    SciTech Connect (OSTI)

    H. Katsui; Y. Katoh; A. Hasegawa; M. Shimada; Y. Hatano; T. Hinoki; S. Nogami; T. Tanaka; S. Nagata; T. Shikama

    2013-11-01

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C ß-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ~3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation.

  16. System for beaming power from earth to a high altitude platform

    DOE Patents [OSTI]

    Friedman, Herbert W. (Oakland, CA); Porter, Terry J. (Ridgecrest, CA)

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  17. Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1

    E-Print Network [OSTI]

    McDonald, Kirk

    Target Material Irradiation Studies for High-Intensity Accelerator Beams N. Simos1* , H. Kirk1 , H on the behavior of special materials and composites under irradiation conditions and their potential use irradiated target material. The ever greater deposited energy and induced thermo-mechanical loads combined

  18. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective

    E-Print Network [OSTI]

    McGuire, A. David

    Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4 dynamics (3309); 1890 Hydrology: Wetlands; KEYWORDS: methane emissions, methane oxidation, permafrost

  19. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    SciTech Connect (OSTI)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States)] [ed.; Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)] [ed.; Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  20. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    SciTech Connect (OSTI)

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi

    2013-12-02

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30?GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  1. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect (OSTI)

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  2. Flux Conversion and Evidence of Relaxation in a High-Plasma Formed by High-Speed Injection into a Mirror Confinement Structure

    E-Print Network [OSTI]

    Washington at Seattle, University of

    -reversed configuration (FRC). This shows both the robustness of FRCs and their tendency to assume a preferred plasmaFlux Conversion and Evidence of Relaxation in a High-#12; Plasma Formed by High-Speed Injection into a Mirror Confinement Structure H.Y. Guo, A. L. Hoffman, K. E. Miller, and L. C. Steinhauer Redmond Plasma

  3. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora; Jones, Amy; Bailey, William Barton; Vandergriff, David H

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  4. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be shown of thermal fatigue and high-heat flux testing of tungsten coupon specimens that were neutron irradiated in the HFIR reactor to neutron dose consistent to ITER lifetime.

  5. High-resolution quantification of groundwater flux using a heat tracer: laboratory sandbox tests

    E-Print Network [OSTI]

    Konetchy, Brant Evan

    2014-12-31

    and groundwater flux. In this work, we constructed a sandbox to simulate a sand aquifer and performed a series of heat tracer tests under different flow rates. By analyzing the temperature responses among different tests, we developed a quantitative temperature...

  6. A fast high-order method to calculate wakefield forces in an electron beam

    E-Print Network [OSTI]

    Qiang, Ji

    2013-01-01

    wakefield for an electron beam. The same method can alsowakefields inside an electron beam using a modified densitywakefield forces in an electron beam Ji Qiang, Chad

  7. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  8. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  9. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J. [Colorado State U.; Biedron, S. [Colorado State U.; Harris, J. [Colorado State U.; Martinez, J. [Colorado State U.; Milton, S. V. [Colorado State U.; Van Keuren, J. [Colorado State U.; Benson, Steve V. [JLAB; Evtushenko, Pavel [JLAB; Neil, George R. [JLAB; Zhang, Shukui [JLAB

    2013-12-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  10. Heavy and superheavy elements production in high intensive fluxes of explosive process

    E-Print Network [OSTI]

    Lutostansky, Yu S; Panov, I V

    2015-01-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lower temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for Mike, Par and Barbel experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible in case of binary mixture of starting isotopes with the significant addit...

  11. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect (OSTI)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  12. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  13. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  14. Portable radiography system using a relativistic electron beam

    DOE Patents [OSTI]

    Hoeberling, Robert F. (502 Hamlin Ct., Los Alamos, NM 87544)

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  15. Flux of upward high-energy muons at the multi-component primary energy spectrum

    E-Print Network [OSTI]

    S. V. Ter-Antonyan; P. L. Biermann

    2001-06-07

    The atmospheric neutrino-induced upward muon flux are calculated by using the multi-component primary energy spectrum, CORSIKA EAS simulation code for the reproduction of the atmospheric neutrino spectra and improved parton model for charged-current cross sections. The results are obtained at 0.1-1000 TeV muon energy range and 0-89 degrees zenith angular range.

  16. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    E-Print Network [OSTI]

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  17. High-Temperature Kicker Electrodes for High-Beam-Current Operation of PEP-II

    SciTech Connect (OSTI)

    Wienands, U.

    2005-04-11

    The strip line electrodes of the kickers used in the transverse bunch-by-bunch feedback systems see significant power deposition by beam and HOM-induced currents. This leads to elevated temperatures of the aluminum electrodes and will ultimately become a limit for the beam current in the Low Energy Ring. Heat is transported to the environment primarily by radiation from the blackened surface of the electrodes. In order to extend the beam-current range of these kickers, new electrodes have been fabricated from molybdenum which are able to run at significantly higher temperature, thus greatly increasing the efficiency of the radiative cooling of the electrodes. Blackening of the electrodes is achieved by oxidation in air at 530 C (1000 F) using a recipe first applied in aviation research for supersonic aircraft. Emissivity was measured on coupons and a whole electrode to be about 0.6. In addition, the match at the terminations of the electrodes is improved following field calculations and measurements on a model of the kicker.

  18. A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory

    E-Print Network [OSTI]

    Blumenhagen, Ralph; Fuchs, Michael; Herschmann, Daniela; Plauschinn, Erik; Sekiguchi, Yuta; Wolf, Florian

    2015-01-01

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi-Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  19. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  20. Transcript of the workshop to discuss plans for a National High Intensity Radioactive Nuclear Beam Facility

    SciTech Connect (OSTI)

    Nitschke, J.M. (ed.)

    1989-10-19

    Following the First International Conference on Radioactive Nuclear Beams'' in Berkeley, a workshop was held on October 19, 1989 at the Lawrence Berkeley Laboratory to discuss plans for a National High Intensity Radioactive Nuclear Beam (RNB) Facility. The purpose of the workshop was -- after having discussed during the conference the physics question that can be addressed with RNBs -- to evaluate more concretely the possibilities for actually constructing such a facility in this country. It is becoming increasingly apparent that facility producing beams of radioactive nuclei with extreme neutron-to-proton ratios is of high scientific interest and technically feasible. It would allow the study of nuclear structure and astrophysical reactions very far from the line of stable nuclei, and could provide new possibilities of reaching the long-sought island of stability of superheavy nuclei. Such facilities are under advanced consideration in Japan and at CERN in Europe. This paper contains a slightly edited transcript of the tape recording that was made of the workshop.

  1. A new coaxial high power microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei, E-mail: sunberry1211@hotmail.com; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined.

  2. An improved limit to the diffuse flux of ultra-high energy neutrinos from the Pierre Auger Observatory

    E-Print Network [OSTI]

    Aab, Alexander; Aglietta, Marco; Ahn, Eun-Joo; Samarai, Imen Al; Albuquerque, Ivone; Allekotte, Ingomar; Allison, Patrick; Almela, Alejandro; Castillo, Jesus Alvarez; Alvarez-Muńiz, Jaime; Batista, Rafael Alves; Ambrosio, Michelangelo; Aminaei, Amin; Anchordoqui, Luis; Andringa, Sofia; Aramo, Carla; Aranda, Victor Manuel; Arqueros, Fernando; Arsene, Nicusor; Asorey, Hernán Gonzalo; Assis, Pedro; Aublin, Julien; Ave, Maximo; Avenier, Michel; Avila, Gualberto; Awal, Nafiun; Badescu, Alina Mihaela; Barber, Kerri B; Bäuml, Julia; Baus, Colin; Beatty, Jim; Becker, Karl Heinz; Bellido, Jose A; Berat, Corinne; Bertaina, Mario Edoardo; Bertou, Xavier; Biermann, Peter; Billoir, Pierre; Blaess, Simon G; Blanco, Alberto; Blanco, Miguel; Bleve, Carla; Blümer, Hans; Bohá?ová, Martina; Boncioli, Denise; Bonifazi, Carla; Borodai, Nataliia; Brack, Jeffrey; Brancus, Iliana; Bridgeman, Ariel; Brogueira, Pedro; Brown, William C; Buchholz, Peter; Bueno, Antonio; Buitink, Stijn; Buscemi, Mario; Caballero-Mora, Karen S; Caccianiga, Barbara; Caccianiga, Lorenzo; Candusso, Marina; Caramete, Laurentiu; Caruso, Rossella; Castellina, Antonella; Cataldi, Gabriella; Cazon, Lorenzo; Cester, Rosanna; Chavez, Alan G; Chiavassa, Andrea; Chinellato, Jose Augusto; Chudoba, Jiri; Cilmo, Marco; Clay, Roger W; Cocciolo, Giuseppe; Colalillo, Roberta; Coleman, Alan; Collica, Laura; Coluccia, Maria Rita; Conceiçăo, Ruben; Contreras, Fernando; Cooper, Mathew J; Cordier, Alain; Coutu, Stephane; Covault, Corbin; Cronin, James; Dallier, Richard; Daniel, Bruno; Dasso, Sergio; Daumiller, Kai; Dawson, Bruce R; de Almeida, Rogerio M; de Jong, Sijbrand J; De Mauro, Giuseppe; Neto, Joao de Mello; De Mitri, Ivan; de Oliveira, Jaime; de Souza, Vitor; del Peral, Luis; Deligny, Olivier; Dembinski, Hans; Dhital, Niraj; Di Giulio, Claudio; Di Matteo, Armando; Diaz, Johana Chirinos; Castro, Mary Lucia Díaz; Diogo, Francisco; Dobrigkeit, Carola; Docters, Wendy; D'Olivo, Juan Carlos; Dorofeev, Alexei; Hasankiadeh, Qader Dorosti; Dova, Maria Teresa; Ebr, Jan; Engel, Ralph; Erdmann, Martin; Erfani, Mona; Escobar, Carlos O; Espadanal, Joao; Etchegoyen, Alberto; Falcke, Heino; Fang, Ke; Farrar, Glennys; Fauth, Anderson; Fazzini, Norberto; Ferguson, Andrew P; Fernandes, Mateus; Fick, Brian; Figueira, Juan Manuel; Filevich, Alberto; Filip?i?, Andrej; Fox, Brendan; Fratu, Octavian; Freire, Martín Miguel; Fuchs, Benjamin; Fujii, Toshihiro; García, Beatriz; Garcia-Pinto, Diego; Gate, Florian; Gemmeke, Hartmut; Gherghel-Lascu, Alexandru; Ghia, Piera Luisa; Giaccari, Ugo; Giammarchi, Marco; Giller, Maria; G?as, Dariusz; Glaser, Christian; Glass, Henry; Golup, Geraldina; Berisso, Mariano Gómez; Vitale, Primo F Gómez; González, Nicolás; Gookin, Ben; Gordon, Jacob; Gorgi, Alessio; Gorham, Peter; Gouffon, Philippe; Griffith, Nathan; Grillo, Aurelio; Grubb, Trent D; Guardincerri, Yann; Guarino, Fausto; Guedes, Germano; Hampel, Matías Rolf; Hansen, Patricia; Harari, Diego; Harrison, Thomas A; Hartmann, Sebastian; Harton, John; Haungs, Andreas; Hebbeker, Thomas; Heck, Dieter; Heimann, Philipp; Herve, Alexander E; Hill, Gary C; Hojvat, Carlos; Hollon, Nicholas; Holt, Ewa; Homola, Piotr; Hörandel, Jörg; Horvath, Pavel; Hrabovský, Miroslav; Huber, Daniel; Huege, Tim; Insolia, Antonio; Isar, Paula Gina; Jandt, Ingolf; Jansen, Stefan; Jarne, Cecilia; Johnsen, Jeffrey A; Josebachuili, Mariela; Kääpä, Alex; Kambeitz, Olga; Kampert, Karl Heinz; Kasper, Peter; Katkov, Igor; Kégl, Balazs; Keilhauer, Bianca; Keivani, Azadeh; Kemp, Ernesto; Kieckhafer, Roger; Klages, Hans; Kleifges, Matthias; Kleinfeller, Jonny; Krause, Raphael; Krohm, Nicole; Krömer, Oliver; Kuempel, Daniel; Kunka, Norbert; LaHurd, Danielle; Latronico, Luca; Lauer, Robert; Lauscher, Markus; Lautridou, Pascal; Coz, Sandra Le; Lebrun, Didier; Lebrun, Paul; de Oliveira, Marcelo Augusto Leigui; Letessier-Selvon, Antoine; Lhenry-Yvon, Isabelle; Link, Katrin; Lopes, Luis; López, Rebeca; Casado, Aida López; Louedec, Karim; Lu, Lu; Lucero, Agustin; Malacari, Max; Maldera, Simone; Mallamaci, Manuela; Maller, Jennifer; Mandat, Dusan; Mantsch, Paul; Mariazzi, Analisa; Marin, Vincent; Mari?, Ioana; Marsella, Giovanni; Martello, Daniele; Martin, Lilian; Martinez, Humberto; Bravo, Oscar Martínez; Martraire, Diane; Meza, Jimmy Masías; Mathes, Hermann-Josef; Mathys, Sebastian; Matthews, James; Matthews, John; Matthiae, Giorgio; Maurel, Detlef; Maurizio, Daniela; Mayotte, Eric; Mazur, Peter; Medina, Carlos; Medina-Tanco, Gustavo; Meissner, Rebecca; Mello, Victor; Melo, Diego; Menshikov, Alexander; Messina, Stefano

    2015-01-01

    Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultra-high energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time-structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins $60^\\circ-75^\\circ$ and $75^\\circ-90^\\circ$ as well as for upward-going neutrinos, are combined to give a single limit. The $90\\%$ C.L. single-flavor limit to the diffuse flux of ultra-high energy neutrinos with an $E^{-2}$ spectrum in the energy ra...

  3. PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? RETURN TO 100 MW

    SciTech Connect (OSTI)

    Smith, Kevin Arthur [ORNL; Primm, Trent [ORNL

    2009-01-01

    The feasibility of low-enriched uranium (LEU) fuel as a replacement for the current, high enriched uranium (HEU) fuel for the High Flux Isotope Reactor (HFIR) has been under study since 2006. Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting to LEU fuel requires returning the reactor power to 100 MW from 85 MW. The analyses required to up-rate the reactor power and the methods to perform these analyses are discussed. Comments regarding the regulatory approval process are provided along with a conceptual schedule.

  4. Final Report for "Design calculations for high-space-charge beam-to-RF conversion".

    SciTech Connect (OSTI)

    David N Smithe

    2008-10-17

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.

  5. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore »with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  6. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  7. Grating spectrometer system for beam emission spectroscopy diagnostics using high-energy negative-ion-based neutral beam injection on LHD

    SciTech Connect (OSTI)

    Kado, S. [School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Oishi, T. [Graduate School/School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshinuma, M.; Ida, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2010-10-15

    A beam emission spectroscopy (BES) system was developed for density gradient and fluctuation diagnostics in the Large Helical Device (LHD). In order to cover the large Doppler shift of the H{alpha} beam emission because of the high-energy negative-ion-based neutral beam atom (acceleration voltage V{sub acc}=90-170 kV) and the large motional Stark splitting due to the large vxB field (magnetic field B=3.0 T), a grating spectrometer was used instead of a conventional interference filter system. The reciprocal linear dispersion is about 2 nm/mm, which is sufficient to cover the motional Stark effect spectra using an optical fiber with a diameter of 1 mm.

  8. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  9. Switching processes in TGS crystals irradiated by high-current electron beam

    E-Print Network [OSTI]

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  10. High Power Molten Targets for Radioactive Ion Beam Production: from Particle Physics to Medical Applications

    E-Print Network [OSTI]

    De Melo Mendonca, T M

    2014-01-01

    Megawatt-class molten targets, combining high material densities and good heat transfer properties are being considered for neutron spallation sources, neutrino physics facilities and radioactive ion beam production. For this last category of facilities, in order to cope with the limitation of long diffusion times affecting the extraction of short-lived isotopes, a lead-bismuth eutectic (LBE) target loop equipped with a diffusion chamber has been proposed and tested offline during the EURISOL design study. To validate the concept, a molten LBE loop is now in the design phase and will be prototyped and tested on-line at CERN-ISOLDE. This concept was further extended to an alternative route to produce 1013 18Ne/s for the Beta Beams, where a molten salt loop would be irradiated with 7 mA, 160 MeV proton beam. Some elements of the concept have been tested by using a molten fluoride salt static unit at CERNISOLDE. The investigation of the release and production of neon isotopes allowed the measurement of the diffu...

  11. Models to evaluate magnicon architectures and designs suitable for high-perveance beams

    SciTech Connect (OSTI)

    Rees, D.E.

    1994-03-01

    The magnicon, a new high-power, radio frequency (rf) deflection- modulated amplifier, was recently developed at the Institute for Nuclear Physics in Novosibirsk, Russia. The first magnicon achieved a peak output power of 2.6 MW for 50-{mu}s pulses at a frequency of 915 MHz with a dc-to-rf conversion efficiency of 73%. The conversion efficiency achieved by the original magnicon represents a significant improvement over state-of-the-art conventional velocity- and density-modulated devices. Therefore, if properly exploited, the magnicon could substantially reduce the operating expenses of industrial, scientific, and military facilities that require large amounts of rf power. This dissertation describes the operational principles of the magnicon, provides small-signal analytical theory (where practical), presents a large-signal numerical model to characterize magnicon performance, and then utilizes this model to investigate the characteristics of the component magnicon structures. Using these modeling tools, the first-generation magnicon architecture is analyzed for its performance sensitivity to electron-beam size and is found to support beams of only limited diameter. Finally, an alternate magnicon geometry, called a ``uniform-field`` magnicon, is presented and shown to support beams of larger diameter.

  12. Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium

    SciTech Connect (OSTI)

    Lazar, J.; Vlcek, J.; Rezek, J. [Department of Physics, University of West Bohemia, Univerzitni 22, 30614 Plzen (Czech Republic)

    2010-09-15

    High power impulse magnetron sputtering of zirconium was investigated at the average target power density of up to 2.22 kW cm{sup -2} in a pulse. The depositions were performed using a strongly unbalanced magnetron with a planar zirconium target of 100 mm diameter at the argon pressure of 1 Pa. The repetition frequency was 500 Hz at duty cycles ranging from 4% to 10%. Time-averaged mass spectroscopy was carried out at the substrate positions of 100 and 200 mm from the target. The increase in the average target power density from 0.97 kW cm{sup -2} to 2.22 kW cm{sup -2} in shortened voltage pulses (from 200 to 80 {mu}s) at an average target power density of 100 W cm{sup -2} in a period led to high fractions (21%-32%) of doubly charged zirconium ions in total ion fluxes onto the substrate located 100 mm from the target. However, the respective fractions of singly charged zirconium ions decreased from 23% to 3%. It was observed that ion energy distributions were extended to high energies (up to 100 eV relative to the ground potential) under these conditions. The increased target power densities during the shortened voltage pulses resulted in a reduced deposition rate of films from 590 to 440 nm/min and in a weakly decreasing ionized fraction (from 55% to 49%) of the sputtered zirconium atoms in the flux onto the substrate. The doubly charged zirconium ions became strongly predominant (up to 63%) in the total ion flux onto the substrate at the distance of 200 mm from the target. Model calculations were carried out to explain the complicated deposition processes.

  13. Natural convection in high heat flux tanks at the Hanford Waste Site / [by] Mark van der Helm and Mujid S. Kazimi

    E-Print Network [OSTI]

    Van der Helm, Mark Johan, 1972-

    1996-01-01

    A study was carried out on the potential for natural convection and the effect of natural convection in a High Heat Flux Tank, Tank 241-C-106, at the Hanford Reservation. To determine the existence of natural convection, ...

  14. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect (OSTI)

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  15. REX, a 5-MV pulsed-power source for driving high-brightness electron beam diodes

    SciTech Connect (OSTI)

    Carlson, R.L.; Kauppila, T.J.; Ridlon, R.N.

    1991-01-01

    The Relativistic Electron-beam Experiment, or REX accelerator, is a pulsed-power source capable of driving a 100-ohm load at 5 MV, 50 kA, 45 ns (FWHM) with less than a 10-ns rise and 15-ns fall time. This paper describes the pulsed-power modifications, modelling, and extensive measurements on REX to allow it to drive high impedance (100s of ohms) diode loads with a shaped voltage pulse. A major component of REX is the 1.83-m-diam {times} 25.4-cm-thick Lucite insulator with embedded grading rings that separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. A radially tailored, liquid-based resistor provides a stiff voltage source that is insensitive to small variations of the diode current and, in addition, optimizes the electric field stress across the vacuum side of the insulator. The high-current operation of REX employs both multichannel peaking and point-plane diverter switches. This mode reduces the prepulse to less than 2 kV and the postpulse to less than 5% of the energy delivered to the load. Pulse shaping for the present diode load is done through two L-C transmission line filters and a tapered, glycol-based line adjacent to the water PFL and output switch. This has allowed REX to drive a diode producing a 4-MV, 4.5-kA, 55-ns flat-top electron beam with a normalized Lapostolle emittance of 0.96 mm-rad corresponding to a beam brightness in excess of 4.4 {times} 10{sup 8} A/m{sup 2} {minus}rad{sup 2}. 6 refs., 13 figs.

  16. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  17. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect (OSTI)

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  18. The Microwave Air Yield Beam Experiment (MAYBE): measurement of GHz radiation for Ultra-High Energy Cosmic Rays detection

    E-Print Network [OSTI]

    M. Monasor; M. Bohacova; C. Bonifazi; G. Cataldi; S. Chemerisov; J. R. T. De Mello Neto; P. Facal San Luis; B. Fox; P. W. Gorham; C. Hojvat; N. Hollon; R. Meyhandan; L. C. Reyes; B. Rouille D'Orfeuil; E. M. Santos; J. Pochez; P. Privitera; H. Spinka; V. Verzi; C. Williams; J. Zhou

    2011-08-31

    We present first measurements by MAYBE of microwave emission from an electron beam induced air plasma, performed at the electron Van de Graaff facility of the Argonne National Laboratory. Coherent radio Cherenkov, a major background in a previous beam experiment, is not produced by the 3 MeV beam, which simplifies the interpretation of the data. Radio emission is studied over a wide range of frequencies between 3 and 12 GHz. This measurement provides further insight on microwave emission from extensive air showers as a novel detection technique for Ultra-High Energy Cosmic Rays.

  19. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  20. Highly bent (110) Ge crystals for efficient steering of ultrarelativistic beams

    SciTech Connect (OSTI)

    De Salvador, D.; Maggioni, G.; Carturan, S.; Bazzan, M.; Argiolas, N.; Carnera, A.; Dalla Palma, M.; Della Mea, G.; Bagli, E.; Mazzolari, A.; Bandiera, L.; Guidi, V.; Lietti, D.; Berra, A.; Guffanti, G.; Prest, M.; Vallazza, E.

    2013-10-21

    Thanks to the effective electrostatic potential generated by the ordered atomic structure, bent crystals can efficiently deflect ultra relativistic charged beams by means of planar and axial channeling phenomena as well as of the recently discovered volume reflection effect. Most of the experimental knowledge about these phenomena has been gathered with Si crystals, but it has been recently demonstrated that the steering performance can be improved by using high quality Ge materials which have a larger atomic number. In this paper, we investigate channeling and volume reflection of 400 GeV protons from (110) lattice planes in highly bent Ge strips crystals. Both production and characterization of the strips are presented. Herein, the experimental results on deflection are compared with theoretical predictions, with previous published data and with the expected performances of Si crystals in similar experimental conditions.

  1. Influence of beam-loaded effects on phase-locking in the high power microwave oscillator

    SciTech Connect (OSTI)

    Li, Zhenghong; Zhou, Zhigang [Science School, Southwest University of Science and Technology, Mianyang 621021 (China); Qiu, Rong [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621021 (China)

    2014-06-15

    Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistent analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.

  2. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments

    SciTech Connect (OSTI)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Inomoto, Michiaki; Ono, Yasushi; Asai, Tomohiko

    2012-08-15

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 Multiplication-Sign 10{sup 17} m{sup -3}, i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  3. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect (OSTI)

    Chandler, David; Freels, James D; Ilas, Germina; Miller, James Henry; Primm, Trent; Sease, John D; Guida, Tracey; Jolly, Brian C

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  4. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

    2009-03-01

    This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

  5. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  6. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  7. Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes

    E-Print Network [OSTI]

    Jameson, Antony

    tested, motivating its future usage for high-order, high-fidelity CFD. Nomenclature domain u solution. AIAA Aviation #12;I. Introduction The well-established CFD techniques of second-order numerical methods importance also feature complex turbulent flows, including combustion, acoustic noise prediction

  8. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  9. Generation of high-energy electron-positron beams in the collision of a laser-accelerated electron beam and a multi-petawatt laser

    E-Print Network [OSTI]

    Lobet, Mathieu; d'Humičres, Emmanuel; Gremillet, Laurent

    2015-01-01

    Generation of antimatter via the multiphoton Breit-Wheeler process in an all-optical scheme will be made possible on forthcoming high-power laser facilities through the collision of wakefield-accelerated GeV electrons with a counter-propagating laser pulse with $10^{22}$-$10^{23}$ $\\mathrm{Wcm}^{-2}$ peak intensity. By means of integrated 3D particle-in-cell simulations, we show that the production of positron beams with 0.1-1 nC total charge, 100-400 MeV mean energy and 0.01-0.1 rad divergence is within the reach of soon-to-be-available laser systems. The variations of the positron beam's properties with respect to the laser parameters are also examined.

  10. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    SciTech Connect (OSTI)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  11. High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants

    E-Print Network [OSTI]

    Michael Boyle; Alessandra Buonanno; Lawrence E. Kidder; Abdul H. Mroué; Yi Pan; Harald P. Pfeiffer; Mark A. Scheel

    2008-10-06

    Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center-of-mass energy from the simulation by assuming energy balance. We compare these quantities with the predictions of various PN approximants (adiabatic Taylor and Pade models; non-adiabatic effective-one-body (EOB) models). We find that Pade summation of the energy flux does not accelerate the convergence of the flux series; nevertheless, the Pade flux is markedly closer to the numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Pade models overestimate the increase in flux and frequency derivative close to merger, whereas EOB models reproduce more faithfully the shape of and are closer to the numerical flux, frequency derivative and derivative of energy. We also compare the GW phase of the numerical simulation with Pade and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that the phase difference accumulated until $M \\omega = 0.1$ is -0.12 radians for Pade approximants, and 0.50 (0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters within the EOB models to minimize the phase difference, and confirm degeneracies among these parameters. By tuning pseudo 4PN order coefficients in the radial potential or in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase difference can be reduced - if desired - to much less than the estimated numerical phase error (0.02 radians).

  12. Study of the Effects of High-Energy Proton Beams on Escherichia Coli

    E-Print Network [OSTI]

    Park, Jeong Chan

    2015-01-01

    Antibiotic-resistant bacterial infection becomes one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has been little progressed over the last decade. There is an urgent need of the alternative approaches to treat the antibiotic-resistant bacteria. The novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria are mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. The Escherichia coli is an important biological tool to obtain the metabolic and genetic information and also a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. Herein, the morphological and physiological changes of E. coli after proton ...

  13. Micro-cone targets for producing high energy and low divergence particle beams

    DOE Patents [OSTI]

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  14. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    E-Print Network [OSTI]

    Wang, Zhong L.

    electron beam irradiation Yong Ding, Ying Liu, Simiao Niu, Wenzhuo Wu, and Zhong Lin Wang Citation: JournalO nanobelts under high-energy electron beam irradiation Yong Ding,a) Ying Liu, Simiao Niu, Wenzhuo Wu is created around the electron probe due to local beam heating effect, which gener- ates a unidirectional

  15. Highly efficient electron vortex beams generated by nanofabricated phase holograms Vincenzo Grillo, Gian Carlo Gazzadi, Ebrahim Karimi, Erfan Mafakheri, Robert W. Boyd, and Stefano Frabboni

    E-Print Network [OSTI]

    Boyd, Robert W.

    Highly efficient electron vortex beams generated by nanofabricated phase holograms Vincenzo Grillo membranes using electron-beam lithography J. Vac. Sci. Technol. B 31, 06F402 (2013); 10.1063/1.4810917 Ion and electron beam nanofabrication of the which-way double-slit experiment in a transmission

  16. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect (OSTI)

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  17. Soil CO2 flux and photoautotrophic community composition in high-elevation, `barren' soil

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    unclear how microbial communities in the subnival zone obtain the C and energy necessary to sustain life described as `barren', despite their potential to host photoau- totrophic microbial communities. In high and function of these photoautotrophic microbial commu- nities remains essentially unknown. We measured soil CO

  18. Searches for High Frequency Variations in the $^8$B Solar Neutrino Flux at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2009-10-13

    We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar $g$-mode oscillations could affect the production or propagation of solar $^8$B neutrinos. The first search looked for any significant peak in the frequency range 1/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which $g$-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  19. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  20. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect (OSTI)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  1. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  2. A Diode Laser Sensor for High Precision CO2 and H2O Flux Measurements |

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0GrantsThe Life of Enrico's The20155 HighU.S. DOE

  3. Oxide vapor distribution from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R.; Tassano, P.L.; Tsujimoto, N.

    1995-03-01

    Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.

  4. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  5. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  6. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect (OSTI)

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 ?g of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  7. Advanced Thomson scattering system for high-flux linear plasma generator

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A.; Donne, A. J. H.; Schram, D. C.; Naumenko, N. N.; Tugarinov, S. N.

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  8. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G; Cook, David Howard; Freels, James D; Griffin, Frederick P; Ilas, Germina; Sease, John D; Chandler, David

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  9. Area X-ray or UV camera system for high-intensity beams

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Bajt, Sasa (Livermore, CA); Spiller, Eberhard A. (Livermore, CA); Hau-Riege, Stefan (Fremont, CA), Marchesini, Stefano (Oakland, CA)

    2010-03-02

    A system in one embodiment includes a source for directing a beam of radiation at a sample; a multilayer mirror having a face oriented at an angle of less than 90 degrees from an axis of the beam from the source, the mirror reflecting at least a portion of the radiation after the beam encounters a sample; and a pixellated detector for detecting radiation reflected by the mirror. A method in a further embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample; not reflecting at least a majority of the radiation that is not diffracted by the sample; and detecting at least some of the reflected radiation. A method in yet another embodiment includes directing a beam of radiation at a sample; reflecting at least some of the radiation diffracted by the sample using a multilayer mirror; and detecting at least some of the reflected radiation.

  10. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y., E-mail: yingge.du@pnnl.gov; Varga, T. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Zhang, K. H. L.; Chambers, S. A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  11. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  12. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  13. Asymmetric Dual Axis Energy Recovery Linac for Ultra-High Flux sources of coherent X-ray/THz radiation: Investigations Towards its Ultimate Performance

    E-Print Network [OSTI]

    Ainsworth, R; Konoplev, I V; Seryi, A

    2015-01-01

    Truly compact and high current, efficient particle accelerators are required for sources of coherent high brightness and intensity THz and X-Ray radiation to be accepted by university or industrial R&D laboratories. The demand for compactness and efficiency can be satisfied by superconducting RF energy recovery linear accelerators (SRF ERL) allowing effectively minimising the footprint and maximising the efficiency of the system. However such set-ups are affected by regenerative beam-break up (BBU) instabilities which limit the beam current and may terminate the beam transport as well as energy recuperation. In this paper we suggest and discuss a SRF ERL with asymmetric configuration of accelerating and decelerating cavities resonantly coupled. In this model of SRF ERL we propose an electron bunch passing through accelerating and decelerating cavities each once and we show that in this case the regenerative BBU instability can be minimised allowing high currents to be achieved. We study the BBU start curr...

  14. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J; Rousculp, Christopher L; Reinovsky, Robert E; Reass, William A; Griego, Jeffrey R; Oro, David M; Merrill, Frank E

    2010-06-28

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  15. Compact Low-Voltage, High-Power, Multi-beam Klystron for ILC: Initial Test Results

    E-Print Network [OSTI]

    Teryaev, V E; Kazakov, S Yu; Hirshfield, J L; Ives, R L; Marsden, D; Collins, G; Karimov, R; Jensen, R

    2015-01-01

    Initial test results of an L-band multi-beam klystron with parameters relevant for ILC are presented. The chief distinction of this tube from MBKs already developed for ILC is its low operating voltage of 60 kV, a virtue that implies considerable technological simplifications in the accelerator complex. To demonstrate the concept underlying the tubes design, a six-beamlet quadrant (a 54 inch high one-quarter portion of the full 1.3 GHz tube) was built and recently underwent initial tests, with main goals of demonstrating rated gun perveance, rated gain, and at least one-quarter of the full 10-MW rated power. Our initial three-day conditioning campaign without RF drive (140 microsec pulses @ 60 Hz) was stopped at 53% of full rated duty because of time-limits at the test-site; no signs appeared that would seem to prevent achieving full duty operation (i.e., 1.6 msec pulses @ 10 Hz). The subsequent tests with 10-15 microsec RF pulses confirmed the rated gain, produced output powers of up to 2.86 MW at 60 kV with...

  16. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOE Patents [OSTI]

    Hawsey, Robert A. (Oak Ridge, TN); Scudiere, Matthew B. (Oak Ridge, TN)

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  17. SUPER-INVAR AS A TARGET FOR A PULSED HIGH-INTENSITY PROTON BEAM

    E-Print Network [OSTI]

    McDonald, Kirk

    beam enters from the top. The irradiation was done at the Brookhaven Linac Iso- tope Producer (BLIP, with holder, were immersed in a water tank for target cooling purposes. In addition, water was directed

  18. Mechanisms of loss of high energy protons from the bunched beams in storage rings

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    and continuous fluctuations. The first type models scattering processes like the Touschek effect and gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Continuous random processes particles like protons or ions. This study is motivated by the coasting beam production observed in the HERA

  19. Generation, transport and focusing of high-brightness heavy ion beams

    E-Print Network [OSTI]

    Henestroza, Enrique

    2006-01-01

    The Neutralized Transport Experiment (NTX) has been built at the Heavy Ion Fusion Virtual National Laboratory. NTX is the first successful integrated beam system experiment that explores various physical phenomena, and ...

  20. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Ĺ to above 300 Ĺ. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 ?m wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Ĺ above 100 Ĺ, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  1. Use of Crystals for High Energy Photon Beam Linear Polarization Conversion into Circular

    E-Print Network [OSTI]

    N. Z. Akopov; A. B. Apyan; S. M. Darbinyan

    2000-02-17

    The possibility to convert the photon beam linear polarization into circular one at photon energies of hundreds GeV with the use of crystals is considered. The energy and orientation dependencies of refractive indexes are investigated in case of diamond, silicon and germanium crystal targets. To maximize the values for figure of merit, the corresponding crystal optimal orientation angles and thickness are found. The degree of circular polarization and intensity of photon beam are estimated and possibility of experimental realization is discussed.

  2. The New Uppsala Neutron Beam Facility

    SciTech Connect (OSTI)

    Pomp, S.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Prokofiev, A.V.; Bystroem, O.; Ekstroem, C.; Haag, N.; Jonsson, O.; Reistad, D.; Renberg, P.-U.; Wessman, D.; Ziemann, V.; Nilsson, L.; Olsson, N.; Tippawan, U.

    2005-05-24

    A new quasi-monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large-area fields. Besides cross-section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single-event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.

  3. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    SciTech Connect (OSTI)

    Chandler, David [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

    2010-01-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  4. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier

    SciTech Connect (OSTI)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Zhao, Yucong; He, Hu; Lei, Lurong; Chen, Zhaofu [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An X-band coaxial multi-beam relativistic klystron amplifier is designed in order to increase output microwave power and operating frequency of the amplifier tube. The experiment is performed on a Tesla-type accelerator. The amplifier is driven by an electron beam of 2.8 kA at 720 kV, and a microwave power of 30 kW and frequency of 9.384 GHz is injected into an input cavity by means of an external source, then a microwave power of over 800 MW is extracted, the amplifier gain is about 44 dB, and conversion efficiency is 40%. The experiment proves that output power of nearly GWs can be generated with the X-band coaxial multi-beam relativistic klystron amplifier driven by a kW-level input power.

  5. Continuous guided beams of slow and internally cold polar molecules

    E-Print Network [OSTI]

    Sommer, Christian; Motsch, Michael; Pohle, Sebastian; Bayerl, Josef; Pinkse, Pepijn W H; Rempe, Gerhard

    2008-01-01

    We describe the combination of buffer-gas cooling with electrostatic velocity filtering to produce a high-flux continuous guided beam of internally cold and slow polar molecules. In a previous paper (L.D. van Buuren et al., arXiv:0806.2523v1) we presented results on density and state purity for guided beams of ammonia and formaldehyde using an optimized set-up. Here we describe in more detail the technical aspects of the cryogenic source, its operation, and the optimization experiments that we performed to obtain best performance. The versatility of the source is demonstrated by the production of guided beams of different molecular species.

  6. Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    E-Print Network [OSTI]

    D. Habs; M. Gross; P. G. Thirolf; P. Böni

    2010-09-30

    We propose to search for neutron halo isomers populated via $\\gamma$-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the $4s_{1/2}$ or $3s_{1/2}$ neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new $\\gamma$-beams of high intensity and small band width ($\\le$ 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the $\\gamma$-decay back to the ground state in the 100 ps-$\\mu$s range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.

  7. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect (OSTI)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  8. High-flux ptychographic imaging using the new 55 µm-pixel detector ‘Lambda’ based on the Medipix3 readout chip

    SciTech Connect (OSTI)

    Wilke, R. N., E-mail: rwilke@gwdg.de; Wallentin, J.; Osterhoff, M. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Pennicard, D.; Zozulya, A.; Sprung, M. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Salditt, T. [University of Göttingen, Institute for X-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-11-01

    The Large Area Medipix-Based Detector Array (Lambda) has been used in a ptychographic imaging experiment on solar-cell nanowires. By using a semi-transparent central stop, the high flux density provided by nano-focusing Kirkpatrick–Baez mirrors can be fully exploited for high-resolution phase reconstructions. Suitable detection systems that are capable of recording high photon count rates with single-photon detection are instrumental for coherent X-ray imaging. The new single-photon-counting pixel detector ‘Lambda’ has been tested in a ptychographic imaging experiment on solar-cell nanowires using Kirkpatrick–Baez-focused 13.8 keV X-rays. Taking advantage of the high count rate of the Lambda and dynamic range expansion by the semi-transparent central stop, a high-dynamic-range diffraction signal covering more than seven orders of magnitude has been recorded, which corresponds to a photon flux density of about 10{sup 5} photons nm{sup ?2} s{sup ?1} or a flux of ?10{sup 10} photons s{sup ?1} on the sample. By comparison with data taken without the semi-transparent central stop, an increase in resolution by a factor of 3–4 is determined: from about 125 nm to about 38 nm for the nanowire and from about 83 nm to about 21 nm for the illuminating wavefield.

  9. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, Christopher J. (Powell, TN); Lopata, Vincent J. (Manitoba, CA); Havens, Stephen J. (Knoxville, TN); Dorsey, George F. (Farragut, TN); Moulton, Richard J. (Lafayette, CA)

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  10. Bond Characteristics and Shear Behavior of Concrete Beams Reinforced with High-Strength

    E-Print Network [OSTI]

    the behavior of reinforced concrete structures (ACI 408 2003). Previous research (Orangin et al. 1977; Darwin. The applicability of various building codes and standards for concrete beams with HS shear reinforcement was also; Zuo and Darwin 2000) including the current ACI Committee *Corresponding author. Email address: tarek

  11. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOE Patents [OSTI]

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  12. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    SciTech Connect (OSTI)

    Ratner, Daniel; /Stanford U. /SLAC

    2012-05-25

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  13. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect (OSTI)

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.; Novosibirsk State University, Novosibirsk

    2014-02-15

    The RHIC polarized H{sup ?} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ?0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  14. Irradiation effects on Ti and SUS-304 membranes caused by the transmission of high-energy proton beam

    SciTech Connect (OSTI)

    Yamaguchi, S.; Nagata, S.; Takahiro, K. [Institute for materials Research, Tohoku University, Sendai 980-8577 (Japan)

    1999-06-10

    Ti and SUS-304 membranes are used for the window material of the electron beam processor as well as of the beam line for non-vacuum PIXE. The modification of the window materials during the passage of high-energy charged particles has been examined by experimental simulation using a high-energy proton beam. Polycrystalline Ti membrane of 5 {mu} m thick and SUS-304 membrane of 6 {mu} m thick are used as the specimens. Protons of 1 MeV energy are irradiated into the Ti and SUS-304 membranes up to the fluence of 4x10{sup 17} p/cm{sup 2}. Since the projected range of 1 MeV proton on Ti and SUS-304 is larger than 6 {mu} m, most protons can pass through the membranes. Microstructure and micro-hardness of the proton irradiated specimens are examined by SEM, XRD and Knoop hardness measurements as a function of proton fluence. The results show that the proton irradiation induced recrystallization and softening of the specimen.

  15. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect (OSTI)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  16. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    SciTech Connect (OSTI)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/?m on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.

  17. Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

    E-Print Network [OSTI]

    Allison, P; Bard, R; Beatty, J J; Besson, D Z; Bora, C; Chen, C -C; Chen, P; Connolly, A; Davies, J P; DuVernois, M A; Fox, B; Gorham, P W; Hanson, K; Hill, B; Hoffman, K D; Hong, E; Hu, L -C; Ishihara, A; Karle, A; Kelley, J; Kravchenko, I; Landsman, H; Laundrie, A; Li, C -J; Liu, T; Lu, M -Y; Maunu, R; Mase, K; Meures, T; Miki, C; Nam, J; Nichol, R J; Nir, G; O'Murchadha, A; Pfendner, C G; Ratzlaff, K; Richman, M; Rotter, B; Sandstrom, P; Seckel, D; Shultz, A; Song, M; Stockham, J; Stockham, M; Sullivan, M; Touart, J; Tu, H -Y; Varner, G S; Yoshida, S; Young, R; Guetta, D

    2015-01-01

    We searched for ultra-high energy (UHE) neutrinos from Gamma-Ray Bursts (GRBs) with the Askaryan Radio Array (ARA) Testbed station's 2011-2012 data set. Among 589 GRBs monitored by the Gamma Ray Coordinate Network (GCN) catalog from Jan. 2011 to Dec. 2012 over the entire sky, 57 GRBs were selected for analysis. These GRBs were chosen because they occurred during a period of low anthropogenic background and high stability of the station and fell within our geometric acceptance. We searched for UHE neutrinos from 57 GRBs and observed 0 events, which is consistent with 0.11 expected background events. With this result, we set the limits on the UHE GRB neutrino fluence and quasi-diffuse flux from $10^{16}$ to $10^{19}$~eV. This is the first limit on the UHE GRB neutrino quasi-diffuse flux at energies above $10^{16}$~eV.

  18. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect (OSTI)

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology , Ibaraki ; Hirano, Y.; Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo ; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ?0.9 eV and ?8 × 10{sup 8} cm{sup ?3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  19. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    SciTech Connect (OSTI)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-03-15

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content.

  20. Controllable high-quality electron beam generation by phase slippage effect in layered targets

    SciTech Connect (OSTI)

    Yu, Q.; Li, X. F.; Huang, S.; Zhang, F.; Kong, Q.; Gu, Y. J.; Ma, Y. Y.; Kawata, S.

    2014-11-15

    The bubble structure generated by laser-plasma interactions changes in size depending on the local plasma density. The self-injection electrons' position with respect to wakefield can be controlled by tailoring the longitudinal plasma density. A regime to enhance the energy of the wakefield accelerated electrons and to improve the beam quality is proposed and achieved using layered plasmas with increasing densities. Both the wakefield size and the electron bunch duration are significantly contracted in this regime. The electrons remain in the strong acceleration phase of the wakefield, while their energy spread decreases because of their tight spatial distribution. An electron beam of 0.5?GeV with less than 1% energy spread is obtained through 2.5D particle-in-cell simulations.

  1. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  2. Upgrade of the Minos+ Experiment Data Acquisition for the High Energy NuMI Beam Run

    E-Print Network [OSTI]

    William Badgett; Steve R. Hahn; Donatella Torretta; Jerry Meier; Jeffrey Gunderson; Denise Osterholm; David Saranen

    2015-06-06

    The Minos+ experiment is an extension of the Minos experiment at a higher energy and more intense neutrino beam, with the data collection having begun in the fall of 2013. The neutrino beam is provided by the Neutrinos from the Main Injector (NuMI) beam-line at Fermi National Accelerator Laboratory (Fermilab). The detector apparatus consists of two main detectors, one underground at Fermilab and the other in Soudan, Minnesota with the purpose of studying neutrino oscillations at a base line of 735 km. The original data acquisition system has been running for several years collecting data from NuMI, but with the extended run from 2013, parts of the system needed to be replaced due to obsolescence, reliability problems, and data throughput limitations. Specifically, we have replaced the front-end readout controllers, event builder, and data acquisition computing and trigger processing farms with modern, modular and reliable devices with few single points of failure. The new system is based on gigabit Ethernet TCP/IP communication to implement the event building and concatenation of data from many front-end VME readout crates. The simplicity and partitionability of the new system greatly eases the debugging and diagnosing process. The new system improves throughput by about a factor of three compared to the old system, up to 800 megabits per second, and has proven robust and reliable in the current run.

  3. A high-speed beam of lithium droplets for collecting diverted energy and particles in ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect (OSTI)

    Werley, K.A.

    1989-01-01

    A high-speed (160m/s) beam (0.14 {times} 0.86m) of liquid-lithium droplets passing through the divertor region(s) below (and above) the main plasma has the potential to replace and out-perform conventional'' solid divertor plates in both heat and particle removal. In addition to superior heat-collection properties, the lithium beam would: remove impurities; require low power to circulate the lithium; exhibit low-recycle divertor operation compatible with lower-hybrid current drive, H-mode plasma confinement, and no flow reversal in the edge plasma; be insensitive to plasma shifts; and finally protect solid structures from the plasma thermal energy for those disruptions that deposit energy preferentially into the divertor while simultaneously being rapidly re-established after a major disruption. Scoping calculations identifying the beam configuration and the droplet dynamics, including formation, MHD effects, gravitational effects, thermal response and hydrodynamics, are presented. Limitations and uncertainties are also discussed. 20 refs., 6 figs., 3 tabs.

  4. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.

    2014-09-15

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  5. Adaptive Representation of Specular Light Flux

    E-Print Network [OSTI]

    Montréal, Université de

    Adaptive Representation of Specular Light Flux Normand Bri`ere Pierre Poulin D´epartement d in all but the simplest con- figurations. To capture their appearance, we present an adaptive approach based upon light beams. The coher- ence between light rays forming a light beam greatly re- duces

  6. Poster — Thur Eve — 18: Cherenkov Emission By High-Energy Radiation Therapy Beams: A Characterization Study

    SciTech Connect (OSTI)

    Zlateva, Y.; El Naqa, I.; Quitoriano, N.

    2014-08-15

    We investigate Cherenkov emission (CE) by radiotherapy beams via radiation dose-versus-CE correlation analyses, CE detection optimization by means of a spectral shift towards the near-infrared (NIR) window of biological tissue, and comparison of CE to on-board MV imaging. Dose-CE correlation was investigated via simulation and experiment. A Monte Carlo (MC) CE simulator was designed using Geant4. Experimental phantoms include: water; tissue-simulating phantom composed of water, Intralipid®, and beef blood; plastic phantom with solid water insert. The detector system comprises an optical fiber and diffraction-grating spectrometer incorporating a front/back-illuminated CCD. The NIR shift was carried out with CdSe/ZnS quantum dots (QDs), emitting at (650±10) nm. CE and MV images were acquired with a CMOS camera and electronic portal imaging device. MC and experimental studies indicate a strong linear dose-CE correlation (Pearson coefficient > 0.99). CE by an 18-MeV beam was effectively NIR-shifted in water and a tissue-simulating phantom, exhibiting a significant increase at 650 nm for QD depths up to 10 mm. CE images exhibited relative contrast superior to MV images by a factor of 30. Our work supports the potential for application of CE in radiotherapy online imaging for patient setup and treatment verification, since CE is intrinsic to the beam and non-ionizing and QDs can be used to improve CE detectability, potentially yielding image quality superior to MV imaging for the case of low-density-variability, low-optical-attenuation materials (ex: breast/oropharynx). Ongoing work involves microenvironment functionalization of QDs and application of multi-channel spectrometry for simultaneous acquisition of dosimetric and tumor oxygenation signals.

  7. Performance of the CLEO III LiF-TEA Ring Imaging Cherenkov Detector in a High Energy Muon Beam

    E-Print Network [OSTI]

    Artuso, M; Azfar, F; Efimov, A; Kopp, S E; Mountain, R; Majumder, G; Schuh, S; Skwarnicki, T; Stone, S; Viehhauser, G; Wang, J C; Coan, T E; Fadeev, V; Volobuev, I P; Ye, J; Anderson, S; Kubota, Y; Smith, A; Lipeles, E

    2000-01-01

    The CLEO III Ring Imaging Cherenkov detector uses LiF radiators to generate Cherenkov photons which are then detected by proportional wire chambers using a mixture of CH$_4$ and TEA gases. The first two photon detector modules which were constructed, were taken to Fermilab and tested in a beam dump that provided high momentum muons. We report on results using both plane and "sawtooth" shaped radiators. Specifically, we discuss the number of photoelectrons observed per ring and the angular resolution. The particle separation ability is shown to be sufficient for the physics of CLEO III.

  8. Performance of the CLEO III LiF-TEA Ring Imaging Cherenkov Detector in a High Energy Muon Beam

    E-Print Network [OSTI]

    M. Artuso; R. Ayad; F. Azfar; A. Efimov; S. Kopp; R. Mountain; G. Majumder; S. Schuh; T. Skwarnicki; S. Stone; G. Viehhauser; J. C. Wang; T. Coan; V. Fadeyev; I. Volobouev; J. Ye; S. Anderson; Y. Kubota; A. Smith; E. Lipeles

    1999-10-26

    The CLEO III Ring Imaging Cherenkov detector uses LiF radiators to generate Cherenkov photons which are then detected by proportional wire chambers using a mixture of CH$_4$ and TEA gases. The first two photon detector modules which were constructed, were taken to Fermilab and tested in a beam dump that provided high momentum muons. We report on results using both plane and "sawtooth" shaped radiators. Specifically, we discuss the number of photoelectrons observed per ring and the angular resolution. The particle separation ability is shown to be sufficient for the physics of CLEO III.

  9. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect (OSTI)

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  10. Vibrating wires for beam diagnostics

    E-Print Network [OSTI]

    Arutunian, S G; Wittenburg, Kay

    2015-01-01

    A new approach to the technique of scanning by wires is developed. Novelty of the method is that the wire heating quantity is used as a source of information about the number of interacting particles. To increase the accuracy and sensitivity of measurements the wire heating measurement is regenerated as a change of wire natural oscillations frequency. By the rigid fixing of the wire ends on the base an unprecedented sensitivity of the frequency to the temperature and to the corresponding flux of colliding particles. The range of used frequencies (tens of kHz) and speed of processes of heat transfer limit the speed characteristics of proposed scanning method, however, the high sensitivity make it a perspective one for investigation of beam halo and weak beam scanning. Traditional beam profile monitors generally focus on the beam core and loose sensitivity in the halo region where a large dynamic range of detection is necessary. The scanning by a vibrating wire can be also successfully used in profiling and det...

  11. High-Efficiency Beam Extraction and Collimation Using Channeling in Very Short Bent Crystals

    SciTech Connect (OSTI)

    Afonin, A. G.; Baranov, V. T.; Biryukov, V. M.; Breese, M. B. H.; Chepegin, V. N.; Chesnokov, Yu. A.; Guidi, V.; Ivanov, Yu. M.; Kotov, V. I.; Martinelli, G.

    2001-08-27

    A silicon crystal was used to channel and extract 70GeV protons from the U-70 accelerator with an efficiency of 85.3{+-}2.8% , as measured for a beam of {approx}10{sup 12} protons directed towards crystals of {approx}2 mm length in spills of {approx}2 s duration. The experimental data follow very well the prediction of Monte Carlo simulations. This demonstration is important in devising a more efficient use of the U-70 accelerator in Protvino and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.

  12. High-efficiency GaAs solar cells grown by molecular-beam epitaxy

    SciTech Connect (OSTI)

    Melloch, M.R. (School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 (USA)); Tobin, S.P. (Spire Corporation, Patriots Park, Bedford, Massachusetts 01730 (USA)); Stellwag, T.B. (School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 (USA)); Bajgar, C. (Spire Corporation, Patriots Park, Bedford, Massachusetts 01730 (USA)); Keshavarzi, A.; Lundstrom, M.S. (School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 (USA)); Emery, K. (Solar Energy Research Institute, Golden, Colorado 80401 (USA))

    1990-03-01

    Previously, solar cells fabricated from molecular-beam epitaxually (MBE)-grown material have been inferior in performance to those fabricated from metalorganic chemical vapor deposited (MOCVD) material. We have obtained 1-sun air mass (AM) 1.5 efficiencies of 23.8% for 0.25 cm{sup 2} GaAs solar cells fabricated on MBE-grown material. This is the first solar cell fabricated on MBE material which is of comparable performance to solar cells fabricated on MOCVD material. Details of the MBE system preparation and film growth procedure along with a detailed evaluation of the solar cells will be presented.

  13. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Johnston, S. W. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Umbel, R. [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  14. Heat Flux Calculation and Problem of Flaking of Boron Carbide Coatings on the Faraday Screen of the ICRH Antennas During Tore Supra High Power, Long Pulse Operation

    SciTech Connect (OSTI)

    Corre, Y.; Lipa, M.; Agarici, G.; Basiuk, V.; Colas, L.; Courtois, X.; Dumont, R. J.; Ekedahl, A.; Gardarein, J. L.; Klepper, C Christopher; Martin, V.; Moncada, V.; Portafaix, C.; Rigollet, F.; Tawizgant, R.; Travere, J. M.; Valliez, K.

    2011-01-01

    Reliable and repetitive high power and long pulse tokamak operation is strongly dependant of the ability to secure the Plasma Facing Components (PFCs). In Tore Supra, a network of 7 infrared (IR) video cameras is routinely used to prevent PFCs overheating and damage in selected regions. Real time feedback control and offline analysis are essential for basic protection and understanding of abnormal thermal events. One important limitation detected by the IR real time feed-back loop during high power RF operation (injected power of 9.5 MW over 26 s and 12 MW over 10 s have been achieved respectively in 2006 and 2008) is due to the interaction between fast ions which increase the power flux density and flaking of the boron carbide coatings on the Faraday screen box of the ICRH antennas. An IR-based experimental procedure is proposed in order to detect new flakes during plasma operation. The thermal response of the B4C coating is studied with and without flaking during plasma operation. The experimental heat flux deposited by fast ion losses on the Faraday screen is calculated for high (3.8 T) and low magnetic field (2 T) during high RF power operation (with fundamental hydrogen minority and second harmonic ICRH heating schemes respectively). The paper addresses both thermal science issues applied to machine protection and limitation due to fast ions issues during high RF power, long pulse operation. Safety margin to critical heat flux and number of fatigue cycles under heat load are presented in the paper.

  15. VOLUME 82, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 31 MAY 1999 Fast Compression of Laser Beams to Highly Overcritical Powers

    E-Print Network [OSTI]

    of Laser Beams to Highly Overcritical Powers V. M. Malkin, G. Shvets, and N. J. Fisch Department, wherein the laser beams are amplified to power densities much higher than a GW cm2 , even without be overcome by ultrafast com- pression of laser beams, such that highly overcritical laser powers are attained

  16. DAWOOD, MINA MAGDY RIAD. Fundamental Behavior of Steel-Concrete Composite Beams Strengthened with High Modulus Carbon Fiber Reinforced Polymer (CFRP)

    E-Print Network [OSTI]

    Strengthened with High Modulus Carbon Fiber Reinforced Polymer (CFRP) Materials. (Under the direction of Dr for the repair and strengthening of steel bridges. Recently, high modulus carbon fiber reinforced polymers (CFRP-CONCRETE COMPOSITE BEAMS STRENGTHENED WITH HIGH MODULUS CARBON FIBER REINFORCED POLYMER (CFRP) MATERIALS by MINA

  17. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  18. Compensation of the long-range beam-beam interactions as a path towards new configurations for the High Luminosity LHC

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)390904; Papaphilippou, Yannis; Shatilov, Dmitry

    2015-01-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of ?* and type of optics (flat or round), and possible compensation or additive effects between several low-? insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the longrange beam-beam effects, therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the fi...

  19. Optimizing the Bent Crystal Parameters for High-Efficiency Beam Extraction and Collimation in Circular Accelerators

    E-Print Network [OSTI]

    Yazynin, I A; Chesnokov, Yu A

    2011-01-01

    The efficiency of the beam extraction and collimation systems in circular accelerators with the use of the channeling effect in a bent crystal is determined. The dependences of the extraction efficiency on the geometrical parameters of the crystal (its length, thickness, and bending angle), the azimuthal location of the system components, and the offset of the septum or scraper are presented. The influence of crystal imperfections (amorphous layers, misorientation, and torsion) on the efficiency of the systems is considered, and their tolerances are proposed. It is shown that an extraction efficiency of >95% can be attained over a wide energy range from 2 GeV to 7 TeV by optimizing the crystal parameters and the positions of the system components.

  20. Effect of the plasma electrode position and shape on the beam intensity of the highly charged ions from RIKEN 18 GHz electron-cyclotron-resonance ion source

    SciTech Connect (OSTI)

    Higurashi, Y.; Nakagawa, T.; Kidera, M.; Aihara, T.; Kobayashi, K.; Kase, M.; Goto, A.; Yano, Y. [RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); SAS Ltd. Kita-shinagawa 5-9-11, Shinjuku-ku, Tokyo (Japan); RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2006-03-15

    Beam intensities of highly charged Ar ions (Ar{sup 11+,12+}) were measured as a function of plasma electrode position. We observed that the beam intensity of Ar{sup 11+,12+} increased when putting the electrode far from the electron-cyclotron-resonance zone. On the other hand, lower charged heavy ions (Ar{sup 8+,7+}) dramatically decreased. We observed that the intense beam extraction strongly affects the plasma condition. It may be due to the ion pumping effect.

  1. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOE Patents [OSTI]

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  2. The Flux Qubit Revisited

    E-Print Network [OSTI]

    F. Yan; S. Gustavsson; A. Kamal; J. Birenbaum; A. P. Sears; D. Hover; T. J. Gudmundsen; J. L. Yoder; T. P. Orlando; J. Clarke; A. J. Kerman; W. D. Oliver

    2015-08-25

    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and coherence times in excess of 40 us at its flux-insensitive point. Qubit relaxation times across 21 qubits of widely varying designs are consistently matched with a single model involving ohmic charge noise, quasiparticle fluctuations, resonator loss, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, reaching T2 ~ 80 us , approximately the 2T1 limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting T2 in contemporary state-of-art qubits based on transverse qubit-resonator interaction.

  3. Beam current sensor

    DOE Patents [OSTI]

    Kuchnir, M.; Mills, F.E.

    1984-09-28

    A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

  4. Present and future perspectives for high energy density physics with intense heavy ion and laser beams

    E-Print Network [OSTI]

    , Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laserPresent and future perspectives for high energy density physics with intense heavy ion and laser!, Plasmaphysik, Darmstadt, Germany 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt

  5. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  6. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    presented at APS Division of Plasma Physics, Denver,of Division of Physics of Beams of APS, InternationalLinear Colliders," APS New Directions in High Energy Physics

  7. A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND

    SciTech Connect (OSTI)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu

    2013-08-10

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.

  8. What Dose of External-Beam Radiation is High Enough for Prostate Cancer?

    SciTech Connect (OSTI)

    Eade, Thomas N. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanlon, Alexandra L. [Department of Public Health, Temple University, Philadelphia, PA (United States); Horwitz, Eric M. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Buyyounouski, Mark K. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Hanks, Gerald E. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Pollack, Alan [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)]. E-mail: Alan.Pollack@fccc.edu

    2007-07-01

    Purpose: To quantify the radiotherapy dose-response of prostate cancer, adjusted for prognostic factors in a mature cohort of men treated relatively uniformly at a single institution. Patients and Methods: The study cohort consisted of 1,530 men treated with three-dimensional conformal external-beam radiotherapy between 1989 and 2002. Patients were divided into four isocenter dose groups: <70 Gy (n = 43), 70-74.9 Gy (n = 552), 75-79.9 Gy (n = 568), and {>=}80 Gy (n = 367). The primary endpoints were freedom from biochemical failure (FFBF), defined by American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2.0 ng/mL) criteria, and freedom from distant metastases (FFDM). Multivariate analyses were performed and adjusted Kaplan-Meier estimates were calculated. Logit regression dose-response functions were determined at 5 and 8 years for FFBF and at 5 and 10 years for FFDM. Results: Radiotherapy dose was significant in multivariate analyses for FFBF (ASTRO and Phoenix) and FFDM. Adjusted 5-year estimates of ASTRO FFBF for the four dose groups were 60%, 68%, 76%, and 84%. Adjusted 5-year Phoenix FFBFs for the four dose groups were 70%, 81%, 83%, and 89%. Adjusted 5-year and 10-year estimates of FFDM for the four dose groups were 96% and 93%, 97% and 93%, 99% and 95%, and 98% and 96%. Dose-response functions showed an increasing benefit for doses {>=}80 Gy. Conclusions: Doses of {>=}80 Gy are recommended for most men with prostate cancer. The ASTRO definition of biochemical failure does not accurately estimate the effects of radiotherapy at 5 years because of backdating, compared to the Phoenix definition, which is less sensitive to follow-up and more reproducible over time.

  9. Untangling the contributions of image charge and laser profile for optimal photoemission of high-brightness electron beams

    SciTech Connect (OSTI)

    Portman, J.; Zhang, H.; Makino, K.; Ruan, C. Y.; Berz, M.; Duxbury, P. M.

    2014-11-07

    Using our model for the simulation of photoemission of high brightness electron beams, we investigate the virtual cathode physics and the limits to spatio-temporal and spectroscopic resolution originating from the image charge on the surface and from the profile of the exciting laser pulse. By contrasting the effect of varying surface properties (leading to expanding or pinned image charge), laser profiles (Gaussian, uniform, and elliptical), and aspect ratios (pancake- and cigar-like) under different extraction field strengths and numbers of generated electrons, we quantify the effect of these experimental parameters on macroscopic pulse properties such as emittance, brightness (4D and 6D), coherence length, and energy spread. Based on our results, we outline optimal conditions of pulse generation for ultrafast electron microscope systems that take into account constraints on the number of generated electrons and on the required time resolution.

  10. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    E-Print Network [OSTI]

    Siemens, M.

    2009-01-01

    measurement of surface acoustic waves in thin metal filmsthe generation of surface acoustic waves of high frequency,”and S. M. Cherif, “Surface acoustic waves in the ghz range

  11. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  12. Devices for high precision x-ray beam intensity monitoring on BSRF

    E-Print Network [OSTI]

    Hua-Peng, LI; Zhao, Yi-Dong; Zheng, Lei; Liu, Shu-Hu; Zhao, Xiao-Liang; Zhao, Ya-Shuai

    2016-01-01

    Synchrotron radiation with the characteristic of high brilliance, high level of polarization, high collimation, low emittance and wide tunability in energy has been used as a standard source in metrology(1, 2). For a decade, lots of calibration work have been done on 4B7A in Beijing Synchrotron Radiation Facility (BSRF) (3, 4). For the calibration process, a high-precision online monitor is indispensable. To control the uncertainty under 0.1%, we studied different sizes parallel ion chambers with rare-gas and used different collecting methods to monitor the x-ray intensity of the beamline. Two methods to collect the signal of the ion chambers: reading the current directly with electrometer or signal amplification to collect the counts were compared.

  13. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    E-Print Network [OSTI]

    Seidl, P.A.

    2011-01-01

    of Science, Office of Fusion Energy Sciences, of the U.S.of Science, Office of Fusion Energy Sciences, of the U.S.driver for inertial fusion energy would have unusually high

  14. Investigation of the formation and energy density of high-current pulsed electron beams

    E-Print Network [OSTI]

    Daichi, Yoshiaki; WANG, ZHIGANG; Yamazaki, Kazuo; Sano, Sadao

    2007-01-01

    of the formation and energy density of high-current pulsednot clear about the energy density of HCPEB under differentof HCPEB and its energy density. Then, effects of argon gas

  15. Multi-Channel Auto-Dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes

    SciTech Connect (OSTI)

    Amonette, James E.; Barr, Jonathan L.

    2009-04-23

    Geological sequestration has the potential capacity and longevity to significantly decrease the amount of anthropogenic CO2 introduced into the atmosphere by combustion of fossil fuels such as coal. Effective sequestration, however, requires the ability to verify the integrity of the reservoir and ensure that potential leakage rates are kept to a minimum. Moreover, understanding the pathways by which CO2 migrates to the surface is critical to assessing the risks and developing remediation approaches. Field experiments, such as those conducted at the Zero Emissions Research and Technology (ZERT) project test site in Bozeman, Montana, require a flexible CO2 monitoring system that can accurately and continuously measure soil-surface CO2 fluxes for multiple sampling points at concentrations ranging from background levels to several tens of percent. To meet this need, PNNL is developing a multi-port battery-operated system capable of both spatial and temporal monitoring of CO2 at concentrations from ambient to at least 150,000 ppmv. This report describes the system components (sampling chambers, measurement and control system, and power supply) and the results of a field test at the ZERT site during the late summer and fall of 2008. While the system performed well overall during the field test, several improvements to the system are suggested for implementation in FY2009.

  16. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  17. SEARCH FOR POINT-LIKE SOURCES OF ULTRA-HIGH ENERGY NEUTRINOS AT THE PIERRE AUGER OBSERVATORY AND IMPROVED LIMIT ON THE DIFFUSE FLUX OF TAU NEUTRINOS

    SciTech Connect (OSTI)

    Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnologica Nacional - Facultad Regional Buenos Aires, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [Universidade Estadual de Campinas, IFGW, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli 'Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici'c, T. [Rudjer Boskovi'c Institute, 10000 Zagreb (Croatia); Collaboration: Pierre Auger Collaboration; and others

    2012-08-10

    The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy E{sub {nu}} between 10{sup 17} eV and 10{sup 20} eV from point-like sources across the sky south of +55 Degree-Sign and north of -65 Degree-Sign declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth's crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of {approx}3.5 years of a full surface detector array for the Earth-skimming channel and {approx}2 years for the downward-going channel. An improved upper limit on the diffuse flux of tau neutrinos has been derived. Upper limits on the neutrino flux from point-like sources have been derived as a function of the source declination. Assuming a differential neutrino flux k{sub PS} {center_dot} E {sup -2}{sub {nu}} from a point-like source, 90% confidence level upper limits for k{sub PS} at the level of Almost-Equal-To 5 Multiplication-Sign 10{sup -7} and 2.5 Multiplication-Sign 10{sup -6} GeV cm{sup -2} s{sup -1} have been obtained over a broad range of declinations from the searches for Earth-skimming and downward-going neutrinos, respectively.

  18. Electron Beam Lithography Method for Sub-50 nm Isolated Trench With High Aspect Ratio

    E-Print Network [OSTI]

    Brankovic, Stanko R.

    the narrow trench with a high magnetic moment material. In this work, the narrow trenches were electroplated from the resist top coat (RTC) experiments. With our new narrow trench process, we demonstrated, resist residual, proximity effect, data storage, thin film heads, Electroplating. 1. INTRODUCTION

  19. MATERIAL R&D FOR HIGH-INTENSITY PROTON BEAM PROGRESS REPORT

    E-Print Network [OSTI]

    McDonald, Kirk

    strength, very low thermal expansion or high ductility #12;Experimentation with Graphite & Carbon Resilience in terms of strength/shock absorption · CTE evaluation · Stress-strain · Fatigue · Fracture Toughness and crack development/propagation ·Corrosion Resistance ·De-lamination (if a composite such as CC

  20. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect (OSTI)

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  1. Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams

    DOE Patents [OSTI]

    Zhang, Xiaoshi (Superior, CO); Lytle, Amy L. (Boulder, CO); Cohen, Oren (Boulder, CO); Kapteyn, Henry C. (Boulder, CO); Murnane, Margaret M. (Boulder, CO)

    2010-11-09

    All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.

  2. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    SciTech Connect (OSTI)

    Razin, S., E-mail: sevraz@appl.sci-nnov.ru; Zorin, V.; Izotov, I. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., 603950 Nizhny Novgorod (Russian Federation)] [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A.; Skalyga, V. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., 603950 Nizhny Novgorod (Russian Federation) [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation)

    2014-02-15

    We present experimental results on measuring the emittance of short-pulsed (?100 ?s) high-current (80–100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2–1.3) ??mm?mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  3. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    S. Kar; A. Green; H. Ahmed; A. Alejo; A. P. L. Robinson; M. Cerchez; R. Clarke; D. Doria; S. Dorkings; J. Fernandez; S. R. Mirfyazi; P. McKenna; K. Naughton; D. Neely; P. Norreys; C. Peth; H. Powell; J. A. Ruiz; J. Swain; O. Willi; M. Borghesi

    2015-07-16

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  4. Beamed neutron emission driven by laser accelerated light ions

    E-Print Network [OSTI]

    Kar, S; Ahmed, H; Alejo, A; Robinson, A P L; Cerchez, M; Clarke, R; Doria, D; Dorkings, S; Fernandez, J; Mirfyazi, S R; McKenna, P; Naughton, K; Neely, D; Norreys, P; Peth, C; Powell, H; Ruiz, J A; Swain, J; Willi, O; Borghesi, M

    2015-01-01

    We report on the experimental observation of beam-like neutron emission with peak flux of the order of 10^9 n/sr, from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by high power laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of 70 degrees, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)^1H and d(d,n)^3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions.

  5. Spectroscopy at the high-energy electron beam ion trap (Super EBIT)

    SciTech Connect (OSTI)

    Widmann, K.; Beiersdorfer, P.; Crespo Lopez-Urrutia, J.R.

    1996-07-10

    The following progress report presents some of the x-ray measurements performed during the last year on the Livermore SuperEBIT facility. The measurements include: direct observation of the spontaneous emission of the hyperfine transition in ground state hydrogenlike holmium, {sup 165}Ho{sup 66{plus}}; measurements of the n {equals} 2 {r_arrow} 2 transition energies in neonlike thorium, Th{sup 80{plus}}, through lithiumlike thorium, Th{sup 87{plus}}, testing the predictions of quantum electrodynamical contributions in high-Z ions up to the 0.4{percent} level; measurements of the isotope shift of the n= 2 {r_arrow} 2 transition energies between lithiumlike through carbonize uranium, {sup 233}U{sup 89{plus}...86{plus}} and {sup 238}U{sup 89{plus}...86{plus}}, inferring the variation of the mean- square nuclear charge radius; and high-resolution measurements of the K{alpha} radiation of heliumlike xenon, Xe{sup 52 {plus}}, using a transmission-type crystal spectrometer, resolving for the first time the ls2p{sup 3}P{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} and ls2s{sup 3}S{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} transitions individually. 41 refs., 9 figs., 1 tab.

  6. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect (OSTI)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  7. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  8. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  9. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    SciTech Connect (OSTI)

    De Doncker, Rik W. A. A.

    1992-01-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other.

  10. High speed flux feedback for tuning a universal field oriented controller capable of operating in direct and indirect field orientation modes

    SciTech Connect (OSTI)

    De Doncker, R.W.A.A.

    1992-09-01

    The direct (d) and quadrature (q) components of flux, as sensed by flux sensors or determined from voltage and current measurements in a direct field orientation scheme, are processed rapidly and accurately to provide flux amplitude and angular position values for use by the vector rotator of a universal field-oriented (UFO) controller. Flux amplitude (linear or squared) is provided as feedback to tune the UFO controller for operation in direct and indirect field orientation modes and enables smooth transitions from one mode to the other. 3 figs.

  11. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

  12. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  13. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  14. Nanofabrication of super-high-aspect-ratio structures in hydrogen silsesquioxane from direct-write e-beam lithography and hot development.

    SciTech Connect (OSTI)

    Ocola, L. E.; Tirumala, V. R.; Center for Nanoscale Materials; NIST

    2008-11-01

    Super-high-aspect-ratio structures (>10) in hydrogen silsesquioxane resist using direct write electron beam lithography at 100 kV and hot development and rinse are reported. Posts of 100 nm in width and 1.2 {micro}m tall have been successfully fabricated without the need of supercritical drying. Hot rinse solution with isopropyl alcohol has been used to reduce surface tension effects during drying. Dose absorption effects have been observed and modeled using known Monte Carlo models. These results indicate that for e-beam exposures of thick negative resists (>1 {micro}m), the bottom of the structures will have less cross-link density and therefore will be less stiff than the top. These results will have impact in the design of high-aspect-ratio structures that can be used in microelectromechanical system devices and high-aspect-ratio Fresnel zone plates.

  15. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Evan Harpeneau

    2011-06-24

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  16. Role of the laser pulse-length in producing high-quality electron beams in a homogenous plasma

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Arun Samant, Sushil; Krishnagopal, Srinivas

    2012-07-15

    In laser wakefield acceleration, the pulse-length of the laser is an important parameter that affects the laser evolution and electron beam injection and acceleration in the bubble regime. Here, we use three-dimensional simulations to find, for a given plasma density, the optimal pulse-length that gives the best quality electron beam. For three different pulse lengths, we study the evolution dynamics of the laser spot-size and quality of the injected electron beam. We find that a pulse-length that is less than the theoretical optimum, {tau}{sub L} = {lambda}{sub p}/{radical}2{pi}c, derived from linear theory, gives the best beam quality. Conversely, our simulations suggest that for a given laser system, with a fixed pulse-length, there is an optimal value of the plasma density that will give the best quality accelerated beams in experiments. For an rms pulse-length of 10 fs (around 24 fs FWHM), this corresponds to a plasma density of around 3.4 Multiplication-Sign 10{sup 18}/cm{sup 3}. For these parameters, we obtain, in a homogenous plasma and with a single laser, an electron beam with an energy of around 700 MeV, an energy-spread less than 2%, and rms normalized emittance of a few {pi} mm-mrad.

  17. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    E-Print Network [OSTI]

    Fernandes, Sandrina; Stora, Thierry

    2010-01-01

    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  18. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    SciTech Connect (OSTI)

    Ding, Yong, E-mail: yong.ding@mse.gatech.edu; Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  19. High Flux Ti Nanofiltration Membrane

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM&

  20. A PC-PCL-based control system for the high-voltage pulsed-power operation of the Intense Diagnostic Neutral Beam (IDNB) Experiment

    SciTech Connect (OSTI)

    Gribble, R.

    1993-06-01

    A stand-alone, semiautomated control system for the high-voltage pulsed-power energy sources on the Intense Diagnostic Neutral Beam Experiment at Los Alamos National Laboratory using personal computer (PC) and programmable logic controller (PLC) technology has been developed and implemented. The control system, consisting of a PC with the graphic operator interface, the network connecting the PC to the PLC, the PLC, the PLC I/O modules, fiber-optic interfaces and software, is described.

  1. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    SciTech Connect (OSTI)

    Uwe, Greife

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  2. Silicon detectors for the n-TOF neutron beams monitoring

    E-Print Network [OSTI]

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  3. Greatly improved interfacial passivation of in-situ high ? dielectric deposition on freshly grown molecule beam epitaxy Ge epitaxial layer on Ge(100)

    SciTech Connect (OSTI)

    Chu, R. L. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Liu, Y. C.; Lee, W. C.; Huang, M. L.; Kwo, J., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, T. D.; Hong, M., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Pi, T. W. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2014-05-19

    A high-quality high-?/Ge interface has been achieved by combining molecule beam epitaxy grown Ge epitaxial layer and in-situ deposited high ? dielectric. The employment of Ge epitaxial layer has sucessfully buried and/or removed the residue of unfavorable carbon and native oxides on the chemically cleaned and ultra-high vacuum annealed Ge(100) wafer surface, as studied using angle-resolved x-ray photoelectron spectroscopy. Moreover, the scanning tunneling microscopy analyses showed the significant improvements in Ge surface roughness from 3.5?Ĺ to 1?Ĺ with the epi-layer growth. Thus, chemically cleaner, atomically more ordered, and morphologically smoother Ge surfaces were obtained for the subsquent deposition of high ? dielectrics, comparing with those substrates without Ge epi-layer. The capacitance-voltage (C-V) characteristics and low extracted interfacial trap density (D{sub it}) reveal the improved high-?/Ge interface using the Ge epi-layer approach.

  4. Diode-Pumped Cryogenic Yb[superscript 3+]:YLF Laser of 100-W Output Power with High Beam Quality

    E-Print Network [OSTI]

    Zapata, Luis E.

    A cryogenically cooled Yb:YLF laser with 224-W output power at 995 nm, linearly polarized along the c-axis, has been demonstrated, and laser oscillation has also been obtained polarized along the a-axis. The beam quality ...

  5. Coherent instabilities of a relativistic bunched beam

    SciTech Connect (OSTI)

    Chao, A.W.

    1982-06-01

    A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.

  6. Mechanisms of structural evolutions associated with the high current pulsed electron beam treatment of a NiTi shape memory alloy

    SciTech Connect (OSTI)

    Zhang, K. M.; Zou, J. X.; Grosdidier, T.; Gey, N.; Weber, S.; Yang, D. Z.; Dong, C. [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China) and State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); and Laboratoire d'Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine de Metz, Ile du Saulcy, 57012 Metz (France); Laboratoire d'Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine de Metz, Ile du Saulcy, 57012 Metz (France); Laboratoire de Physique des Materiaux (LPM, UMR-CNRS 7556), Ecole des Mines, Parc de Saurupt, 54042 Nancy (France); School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China) and State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2007-01-15

    The aim of this study was to investigate, for the first time, the surface modifications associated with the use the recently developed high current pulsed electron beam technique for modifying the surface of an intermetallic NiTi alloy. Samples were treated with the same electron beam parameters but different numbers of pulses (i.e., five and ten pulses) and the present article concentrates on a detailed characterization of their texture and microstructure modifications. The observation of surface features such as craters, wavy surfaces with protrusions, chemistry modifications, and the development of specific texture components are discussed as the consequence of the combination of surface melting and evaporation mechanisms. It is also shown that in the subsurface, below the melted layer, the martensitic transformation was triggered due to the effects of the thermal stresses and shock waves propagating in the material.

  7. Investigation of the propagation of a gigawatt pulsed electron beam in compositions of high-pressure gas

    SciTech Connect (OSTI)

    Sazonov, R. V.; Kholodnaya, G. E.; Ponomarev, D. V.; Remnev, G. E. [High Technology Physics Institute, Tomsk Polytechnic University, 2a Lenin Avenue, 634028 Tomsk (Russian Federation)

    2014-07-15

    The paper presents the results of the experimental investigation of pulsed electron beam propagation with a varying current density (electron energy E{sub e}?=?350–400?keV; total current of a diode I{sub e} up to 11?kA; (half-amplitude) pulse duration t?=?60?ns, pulse energy W{sub e} up to 120?J) in two- and three-component gas compositions used in the pulsed plasma chemical synthesis of nanosized oxides. The mean value of the specific absorbed energy within the zone of pulsed electron beam propagation with a current density of 0.05–0.06?kA/cm{sup 2} in gas compositions has been determined.

  8. Electron beam kinetics: numerical results Discussion of the experiments

    E-Print Network [OSTI]

    Zharkova, Valentina V.

    Electron beam kinetics: numerical results Discussion of the experiments In all the experiments the first set of Figures presents the differential energy spectra dN/dE for electron beams at a given depth presents the beam's mean electron flux. For comparison all the results for Experiments 1-3 are presented

  9. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  10. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  11. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    SciTech Connect (OSTI)

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2014-06-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.

  12. ICFA Beam Dynamics Newsletter

    SciTech Connect (OSTI)

    Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

    2012-07-01

    The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

  13. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2  http://www.exelisvis.com/ProductsServices/IDL.aspx 

  14. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  15. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  16. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Qiang Zhao; Zhiyong He; Lei Yang; Xueying Zhang; Wenjuan Cui; Zhiqiang Chen; Hushan Xu

    2015-08-09

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with the fission chamber (FC). The effective technique consists in establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for FC in the environment of ADS system. The results indicate that the proposed method functions very well when the neutron flux is below 10^{13} neutron/cm^2/second.

  17. Suppression of carbon erosion by hydrogen shielding during high-flux hydrogen bombardment E. Salonen, K. Nordlund, J. Tarus, T. Ahlgren, and J. Keinonen

    E-Print Network [OSTI]

    Nordlund, Kai

    -flux low-energy ion bombardment. In tokamak-type fusion reactors the plasma is confined in a torus and plasma particles collide with the first walls of the chamber. In order to control the escaped particles material is very important. Impurities etched from the materials by boundary plasma interactions enter

  18. Rabi Waves and Peculiarities of Raman Scattering in Carbon Nanotubes, Produced by High Energy Ion Beam Modification of Diamond Single Crystals

    E-Print Network [OSTI]

    Dmitry Yearchuck; Alla Dovlatova

    2011-03-06

    QED-model for multichain coupled qubit system, proposed in \\cite{Part1}, was confirmed by Raman scattering studies of carbon zigzag-shaped nanotubes, produced by high energy ion beam modification of natural diamond single crystals. New quantum optics phenomenon - Rabi waves - has been experimentally identified for the first time. Raman spectra in perfect quasi-1D carbon nanotubes are quite different in comparison with well known Raman spectra in 2D carbon nanotubes of larger diameter. They characterized by vibronic mode of Su-Schriffer-Heeger $\\sigma$-polaron lattice and its revival part in frequency representation, which is the consequence of Rabi wave packet formation.

  19. High-current long-duration uniform electron beam generation in a diode with multicapillary carbon-epoxy cathode

    SciTech Connect (OSTI)

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)] [Physics Department, Technion, Haifa 32000 (Israel)

    2013-09-28

    The results of reproducibly generating an electron beam with a current density of up to 5 kA/cm{sup 2}, without the cathode-anode gap being shorted by the plasma formed inside the cathode carbon-epoxy capillaries, in a ?350 kV, ?600 ns diode, with and without an external guiding magnetic field, are presented. The cathode sustained hundreds of pulses without degradation of its emission properties. Time- and space-resolved emissions of the plasma and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity.

  20. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect (OSTI)

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, ���¢��������Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.���¢������� The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  1. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  2. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams

    SciTech Connect (OSTI)

    McEwen, Malcolm; DeWerd, Larry; Ibbott, Geoffrey; Followill, David; Rogers, David W. O.; Seltzer, Stephen; Seuntjens, Jan

    2014-04-15

    An addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water in megavoltage photon beams is presented. This addendum continues the procedure laid out in TG-51 but new k{sub Q} data for photon beams, based on Monte Carlo simulations, are presented and recommendations are given to improve the accuracy and consistency of the protocol's implementation. The components of the uncertainty budget in determining absorbed dose to water at the reference point are introduced and the magnitude of each component discussed. Finally, the consistency of experimental determination of N{sub D,w} coefficients is discussed. It is expected that the implementation of this addendum will be straightforward, assuming that the user is already familiar with TG-51. The changes introduced by this report are generally minor, although new recommendations could result in procedural changes for individual users. It is expected that the effort on the medical physicist's part to implement this addendum will not be significant and could be done as part of the annual linac calibration.

  3. Space-Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient System

    E-Print Network [OSTI]

    Tiefenback, M.G.

    2011-01-01

    term stability of the transport of cold, high-current beams,beam. The cold-beam ideal case for this transport is called

  4. High power target design and operation considerations for kaon production

    E-Print Network [OSTI]

    McDonald, Kirk

    High power target design and operation considerations for kaon production Philip Pile Collider · LESBIII kaon production target/issues 24/19/2013 #12;PROTON BEAM FY96 FY97 FY98/99 FY2000 FY2001 FY2002 1012 per second during spill · Production Angle: 0 degrees · Particle Flux (per 1013, 22 Ge

  5. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  6. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  7. High-efficiency Al sub 0. 22 Ga sub 0. 78 As solar cells grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Melloch, M.R. (School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907 (USA)); Tobin, S.P.; Bajgar, C. (Spire Corporation, Patriots Park, Bedford, MA (USA)); Keshavarzi, A.; Stellwag, T.B.; Lush, G.B.; Lundstrom, M.S. (School of Electrical Engineering, Purdue University, West Lafayette, IN (USA)); Emery, K. (Solar Energy Research Institute, Golden, CO (USA))

    1990-07-02

    The quality of {ital pn} junction photodetectors made of Al{sub 0.2}Ga{sub 0.8}As has been investigated as a first step in the optimization of tandem solar cells. We have obtained 1 sun AM1.5 efficiencies of 16.1% for 0.25 cm{sup 2} Al{sub 0.22}Ga{sub 0.78}As solar cells fabricated from molecular beam epitaxy (MBE) material. This efficiency is 3.2 percentage points higher than the previously best reported efficiency of 12.9% for an Al{sub 0.2}Ga{sub 0.8}As solar cell fabricated from MBE material.

  8. Superconducting wiggler magnets for beam-emittance damping rings

    E-Print Network [OSTI]

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  9. Quantum fluctuations in beam dynamics.

    SciTech Connect (OSTI)

    Kim, K.-J.

    1998-06-04

    Quantum effects could become important for particle and photon beams used in high-luminosity and high brightness applications in the current and next generation accelerators and radiation sources. This paper is a review of some of these effects.

  10. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  11. Transverse flowing liquid Kerr cell for high average power laser Q-switching and for direct modulation of high power laser beams.

    DOE Patents [OSTI]

    Comaskey, Brian J.

    2004-12-07

    A fluid flow concept is applied in an optical apparatus to define a high gain stand-off, fast electro-optical q-switch which is highly impervious to high average power optical loads.

  12. Collective Dynamics and Coherent Diagnostics of Microbunched Relativistic Electron Beams

    E-Print Network [OSTI]

    Marinelli, Agostino

    2012-01-01

    in the diagnostic of compressed electron beams and free-imaging and diagnostics of high-brightness electron beamsfor the diagnostics of compressed electron beams, such as

  13. Monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical systems

    E-Print Network [OSTI]

    Zhao, Qiang; Yang, Lei; Zhang, Xueying; Cui, Wenjuan; Chen, Zhiqiang; Xu, Hushan

    2015-01-01

    In this paper, we study the monitoring method of neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where the spallation target located vertically at the centre of a sub-critical core is bombarded vertically by the high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose the following multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied the neutron production from tungsten target bombarded by a 250 MeV-proton beam with the Geant4-based Monte Carlo simulations. The simulation results have indicated that the neutron flux at the central location is up to three orders of magnitude higher than the flux at the lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron fl...

  14. Investigation of the spatiotemporal characteristics of the electric field in the Ne-H{sub 2} plasma of a beam-type high-voltage pulsed discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.; Borisov, A. V.; Bardin, S. S. [National Research Tomsk State University, 36, Lenin Ave., 634050 Tomsk (Russian Federation)] [National Research Tomsk State University, 36, Lenin Ave., 634050 Tomsk (Russian Federation)

    2013-12-15

    In the present work, the spatiotemporal dynamics of the electric field E(x, t) of plasma produced by a beam-type high-voltage pulsed discharge is investigated. The electric field strength E(x, t) in an accelerating gap and in a plasma flare was determined from the measured Stark splitting of the H{sub ?} hydrogen line. The obtained dependence E(x, t) was used to calculate the electron distribution function and the spectral line intensities in the accelerating gap and in the plasma flare by the method of statistical modeling. The calculated population of He atomic states excited by electron impact and their comparison with the measured spectral line intensities I(?, x, t) demonstrate that a reverse electric field retarding the electron motion and leading to electron beam degradation must be present in the plasma flare near the grid. Measurement of the field strength from the Stark splitting of the H{sub ?} line demonstrates that it can reach considerable values.

  15. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    E-Print Network [OSTI]

    Bakeman, M.S.

    2010-01-01

    LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC* M.S.quasi-monoenergetic electron beams with energies up to 1high-peak- current, electron beams are ideal for driving a

  16. Generation of circularly polarized multiple high-order harmonic emission from two-color crossed laser beams

    E-Print Network [OSTI]

    Chu, Shih-I

    Generation of circularly polarized multiple high-order harmonic emission from two-color crossed for the production of circularly polarized multiple high-order harmonic generation HHG . The proposed experimental as the mechanism for the generation of continuous background radiation. S1050-2947 98 50410-6 PACS number s : 42

  17. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    SciTech Connect (OSTI)

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  18. Evaluation of Al{sub 2}O{sub 3}:C optically stimulated luminescence (OSL) dosimeters for passive dosimetry of high-energy photon and electron beams in radiotherapy

    SciTech Connect (OSTI)

    Yukihara, E. G.; Mardirossian, G.; Mirzasadeghi, M.; Guduru, S.; Ahmad, S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida 33140 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States); Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 825 Northeast 10th Street, OUPB 1430, Oklahoma City, Oklahoma 73104 (United States)

    2008-01-15

    This article investigates the performance of Al{sub 2}O{sub 3}:C optically stimulated luminescence dosimeters (OSLDs) for application in radiotherapy. Central-axis depth dose curves and optically stimulated luminescence (OSL) responses were obtained in a water phantom for 6 and 18 MV photons, and for 6, 9, 12, 16, and 20 MeV electron beams from a Varian 21EX linear accelerator. Single OSL measurements could be repeated with a precision of 0.7% (one standard deviation) and the differences between absorbed doses measured with OSLDs and an ionization chamber were within {+-}1% for photon beams. Similar results were obtained for electron beams in the low-gradient region after correction for a 1.9% photon-to-electron bias. The distance-to-agreement values were of the order of 0.5-1.0 mm for electrons in high dose gradient regions. Additional investigations also demonstrated that the OSL response dependence on dose rate, field size, and irradiation temperature is less than 1% in the conditions of the present study. Regarding the beam energy/quality dependence, the relative response of the OSLD for 18 MV was (0.51{+-}0.48)% of the response for the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam. The OSLD response for the electron beams relative to the 6 MV photon beam was in average 1.9% higher, but this result requires further confirmation. The relative response did not seem to vary with electron energy at d{sub max} within the experimental uncertainties (0.5% in average) and, therefore, a fixed correction factor of 1.9% eliminated the energy dependence in our experimental conditions.

  19. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  20. Cancer Therapy with Particle Beams

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Cancer Therapy with Particle Beams #12;· The potential to use high energy particle beams to treat many types of cancer has been known even before their creation. · The availability of these treatments to be used in medicine, specifically for the treatment of certain cancers. His paper was published when

  1. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara McClintockSecurity ComplexBeamBeam

  2. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara McClintockSecurityBeam Transport Beam

  3. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, Badge OfficeBeam Request ToBeam

  4. Beams 92: Proceedings. Volume 2, Ion beams, electron beams, diagnostics

    SciTech Connect (OSTI)

    Mosher, D.; Cooperstein, G. [eds.] [Naval Research Lab., Washington, DC (United States)] [eds.; Naval Research Lab., Washington, DC (United States)

    1993-12-31

    This report contains papers on the following topics. Ion beam papers; electron beam papers; and these papers have been indexed separately elsewhere.

  5. Computing Solar Absolute Fluxes

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2007-09-14

    Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

  6. Diamond pixel detector for beam profile monitoring in COMET experiment at J-PARC

    E-Print Network [OSTI]

    M. Cerv; P. Sarin; H. Pernegger; P. Vageesvaran; E. Griesmayer

    2014-11-15

    We present the design and initial prototype results of a pixellized proton beam profile monitor for the COMET experiment at J-PARC. The goal of COMET is to look for charged lepton flavor violation by direct muon to electron conversion at a sensitivity of $0^{-19}$. An 8 GeV proton beam pulsed at 100 ns with $10^{10}$ protons/s will be used to create muons through pion production and decay. In the final experiment, the proton flux will be raised to $10^{14}$ protons/sec to increase the sensitivity. These requirements of harsh radiation tolerance and fast readout make diamond a good choice for constructing a beam profile monitor in COMET. We present first results of the characterization of single crystal diamond (scCVD) sourced from a new company, 2a systems Singapore. Our measurements indicate excellent charge collection efficiency and high carrier mobility down to cryogenic temperatures.

  7. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  8. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators

    SciTech Connect (OSTI)

    Cheng Xinbing; Liu Jinliang; Qian Baoliang; Zhang Yu; Zhang Hongbo [College of Photoelectrical Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2009-11-15

    A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

  9. Relativistic Beaming and the Intrinsic Properties of Extragalactic Radio Jets

    E-Print Network [OSTI]

    M. H. Cohen; M. L. Lister; D. C. Homan; M. Kadler; K. I. Kellermann; Y. Y. Kovalev; R. C. Vermeulen

    2006-11-20

    Relations between the observed quantities for a beamed radio jet, apparent transverse speed and apparent luminosity (beta_app,L), and the intrinsic quantities, Lorentz factor and intrinsic luminosity (gamma,L_o), are investigated. The inversion from measured to intrinsic values is not unique, but approximate limits to gamma and L_o can be found using probability arguments. Roughly half the sources in a flux density--limited, beamed sample have a value of gamma close to the measured beta_app. The methods are applied to observations of 119 AGN jets made with the VLBA at 15 GHz during 1994-2002. The results strongly support the common relativistic beam model for an extragalactic radio jet. The (beta_app,L) data are closely bounded by a theoretical envelope, an aspect curve for gamma=32, L_o= 10^25 W/Hz. This gives limits to the maximum values of gamma and L_o in the sample: gamma_max about 32, and L_o,max ~ 10^26 W/Hz. No sources with both high beta_app and low L are observed. This is not the result of selection effects due to the observing limits, which are flux density S>0.5 Jy, and angular velocity mu<4 mas/yr. Many of the fastest quasars have a pattern Lorentz factor gamma_p close to that of the beam, gamma_b, but some of the slow quasars must have gamma_p<

  10. Beam diagnostics and beam handling systems; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 21, 22, 1988

    SciTech Connect (OSTI)

    Sona, A.

    1989-01-01

    Papers on beam diagnostics and beam handling systems are presented, including topics such as matrials processing with laser radiation, diagnostics of high-power laser beams, beam quality evaluation of a high power fast axial flow CO2 laser, diffractive devices in beam handling, and intensity profiling UV laser beams. Other topics include optical fiber Nd-YAG laser beam delivery systems, a flexible fiber cable for 1 kW CW YAG laser radiation transmission, an optical fiber multiplexer for industrial Nd:YAG lasers, linking laser and handling systems in multistation operation, a noncontact capacitive control system for laser cutting machines, and robotics for beam manipulations. Additional subjects include active optics for high power lasers, beam delivery and shaping on heat treating applications, optics for shaping and focusing industrial CO2 lasers, reshaping annular laser beams with conical reflectors, increasing the flexibility of beam integrating multifaceted mirrors, and the definition and use of the principal planes for Gaussian beams.

  11. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  12. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    UV Laser Ionization and Electron Beam Diagnostics for Plasmaradiation based electron beam diagnostics, fast beamdiagnostic instru- mentation for electron and photon beams

  13. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    1231 (1990). "Relativistic Klystron Version of the Two-BeamDesign of a Relativiatic Klystron Two-Beam AcceleratorSource for a Relativistic Klystron Two- Beam Accelerator" (

  14. A TWO-PHASE HEAT SPREADER FOR COOLING HIGH HEAT FLUX SOURCES Mitsuo Hashimoto, Hiroto Kasai, Yuichi Ishida, Hiroyuki Ryoson, a

    E-Print Network [OSTI]

    -power lasers, high-intensity light-emitting diodes (LEDs), and semiconductor power devices. The heat spreader

  15. D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks, San Diego, February 2005 PLASMA SHAPE, PROFILES AND FLUX CONTROL

    E-Print Network [OSTI]

    D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks, San JET-EFDA Contributors D. Moreau #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High · Conclusion #12;D. Moreau IEA W59 Shape and Aspect Ratio Optimization for High Beta, Steady-State Tokamaks

  16. Influence of the laser beam size on the length of a filament formed by high-power femtosecond laser radiation in air

    SciTech Connect (OSTI)

    Geints, Yu E; Zemlyanov, A A; Kabanov, A M; Matvienko, G G; Golik, S S

    2014-05-30

    The single-filamentation regime of GW femtosecond laser beams of millimetre diameter, propagating in atmospheric air under collimated and tight focusing, has been theoretically and experimentally (at wavelengths of 800 and 400 nm) investigated. The influence of the initial size of the light beam on the spatial characteristics of the filamentation region is systematically analysed. The filamentation length for collimated beams with the same initial power is found to nonmonotonically depend on the initial beam radius. In this case, the filament start point is displaced, and the longitudinal continuity of the related plasma channel is lost. For tightly focused beams, the observed filament length barely depends of the initial beam radius, provided that the peak intensity remains constant. (interaction of radiation with matter)

  17. Neon Ion Beam Lithography (NIBL)

    E-Print Network [OSTI]

    Winston, Donald

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. ...

  18. Origin of the energetic ion beams at the substrate generated during high power pulsed magnetron sputtering of titanium

    E-Print Network [OSTI]

    Maszl, Christian; Benedikt, Jan; von Keudell, Achim

    2013-01-01

    High power pulsed magnetron sputtering (HiPIMS) plasmas generate energetic metal ions at the substrate as a major difference to conventional direct current magnetron sputtering. The origin of these energetic ions in HiPIMS is still an open issue, which is unraveled by using three fast diagnostics: time resolved mass spectrometry with a temporal resolution of 2 $\\mu$s, phase resolved optical emission spectroscopy with 1 $\\mu$s and the rotating shutter experiment with a resolution of 50 $\\mu$s. A power scan from dcMS-like to HiPIMS plasmas was performed, with a 2-inch magnetron and a titanium target as sputter source and argon as working gas. Clear differences in the transport as well in the energetic properties of Ar$^+$, Ar$^{2+}$, Ti$^+$ and Ti$^{2+}$ were observed. For discharges with highest peak power densities a high energetic group of Ti$^{+}$ and Ti$^{2+}$ could be identified. A cold group of ions is always present. It is found that hot ions are observed only, when the plasma enters the spokes regime, ...

  19. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  20. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    E-Print Network [OSTI]

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  1. Center for Beam Physics

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    Krishnagopal of CAT, Indore, India, we are also developing aon Beam Physics at CAT, Indore, India and Telecourse on Beam

  2. Electron beam generation in Tevatron electron lenses

    SciTech Connect (OSTI)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  3. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    DOE Patents [OSTI]

    Brown, Jr., R. Malcolm (Austin, TX); Barnes, Zack (Austin, TX); Sawatari, Chie (Shizuoka, JP); Kondo, Tetsuo (Kukuoka, JP)

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  4. Silicon sheet with molecular beam epitaxy for high efficiency solar cells. Final technical report, March 22, 1982-April 30, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    A two-year program has been carried out for the Jet Propulsion Laboratory in which the UCLA silicon MBE facility has been used to attempt to grow silicon solar cells of high efficiency. MBE ofers the potential of growing complex and arbitrary doping profiles with 10 A depth resolution. It is the only technique taht can readily grow built-in front and back surface fields of any desired depth and value in silicon solar cells, or the more complicated profiles needed for a double junction cascade cell, all in silicon, connected in series by a tunnel junction. Although the dopant control required for such structures has been demonstrated in silicon by UCLA, crystal quality at the p-n junctions is still too poor to allow the other advantages to be exploited. Results from other laboratories indicate that this problem will soon be overcome. A computer analysis of the double cascade all in silicon shows that efficiencies can be raised over that of any single silicon cell by 1 or 2%, and that open circuit voltage of almost twice that of a single cell should be possible.

  5. Highly Reproducible Laser Beam Scanning Device for an Internal Source Laser Desorption Microprobe Fourier Transform Mass Spectrometer

    SciTech Connect (OSTI)

    Scott, Jill Rennee; Tremblay, Paul Leland

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (~5 µm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ~9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  6. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  7. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  8. Optimization of neutrino beams for underground sites in Europe

    E-Print Network [OSTI]

    A. Longhin

    2012-06-19

    We present an optimization procedure for neutrino beams which could be produced at CERN and aimed to a set of seven possible underground sites in Europe with distances ranging from 130 km to 2300 km. Studies on the feasibility of a next generation very massive neutrino observatory have been performed for these sites in the context of the first phase of the LAGUNA design study. We consider specific scenarios for the proton driver (a high power proton driver at 4.5 GeV for the shortest baseline and a 50 GeV machine for longer baselines) and the far detector (a Water Cherenkov for the shortest baseline and a LAr TPC for longer baselines). The flux simulation profits of a full GEANT4 simulation. The optimization has been performed before the recent results on nu_e appearance by reactor and accelerator experiments and hence it is based on the maximization of the sensitivity on theta13. Nevertheless the optimized fluxes have been widely used since their publication on the internet (2010). This work is therefore mainly intended as a documentation of the adopted method and at the same time as an intermediate step towards future studies which will put the emphasis on the performances of beams for the study of delta_CP.

  9. Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century: A retrospective analysis with a process-based biogeochemistry model

    E-Print Network [OSTI]

    Zhuang, Qianlai.

    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century ...

  10. Consistency between the Lorentz-Force Independence of the Resistive Transition in the High-T-C Superconductors and the Standard Theory of Flux-Flow 

    E-Print Network [OSTI]

    HAO, ZD; Hu, Chia-Ren; TING, CS.

    1995-01-01

    a constraint on the relative orientation of J and the average Aux density B. These two simple general properties can already account for the Lorentz-force independence of the resistive transition in high-T superconductors for the applied current... in the ab plane, and the magnetic Beld making any not-too-small angle with this plane. Measurements of the resistive transition of high- temperature superconductors (HTSC's) in the presence of an applied magnetic field have shown that the Lorentz- force...

  11. Flux expulsion variation in SRF cavities

    E-Print Network [OSTI]

    Posen, S; Romanenko, A; Melnychuk, O; Sergatskov, D A; Martinello, M; Checchin, M; Crawford, A C

    2015-01-01

    Treating a cavity with nitrogen doping significantly increases $Q_0$ at medium fields, reducing cryogenic costs for high duty factor linear accelerators such as LCLS II. N-doping also makes cavities more sensitive to increased residual resistance due to trapped magnetic flux, making it critical to either have extremely effective magnetic shielding, or to prevent flux from being trapped in the cavity during cooldown. In this paper, we report on results of a study of flux expulsion. We discuss possible ways in which flux can be pinned in the inner surface, outer surface, or bulk of a cavity, and we present experimental results studying these mechanisms. We show that grain structure appears to play a key role and that a cavity that expelled flux poorly changed to expelling flux well after a high temperature furnace treatment. We further show that after furnace treatment, this cavity exhibited a significant improvement in quality factor when cooled in an external magnetic field. We conclude with implications for ...

  12. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  13. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara McClintockSecurity ComplexBeam

  14. Beam Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, Badge OfficeBeam Request To

  15. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, Badge OfficeBeam Request

  16. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14

    SciTech Connect (OSTI)

    Lan, Ke; Liu, Jie; He, Xian-Tu [Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China) [Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing, 100871 (China); Lai, Dongxian; Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China)

    2014-01-15

    We propose a spherical hohlraum with octahedral six laser entrance holes at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and low backscatter without supplementary technology. To produce an ignition radiation pulse of 300?eV, it needs 1.5?MJ absorbed laser energy in such a golden octahedral hohlraum, about 30% more than a traditional cylinder. Nevertheless, it is worth for a high symmetry and low backscatter. The proposed octahedral hohlraum is also flexible and can be applicable to diverse inertial fusion drive approaches.

  17. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect (OSTI)

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.

  18. Direct 2-Arm Comparison Shows Benefit of High-Dose-Rate Brachytherapy Boost vs External Beam Radiation Therapy Alone for Prostate Cancer

    SciTech Connect (OSTI)

    Khor, Richard; Duchesne, Gillian; Monash University, Melbourne ; Tai, Keen-Hun; Foroudi, Farshad; Chander, Sarat; Van Dyk, Sylvia; Garth, Margaret; Williams, Scott

    2013-03-01

    Purpose: To evaluate the outcomes of patients treated for intermediate- and high-risk prostate cancer with a single schedule of either external beam radiation therapy (EBRT) and high-dose-rate brachytherapy (HDRB) boost or EBRT alone. Methods and Materials: From 2001-2006, 344 patients received EBRT with HDRB boost for definitive treatment of intermediate- or high-risk prostate cancer. The prescribed EBRT dose was 46 Gy in 23 fractions, with a HDR boost of 19.5 Gy in 3 fractions. This cohort was compared to a contemporaneously treated cohort who received EBRT to 74 Gy in 37 fractions, using a matched pair analysis. Three-dimensional conformal EBRT was used. Matching was performed using a propensity score matching technique. High-risk patients constituted 41% of the matched cohorts. Five-year clinical and biochemical outcomes were analyzed. Results: Initial significant differences in prognostic indicators between the unmatched treatment cohorts were rendered negligible after matching, providing a total of 688 patients. Median biochemical follow-up was 60.5 months. The 5-year freedom from biochemical failure was 79.8% (95% confidence interval [CI], 74.3%-85.0%) and 70.9% (95% CI, 65.4%-76.0%) for the HDRB and EBRT groups, respectively, equating to a hazard ratio of 0.59 (95% CI, 0.43-0.81, P=.0011). Interaction analyses showed no alteration in HDR efficacy when planned androgen deprivation therapy was administered (P=.95), but a strong trend toward reduced efficacy was shown compared to EBRT in high-risk cases (P=.06). Rates of grade 3 urethral stricture were 0.3% (95% CI, 0%-0.9%) and 11.8% (95% CI, 8.1%-16.5%) for EBRT and HDRB, respectively (P<.0001). No differences in clinical outcomes were observed. Conclusions: This comparison of 2 individual contemporaneously treated HDRB and EBRT approaches showed improved freedom from biochemical progression with the HDR approach. The benefit was more pronounced in intermediate- risk patients but needs to be weighed against an increased risk of urethral toxicity.

  19. Collimation Studies with Hollow Electron Beams

    SciTech Connect (OSTI)

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  20. Beam Tests of Beampipe Coatings for Electron Cloud Mitigation in Fermilab Main Injector

    E-Print Network [OSTI]

    Backfish, Michael; Tan, Cheng Yang; Zwaska, Robert

    2015-01-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and ...

  1. Beam geometry selection using sequential beam addition

    SciTech Connect (OSTI)

    Popple, Richard A. Brezovich, Ivan A.; Fiveash, John B.

    2014-05-15

    Purpose: The selection of optimal beam geometry has been of interest since the inception of conformal radiotherapy. The authors report on sequential beam addition, a simple beam geometry selection method, for intensity modulated radiation therapy. Methods: The sequential beam addition algorithm (SBA) requires definition of an objective function (score) and a set of candidate beam geometries (pool). In the first iteration, the optimal score is determined for each beam in the pool and the beam with the best score selected. In the next iteration, the optimal score is calculated for each beam remaining in the pool combined with the beam selected in the first iteration, and the best scoring beam is selected. The process is repeated until the desired number of beams is reached. The authors selected three treatment sites, breast, lung, and brain, and determined beam arrangements for up to 11 beams from a pool comprised of 25 equiangular transverse beams. For the brain, arrangements were additionally selected from a pool of 22 noncoplanar beams. Scores were determined for geometries comprised equiangular transverse beams (EQA), as well as two tangential beams for the breast case. Results: In all cases, SBA resulted in scores superior to EQA. The breast case had the strongest dependence on beam geometry, for which only the 7-beam EQA geometry had a score better than the two tangential beams, whereas all SBA geometries with more than two beams were superior. In the lung case, EQA and SBA scores monotonically improved with increasing number of beams; however, SBA required fewer beams to achieve scores equivalent to EQA. For the brain case, SBA with a coplanar pool was equivalent to EQA, while the noncoplanar pool resulted in slightly better scores; however, the dose-volume histograms demonstrated that the differences were not clinically significant. Conclusions: For situations in which beam geometry has a significant effect on the objective function, SBA can identify arrangements equivalent to equiangular geometries but using fewer beams. Furthermore, SBA provides the value of the objective function as the number of beams is increased, allowing the planner to select the minimal beam number that achieves the clinical goals. The method is simple to implement and could readily be incorporated into an existing optimization system.

  2. Radiative Flux Analysis

    SciTech Connect (OSTI)

    Long, Chuck

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  3. Proton beam therapy facility

    SciTech Connect (OSTI)

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  4. Understanding electron heat flux signatures in the solar wind N. U. Crooker,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    continuously modify heat flux. This is inconsistent with magnetic disconnection as the primary cause of heat most of the heat flux away from the Sun due to their high mobility. The rate at which heat flux dropsUnderstanding electron heat flux signatures in the solar wind C. Pagel,1 N. U. Crooker,1 D. E

  5. A multi beam proton accelerator

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    The article considers a proton accelerator containing seven independent beams arranged on the accelerator radius. The current in each beam is one hundred milliamps. The initial part of the accelerator consists of shielded spiral waveguides assembled in the common screen. The frequency of the acceleration: three hundred megahertz, high-frequency power twenty-five megawatts, the length of the accelerator six meters. After reaching the proton energy of six megaelektronvolts the protons using lenses with the azimuthal magnetic field are collected in one beam. Further beam acceleration is performed in the array of superconducting cavities tuned to the frequency one and three tenths gigahertz. The acceleration rate is equal to twenty megavolt per meter, the high-frequency power consumption fifteen megawatts per meter.

  6. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    DOE Patents [OSTI]

    Thomas, Clarence E. (Knoxville, TN); Baylor, Larry R. (Farragut, TN); Voelkl, Edgar (Oak Ridge, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN); Lowndes, Douglas H. (Knoxville, TN); Whealton, John H. (Oak Ridge, TN); Whitson, John C. (Clinton, TN); Wilgen, John B. (Oak Ridge, TN)

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  7. Developing the Theory of Flux Limits from $?$-Ray Cascades

    E-Print Network [OSTI]

    John A. Cairns

    2007-05-18

    Dark matter annihilation and other processes may precipitate a flux of diffuse ultra-high energy $\\gamma$-rays. These $\\gamma$-rays may be observable in present day experiments which observe diffuse fluxes at the GeV scale. Yet the universe is presently opaque to $\\gamma$-rays above 10 TeV. It is generally assumed that cascade radiation is observable at all high energies, however the disparity in energy from production to observation has important consequences for theoretical flux limits. We detail the physics of cascade radiation development and consider the influence of energy and redshift scale on arbitrary flux limits that result from electromagnetic cascade.

  8. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  9. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  10. The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling

    E-Print Network [OSTI]

    Sugrue, Rosemary M

    2012-01-01

    The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

  11. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    SciTech Connect (OSTI)

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  12. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  13. Alight a beam and beaming light: A theme with variations

    SciTech Connect (OSTI)

    Chattopadhyay, S. [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)] [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)

    1998-05-01

    The interaction of light (coherent and incoherent) with charged particle beams is explored in various configurations: incoherent scattering of coherent light (laser) from an incoherent particle beam (high temperature), coherent scattering of coherent light (laser) from a {open_quotes}cold{close_quotes} (bunched) beam, femtosecond generation of particle and light beams via {open_quotes}optical slicing{close_quotes} and Thomson/Compton scattering techniques, etc. The domains of ultrashort temporal duration (femtoseconds) as well as ultrashort wavelengths (x rays and shorter), with varying degrees of coherence, are explored. The relevance to a few critical areas of research in the natural sciences, e.g., ultrafast material, chemical and biological processes, protein folding, particle phase space cooling, etc. are touched upon. All the processes discussed involve proper interpretation and understanding of coherent states of matter and radiation, as well as the quality and quantity of information and energy embedded in them. {copyright} {ital 1998 American Institute of Physics.}

  14. Colliding Crystalline Beams

    E-Print Network [OSTI]

    Wei, J.

    2008-01-01

    6] J. Wei, et ai, Crystalline Beams and Related Issues,LABORATORY Colliding Crystalline Beams Jie Wei and A.M.CBP Note-262 Colliding Crystalline Beams* Jie Wei Brookhaven

  15. SU-E-T-26: A Study On the Influence of Photonuclear Reactions On the Biological Effectiveness of Therapeutic High Energy X-Ray Beam

    SciTech Connect (OSTI)

    Wakita, A [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); National Cancer Center Hospital, Chuo-ku, Tokyo (Japan); Matsufuji, N [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); National Institute of Radiological Sciences, Chiba-shi, Chiba (Japan); Kohno, T [Tokyo Institute of Technology, Yokohama-shi, Kanagawa (Japan); Kodaira, S [National Institute of Radiological Sciences, Chiba-shi, Chiba (Japan); Yokoyama, K; Suzuki, Y; Itami, J [National Cancer Center Hospital, Chuo-ku, Tokyo (Japan)

    2014-06-01

    Purpose: Photons from a modern high-energy therapeutic linear accelerator used in X-ray radiotherapy causes photonuclear reactions in an accelerator or patient's body. The aim of this study is to evaluate the biological effectiveness including these particles by Microdosimetric Kinetic Model (MKM) based on microdosimetry. Methods: A linear accelerator operating at 15 MV was used. CR-39 was used to obtain LET spectra of secondary ions selectively, as CR-39 is regarded insensitive to photons. CR-39 was put on the central axis of the X-ray beam at depths of 0, 5 and 10 cm in plastic phantom at a source to detector distance of 100 cm. Pits formed by the traversal of ions were etched then analyzed to obtain restricted LET distribution. Frequency-mean and dose-mean lineal energy was evaluated from the relationship between the restricted LET and the lineal energy required to evaluate the biological effectiveness by MKM. The relationship was calculated by Monte Carlo simulations with GEANT4. Results: Restricted LET distributions of secondary particles showed broad distributions that decreases exponentially with increasing LET. Frequency-mean and dose-mean lineal energy were determined uniquely within the scope of the energies of secondary particles generated from photons of 15 MeV. The frequency-mean lineal energies at the depth of 0, 5 and 10 cm were 15.1, 16.0 and 19.7 keV/?m respectively, and the dose-mean lineal energies were 18.6, 20.5 and 19.6 keV/?m, respectively. RBE of secondary particles for HSG cell evaluated by MKM was about 2.0 at all depths, and RBE of all particles including photons was evaluated 1.0. Conclusion: We investigated the biological effectiveness of secondary particles by photonuclear reactions. The method to evaluate RBE by MKM was established with measurements and simulations. However, the influence of these secondary ions on RBE was found negligible in the entire biological effectiveness of the high-energy X-ray. This study has been supported by JSPS KAKENHI Grant Number 25861144.

  16. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  17. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    SciTech Connect (OSTI)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.; Chel, S.; Delferričre, O.; Harrault, F.; Mattei, P.; Senée, F. [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)] [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France); Cara, P. [Fusion for Energy, BFD Department, Garching (Germany)] [Fusion for Energy, BFD Department, Garching (Germany); Mosnier, A. [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France) [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France); Fusion for Energy, BFD Department, Garching (Germany); Shidara, H. [IFMIF/EVEDA Project Team, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)] [IFMIF/EVEDA Project Team, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan); Okumura, Y. [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)] [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)

    2014-02-15

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  18. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect (OSTI)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  19. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  20. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.