National Library of Energy BETA

Sample records for high flow rate

  1. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  2. High flow rate nozzle system with production of uniform size droplets

    DOE Patents [OSTI]

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  3. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration

    SciTech Connect (OSTI)

    Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio

    2013-02-15

    A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

  4. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOE Patents [OSTI]

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  5. Gas flow meter and method for measuring gas flow rate

    DOE Patents [OSTI]

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  6. Solids flow rate measurement in dense slurries

    SciTech Connect (OSTI)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  7. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  8. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect (OSTI)

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  9. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  10. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

  11. Adjustable flow rate controller for polymer solutions

    DOE Patents [OSTI]

    Jackson, Kenneth M.

    1981-01-01

    An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.

  12. Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements

    Broader source: Energy.gov [DOE]

    This tip sheet discusses control strategies for centrifugal pumps with variable flow rate requirements in pumping systems and includes installation considerations.

  13. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

    1996-05-07

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

  14. High gas flow alpha detector

    DOE Patents [OSTI]

    Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.

    1996-01-01

    An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

  15. Flow rate--pressure drop relation for deformable shallow microfluidic

    Office of Scientific and Technical Information (OSTI)

    channels (Conference) | SciTech Connect Conference: Flow rate--pressure drop relation for deformable shallow microfluidic channels Citation Details In-Document Search Title: Flow rate--pressure drop relation for deformable shallow microfluidic channels Authors: Christov, Ivan [1] ; Cognet, Vincent [2] ; Stone, Howard A [3] + Show Author Affiliations Los Alamos National Laboratory Ecole Normale Superieure de Cachan Mechanical & Aerospace Engineering, Princeton University Publication Date:

  16. High-shear-rate capillary viscometer for inkjet inks

    SciTech Connect (OSTI)

    Wang Xi; Carr, Wallace W.; Bucknall, David G.; Morris, Jeffrey F.

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  17. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  18. A high rate proportional chamber

    SciTech Connect (OSTI)

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  19. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  20. High precision high flow range control valve

    DOE Patents [OSTI]

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  1. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  2. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban ...

  3. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  4. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOE Patents [OSTI]

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  5. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  6. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  7. High-bandwidth continuous-flow arc furnace

    DOE Patents [OSTI]

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  8. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  9. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUMPING SYSTEMS TIP SHEET 12 Control Strategies for Centrifugal Pumps with Variable Flow ... Adjustable Speed Pumping Applications Improving Motor and Drive System Performance - A ...

  10. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  11. High-Rate, High-Capacity Binder-Free Electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC High-Rate, High-Capacity Binder-Free Electrode Patent: PCT-09-41 Chunmei Ban Zhuangchun Wu Anne Dillon National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 2 Outline  What is the technology  Why it is better than other technologies  How far away from market  Technical details  Market analysis National Renewable Energy Laboratory PCT: 09-41 Binderfree electrode 3

  12. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    SciTech Connect (OSTI)

    Chatterjee, Bishu; Sharp, Peter A.

    2006-07-15

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  13. High resolution, high rate x-ray spectrometer

    DOE Patents [OSTI]

    Goulding, F.S.; Landis, D.A.

    1983-07-14

    It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.

  14. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect (OSTI)

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many ?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  15. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  16. Power flow controller with a fractionally rated back-to-back converter

    DOE Patents [OSTI]

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  17. Method and apparatus for measuring the mass flow rate of a fluid

    DOE Patents [OSTI]

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  18. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, Dennis T. (Mountain View, CA); Van den Engh, Gerrit J. (Seattle, WA); Buckie, Anne-Marie (Margate, GB)

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  19. High speed flow cytometric separation of viable cells

    DOE Patents [OSTI]

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  20. Microturbulence and Flow Shear in High-performance JET ITB Plasma

    SciTech Connect (OSTI)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-12-05

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists.

  1. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  2. Differential flow rates of petroleum and water in fine-grained sediments

    SciTech Connect (OSTI)

    Clayton, C. )

    1993-09-01

    During and after generation, petroleum migrates through fine-grained water-wet rocks into more permeable carrier beds. While the mechanics of this process are well established, little is know of the absolute rates of the process. In addition, it is know that in some area (such as the deep-water Gulf of Mexico) oil is able to pass freely from the source rock through highly overpressured sediments in which the water is retained. This indicates that the apparent permeability to oil is one to two orders of magnitude greater than for water, too much to account for by the additional buoyancy of the oil or conventional relative permeability arguments. Part of the problem may be caused by the state of water in mudrocks, most of which is bound to clays and thus immobile. By assuming Poiseuille flow of oil through the pore network of shales, it is shown that this indeed is the case. Modeled flow rates for oil are about two orders of magnitude faster than for water. This implies that only a small percentage of the water can be considered mobile, consistent with free/bound water ratios measured in the laboratory. Such calculations have important implications for estimating the time it takes for petroleum to charge distant reservoirs and also for the longevity of oil and gas fields following seal failure.

  3. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect (OSTI)

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  4. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  5. A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McLerran, Larry; Schenke, Björn

    2016-02-01

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. Finally, we argue that thesemore » effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments.« less

  6. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOE Patents [OSTI]

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  7. Figure 7. Projected Production for the High Development Rate...

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the...

  8. High Rate and Stable Cycling of Lithium Metal Anode (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: High Rate and Stable Cycling of Lithium Metal Anode Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited ...

  9. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOE Patents [OSTI]

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  10. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    SciTech Connect (OSTI)

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Catalini, David

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital image correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.

  11. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    DOE Patents [OSTI]

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  12. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa

    2015-10-06

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  13. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  14. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    SciTech Connect (OSTI)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

  15. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect (OSTI)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  16. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  17. The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement

    SciTech Connect (OSTI)

    Dong Zheng; Jarvis, Julie M.; Vieira, Allen T.

    2006-07-01

    Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

  18. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    SciTech Connect (OSTI)

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  19. Solidification at the High and Low Rate Extreme

    SciTech Connect (OSTI)

    Halim Meco

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  20. Using SiO Anodes for High Capacity, High Rate Electrodes for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using SiO Anodes for High Capacity, High Rate Electrodes for Lithium Ion Batteries ... areal capacities and good capacity retention for application in lithium ion batteries. ...

  1. High Rate and Stable Cycling of Lithium Metal Anode

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  2. High rate and stable cycling of lithium metal anode

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  3. High rate and stable cycling of lithium metal anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  4. RETRAN-02 comparison of natural circulation flow rates at Babcock and Wilcox 177-FA plants

    SciTech Connect (OSTI)

    Simms, N.T.

    1985-07-01

    A very important aspect of nuclear steam supply system (NSSS) model development is the process of comparing the computer model results against actual plant responses. Good comparisons will qualify the computer model for specific engineering analyses. Flow rates and decay heat power levels were obtained from planned and unplanned natural circulation events that occurred at Arkansas Nuclear One, Crystal River, Davis-Besse, and Oconee nuclear power plants. A oneloop RETRAN model of the Oconee NSSS is used to attain a spectrum of steady-state equilibrium conditions at different power levels of 25, 50, 75, and 100 MW. The benchmark comparisons are respectable. The comparisons also illustrate the ability of the Babcock and Wilcox raised-loop plant to induce a greater natural circulation flow rate.

  5. High Flux Microchannel Solar Receiver Development with Adaptive Flow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control | Department of Energy Flux Microchannel Solar Receiver Development with Adaptive Flow Control High Flux Microchannel Solar Receiver Development with Adaptive Flow Control This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042313_drost.pdf (1.81 MB) More Documents & Publications Microchannel Receiver Development - FY12 Q4 Microchannel Receiver Development - FY13 Q2

  6. Semi-solid electrodes having high rate capability

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  7. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    SciTech Connect (OSTI)

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-08-15

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  8. High strain rate deformation of NiAl

    SciTech Connect (OSTI)

    Maloy, S.A.; Gray, G.T. III; Darolia, R.

    1994-07-01

    NiAl is a potential high temperature structural material. Applications for which NiAl is being considered (such as rotating components in jet engines) requires knowledge of mechanical properties over a wide range of strain rates. Single crystal NiAl (stoichiometric and Ni 49.75Al 0.25Fe) has been deformed in compression along [100] at strain rates of 0.001, 0.1/s and 2000/s and temperatures of 76,298 and 773K. <111> slip was observed after 76K testing at a strain rate of 0.001/s and 298K testing at a strain rate of 2000/s. Kinking was observed after deformation at 298K and a strain rate of 0.001/s and sometimes at 298 K and a strain rate of 0.1/s. Strain hardening rates of 8200 and 4000 MPa were observed after 773 and 298K testing respectively, at a strain rate of 2000/s. Results are discussed in reference to resulting dislocation substructure.

  9. Vitiated ethane oxidation in a high-pressure flow reactor

    SciTech Connect (OSTI)

    Walters, K.M.; Bowman, C.T.

    2009-10-15

    Vitiated combustion processes offer the potential to improve the thermodynamic efficiency in hydrocarbon-fueled combustion systems, providing a subsequent decrease in energy-specific CO{sub 2} emissions along with a decrease in the emission levels of nitrogen oxides (NO{sub x}) and particulate matter. The present work comprises an experimental and modeling study of vitiated ethane oxidation in a high-pressure flow reactor, with pressures of 1-6 bar, O{sub 2} mole fractions of 3.5-7.0%, temperatures of 1075-1100 K and 15-18 mole.% H{sub 2}O. Time-history measurements of species are used to characterize the overall rate of reaction and track the fuel-carbon through intermediate and product species. A one-dimensional mixing-reacting model that accounts for partial oxidation during reactant mixing is used in conjunction with a detailed kinetic mechanism. Changes in competing pathways due to variations in pressure and O{sub 2} mole fraction give rise to the complex pressure dependence seen in the experiments. (author)

  10. High removal rate laser-based coating removal system

    DOE Patents [OSTI]

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  11. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  12. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  13. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect (OSTI)

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  14. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect (OSTI)

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  15. High strain-rate model for fiber-reinforced composites

    SciTech Connect (OSTI)

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  16. Characterization of non equilibrium effects on high quality critical flows

    SciTech Connect (OSTI)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  17. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    SciTech Connect (OSTI)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and

  18. CO/sub 2/ gas dynamic laser with flow rate of 10 Kg/sec

    SciTech Connect (OSTI)

    Haitao, C.

    1982-08-01

    Using a supersonic technique in a 10 Kg/sec flow rate carbon dioxide gas dynamic laser unit to create a population inversion of the carbon dioxide particles, a 33,000 watt multiple mode continuous output was obtained. The power ratio reached 3000 watt sec/Kg. Single mode output was the P(20) branch with power of 11,200 watts and a beam diffuse angle of 4 seconds of radian. After eliminating the effect of stock wave, the diffuse angle can be reduced to 3 seconds of a radian. The results were below standards compared to those in foreign countries.

  19. Regularization of Feedwater Flow Rate Evaluation for Venturi Meter Fouling Problem in Nuclear Power Plants

    SciTech Connect (OSTI)

    Gribok, Andrei V.; Attieh, Ibrahim K.; Hines, J. Wesley; Uhrig, Robert E.

    2001-04-15

    Inferential sensing is a method that can be used to evaluate parameters of a physical system based on a set of measurements related to these parameters. The most common method of inferential sensing uses mathematical models to infer a parameter value from correlated sensor values. However, since inferential sensing is an inverse problem, it can produce inconsistent results due to minor perturbations in the data. This research shows that regularization can be used in inferential sensing to produce consistent results. Data from Florida Power Corporation's Crystal River nuclear power plant (NPP) are used to give an important example of monitoring NPP feedwater flow rate.

  20. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  1. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOE Patents [OSTI]

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  2. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOE Patents [OSTI]

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  3. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    DOE Patents [OSTI]

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  4. Flowmeter for determining average rate of flow of liquid in a conduit

    DOE Patents [OSTI]

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  5. Flowmeter for determining average rate of flow of liquid in a conduit

    DOE Patents [OSTI]

    Kennerly, John M. (Knoxville, TN); Lindner, Gordon M. (Oak Ridge, TN); Rowe, John C. (Oak Ridge, TN)

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  6. Multianode cylindrical proportional counter for high count rates

    DOE Patents [OSTI]

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  7. Multianode cylindrical proportional counter for high count rates

    DOE Patents [OSTI]

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  8. Low resistance bakelite RPC study for high rate working capability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore » structure performs as efficiently as traditional RPCs.« less

  9. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect (OSTI)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  10. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  11. Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are

  12. High Fidelity Simulation of Complex Suspension Flow for Practical Rheometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility High Fidelity Simulation of Complex Suspension Flow for Practical Rheometry PI Name: William George PI Email: wgeorge@nist.gov Institution: National Institute of Standards and Technology Allocation Program: INCITE Allocation Hours at ALCF: 25,000,000 Year: 2011 Research Domain: Materials Science Concrete is the most widely used building material in the world, representing a 100 billion dollar industry in the US that is crucial for our nation's physical

  13. High Performance Parallel Computing of Flows in Complex Geometries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Geometries Authors: Gicquela, L.Y.M., Gourdaina, N., Boussugea, J.F., Deniaua, H., Staffelbach, G., Wolf, P., Poinsot, T. Efficient numerical tools taking advantage of the ever increasing power of high-performance computers, become key elements in the fields of energy supply and transportation, not only from a purely scientific point of view, but also at the design stage in industry. Indeed, flow phenomena that occur in or around the industrial

  14. High Performance Parallel Computing of Flows in Complex Geometries: I.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods | Argonne Leadership Computing Facility I. Methods Authors: Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G., Garcia, M., Boussuge, J-F, Poinsot, T. Efficient numerical tools coupled with high-performance computers, have become a key element of the design process in the fields of energy supply and transportation. However flow phenomena that occur in complex systems such as gas turbines and aircrafts are still not understood mainly because of the

  15. Picosecond to Nanosecond Measurements at High Repetition Rate | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Picosecond to Nanosecond Measurements at High Repetition Rate Since FY2012, SSRL is now scheduling three to four three-day periods each year dedicated to running SPEAR3 in hybrid low-alpha operation. In this mode the SPEAR3 ring has 1-4 camshaft pulses with very low current, and pulse duration of 5-20 picoseconds, for timing measurements. The rest of the buckets are filled to provide 100-200 mA current for other users not involved in timing experiments. The

  16. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect (OSTI)

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a

  17. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect (OSTI)

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  18. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOE Patents [OSTI]

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  19. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  20. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect (OSTI)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  1. High speed flow cytometer droplet formation system and method

    DOE Patents [OSTI]

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  2. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  3. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  4. Substrate inhibition and control for high rate biogas production

    SciTech Connect (OSTI)

    Shin, H.S.

    1982-01-01

    This research addresses a critical aspect of the technical feasibility of biogas recovery with poultry manure using anaerobic digestion, namely, inhibition and toxicity factors limiting methane generation under high rate conditions. The research was designed to identify the limiting factors and to examine alternative pretreatment and in situ control methods for the anaerobic digestion of poultry manure as an energy producing system. Biogas production was indicated by the daily gas volume produced per unit digester capacity. Enhanced biogas generation from the anaerobic digester systems using poultry manure was studied in laboratory- and pilot-scale digester operations. It was found that ammonia nitrogen concentration above 4000 mg/l was inhibitory to biogas production. Pretreatment of the manure by elutriation was effective for decreasing inhibitory/toxic conditions. Increased gas production resulted without an indication of serious inhibition by increased volatile acids, indicating a limitation of available carbon sources. For poultry manure digestion, the optimum pH range was 7.1 to 7.6. Annual costs for pretreatment/biogas systems for 10,000, 30,000 and 50,000 birds were estimated and compared with annual surplus energy produced. The economic break-even point was achieved in digesters for greater than 30,000 birds. Capital cost of the digester system was estimated to be $18,300 with annual costs around $4000. It is anticipated that the digester system could be economically applied to smaller farms as energy costs increase.

  5. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOE Patents [OSTI]

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  6. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOE Patents [OSTI]

    Gray, J.W.; Alger, T.W.; Lord, D.E.

    1978-11-26

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  7. High throughput analysis of samples in flowing liquid

    DOE Patents [OSTI]

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  8. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  9. High-order harmonic generation using a high-repetition-rate turnkey laser

    SciTech Connect (OSTI)

    Lorek, E. Larsen, E. W.; Heyl, C. M.; Carlström, S.; Mauritsson, J.; Paleček, D.; Zigmantas, D.

    2014-12-15

    We generate high-order harmonics at high pulse repetition rates using a turnkey laser. High-order harmonics at 400 kHz are observed when argon is used as target gas. In neon, we achieve generation of photons with energies exceeding 90 eV (∼13 nm) at 20 kHz. We measure a photon flux of up to 4.4 × 10{sup 10} photons per second per harmonic in argon at 100 kHz. Many experiments employing high-order harmonics would benefit from higher repetition rates, and the user-friendly operation opens up for applications of coherent extreme ultra-violet pulses in new research areas.

  10. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect (OSTI)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  11. Flowmeter for determining average rate of flow of liquid in a...

    Office of Scientific and Technical Information (OSTI)

    In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel ... zone.more An electrical circuit is connected to the probes to display the ...

  12. High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications

    SciTech Connect (OSTI)

    Dillon, A. C.

    2012-01-01

    Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2

  13. Flow dynamics and erosion rate of representative karst basin (Upper Aniene River, Central Italy)

    SciTech Connect (OSTI)

    Bono, P.; Percopo, C.

    1996-04-01

    Experimental data refer to a preliminary estimate of suspended solid and solute load of a perennial river. The basin is composed almost entirely of bare mesozoic, highly fractured, karstified carbonate rocks of the central Apennine range. The suspended solid load related to stormflow events in 1991 corresponds to about 14,970 t yr{sup -1}. For the same period the solute load is 60,060 t yr{sup -1} for a mean base flow discharge of 9.4 m{sup 3} s{sup -1}. Based on the mean concentration of Ca + Mg in water, the value of dissolution of carbonate rocks of 37.1 m{sup 3} km{sup -2} (equivalent approximately to 0.04 mm yr{sup -1}) was calculated. Physical and chemical variations that occur during storm events indicate the complex dynamic processes in the karst aquifier and the role undertaken by the epikarst as perched water reservoir and by the major conduits that develop through the vadose and saturated zones of the karst system. 12 refs., 10 figs., 5 tabs.

  14. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOE Patents [OSTI]

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  15. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOE Patents [OSTI]

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  16. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    SciTech Connect (OSTI)

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  17. High heating rate thermal desorption for molecular surface sampling

    DOE Patents [OSTI]

    Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2016-03-29

    A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.

  18. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect (OSTI)

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  19. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  20. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Titanium Alloy Production ADVANCED MANUFACTURING OFFICE Low-Cost Titanium Alloy Production Titanium for Energy Efficient Mechanical Systems. Titanium (Ti) is highly valued for its ...

  1. Electrochemical and rate performance study of high-voltagelithium...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: ... Citation Details In-Document Search Title: Electrochemical ... We report electrochemical studies of high voltage cathodes ...

  2. System overview and characterization of a high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier

    SciTech Connect (OSTI)

    Kelley, Madison A.; Dreyer, Christopher B.; Parker, Terence E.; Porter, Jason M.; Jakulewicz, Micah S.

    2015-05-15

    The high-temperature, high-pressure, entrained-flow, laboratory-scale gasifier at the Colorado School of Mines, including the primary systems and the supporting subsystems, is presented. The gasifier is capable of operating at temperatures and pressures up to 1650 °C and 40 bar. The heated section of the reactor column has an inner diameter of 50 mm and is 1 m long. Solid organic feedstock (e.g., coal, biomass, and solid waste) is ground into batches with particle sizes ranging from 25 to 90 μm and is delivered to the reactor at feed rates of 2–20 g/min. The maximum useful power output of the syngas is 10 kW, with a nominal power output of 1.2 kW. The initial characterization and demonstration results of the gasifier system with a coal feedstock are also reported.

  3. A digital video camera for application of particle image velocimetry in high-speed flows

    SciTech Connect (OSTI)

    Willert, C.; Stasicki, B.; Raffel, M.; Kompenhans, J.

    1995-12-31

    A high-speed digital camera based on video technology for application of particle image velocimetry in wind tunnels is described. The camera contains two independently triggerable interline CCD sensors which are mounted on two faces of a cube beam splitter permitting the use of a single lens. Each of the sensors has a minimal exposure time of 0.8 {micro}s with a trigger response time of less than 1 {micro}s. The asynchronous reset capability permits the camera to trigger directly off a pulsed laser with a repetition rate differing from the standard 25 Hz CCIR video frame rate. Captured images are digitized within and stored in RAM the camera which can be read through the parallel port of a computer. The camera is software configurable with the settings being non-volatile. Technical aspects such as sensor alignment and calibration through software are described. Close-up PIV measurements on a free jet illustrate that, in the future, the camera can be successfully utilized at imaging high-speed flows over a small field of view covering several cm{sup 2}, such as the flow between turbine blades. Further, the electronic shutter permits its use in luminous environments such as illuminated laboratories, wind tunnels or flames.

  4. High Metal Removal Rate Process for Machining Difficult Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 10 times higher than lithium-ion), using raw materials that are low cost or even free. ... that PLE-based batteries can be manufactured and scaled to high-volume production. ...

  5. High Metal Removal Rate Process for Machining Difficult Materials

    Broader source: Energy.gov [DOE]

    The goal of the project is to develop an automated, ultrafast laser machining device that will be used to prototype GDI injectors. The platform will turn CAD drawings into high-precision prototypes.

  6. High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Green, B.; Kovalev, S.; Asgekar, V.; Geloni, G.; Lehnert, U.; Golz, T.; Kuntzsch, M.; Bauer, C.; Hauser, J.; Voigtlaender, J.; et al

    2016-02-29

    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasi-continuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields andmore » the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. In conclusion, we benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution.« less

  7. High frame-rate, large field wavefront sensor

    SciTech Connect (OSTI)

    Avicola, K.; Salmon, J.T.; Brase, J.; Waltjen, K.; Presta, R.; Balch, K.S.

    1992-03-01

    A two-stage intensified 192 {times} 239 pixel imager developed by Eastman Kodak for motion analysis was used to construct a 1 kHz frame-rate Hartmann wavefront sensor. The sensor uses a monolithic array of lenslets with a focal length that is adjusted by an index fluid between the convex surface and an optical flat. The accuracy of the calculated centroid position, which is related to wavefront measurement accuracy, was obtained as a function of spot power and spot size. The sensor was then dynamically tested at a 1 kHz frame-rate with a 9 {times} 9 lenslet array and a fast steering mirror, which swept a plane wavefront across the wavefront sensor. An 8 cm diameter subaperture will provide a return signal (589 nm) level of about 1000 photons/ms using the AVLIS 1 kW laser (stretched pulse) as guide star source, which is sufficient to yield a wavefront measurement of better than {gamma}/10 rms. If an area of 6 {times} 6 pixels per Hartmann spot were allocated, this wavefront sensor could support a 32 {times} 32, or 1024, element deformable mirror.

  8. Plasma flow at a high Mach-number

    SciTech Connect (OSTI)

    Yu, Bing; Hameiri, Eliezer

    2013-09-15

    Unlike the case of static magnetohydrodynamic (MHD) equilibria, where an expansion in large aspect ratio of toroidal devices is common, cases of MHD equilibria with flow are rarely treated this way, and when this is done the expansion tends to be only partial. The main reason for the difference seems to be the difficulty of expanding the larger system of equilibrium equations with flow. Here, we use a recent expansion technique which employs a variational principle to simplify the process [E. Hameiri, Phys. Plasmas 20, 024504 (2013)]. We treat four cases of MHD equilibria with flow, developing their asymptotic expansions in full, and for an application consider the effect of the flow on the Shafranov shift.

  9. High Fidelity Simulation of Complex Suspension Flow for Practical Rheometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility A visualization of the flow of concrete, a complex suspension A visualization of the flow of concrete, a complex suspension. In this snapshot of the simulation, the stress on each suspended particle is shown color-coded with its specific value drawn on its surface. Suspended particles that have a stress value below a specific threshold value are shown in outline form in order to better view those particles that are carrying the majority of the stress

  10. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect (OSTI)

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  11. Raw material preparation for ultra high production rate sintering

    SciTech Connect (OSTI)

    Kortmann, H.A.; Ritz, V.J.; Cappel, F.; Weisel, H.; Richter, G.

    1995-12-01

    An R and D program in pot grate sintering showed, that an intensive preparation of ores, additives and coke breeze improves the sintering capacity. The tests were conducted using an ore mixture composed of typical ores imported to Europe. The highest capacities were attained up to 63.8 t/m{sup 2} {times} 24 h maximum for a sinter which well fulfills the high requirements on chemical, physical and metallurgical properties.

  12. High Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the suspensions themselves do not allow analytical solutions to relate torque and angular velocity to fundamental rheological parameters (yield stress, strain rate, plastic...

  13. High-Fidelity Simulation of Complex Suspension Flow for Practical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters such as stress and strain rate from measured quantities such as torque and angular velocity in non-analytical rheometer and mixing geometries. Analysis and...

  14. The effect of N{sub 2} flow rate on discharge characteristics of microwave electron cyclotron resonance plasma

    SciTech Connect (OSTI)

    Ding Wanyu [Institute of Optoelectronic Materials and Devices, Dalian Jiaotong University, Dalian 116028 (China); State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Xu Jun; Lu Wenqi; Deng Xinlu; Dong Chuang [State Key Laboratory of Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China)

    2009-05-15

    The properties of plasma in Ar/N{sub 2} microwave electron cyclotron resonance discharge with a percentage of N{sub 2} flow rate ranging from 5% to 50% have been studied in order to understand the effect of N{sub 2} flow rate on the mechanical properties of silicon nitride films. N{sub 2}{sup +} radicals as well as N{sub 2}, N{sup +} are found by optical emission spectroscopy analysis. The evolution of plasma density, electron kinetic energy, N{sub 2}{sup +}, N{sub 2}, and N{sup +} emission lines from mixed Ar/N{sub 2} plasma on changing mixture ratio has been studied. The mechanisms of their variations have been discussed. Moreover, an Ar/N{sub 2} flow ratio of 2/20 is considered to be the best condition for synthesizing a-Si{sub 3}N{sub 4}, which has been confirmed in the as-deposited silicon nitride films with quite good mechanical properties by nanoindentation analyses.

  15. High-Fidelity Simulation of Complex Suspension Flow for Practical Rheometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility High-Fidelity Simulation of Complex Suspension Flow for Practical Rheometry High-Fidelity Simulation of Complex Suspension Flow for Practical Rheometry PI Name: William George PI Email: wgeorge@nist.gov Institution: National Institute of Standards and Technology Allocation Program: INCITE Allocation Hours at ALCF: 22 Million Year: 2012 Research Domain: Materials Science Flow properties of large-particle suspensions, such as concrete, cannot now be

  16. High Rate Deposition of High Quality ZnO:Al by Filtered Cathodic Arc

    SciTech Connect (OSTI)

    Mendelsberg, Rueben J.; Lim, S.H.N.; Milliron, D.J.; Anders, Andre

    2010-11-18

    High quality ZnO:Al (AZO) thin films were prepared on glass substrates by direct current filtered cathodic arc deposition. Substrate temperature was varied from room temperature to 425oC, and samples were grown with and without the assistance of low power oxygen plasma (75W). For each growth condition, at least 3 samples were grown to give a statistical look at the effect of the growth environment on the film properties and to explore the reproducibility of the technique. Growth rate was in the 100-400 nm/min range but was apparently random and could not be easily traced to the growth conditions explored. For optimized growth conditions, 300-600 nm AZO films had resistivities of 3-6 x 10-4 ?Omega cm, carrier concentrations in the range of 2-4 x 1020 cm3, Hall mobility as high as 55 cm2/Vs, and optical transmittance greater than 90percent. These films are also highly oriented with the c-axis perpendicular to the substrate and a surface roughness of 2-4 nm.

  17. Effects of flow rate and pretreatment on the extraction of trace metals from estuarine and coastal seawater by Chelex-100

    SciTech Connect (OSTI)

    Paulson, A.J.

    1986-01-01

    During the extraction of previously acidified estuarine samples, altered organic material still retains some capacity to inhibit the extraction of trace metals by Chelex-100. Previous studies have indicated that heating or UV oxidation of samples reduces the capacity of this organic matter to inhibit the extraction of trace metals by Chelex-100. The results of this study using recently collected samples indicate that decreasing the flow rate to 0.2 mL min/sup -1/ is also an effective means of increasing the retention of trace metals by Chelex-100. Additional benefits of the slow-flow column extraction method include improvements in precision and the elimination of pretreatment procedures that could cause contamination or reduce the extractability of Fe. Aged acidified samples require heating of the sample prior to extraction. Controlled contamination can be minimized for most metals by preextraction of the buffer solution. 21 references, 1 figure, 2 tables.

  18. High Performance Parallel Computing of Flows in Complex Geometries: II.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Argonne Leadership Computing Facility II. Applications Authors: Gourdain, N., Gicquel, L., Staffelbach, G., Vermorel, O., Duchaine, F., Boussuge, J-F, Poinsot, T. Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the

  19. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  20. Digital control of working fluid flow rate for an OTEC plant

    SciTech Connect (OSTI)

    Nakamura, M.; Egashira, N.; Uehara, H.

    1986-05-01

    The role of control in operating an OTEC plant efficiently is of great importance. This paper describes digital control of working fluid rate based on an adaptive control theory for the ''Imari2'' OTEC plant at Saga University. Provisions have been made for linkage between the software of the adaptive control theory and the hardware of the OTEC plant. The authors can obtain satisfactory control performance using this digital control system.

  1. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  2. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates

    DOE Patents [OSTI]

    Mahan, Archie Harvin; Molenbroek, Edith C.; Gallagher, Alan C.; Nelson, Brent P.; Iwaniczko, Eugene; Xu, Yueqin

    2002-01-01

    A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

  3. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    SciTech Connect (OSTI)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  4. Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Density, Fast Charge Transport, and Low-Dissipation Flow - Joint Center for Energy Storage Research June 5, 2015, Research Highlights Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow Images for Biphasic Electrode Suspensions Scientific Achievement We created biphasic electrode suspensions composed of dispersed active particles and uniformly percolated conductive particles, different from the

  5. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  6. Method for establishing high permeability flow path between boreholes

    DOE Patents [OSTI]

    Dow, Jerome P.

    1978-01-01

    A method for linking adjacent boreholes in a subterranean formation, particularly in a coal gasification array, by firing a high velocity terradynamic projectile from one borehole to the other.

  7. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased duringmore » set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  8. High vacuum measurements and calibrations, molecular flow fluid transient effects

    SciTech Connect (OSTI)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.

  9. High vacuum measurements and calibrations, molecular flow fluidtransient effects

    SciTech Connect (OSTI)

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 10-8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreased during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.

  10. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  11. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOE Patents [OSTI]

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  12. Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control | Argonne Leadership Computing Facility flow around a high lift multi-element wing at maximum lift. Slat, flap and complex supporting structures (right sub figures) that create complex vorticity wakes are resolved in the adaptive, unstructured grid simulation (third subfigure is zoom on the surface of slat, main element and slat support). Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow Control PI Name: Kenneth Jansen PI Email: jansenke@colorado.edu Institution:

  13. Adaptive Detached Eddy Simulation of a High Lift Wing with Active Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control | Argonne Leadership Computing Facility flow around a high lift multi-element wing at maximum lift Vorticity contours colored by speed from a detached eddy simulation of flow around a high lift multi-element wing at maximum lift. Slat, flap and complex supporting structures (right sub figures) that create complex vorticity wakes are resolved in the adaptive, unstructured grid simulation (third subfigure is zoom on the surface of slat, main element and slat support). Kenneth Jansen,

  14. Workshop: Time Resolved X-Ray Science at High Repetition Rate | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Time Resolved X-Ray Science at High Repetition Rate Saturday, October 22, 2011 - 8:30am SSRL Conference Room 137-322 In conjunction with the 2011 LCLS/SSRL User Meeting, SSRL and the APS will jointly host a two-day workshop focused on opportunities with short-pulse, high-repetition rate X-ray Science. The workshop will feature international speakers and panel experts presenting the scientific basis, preliminary results and future potential of high rep-rate

  15. A study of the minimum wetting rate of isothermal films flowing down on outer surface of vertical pipes

    SciTech Connect (OSTI)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Ueda, Tatsuhiro

    1999-07-01

    The minimum wetting rate (MWR) was investigated experimentally with an isothermal water film flowing down on the outer surface of test pipes arranged vertically. A dry patch was generated by blowing a small air jet onto the film temporally, and observation was made to discriminate whether the dry patch was rewetted or not. The contact angle of the film at the top edge of the dry patch and the amplitude, length and velocity of large waves on the film were measured. The MWR decreased rapidly as the film flowed down and reached a nearly constant value at a position around 0.6 m down from the film inlet. There were large waves on the film. The tendency of the variation of MWR with the distance coincided well with the growth of the amplitude of large waves with the distance. The contact angle at the top edge of the dry patch varied periodically in a range synchronizing with the arrival of the waves. When the contact angle exceeded the maximum advancing contact angle, the rewetting of the dry patch was initiated. The existing correlations where the smooth surface film was assumed considerably over-predicted the MWR. The MWR was properly given by supposing that the dry patch is rewetted when the maximum of the fluctuating dynamic pressure of the film exceeds the upward component of the surface tension corresponding to the maximum advancing contact angle at the top edge of the dry patch.

  16. Centerra Earns High Performance Rating for Savannah River Site Security Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) security contractor Centerra received high performance ratings from DOE in fiscal year 2015, earning $5,280,546 of the available $5,739,724 fee.

  17. High-order harmonic generation at a repetition rate of 100 kHz

    SciTech Connect (OSTI)

    Lindner, F.; Stremme, W.; Schaetzel, M. G.; Grasbon, F.; Paulus, G. G.; Walther, H.; Hartmann, R.; Strueder, L.

    2003-07-01

    We report high-order harmonic generation (HHG) in rare gases using a femtosecond laser system with a very high repetition rate (100 kHz) and low pulse energy (7 {mu}J). To our knowledge, this is the highest repetition rate reported to date for HHG. The tight focusing geometry required to reach sufficiently high intensities implies low efficiency of the process. Harmonics up to the 45th order are nevertheless generated and detected. We show evidence of clear separation and selection of quantum trajectories by moving the gas jet with respect to the focus, in agreement with the theoretical predictions of the semiclassical model of HHG.

  18. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Dual-axis high-data-rate atom interferometer via cold ensemble exchange Citation Details In-Document Search Title: Dual-axis high-data-rate atom interferometer via cold ensemble exchange We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data

  19. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  20. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect (OSTI)

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  1. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  2. High Rate and Stable Cycling of Lithium Metal Anode - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research November 10, 2014, Research Highlights High Rate and Stable Cycling of Lithium Metal Anode Coulombic efficiency (CE) of Li plating/stripping is > 99.1% in concentrated LiFSI-DME electrolyte Scientific Achievement Lithium metal is an ideal battery anode. However, dendrite growth and limited CE during cycling have limited its practical applications. High CE (up to 99.1%) without dendrite growth is achieved by using highly concentrated electrolytes for lithium

  3. Operational results for high pulverized coal injection rate at Kimitsu No. 3 blast furnace

    SciTech Connect (OSTI)

    Ueno, Hiromitsu; Matsunaga, Shin`ichi; Kakuichi, Kazumoto; Amano, Shigeru; Yamaguchi, Kazuyoshi

    1995-12-01

    In order to further develop the technology for high-rate pulverized coal injection (PCI), namely over 200 kg/t-pig, Nippon Steel performed a high injection rate test at the Kimitsu No. 3 blast furnace in November, 1993. The paper describes PCI equipment; the operational design of the test, including blast conditions, reducibility of sinter, coke strength and burden distribution; and test results. These results include a discussion of the transition of operation, burden distribution control, replacement ratio of coke, permeability at upper and lower parts of the furnace, reducibility at lower part of the furnace, accumulation of fines in the deadman, and generation and accumulation of unburnt char. Stable operation was achieved at a PCI rate of 190 kg/t-pig. With injection rates between 200--300 kg/t-pig, the problem becomes how to improve the reduction-meltdown behavior in the lower part of the furnace.

  4. Deflagration Rate Measurements of Three Insensitive High Explosives: LLM-105, TATB, and DAAF

    SciTech Connect (OSTI)

    Glascoe, E A; Maienschein, J L; Lorenz, K T; Tan, N; Koerner, J G

    2010-03-08

    The pressure dependent deflagration rates of LLM-105, DAAF and TATB based formulations were measured in the LLNL high pressure strand burner. The role of binder amount, explosive type, and thermal damage and their effects on the deflagration rate will be discussed. One DAAF formulation, two different formulations of LLM-105, and four formulations of TATB were studied; results indicate that binder amount and type play a minor role in the deflagration behavior. This is in sharp contrast to the HMX based formulations which strongly depend on binder amount and type. The effect of preheating these samples was considerably more dramatic. In the case of LLM-105, preheating the sample appears to have little effect on the deflagration rate. In contrast, preheating DAAF and TATB formulations causes the deflagration rate to accelerate. The thermal and mechanical properties of these formulations will be discussed in the context of their pressure and temperature dependent deflagration rates.

  5. Room temperature single-photon detectors for high bit rate quantum key distribution

    SciTech Connect (OSTI)

    Comandar, L. C.; Patel, K. A.; Frhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-13

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50?km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  6. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect (OSTI)

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  7. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    SciTech Connect (OSTI)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  8. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOE Patents [OSTI]

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  9. A study on the effect of various design parameters on the natural circulation flow rate of the ex-vessel core catcher cooling system of EU-APR1400

    SciTech Connect (OSTI)

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-07-01

    In this paper, a study on the effect of various design parameters such as the channel gap width, heat flux distribution, down-comer pipe size and two-phase flow slip ratio on the natural circulation flow rate is performed based on a physical model for a natural circulation flow along the flow path of the ex-vessel core catcher cooling system of an EU-APR1400, and these effects on the natural circulation flow rate are analyzed and compared with the minimum flow rate required for the safe operation of the system. (authors)

  10. Development of a micro flow-through cell for high field NMR spectroscopy.

    SciTech Connect (OSTI)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  11. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect (OSTI)

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  12. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect (OSTI)

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  13. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect (OSTI)

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  14. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  15. Low-mass, high-rate cylindrical MWPC's for the MEGA experiment

    SciTech Connect (OSTI)

    Mischke, R.E.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.W.; Hogan, G.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Stanislaus, S.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C. )

    1990-01-01

    The construction of MWPCs for the MEGA experiment at LAMPF are described. The chambers are cylindrical, low mass (3 {times} 10{sup {minus}4} radiation lengths), and are designed to operate at high rates (3 {times} 10{sup 4} /mm{sup 2}/s). Several novel construction techniques have been developed and custom electronics have been designed to help achieve the required performance, which corresponds to that needed at high luminosity colliders. 4 refs., 3 figs.

  16. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    SciTech Connect (OSTI)

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  17. A method to quench and recharge avalanche photo diodes for use in high rate situations

    SciTech Connect (OSTI)

    Regan, T.O.; Fenker, H.C.; Thomas, J.; Oliver, J.

    1992-06-01

    We present a new method of using Avalanche Photo Diodes (APDS) for low level light detection in Geiger mode in high rate situations such as those encountered at the Superconducting Super Collider (SSC). The new technique is readily adaptable to implementation in CMOS VLSI.

  18. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  19. High pressure annular two-phase flow in a narrow duct. Part 1: Local measurements in the droplet field, and Part 2: Three-field modeling

    SciTech Connect (OSTI)

    Trabold, T.A.; Kumar, R.

    1999-07-01

    In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with

  20. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    SciTech Connect (OSTI)

    Freund, L.B.; Soerensen, N.J.

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  1. High-Purity Germanium Spectroscopy at Rates in Excess of 10^{6} Events/s

    SciTech Connect (OSTI)

    VanDevender, Brent A.; Dion, Michael P.; Fast, James E.; Rodriguez, Douglas C.; Taubman, Matthew S.; Wilen, Christopher D.; Wood, Lynn S.; Wright, Michael E.

    2014-10-01

    AbstractIn gamma spectroscopy, a compromise must be made between energy resolution and event-rate capability. Some foreseen nuclear material safeguards applications require a spectrometer with energy resolution typical of high purity germanium (HPGe) detectors, operated at rates up to and exceeding 106 events per second. We report the performance of an HPGe spectrometer adapted to run at such rates. Our system consists of a commercial semi-coaxial HPGe detector, a modified high-voltagerail, resistive-feedback, charge-sensitive preamplifier and a continuous waveform digitizer. Digitized waveforms are analyzed offline with a novel time-variant trapezoidal filter algorithm. Several time-invariant trapezoidal filters are run in parallel and the slowest one not rejected by instantaneous pileup conditions is used to measure each pulse height. We have attained full-widthat- half-maximum energy resolution of less than 8 keV measured at 662 keV with 1:08*106 per second incoming event rate and 38% throughput. An additional constraint on the width of the fast trigger filter removes a significant amount of edge pileup that passes the first pileup cut, reducing throughput to 26%. While better resolution has been reported by other authors, our throughput is over an order of magnitude higher than any other reported HPGe system operated at such an event rate.

  2. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    SciTech Connect (OSTI)

    Anand, Venu E-mail: venuanand83@gmail.com; Shivashankar, S. A.; Nair, Aswathi R.; Mohan Rao, G.

    2015-08-31

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  3. Measurements of continuous mix evolution in a high energy density shear flow

    SciTech Connect (OSTI)

    Loomis, E. Doss, F.; Flippo, K.; Fincke, J.

    2014-04-15

    We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

  4. Membranes Optimized for High Conductivity and Low Crossover of Redox Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells 2015-033 - Energy Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Membranes Optimized for High Conductivity and Low Crossover of Redox Flow Cells 2015-033 Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Tucker, M. C., Cho, K. T., Spingler, F. B., Weber, A. Z., Lin, G. "Impact of membrane characteristics on the performance and cycling of the Br2-H2 redox flow cell," Journal of

  5. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  6. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOE Patents [OSTI]

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  7. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOE Patents [OSTI]

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  8. Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operation | Stanford Synchrotron Radiation Lightsource Gas Dynamics in an X-ray FEL Gas Attenuator under High Repetition Rate Operation Wednesday, August 17, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Bo Yang, Department of Mechanical Engineering, University of Texas at Arlington Program Description The LCLS-II project seeks to increase the repetition rate of the LCLS X-ray Free-Electron Laser by many orders, up to 1 MHz from the current 120 Hz maximum. It calls into

  9. Transverse flowing liquid Kerr cell for high average power laser Q-switching and for direct modulation of high power laser beams.

    DOE Patents [OSTI]

    Comaskey, Brian J.

    2004-12-07

    A fluid flow concept is applied in an optical apparatus to define a high gain stand-off, fast electro-optical q-switch which is highly impervious to high average power optical loads.

  10. High-Dose-Rate Brachytherapy Alone for Localized Prostate Cancer in Patients at Moderate or High Risk of Biochemical Recurrence

    SciTech Connect (OSTI)

    Hoskin, Peter; Rojas, Ana; Lowe, Gerry; Bryant, Linda; Ostler, Peter; Hughes, Rob; Milner, Jessica; Cladd, Helen

    2012-03-15

    Purpose: To evaluate genitourinary (GU) and gastrointestinal (GI) morbidity and biochemical control of disease in patients with localized prostate adenocarcinoma treated with escalating doses per fraction of high-dose rate brachytherapy alone. Methods and Materials: A total of 197 patients were treated with 34 Gy in four fractions, 36 Gy in four fractions, 31.5 Gy in three fractions, or 26 Gy in two fractions. Median follow-up times were 60, 54, 36, and 6 months, respectively. Results: Incidence of early Grade {>=} 3 GU morbidity was 3% to 7%, and Grade 4 was 0% to 4%. During the first 12 weeks, the highest mean International Prostate Symptom Score (IPSS) value was 14, and between 6 months and 5 years it was 8. Grade 3 or 4 early GI morbidity was not observed. The 3-year actuarial rate of Grade 3 GU was 3% to 16%, and was 3% to 7% for strictures requiring surgery (4-year rate). An incidence of 1% Grade 3 GI events was seen at 3 years. Late Grade 4 GU or GI events were not observed. At 3 years, 99% of patients with intermediate-risk and 91% with high-risk disease were free of biochemical relapse (log-rank p = 0.02). Conclusions: There was no significant difference in urinary and rectal morbidity between schedules. Biochemical control of disease in patients with intermediate and high risk of relapse was good.

  11. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    SciTech Connect (OSTI)

    Lebedev, S. V. E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.; Burgess, D.; Clemens, A.; Ciardi, A.; Sheng, L.; Yuan, J.; and others

    2014-05-15

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

  12. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  13. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding.

    SciTech Connect (OSTI)

    Loughry, Thomas A.

    2015-02-01

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to ten times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.

  14. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  15. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect (OSTI)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  16. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the

  17. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect (OSTI)

    Sivaramakrishnan, R.; Michael, J.V.

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three

  18. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect (OSTI)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 1114 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  19. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    SciTech Connect (OSTI)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Zainal, Zulkarnain; Hilal, Hikmat S.; Fujii, Masatoshi

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  20. Device for testing closure disks at high rates of change of pressure

    DOE Patents [OSTI]

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  1. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  2. Analysis of instability inception in high-speed multistage axial-flow compressors

    SciTech Connect (OSTI)

    Hendricks, G.J.; Sabnis, J.S.; Feulner, M.R.

    1997-10-01

    A nonlinear, two-dimensional, compressible dynamic model has been developed to study rotating stall/surge inception and development in high-speed, multistage, axial flow compressors. The flow dynamics are represented by the unsteady Euler equations, solved in each interblade row gap and inlet and exit ducts as two-dimensional domains, and in each blade passage as a one-dimensional domain. The resulting equations are solved on a computational grid. The boundary conditions between domains are represented by ideal turning coupled with empirical loss and deviation correlations. Results are presented comparing model simulations to instability inception data of an eleven stage, high-pressure-ratio compressor operating at both part and full power, and the results analyzed in the context of a linear modal analysis.

  3. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect (OSTI)

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  4. Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Shao, Yuyan; Luo, Qingtao; Wei, Xiaoliang; Li, Xiaolin; Xiao, Jie; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2013-02-04

    The selection of electrode materials plays a great role in improving performances of all vanadium redox flow batteries (VRBs). Low-cost graphite felt (GF) as traditional electrode material has to be modified to address its issue of low electrocatalytic activity. In our paper, low-cost and highly conductive bismuth nanoparticles, as a powerful alternative electrocatalyst to noble metal, are proposed and synchronously electro-deposited onto the surface of GF while running flow cells employing the electrolytes containing suitable Bi3+. Although bismuth is proved to only take effect on the redox reaction of V(II)/V(III) and present at negative half-cell side, the whole cell electrochemical performances are significantly improved. In particular, the energy efficiency is increased by 11% owing to faster charge transfer as compared with one without Bi at high charge/discharge rate of 150 mA/cm2, which is prone to reduce stack size, thus dramatically reducing the cost. The excellent results show great promise of Bi nano-catalysts in the commercialization of VRBs in terms of product cost as well as electrochemical properties.

  5. Improving network performance on multicore systems: Impact of core affinities on high throughput flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Generation Computer Systems ( ) - Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs Improving network performance on multicore systems: Impact of core affinities on high throughput flows Nathan Hanford a,∗ , Vishal Ahuja a , Matthew Farrens a , Dipak Ghosal a , Mehmet Balman b , Eric Pouyoul b , Brian Tierney b a Department of Computer Science, University of California, Davis, CA, United States b Energy Sciences

  6. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Höppner, H.; Hage, A.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Prandolini, M. J.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  7. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect (OSTI)

    Srhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sren; Nyberg, Tomas [Department of Solid State Electronics, The ngstrm Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.510 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  8. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  9. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; Beidaghi, Majid; Joo Jeong, Yeon; Islam, Mohammad F.; Gogotsi, Yury

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  10. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals

    SciTech Connect (OSTI)

    Ganesh, Panchapakesan; Kent, P. R. C.; Sumpter, Bobby G; Lubimtsev, Andrew A

    2013-01-01

    Pseudocapacitors aim to maintain the high power density of supercapacitors while increasing the energy density towards those of energy dense storage systems such as lithium ion batteries. Recently discovered intercalation pseudocapacitors (e.g. Nb2O5) are particularly interesting because their performance is seemingly not limited by surface reactions or structures, but instead determined by the bulk crystalline structure of the material. We study ordered polymorphs of Nb2O5 and detail the mechanism for the intrinsic high rates and energy density observed for this class of materials. We find that the intercalating atom (lithium) forms a solid solution adsorbing at specific sites in a network of quasi-2D NbOx faces with x {1.3, 1.67, or 2}, donating electrons locally to its neighboring atoms, reducing niobium. Open channels in the structure have low diffusion barriers for ions to migrate between these sites (Eb 0.28 0.44 eV) comparable to high-performance solid electrolytes. Using a combination of complementary theoretical methods we rationalize this effect in LixNb2O5 for a wide range of compositions (x) and at finite temperatures. Multiple adsorption sites per unit-cell with similar adsorption energies and local charge transfer result in high capacity and energy density, while the interconnected open channels lead to low cost diffusion pathways between these sites, resulting in high power density. The nano-porous structure exhibiting local chemistry in a crystalline framework is the origin of high-rate pseudocapacitance in this new class of intercalation pseudocapacitor materials. This new insight provides guidance for improving the performance of this family of materials.

  11. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect (OSTI)

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  12. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  13. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  14. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  15. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    SciTech Connect (OSTI)

    Attaf, A. Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-30

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  16. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    SciTech Connect (OSTI)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need by developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry

  17. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  18. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    SciTech Connect (OSTI)

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue Y.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; Wood, Brandon C.; Wang, Y. Morris; Shin, Swanee J.

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.

  19. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue Y.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; et al

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes inmore » graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  20. Reliable, high repetition rate thyratron grid driver used with a magnetic modulator

    SciTech Connect (OSTI)

    Hill, J.V.; Ball, D.G.; Garrett, D.N.

    1991-06-14

    The Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory uses a magnetic modulator switched by a high voltage thyratron to drive a gas discharge laser. The thyratron trigger source must provide an extremely reliable, low jitter, high- rep-rate grid pulse. This paper describes a thyratron grid driver which delivers a 1.2 kV, 80 ns rise time grid pulse into a 50 ohm load at up to 4.5 kHz repetition rate and has demonstrated approximately 10,000 hours MTBF. Since the thyratron is used with a magnetic compression circuit having a delay time of 1.4 ms this grid driver incorporates a jitter compensation circuit to adjust the trigger timing of the thyratron to provide overall modulator/laser jitter of less than {plus minus} 2 ns. The specific grid driver requirements will be discussed followed by a description of the circuit design and theory of operation. Construction comments will be followed by performance data (for a specific thyratron and magnetic compression circuit), including pulse shape, jitter, and lifetime. 1 ref., 10 figs.

  1. Supported plasma sputtering apparatus for high deposition rate over large area

    DOE Patents [OSTI]

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  2. High-repetition rate and mode-locked phosphate glass laser

    SciTech Connect (OSTI)

    He; Lu; Li; Qian; Gu

    1986-04-04

    High-repetition-rate operation of a picosecond glass laser up to 10 Hz was achieved by using a new kind of phosphate glass. The pulse duration is 24 ps, the spectral width is 0.84 A and the total energy of the pulse train is 6 mJ. The key to the operation of glass materials at high repetition rates lies not only in an improvement of their thermal conductivity, but also in an avoidance or elimination of the undesired optical-pumping-induced thermal effects, such as the optical path change due to change in the index of refraction with temperature, and the linear expansion coefficient. For silicate glass, both are positive. The new type of phosphate glass adopted in this study exhibits negative and positive linear expansion coefficient behavior, so that changes in the optical path resulting from both of them can be compensated by each other. As a result, such a change can reach a minimum value each time when light travels back and forth in a laser cavity.

  3. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  4. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    SciTech Connect (OSTI)

    Loewen, Shaun K.; Halperin, Ross; Lefresne, Shilo; Trotter, Theresa; Stuckless, Teri; Brundage, Michael

    2015-10-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada.

  5. Limits of survivability and damage for optical components used in a high repetition rate visible laser

    SciTech Connect (OSTI)

    Taylor, J.R.; Stolz, C.J.; Sarginson, T.G.

    1991-10-01

    An effort is being made to understand the limits of survivability and damage for optical components exposed to a visible laser operating continuously at a high repetition rate over 4 kHz. Results of this work are reported and related to the materials and manufacturing conditions for coatings and substrates as well as defects seen at the surface under laser illumination. These results were obtained for a variety of optical coatings and conditions using lasers from the Laser Demonstration Facility, part of the Atomic Vapor Laser Isotope Separation (AVLIS) Program at LLNL. Better understanding of the reliability of optical components in this environment could lead to improvements in design and manufacture that would result in reduced size for the laser optical system and correspondingly lower costs for the facilities that can use this technology.

  6. Pressure dependence on the reaction propagation rate of PETN at high pressure

    SciTech Connect (OSTI)

    Foltz, M.F.

    1993-04-01

    The reaction propagation rate (RPR) of the sensitive high explosive pentaerythritol tetranitrate (PETN) was measured in a diamond anvil cell (DAC) over the pressure range of 2--20 GPa. The experimental technique used is the same as that previously reported. The RPR data shows that it burns one to two orders of magnitude faster in the DAC than 1,3,5,-triamino-2,4,6-trinitrobenzene (TATB) and nitromethane (CH{sub 3}NO{sub 2}) respectively. The PETN RPR curve did not show sample pressure-dependent behavior like that of nitromethane, but instead varied abruptly like the RPR curve of TATB. In order to interpret these changes, static-pressure DAC mid-IR FTIR spectra were taken of micro-pellets of PETN embedded in KBr. The relationship between changes in the spectra, the RPR curve, and published single crystal PETN wedge test data are discussed.

  7. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  8. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  9. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

    SciTech Connect (OSTI)

    Stacey, W. M.; Bae, C.

    2015-06-15

    A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

  10. Synthesis of an un-supported, high-flow ZSM-22 zeolite membrane

    DOE Patents [OSTI]

    Thoma, Steven G.; Nenoff, Tina M.

    2006-10-10

    Novel methods for synthesizing wholly un-supported, high-flow catalytic membranes consisting of 100% crystalline ZSM-22 crystals with no binder phase, having sufficient porosity to allow high Weight Hourly Space Velocities of feedstock to pass through without generating back pressure. The ZSM-22 membranes perform favorably to existing bulk ZSM-22 catalysts (e.g., via 1-butene conversion and selectivity). The method of membrane synthesis, based on Vapor Phase Transport, allows free-standing, binder-less membranes to be fabricated in varied geometries and sizes so that membranes can be tailor-made for particular geometries applications. The ZSM-22 precursor gel may be consolidated into a semi-cohesive body prior to vapor phase crystallization, for example, by uniaxial pressing. These crystalline membranes may be modified by ion exchange, pore ion exchange, framework exchange, synthesis modification techniques to incorporate other elements into the framework, such as K, H, Mg, Zn, V, Ga, and Pt.

  11. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    SciTech Connect (OSTI)

    FJELDLY,T.A.; DENG,Y.; SHUR,M.S.; HJALMARSON,HAROLD P.; MUYSHONDT,ARNOLDO

    2000-04-25

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  12. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOE Patents [OSTI]

    Gray, Joe W.; Alger, Terry W.; Lord, David E.

    1982-01-01

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  13. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect (OSTI)

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  14. Is the Use of a Surrogate Urethra an Option in Prostate High-Dose-Rate Brachytherapy?

    SciTech Connect (OSTI)

    Nilsson, Josef Kaelkner, Karl Mikael; Berg, Lars; Levitt, Seymour; Holmberg, Carina; Nilsson, Sten; Lundell, Marie

    2008-05-01

    Purpose: To investigate the accuracy and the dosimetric consequences of substituting a surrogate urethra assumed to be at the geometric center of the prostate, in place of the true urethra when using high-dose-rate (HDR) brachytherapy for the treatment of prostate cancer. Methods and Materials: One hundred prostate cancer patients treated with HDR brachytherapy constituted the study group. A pre-plan was made with the urethra visualized. The true urethra was defined, and a surrogate urethra was placed at the geometric center of the prostate. The distance between the two urethras was measured. The deviation was evaluated at the base, middle, and apex. To evaluate the dosimetric consequences for the true urethra when using a surrogate urethra, two different dose plans were made: one based on the true urethra and one based on the surrogate urethra. The dose-volume histograms for the true urethra were analyzed. Results: The deviation between the true urethra and the surrogate urethra was greatest at the base of the prostate. A statistically significant difference was seen between the dosimetric parameters for the true and the surrogate urethra when the dose plan was made using the surrogate urethra. In this situation the dose to the true urethra was increased above our defined maximum tolerance limit. Conclusions: When using dose plans made according to a surrogate urethra the dose to the true urethra might be too high to be acceptable. If the true urethra is not visualized, severe damage could easily develop in a significant number of patients.

  15. Flow directions and hydraulic gradients in the variable density flow system at the proposed high-level nuclear waste repository site in the Texas panhandle

    SciTech Connect (OSTI)

    Bair, E.S.; O'Donnell, T.P.

    1985-01-01

    Bedded salt, welded tuff, and basalt are the three rock types proposed as possible host rock for the nation's first high-level nuclear waste repository. Regional flow at the proposed bedded salt site in the Texas Panhandle is unique because it contains waters with highly variable fluid density. The site area is underlain by three regional hydrostratigraphic units: a shallow aquifer system developed in the Ogallala Formation and Dockum Group containing waters with less than 1500 mg/1 TDS, a shale and evaporite aquitard associated with the target salt horizon commonly containing waters with 300,000 mg/1 TDS, and a deep aquifer system developed in the Wolfcamp Series and Pennsylvanian System commonly containing waters with 50,000 to 200,000 mg/1 TDS. The associated fluid density variations can lead to miscalculation of flow directions, hydraulic gradients, and travel times. Pressure-depth diagrams based on shut-in pressure and specific-gravity data from drill-stem tests indicate that regionally the potential for downward flow exists in the shale and evaporite aquitard and the potential for horizontal flow exists in the deep aquifer system. Determination of the direction and magnitude of the vertical hydraulic gradient across the target salt horizon based on a method that solely uses pressure data and which incorporates the effects of variable fluid density indicates a downward-oriented hydraulic gradient at the proposed Texas Panhandle site. These methods do not require calculation of hydraulic head and, therefore, are a more realistic way of determining flow characteristics in variable density flow systems.

  16. Nearby-fluids equilibria. II. Zonal flows in a high-{beta}, self-organized plasma experiment

    SciTech Connect (OSTI)

    Steinhauer, L.C.; Guo, H.Y.

    2006-05-15

    The field and flow structure observed in a high-{beta} field reversed configuration (FRC) produced in the translation, confinement, and sustainment (TCS) experiment are modeled using the newly developed nearby-fluids equilibrium model. These results are the first evidence that experimental FRCs have complex flows, that is nonrigid rotational flow and poloidal flow, both with maximum speeds nearly half the Alfven speed. The interpretive approach is an innovative 'backwards' method using the nearby-fluids platform for two-fluid equilibria. The most remarkable outcome is the prediction of a poloidal flow structure with significant zonal features. The poloidal flow has never been directly measured in FRCs; thus this discovery results from applying the flowing equilibrium model as an interpretive tool. The poloidal flows explain the unusual toroidal field structure observed in TCS. Zonal features in the rotational flow are also inferred from the unfolding of chord-integrated measurements. The results also indicated that a broad core of the FRC is very close to a minimum energy state.

  17. MSET modeling of Crystal River-3 venturi flow meters.

    SciTech Connect (OSTI)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-05

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

  18. Steam Gasification Rates of Three Bituminous Coal Chars in an Entrained-Flow Reactor at Pressurized Conditions

    SciTech Connect (OSTI)

    Lewis, Aaron D.; Holland, Troy M.; Marchant, Nathaniel R.; Fletcher, Emmett G.; Henley, Daniel J.; Fuller, Eric G.; Fletcher, Thomas H.

    2015-02-26

    Three bituminous coal chars (Illinois #6, Utah Skyline, and Pittsburgh #8) were gasified separately at total pressures of 10 and 15 atm in an entrained-flow reactor using gas temperatures up to 1830 K and particle residence times <240 ms. The experiments were performed at conditions where the majority of particle mass release was due to H2O gasification, although select experiments were performed at conditions where significant mass release was due to gasification by both H2O and CO2. The measured coal data we recorded were fit to three char gasification models including a simple first-order global model, as well as the CCKNand CCK models that stem from the CBK model. The optimal kinetic parameters for each of the three models are reported, and the steam reactivity of the coal chars at the studied conditions is as follows: Pittsburgh #8 > Utah Skyline > Illinois #6.

  19. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  20. Safety aspects of forced flow cooldown transients in Modular High Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Kroger, P.G.

    1993-05-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs), the main Heat Transport System (HTS) and the Shutdown Cooling System n removed by the passive Reactor (SCS) are assumed to have failed. Decay heat is the Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This report used the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  1. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  2. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect (OSTI)

    Friedman, Lois C., E-mail: Lois.Friedman@UHhospitals.org [Department of Psychiatry, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Abdallah, Rita [Ireland Cancer Center, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (Ireland); Schluchter, Mark; Panneerselvam, Ashok [Department of Epidemiology and Biostatistics, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States); Kunos, Charles A. [Department of Radiation Oncology, CASE Comprehensive Cancer Center and University Hospitals of Cleveland, Cleveland, OH (United States)

    2011-07-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  3. Low-coke rate operation under high PCI at Kobe No. 3 BF

    SciTech Connect (OSTI)

    Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro

    1997-12-31

    Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

  4. Liquid metal Flow Meter - Final Report

    SciTech Connect (OSTI)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  5. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect (OSTI)

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  6. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-07-16

    Numerical modeling has become a critical tool to the U.S. Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present SciDAC-funded research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  7. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  8. a-Si:H Grown by Hot-Wire CVD at Ultra-High Deposition Rates

    SciTech Connect (OSTI)

    Xu, Y.; Nelson, B. P.; Mahan, A. H.; Williamson, D. L.; Crandall, R. S.; Iwaniczko, E.; Wang, Q.

    2000-01-01

    We increase the deposition rate of growing hydrogenated amorphous-silicon (a-Si:H) by the hot-wire chemical vapor depositon (HWCVD) technique by adding filaments (two) and decreasing the filament(s) to substrate distance.

  9. Bright high-repetition-rate source of narrowband extreme-ultraviolet...

    Office of Scientific and Technical Information (OSTI)

    femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ... Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz ...

  10. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.