National Library of Energy BETA

Sample records for high entropy alloy

  1. Progress in High-Entropy Alloys

    SciTech Connect (OSTI)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  2. Design of refractory high-entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, M. C.; Carney, C. S.; Dogan, O. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-09-15

    Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less

  3. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect (OSTI)

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  4. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized...

    Office of Scientific and Technical Information (OSTI)

    Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition Title: Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter ...

  5. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    SciTech Connect (OSTI)

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; Dahmen, Karin A

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio of the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.

  6. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy, and High-Entropy Alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carroll, Robert; Lee, Chi; Tsai, Che-Wei; Yeh, Jien-Wei; Antonaglia, James; Brinkman, Braden A.W.; LeBlanc, Michael; Xie, Xie; Chen, Shuying; Liaw, Peter K; et al

    2015-11-23

    High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio ofmore » the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloys design.« less

  7. Multi-component solid solution alloys having high mixing entropy

    SciTech Connect (OSTI)

    Bei, Hongbin

    2015-10-06

    A multi-component high-entropy alloy includes a composition selected from the following group: VNbTaTiMoWRe, VNbTaTiMoW, VNbTaTiMoRe, VNbTaTiWRe, VNbTaMoWRe, VNbTiMoWRe, VTaTiMoWRe, NbTaTiMoWRe, VNbTaTiMo, VNbTaTiW, VNbTaMoW, VNbTiMoW, VTaTiMoW, NbTaTiMoW, VNbTaTiRe, VNbTaMoRe, VNbTiMoRe, VTaTiMoRe, NbTaTiMoRe, VNbTaWRe, VNbTiWRe, VTaTiWRe, NbTaTiWRe, VNbMoWRe, VTaMoWRe, NbTaMoWRe, VTiMoWRe, NbTiMoWRe, TaTiMoWRe, wherein relative amounts of each element vary by no more than .+-.15 atomic %.

  8. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    SciTech Connect (OSTI)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-08-29

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  9. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-01-01

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  10. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; Khorgolkhuu, Od; Ojha, Madhusudan

    2015-01-01

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  11. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as high-entropy alloys . Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that, even when the material undergoes elemental segregation, precipitation, chemical ordering and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. The results suggest that the high-entropy alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  12. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  13. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; Parish, Chad M.; Gao, Michael C.; Weber, Richard J. K.; Neuefeind, Joerg C.; Tang, Zhi; Liaw, Peter K.

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide range ofmore » complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  14. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; et al

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress dropsmore » and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.« less

  15. Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Haglund, A.; Koehler, M.; Catoor, D.; George, E. P.; Keppens, V.

    2014-12-05

    A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less

  16. Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs)

    SciTech Connect (OSTI)

    Antonaglia, J.; Xie, X.; Tang, Z.; Tsai, C. -W.; Qiao, J. W.; Zhang, Y.; Laktionova, M. O.; Tabachnikova, E. D.; Yeh, J. W.; Senkov, O. N.; Gao, M. C.; Uhl, J. T.; Liaw, P. K.; Dahmen, K. A.

    2014-09-16

    Many materials are known to deform under shear in an intermittent way with slip avalanches detected as acoustic emission and serrations in the stress–strain curves. Similar serrations have recently been observed in a new class of materials, called high-entropy alloys (HEAs). Here, we discuss the serration behaviors of several HEAs from cryogenic to elevated temperatures. The experimental results of slow compression and tension tests are compared with the predictions of a slip-avalanche model for the deformation of a broad range of solids. The results shed light on the deformation processes in HEAs. Temperature effects on the distributions of stress drops and the decrease of the cutoff (i.e., of the largest observed slip size) for increasing temperature qualitatively agree with the model predictions. As a result, the model is used to quantify the serration characteristics of HEAs, and pertinent implications are discussed.

  17. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  18. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  19. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  20. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    SciTech Connect (OSTI)

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; LeBeau, J. M.; Koch, C. C.; Irving, D. L.; Hurt, J. W.

    2015-04-20

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L1{sub 2} structure. The fully Cr-ordered alloyed L1{sub 2} phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  1. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    SciTech Connect (OSTI)

    Liaw, Peter K.; Egami, Takeshi; Zhang, Chuan; Zhang, Fan; Zhang, Yanwen

    2015-04-30

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al0.5CrCuFeNi2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al0.1CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al0.3CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and

  2. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    SciTech Connect (OSTI)

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

  3. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  4. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; Kiran Kumar, N. A. P.; Li, C.

    2016-05-13

    In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less

  5. Deviation from high-entropy configurations in the atomic distributions...

    Office of Scientific and Technical Information (OSTI)

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has ... In addition, the results suggest that the high-entropy-alloy-design strategy may be ...

  6. Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized...

    Office of Scientific and Technical Information (OSTI)

    ... tion up to 800C,1-3 high yield strengths at elevated temperatures,4 high ... lowest surface energy planes are the 111 family of planes, which have been numerically ...

  7. A Successful Synthesis of the CoCrFeNiAl{sub 0.3} Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    SciTech Connect (OSTI)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.; Liaw, P. K.; Zhang, Y.

    2013-12-01

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking fault energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.

  8. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy

    SciTech Connect (OSTI)

    Otto, Frederik; Dlouhy, A.; Somsen, Ch.; Bei, Hongbin; Eggeler, G.; George, Easo P

    2013-01-01

    An equiatomic CoCrFeMnNi high-entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was produced by arc melting and drop casting. The drop-cast ingots were homogenized, cold rolled, and recrystallized to obtain single-phase microstructures with three different grain sizes in the range 4~160 m. Quasi-static tensile tests were then performed at temperatures between 77 and 1073 K. Yield strength, ultimate tensile strength and ductility all increased with decreasing temperature. During the initial stages of plasticity (up to ~2% strain), deformation occurs by planar dislocation glide on the normal FCC slip system {111} 110 at all temperatures and grain sizes investigated. Undissociated 1/2 110 dislocations were observed, as were numerous stacking faults, which imply the dissociation of several of these dislocations into 1/6 112 Shockley partials. At later stages ( 20% strain), nanoscale deformation twins were observed after interrupted tests at 77 K, but not in specimens tested at room temperature where plasticity occurred exclusively by dislocations which organized into cells. Deformation twinning, by continually decreasing the mean free path of dislocations during tensile testing, produces a high degree of work hardening and a significant increase in the ultimate tensile strength. This increased work hardening prevents the early onset of necking instability and is a reason for the enhanced ductility observed at 77 K. A second way in which twinning can contribute to ductility is by providing an additional deformation mode to accommodate plasticity. However, it cannot explain the increase in yield strength with decreasing temperature in our high-entropy alloy since twinning was not observed in the early stages of plastic deformation. Since strong temperature dependencies of yield strength are also seen in binary FCC solid solution alloys, it may be an inherent solute effect, which needs further study.

  9. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    SciTech Connect (OSTI)

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

  10. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types weremore » found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  11. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Z.; Gao, M. C.; Ma, S. G.; Yang, H. J.; Wang, Z. H.; Ziomek-Moroz, M.; Qiao, J. W.

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared to traditional alloys, Al0.25CoCrFe1.25Ni1.25more » has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of AlxCoCrFe1.25Ni1.25 were predicted using the CALPHAD method.« less

  12. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  13. High strength alloys

    DOE Patents [OSTI]

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  14. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli V. S.; Bei, Hongbin; Wu, Zhenggang; George, Easo P.; Ritchie, Robert O.

    2016-02-02

    The high-entropy alloys are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropy alloys andmore » most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m 1/2 (with crack-growth toughnesses exceeding 300 MPa.m 1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m 1/2 (with crackgrowth toughnesses above 400 MPa.m 1/2). These properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  15. Electronic structure and vibrational entropies of fcc Au-Fe alloys

    SciTech Connect (OSTI)

    Munoz, Jorge A.; Lucas, Matthew; Mauger, L; Halevy, I; Horwath, J; Semiatin, S L; Xiao, Yuming; Stone, Matthew B; Abernathy, Douglas L; Fultz, B.

    2013-01-01

    Phonon density of states (DOS) curves were measured on alloys of face-centered-cubic (fcc) Au-Fe using nuclear resonant inelastic x-ray scattering (NRIXS) and inelastic neutron scattering (INS). The NRIXS and INS results were combined to obtain the total phonon DOS and the partial phonon DOS curves of Au and Fe atoms. The 57Fe partial phonon DOS of the dilute alloy Au0.97 57Fe0.03 shows a localized mode centered 4.3% above the cutoff energy of the phonons in pure Au. The Mannheim model for impurity modes accurately reproduced this partial phonon DOS using the fcc Au phonon DOS with a ratio of host-host to impurity-host force constants of 1.55. First-principles calculations validated the assumption of first-nearest-neighbor forces in the Mannheim model and gave a similar ratio of force constants. The high energy local mode broadens with increasing Fe composition, but this has a small effect on the composition dependence of the vibrational entropy. The main effect on the vibrational entropy of alloying comes from a stiffening of the Au partial phonon DOS with Fe concentration. This stiffening is attributed to two main effects: 1) an increase in electron density in the free-electron-like states, and 2) stronger sd-hybridization. These two effects are comparable in magnitude.

  16. Weldability of High Alloys

    SciTech Connect (OSTI)

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  17. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect (OSTI)

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  18. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  19. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore,more » good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  20. Exceptional damage-tolerance of a medium-entropy alloy NiCoCr at cryogenic temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gludovatz, Bernd; Hohenwarter, Anton; Thurston, Keli; Bei, Hongbin; Wu, Zhenggang; George, Easo

    2016-01-01

    High-entropy alloys1 3 are an intriguing new class of metallic materials that derive their properties not from a single dominant constituent, such as iron in steels, nor from the presence of a second phase, such as in nickel-base superalloys, but rather comprise multi-element systems that crystallize as a single phase4 7, despite containing high concentrations (~20 at.%) of five or more elements with different crystal structures5 7. Indeed, we have recently reported on one such single-phase high-entropy alloy, NiCoCrFeMn, which displays exceptional strength and toughness at cryogenic temperatures8. Here which displays unprecedented strength-toughness properties that exceed those of all high-entropymore »alloys and most multi-phase alloys. With roomtemperature tensile strengths of almost 1 GPa and KJIc fracture-toughness values above 200 MPa.m1/2 (with crack-growth toughnesses exceeding 300 MPa.m1/2), the strength, ductility and toughness of the NiCoCr alloy actually improve at cryogenic temperatures to unprecedented levels of strengths above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa.m1/2 (with crackgrowth toughnesses above 400 MPa.m1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.« less

  1. Researchers create first entropy-stabilized complex oxide alloys...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1156762. Schematic illustration of an entropy stabilized oxide at the atomic scale. The grey spheres represent the oxygen sub lattice in the rock salt-structured crystal while the...

  2. High-entropy bulk metallic glasses as promising magnetic refrigerants

    SciTech Connect (OSTI)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao E-mail: jqwang@nimte.ac.cn; Wang, Jun-Qiang E-mail: jqwang@nimte.ac.cn; Li, Run-Wei; Inoue, Akihisa

    2015-02-21

    In this paper, the Ho{sub 20}Er{sub 20}Co{sub 20}Al{sub 20}RE{sub 20} (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS{sub M}{sup pk}) and refrigerant capacity (RC) reaches 15.0 J kg{sup −1} K{sup −1} and 627 J kg{sup −1} at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS{sub M}{sup pk} and RC. In addition, the magnetic ordering temperature, ΔS{sub M}{sup pk} and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures.

  3. Lattice Vibrations Boost Demagnetization Entropy in Shape Memory Alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stonaha, Paul J.; Manley, Michael E.; Bruno, Nick; Karaman, Ibrahim; Arroyave, Raymundo; Singh, Navdeep; Abernathy, Douglas L.; Chi, Songxue

    2015-10-07

    Magnetocaloric (MC) materials present an avenue for chemical-free, solid state refrigeration through cooling via adiabatic demagnetization. We have used inelastic neutron scattering to measure the lattice dynamics in the MC material Ni45Co5Mn36.6In13.4. Upon heating across TC, the material exhibits an anomalous increase in phonon entropy of 0.17 0.04 k_B/atom, which is nine times larger than expected from conventional thermal expansion. We find that the phonon softening is focused in a transverse optic phonon, and we present the results of first-principle calculations which predict a strong coupling between lattice distortions and magnetic excitations.

  4. Lattice Vibrations Boost Demagnetization Entropy in Shape Memory Alloy

    SciTech Connect (OSTI)

    Stonaha, Paul J.; Manley, Michael E.; Bruno, Nick; Karaman, Ibrahim; Arroyave, Raymundo; Singh, Navdeep; Abernathy, Douglas L.; Chi, Songxue

    2015-10-07

    Magnetocaloric (MC) materials present an avenue for chemical-free, solid state refrigeration through cooling via adiabatic demagnetization. We have used inelastic neutron scattering to measure the lattice dynamics in the MC material Ni45Co5Mn36.6In13.4. Upon heating across TC, the material exhibits an anomalous increase in phonon entropy of 0.17 0.04 k_B/atom, which is nine times larger than expected from conventional thermal expansion. We find that the phonon softening is focused in a transverse optic phonon, and we present the results of first-principle calculations which predict a strong coupling between lattice distortions and magnetic excitations.

  5. High strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  6. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    SciTech Connect (OSTI)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.

  7. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program lehighfs.pdf (151.33 KB) More Documents & ...

  8. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Savers [EERE]

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  9. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    SciTech Connect (OSTI)

    Yang, Shizhong

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  10. Highly Dispersed Alloy Cathode Catalyst for Durability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HIGHLY DISPERSED ALLOY CATHODE CATALYST FOR DURABILITY T. D. Jarvi UTC Power Corporation This presentation does not contain any proprietary or confidential information HIGHLY DISPERSED ALLOY CATALYST Objectives of project Characteristic DOE 2010 Target Pt group metal Total Content 0.50 g/kW rated Pt group metal Total Loading 0.30 mg PGM/cm 2 Durability with cycling <80 o C; >80 o C 5000 h; 2000 h Electrochemical Area Loss < 40 % Mass Activity at 900 mV RHE (IR-Free) 0.44 A/mg Pt

  11. High-strength iron aluminide alloys

    SciTech Connect (OSTI)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  12. Surface modification of high temperature iron alloys

    DOE Patents [OSTI]

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  13. High-strength iron aluminide alloys

    SciTech Connect (OSTI)

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  14. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm075_hovanski_2013_o.pdf (3.29 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  15. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T.; Koch, Carl C.

    1987-01-01

    Alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  16. Improved Processing of High Alloy Steels for Wear Components...

    Office of Scientific and Technical Information (OSTI)

    Steels for Wear Components in Energy Generation Systems, Transportation and ... Title: Improved Processing of High Alloy Steels for Wear Components in Energy Generation ...

  17. High-Alloy Ferritic Steels: Semi-Austenitic Stainless Steels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    however, have low fracture toughness in high strength conditions and at low (subzero) temperature. ... Stainless Steels 1700 - 3 4.2 Heat treatment These alloys typically employ ...

  18. Compressibility of Ir-Os alloys under high pressure (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: ENGLISH Subject: high-pressure; alloys; iridium; osmium Word Cloud More Like This Full Text Journal Articles DOI: 10.1016...

  19. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  20. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  1. High strength ferritic alloy-D53

    DOE Patents [OSTI]

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  2. Highly Dispersed Alloy Cathode Catalyst for Durability | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dispersed Alloy Cathode Catalyst for Durability Highly Dispersed Alloy Cathode Catalyst for Durability This presentation, which focuses on alloy cathode catalysts, was given by T. D. Jarvi of UTC Power at a February 2007 meeting on new fuel cell projects. new_fc_jarvi_utc.pdf (576 KB) More Documents & Publications PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update Development of

  3. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Kock, C.C.

    1983-08-03

    Heat- and corrosion-resistant alloys are described which contain nickel, aluminum, boron, iron and in some instances manganese, niobium and titanium.

  4. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T.; Stiegler, James O.

    1986-01-01

    Improved Ni.sub.3 Al alloys are provided by inclusion of boron, hafnium or zirconium, and in some species, iron.

  5. Ductile aluminide alloys for high temperature applications

    DOE Patents [OSTI]

    Liu, C.T.; Stiegler, J.O.

    1983-12-21

    Improved Ni/sub 3/Al alloys are provided by inclusion of boron, hafnium or zirconium, and in some species, iron.

  6. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    SciTech Connect (OSTI)

    Salazar Mejía, C. Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-05-07

    The present pulsed high-magnetic-field study on Ni{sub 50}Mn{sub 35}In{sub 15} gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields.

  7. High-strength ductile uranium alloy

    DOE Patents [OSTI]

    Hemperly, Vernon C.

    1976-07-13

    A novel alloy composition consisting essentially of 0.7 to 0.8 weight percent titanium and 0.2 to 0.3 weight percent vanadium with the balance being uranium.

  8. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es131_choi_2012_p.pdf (1.19 MB) More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

  9. Highly Dispersed Alloy Cathode Catalyst for Durability | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 3utc.pdf More Documents & Publications Highly Dispersed Alloy Cathode Catalyst ...

  10. High-Temperature Aluminum Alloys | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf (4.99 MB) More Documents & Publications High-Temperature Aluminum Alloys ...

  11. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  12. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  13. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks YURI HOVANSKI This Presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #LM075 Pacific Northwest National Laboratory June 18, 2014 Project Overview OEM GM Tier I Supplier TWB Company LLC Material Provider Alcoa 2 2 Start: FY2012 Finish: FY2014 85% complete Capacity to rapidly join Al sheet in dissimilar thicknesses and alloys is not developed. Supply chain

  14. Improved high temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  15. High temperature creep resistant austenitic alloy

    DOE Patents [OSTI]

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  16. High temperature seal for joining ceramics and metal alloys

    DOE Patents [OSTI]

    Maiya, P. Subraya; Picciolo, John J.; Emerson, James E.; Dusek, Joseph T.; Balachandran, Uthamalingam

    1998-01-01

    For a combination of a membrane of SrFeCo.sub.0.5 O.sub.x and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo.sub.0.50 O.sub.x is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed.

  17. High temperature seal for joining ceramics and metal alloys

    DOE Patents [OSTI]

    Maiya, P.S.; Picciolo, J.J.; Emerson, J.E.; Dusek, J.T.; Balachandran, U.

    1998-03-10

    For a combination of a membrane of SrFeCo{sub 0.5}O{sub x} and an Inconel alloy, a high-temperature seal is formed between the membrane and the alloy. The seal is interposed between the alloy and the membrane, and is a fritted compound of Sr oxide and boric oxide and a fritted compound of Sr, Fe and Co oxides. The fritted compound of SrFeCo{sub 0.50}O{sub x} is present in the range of from about 30 to 70 percent by weight of the total sealant material and the fritted compound of Sr oxide and boric oxide has a mole ratio of 2 moles of the Sr oxide for each mole of boric oxide. A method of sealing a ceramic to an Inconel metal alloy is also disclosed. 3 figs.

  18. Development of Austenitic ODS Strengthened Alloys for Very High...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Development of ... (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. ... processes which control austenitic ODS alloy performance. ...

  19. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  20. High performance alloys: How they are used offshore

    SciTech Connect (OSTI)

    Schillmoller, C.M.

    1988-07-01

    Stainless steels and nickel-based alloys are increasingly applied in the oil and gas industry for exploitation of sour crudes. Containing considerable quantities of H/sub 2/S, CO/sub 2/ and salted formation waters, these crudes show a high corrosivity with respect to general corrosion and stress corrosion cracking by sulfides (SSCC), by chlorides (CSCC) or by their combined action. Traditionally Monel, K-Monel and copper-nickel alloys have served the industry well for sucker rods, instrumentation, packers, valves for gas lift, pumpshafts, sea water piping, heat exchange tubing and many other critical components. In the new generation of offshore platforms, deep sour gas wells, CO/sub 2/ enhanced oil recovery projects and production in the Arctic, extensive use is now being made of the specialty Cr-Ni-Mo stainless steels and the Ni-Cr-Mo alloys for extremely severe corrosive applications. Examples of applications are cited, an economic analysis provided of using the corrosion resistant alloys (CRA) in downhole tubulars and several suggestions for reducing the weight of topside construction on offshore platforms. Further, guidelines are presented for the selection of alloys to reliably resist the very aggressive corrosive environments.

  1. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    SciTech Connect (OSTI)

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  2. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect (OSTI)

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  3. High strength nickel-chromium-iron austenitic alloy

    DOE Patents [OSTI]

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  4. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, S.C.; Davis, N.C.

    1989-10-03

    Cermet electrode compositions comprising NiO-NiFe[sub 2]O[sub 4]-Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe[sub 2]O[sub 4] oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm[sup [minus]1] cm[sup [minus]1]. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  5. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  6. Method of making high strength, tough alloy steel

    DOE Patents [OSTI]

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  7. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect (OSTI)

    Vivek S. Murthi , Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  8. High-Performance Computing for Alloy Development | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Computing for Alloy Development alloy-development.jpg Tomorrow's fossil-fuel based power plants will achieve higher efficiencies by operating at higher pressures and temperatures and under harsher and more corrosive conditions. Unfortunately, conventional metals simply cannot withstand these extreme environments, so advanced alloys must be designed and fabricated to meet the needs of these advanced systems. The properties of metal alloys, which are mixtures of metallic elements,

  9. Materials Properties Database for Selection of High-Temperature Alloys and Concepts of Alloy Design for SOFC Applications

    SciTech Connect (OSTI)

    Yang, Z Gary; Paxton, Dean M.; Weil, K. Scott; Stevenson, Jeffry W.; Singh, Prabhakar

    2002-11-24

    To serve as an interconnect / gas separator in an SOFC stack, an alloy should demonstrate the ability to provide (i) bulk and surface stability against oxidation and corrosion during prolonged exposure to the fuel cell environment, (ii) thermal expansion compatibility with the other stack components, (iii) chemical compatibility with adjacent stack components, (iv) high electrical conductivity of the surface reaction products, (v) mechanical reliability and durability at cell exposure conditions, (vii) good manufacturability, processability and fabricability, and (viii) cost effectiveness. As the first step of this approach, a composition and property database was compiled for high temperature alloys in order to assist in determining which alloys offer the most promise for SOFC interconnect applications in terms of oxidation and corrosion resistance. The high temperature alloys of interest included Ni-, Fe-, Co-base superal

  10. Metallic solutions for pollution control systems behavior of welded and unwelded high alloyed materials

    SciTech Connect (OSTI)

    Dupoiron, F.; Audouard, J.P.; Verneau, M.; Charles, J.

    1995-12-01

    Stainless steels and nickel alloys are widely used in pollution control equipment. They provide more reliability and more safety to installations. The increase in the severity of operating conditions has led to the introduction of new types of alloys with improved corrosion resistance, particularly for welded structures. Unwelded and welded high-alloyed stainless steels, including superaustenitic (6 Mo and high nitrogen grades), superduplex and nickel base alloys have been tested in conditions simulating the very corrosive environments of gas cleaning systems: low pH, high temperature and high chloride levels. The results are discussed in terms of technical efficiency and potential applications.

  11. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  12. Stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Congleton, J.; Parkins, R.N.; Hemsworth, B.

    1987-01-01

    Slow strain rate stress corrosion tests have been performed on specimens cut from four separate heats of alloy 600 steam generator tubing. Material was tested in the mill annealed and thermally stabilized conditions and after various low temperature aging treatments. Only limited cracking was observed, even for tests at 340/sup 0/C, but the initiation of intergranular cracking was easier on the inner than on the outer surfaces of the tubing. Polarization data has been obtained in high temperature water and in saturated boric acid and saturated lithium hydroxide at the atmospheric boiling points, and slow strain tests were performed at controlled potentials in these environments. Again, only very short cracks formed during the slow strain rate tests which were performed at a strain rate of about 10/sup -6/ s/sup -1/. The data is discussed in terms of the probable crack tip strain rates that would exist in these tests and at other strain rates. It is argued that if cracking occurs, the main role of very low strain rate tests is to provide time for initiation and crack growth, so that cyclic loading or intermittent loading long tests are likely to be more successful in sustaining crack growth in this alloy.

  13. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  14. Ir-based alloys for ultra-high temperature applications

    DOE Patents [OSTI]

    Liu, Chain T.; George, Easo P.; Bloom, Everett E.

    2006-01-03

    An alloy composition includes, in atomic percent: about 1 to about 10% of at least one element selected from the group consisting of Zr and Hf, balance Ir.

  15. ITP Metal Casting: Corrosion Testing Practices … High Alloy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Various ASTM documents describe laboratory test methods for determining the relative pitting, crevice, and intergranular corrosion resistance of engineering alloys. These test ...

  16. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOE Patents [OSTI]

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  17. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  18. Dynamic high-temperature characterization of an iridium alloy in tension

    SciTech Connect (OSTI)

    Song, Bo; Nelson, Kevin; Jin, Helena; Lipinski, Ronald J.; Bignell, John; Ulrich, G. B.; George, E. P.

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  19. Welding techniques for high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Gooch, T.G.; Woollin, P.

    1996-11-01

    Factors controlling corrosion resistance of weldments in high alloy austenitic stainless steel are described, with emphasis on microsegregation, intermetallic phase precipitation and nitrogen loss from the molten pool. The application is considered of a range of welding processes, both fusion and solid state. Autogenous fusion weldments have corrosion resistance below that of the parent, but low arc energy, high travel speed and use of N{sub 2}-bearing shielding gas are recommended for best properties. Conventional fusion welding practice is to use an overalloyed nickel-base filler metal to avoid preferential weld metal corrosion, and attention is given to the effects of consumable composition and level of weldpool dilution by base steel. With non-matching consumables, overall joint corrosion resistance may be limited by the presence of a fusion boundary unmixed zone: better performance may be obtained using solid state friction welding, given appropriate component geometry. Overall, the effects of welding on superaustenitic steels are understood, and the materials have given excellent service in welded fabrications. The paper summarizes recommendations on preferred welding procedure.

  20. Nickel aluminide alloy for high temperature structural use

    DOE Patents [OSTI]

    Liu, Chain T.; Sikka, Vinod K.

    1991-01-01

    The specification discloses nickel aluminide alloys including nickel, aluminum, chromium, zirconium and boron wherein the concentration of zirconium is maintained in the range of from about 0.05 to about 0.35 atomic percent to improve the ductility, strength and fabricability of the alloys at 1200.degree. C. Titanium may be added in an amount equal to about 0.2 to about 0.5 atomic percent to improve the mechanical properties of the alloys and the addition of a small amount of carbon further improves hot fabricability.

  1. Metal dusting behavior of high-temperature alloys

    SciTech Connect (OSTI)

    Baker, B.A.; Smith, G.D.

    1999-11-01

    The corrosion behavior of ferritic, stainless steel, iron-nickel-chromium and nickel-base alloys was investigated in H{sub 2}-80 % CO at 621 C. Mass change and rate of mass loss, pit depth progression rate and pit distribution were monitored and recorded. It was found that wastage rates and pit depth progression rates were generally much lower for nickel-base alloys than iron-base alloys. Pit depth did not necessarily correlate with area averaged mass change rate, Chromium, silicon and aluminum additions were found to be beneficial in producing an oxide scale which reduced or prevented wastage due to metal dusting.

  2. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  3. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  4. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  5. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOE Patents [OSTI]

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  6. Lead-induced stress corrosion cracking of Alloy 600 and 690 in high temperature water

    SciTech Connect (OSTI)

    Sakai, T.; Senjuh, T.; Aoki, K.; Shigemitsu, T.; Kishi, Y.

    1992-12-31

    Lead is one of the potential contributing impurities to the degradation of PWR steam generator tubing. Recent laboratory testing has shown that lead is a corrosive material for Alloy 600 steam generator tubing. However, it is still unknown how lead influences the corrosion of steam generator tubing, including the effect of lead concentration, solution pH, stress level and material characteristics. In this study, two kinds of experiments were performed. One was to investigate the thin film characteristic and selectively dissolved base metal elements of Alloy 600MA in high temperature solutions of different lead concentrations and pH. The other investigated the dependency of degradation of Alloy 600MA and Alloy 690TT on lead concentration and stress level in mild acidic environment, at 340{degrees}C for 2500 hrs. It was firstly demonstrated that lead-enhanced selective dissolution of nickel from alloy base metal, as a result of electrochemical reaction between lead and nickel, might cause the initiation and propagation of corrosion. Secondly, we showed that Alloy 690TT, generally very corrosion resistant material, also suffered from Pb-induced corrosion. The difference of the lead-induced stress corrosion morphology of Alloy 600MA and Alloy 690TT was also clarified.

  7. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect (OSTI)

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  8. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  9. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOE Patents [OSTI]

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  10. Oxidation behaviors of porous Haynes 214 alloy at high temperatures

    SciTech Connect (OSTI)

    Wang, Yan; Liu, Yong; Tang, Huiping; Li, Weijie

    2015-09-15

    The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} on its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.

  11. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect (OSTI)

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  12. Highly alloyed stainless steels for sea water applications

    SciTech Connect (OSTI)

    Audouard, J.P.; Verneau, M.

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  13. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  14. Advanced nickel base alloys for high strength, corrosion applications

    DOE Patents [OSTI]

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  15. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  16. High strength, thermally stable, oxidation resistant, nickel-based alloy

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Vought, Joseph D.; Howell, C. Randal

    1999-01-01

    A polycrystalline alloy is composed essentially of, by weight %: 15% to 30% Mo, 3% to 10% Al, up to 10% Cr, up to 10% Fe, up to 2% Si, 0.01% to 0.2% C, 0.01% to 0.04% B, balance Ni.

  17. Welding and performance of advanced high temperature alloys

    SciTech Connect (OSTI)

    Prager, M.; Masuyama, F.

    1995-12-31

    The last decade has witnessed the development of many new alloys for elevated temperature service and recognition of a large number of them in the form of allowable stresses by the ASME Boiler and Pressure Vessel Code. These alloys offer considerable advantages in terms of higher tensile and stress rupture strengths, lower thermal stresses, superior corrosion resistance and, in one case, weldability. The improvements are obtained through additions of tungsten, vanadium, columbium, copper, nitrogen and other elements which significantly affect microstructure and weldability. The paper will discuss where introduction of these advanced materials may be warranted, the properties to be expected in comparison to conventional alloys, PWHT requirements and concerns regarding weld failure modes. Higher performance in operation of power plants is achieved by use of tungsten alloyed advanced 9--12%Cr ferritic steels, NF616 (9Cr-0.5 Mo-1.8W-V-Nb) and HCM12A (12Cr-0.4Mo-2W-1 Cu-V-Nb), which exhibit over 30% higher creep strength than T91/P91 (Mod. 9Cr-1 Mo) at 600 C. Thick-walled and large-diameter pipes of NF616 and HCM12A were subjected to fabrication tests such as joint welding and induction bending, and it was shown that the properties of the fabricated parts were satisfactory for the practical application of those steels. HCM2S, a newly developed low alloy steel (0.06C-2.25Cr-1.6W-0.25V0.05Nb) is approximately 1.8 times stronger than conventional T22 (2.25Cr-1 Mo) at around 600 C. The weldability of this low carbon content steel is much improved, as it needs no pre-weld nor postweld heat treatment. HCM2S was installed in a large capacity utility boiler.

  18. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  19. Development of Austenitic ODS Strengthened Alloys for Very High Temperature Applications

    SciTech Connect (OSTI)

    Stubbins, James; Heuser, Brent; Robertson, Ian; Sehitoglu, Huseyin; Sofronis, Petros; Gewirth, Andrew

    2015-04-22

    This “Blue Sky” project was directed at exploring the opportunities that would be gained by developing Oxide Dispersion Strengthened (ODS) alloys based on the Fe-Cr-Ni austenitic alloy system. A great deal of research effort has been directed toward ferritic and ferritic/martensitic ODS alloys which has resulted in reasonable advances in alloy properties. Similar gains should be possible with austenitic alloy which would also take advantage of other superior properties of that alloy system. The research effort was aimed at the developing an in-depth understanding of the microstructural-level strengthening effects of ODS particles in austentic alloys. This was accomplished on a variety of alloy compositions with the main focus on 304SS and 316SS compositions. A further goal was to develop an understanding other the role of ODS particles on crack propagation and creep performance. Since these later two properties require bulk alloy material which was not available, this work was carried out on promising austentic alloy systems which could later be enhanced with ODS strengthening. The research relied on a large variety of micro-analytical techniques, many of which were available through various scientific user facilities. Access to these facilities throughout the course of this work was instrumental in gathering complimentary data from various analysis techniques to form a well-rounded picture of the processes which control austenitic ODS alloy performance. Micromechanical testing of the austenitic ODS alloys confirmed their highly superior mechanical properties at elevated temperature from the enhanced strengthening effects. The study analyzed the microstructural mechanisms that provide this enhanced high temperature performance. The findings confirm that the smallest size ODS particles provide the most potent strengthening component. Larger particles and other thermally- driven precipitate structures were less effective contributors and, in some cases, limited

  20. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect (OSTI)

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  1. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  2. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOE Patents [OSTI]

    Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  3. Pu-Zr alloy for high-temperature foil-type fuel

    DOE Patents [OSTI]

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  4. Pu-ZR Alloy high-temperature activation-measurement foil

    DOE Patents [OSTI]

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  5. Tensile and electrical properties of high-strength high-conductivity copper alloys

    SciTech Connect (OSTI)

    Zinkle, S.J.; Eatherly, W.S.

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  6. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  7. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect (OSTI)

    Zinkle, Steven J

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive

  8. High permeance sulfur tolerant Pd/Cu alloy membranes

    SciTech Connect (OSTI)

    Ma, Yi Hua; Pomerantz, Natalie

    2014-02-18

    A method of making a membrane permeable to hydrogen gas (H.sub.2.uparw.) is disclosed. The membrane is made by forming a palladium layer, depositing a layer of copper on the palladium layer, and galvanically displacing a portion of the copper with palladium. The membrane has improved resistance to poisoning by H.sub.2S compared to a palladium membrane. The membrane also has increased permeance of hydrogen gas compared to palladium-copper alloys. The membrane can be annealed at a lower temperature for a shorter amount of time.

  9. Super-High Temperature Alloys and Composites from NbW-Cr Systems

    SciTech Connect (OSTI)

    Shailendra Varma

    2008-12-31

    Nickel base superalloys must be replaced if the demand for the materials continues to rise for applications beyond 1000{sup o}C which is the upper limit for such alloys at this time. There are non-metallic materials available for such high temperature applications but they all present processing difficulties because of the lack of ductility. Metallic systems can present a chance to find materials with adequate room temperature ductility. Obviously the system must contain elements with high melting points. Nb has been chosen by many investigators which has a potential of being considered as a candidate if alloyed properly. This research is exploring the Nb-W-Cr system for the possible choice of alloys to be used as a high temperature material.

  10. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    DOE Patents [OSTI]

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  11. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju; Muralidharan, Govindarajan; Wilson, Dane F; Holcomb, David Eugene

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  12. Influences of directionally solidified techniques and hafnium content on a nickel base high temperature alloy

    SciTech Connect (OSTI)

    Luobao, W.; Rongzhang, C.; Yuping, W.

    1984-03-01

    Two directionally solidified techniques, the power decrease (P.D.) and high rate solidification (H.R.S.) methods, are used to study the influences of the different Hf contents on the structures and properties of a nickel base high temperature alloy. When entering the alloy the Hf is mainly segregated in the interdentritic regions and gamma/gamma prime eutectic phases. After the alloy is added, there are noticeable changes in the microstructure. The amount of gamma/gamma prime eutectic phase noticeably increases. Its morphology also undergoes noticeable changes. The conditions of grain boundaries and interdentritic regions are improved. Several new types of Hf-rich microfacies also appeared. At 760 C, the endurance properties (especially the transverse properties) of the alloy noticeably rise with the increase of the Hf content. However, at 1040 C, the endurance life decreases with the increase of the Hf content. When the H.R.S. technique is used, the medium and high temperature performances of the alloy are both noticeably superior to the P.D. technique.

  13. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect (OSTI)

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  14. Behavior of some high-temperature alloys under simulated erosion-corrosion environments

    SciTech Connect (OSTI)

    Kloewer, J.; Brill, U.; Agarwal, D.C.

    1994-12-31

    Although material wastage by combined erosion-corrosion attack is well-known in a variety of commercial high-temperature processes like coal gasifiers, stationary and flying gas turbines, fluidized bed combustion, industrial furnaces and other high-temperature heat-treatment furnaces, less information is available on material-related parameters and low velocity environments typical for industrial furnaces. Consequently the aim of the present paper is to introduce a newly developed erosion-corrosion testing facility enabling investigations in a wide range of velocities and to provide first test results on the influence of alloying elements with special emphasis on the oxide forming elements like chromium, aluminum and silicon on erosion-corrosion resistance. Six alloys 600H, 690, 800H, 602CA, 45TM and Ni{sub 3}Al were tested in order to find a ranking in the combined erosion-corrosion environment. The experimental test results reveal that the mechanism of metal degradation under combined erosion-corrosion attack at low particle velocities is dominated by metal wastage by removal of oxide scales with subsequent regrowth by oxidation. The resistance of the alloys against erosion-corrosion increased with increasing aluminum content. Independent of the particle velocities, the nickel aluminide showed the best performance followed by alloy 602CA and the iron-base alloy 800H.

  15. Solidification processing and phase transformations in ordered high temperature alloys. Final report, 30 March 1990-30 September 1992

    SciTech Connect (OSTI)

    Boettinger, W.J.; Bendersky, L.A.; Kattner, U.R.

    1993-01-20

    Useful high temperature alloys generally have microstructures consisting of more than one phase. Multiphase microstructures are necessary to develop acceptable toughness and creep strength in high temperature intermetallic alloy matrices. The optimum microstructures must be developed by a careful selection of processing path that includes both solidification and solid state heat treatment. Research has been conducted on the rapid solidification of selected intermetallic alloys and on the phase transformation paths that occur during cooling, primarily in the Ti-Al-Nb system. This report describes research performed in the Metallurgy Division at NIST under DARPA order 7469 between 1/1/89 and 12/31/92. Various research tasks were completed and the results have been published or have been submitted for publication.... Intermetallics, Ti-Al-Nb Alloys, Phase Diagrams, Phase Transformations, Ti-Al-Ta Alloys, MoSi2 Alloys.

  16. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water: an update. [PWR

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    Inconel 600 has been tested in high-temperature aqueous media (without oxygen) in several tests. Data are presented to relate failure times to periods of crack initiation and propagation. Quantitative relationships have been developed from tests in which variations were made in temperature, applied load, strain rate, water chemistry, and the condition of the test alloy.

  17. High-temperature corrosion behavior of coatings and ODS alloys based on Fe{sub 3}Al

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Pint, B.A.; Wright, I.G.

    1996-06-01

    Iron aluminides containing greater than about 20-25 @ % Al have oxidation/sulfidation resistance at temperatures well above those at which these alloys have adequate mechanical strength. In addition to alloying modifications for improved creep resistance of wrought material, this strength limitation is being addressed by development of oxide-dispersion- strengthened (ODS) iron aluminides and by evaluation of Fe{sub 3}Al alloy compositions as coatings or claddings on higher-strength, less corrosion-resistant materials. As part of these efforts, the high-temperature corrosion behavior of iron-aluminide weld overlays and ODS alloys is being characterized and compared to previous results for ingot-processed material.

  18. Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion

    SciTech Connect (OSTI)

    Jane?ek, Milo; ?ek, Jakub; Strsk, Josef; Vclavov, Kristna; Hruka, Petr; Polyakova, Veronika; Gatina, Svetlana; Semenova, Irina

    2014-12-15

    Microstructure evolution and mechanical properties of ultra-fine grained Ti15Mo alloy processed by high pressure torsion were investigated. High pressure torsion straining resulted in strong grain refinement as-observed by transmission electron microscopy. Microhardness and light microscopy showed two distinct regions (i) a central region with radial material flow and low microhardness (340 HV) and (ii) a peripheral region with rotational material flow and high microhardness (430 HV). Positron annihilation spectroscopy showed that the only detectable defects in the material are dislocations, whose density increases with the radial distance and the number of high pressure torsion revolutions. The local chemical environment around defects does not differ significantly from the average composition. - Highlights: Beta-Ti alloy Ti15Mo was processed by high pressure torsion (HPT). Lateral inhomogeneity of the microstructure and microhardness was found. Dislocations are the only lattice defects detectable by positron annihilation. Molybdenum is not preferentially segregated along dislocation cores.

  19. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    SciTech Connect (OSTI)

    Singh, Vibhor Schneider, Ben H.; Bosman, Sal J.; Merkx, Evert P. J.; Steele, Gary A.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.

  20. The Holographic Entropy Cone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  1. The Holographic Entropy Cone

    SciTech Connect (OSTI)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  2. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; Samolyuk, German D.; Caro, Alfredo; Wang, Lumin; Stoller, Roger E.

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less

  3. VANADIUM ALLOYS

    DOE Patents [OSTI]

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  4. The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys

    SciTech Connect (OSTI)

    Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

    2013-06-01

    Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 °C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

  5. Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging

    SciTech Connect (OSTI)

    Lee, Seungwon; Matsunaga, Hirotaka; Sauvage, Xavier; Horita, Zenji

    2014-04-01

    An age-hardenable Cu–2.9%Ni–0.6%Si alloy was subjected to high-pressure torsion. Aging behavior was investigated in terms of hardness, electrical conductivity and microstructural features. Transmission electron microscopy showed that the grain size is refined to ∼ 150 nm and the Vickers microhardness was significantly increased through the HPT processing. Aging treatment of the HPT-processed alloy led to a further increase in the hardness. Electrical conductivity is also improved with the aging treatment. It was confirmed that the simultaneous strengthening by grain refinement and fine precipitation is achieved while maintaining high electrical conductivity. Three dimensional atom probe analysis including high-resolution transmission electron microscopy revealed that nanosized precipitates having compositions of a metastable Cu{sub 3}Ni{sub 5}Si{sub 2} phase and a stable NiSi phase were formed in the Cu matrix by aging of the HPT-processed samples and these particles are responsible for the additional increase in strength after the HPT processing. - Highlights: • Grain refinement is achieved in Corson alloy the size of ∼150nm by HPT. • Aging at 300°C after HPT leads to further increase in the mechanical property. • Electrical conductivity reaches 40% IACS after aging for 100 h. • 3D-APT revealed the formation of nanosized-precipitates during aging treatment. • Simultaneous hardening in both grain refinement and precipitation is achieved.

  6. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect (OSTI)

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  7. Corrosion of high temperature alloys in solar salt at 400, 500, and 680%C2%B0C.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680%C2%B0C were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680%C2%B0C, due to the relatively thin oxide scale observed at 400%C2%B0C. At 500%C2%B0C, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680%C2%B0C, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  8. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  9. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    SciTech Connect (OSTI)

    Song, B.; Nelson, K.; Lipinski, R.; Bignell, J.; Ulrich, G.; George, E. P.

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using the current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s-1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.

  10. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    SciTech Connect (OSTI)

    Bainsla, Lakhan; Suresh, K. G.; Nigam, A. K.; Manivel Raja, M.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Hono, K.

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for the half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.

  11. Stress corrosion crack detection in alloy 600 in high temperature caustic. Master`s thesis

    SciTech Connect (OSTI)

    Brisson, B.W.

    1996-06-01

    Alloy 600, the material used for pressurized water reactor steam generator tubing, is susceptible to environmentally assisted stress corrosion cracking. Intergranular stress corrosion cracking (IGSCC) attacks the tubes in areas of high residual stress, and in crevice regions. No method has been successfully developed to monitor steam generator tubing in-situ for crack initiation and growth. Essentially all available published IGSCC crack growth data for alloy 600 is based on non-tubing material. Although it is very likely that the current data base is applicable to tubing processing, differences between tube and other geometries make a comparison between tubing and other data important for verification purposes. However, obtaining crack initiation and growth data from tubing is difficult due to the geometry and the thin wall thickness.

  12. About the mechanism of stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Rebak, R.B.; Szklarska-Smialowska, Z.

    1995-12-31

    Alloy 600 is a material commonly used to construct the tubing in the steam generators (SG) of pressurized light water reactors (PWR) and of CANDU heavy water reactors. It is well established which variables and to which extent they influence the crack growth rate (CGR) in Alloy 600 exposed to high temperature (deaerated) water (HTW), especially in very aggressive conditions. There is evidence that the same variables that influence CGR also control the crack induction time. However, there are only a few data on crack induction time and no detailed explanation of the events that lead to the nucleation of a crack on an apparent smooth tube surface. In this paper, a critical review of the mechanisms of stress corrosion cracking (SCC) is given and, an interpretation of the events occurring during the long ({approx} 15 y) induction times observed in plant is postulated.

  13. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    SciTech Connect (OSTI)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  14. High-temperature phase transformation in Cr added TiAl base alloy

    SciTech Connect (OSTI)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  15. Effects of Zn additions to highly magnetoelastic FeGa alloys

    SciTech Connect (OSTI)

    Lograsso, Thomas A.; Jones, Nicholas J.; Wun-Fogle, Marilyn; Restorff, James B.; Schlagel, Deborah L.; Petculescu, Gabriela; Clark, Arthur E.; Hathaway, Kristl B.

    2015-05-07

    Fe{sub 1−x}M{sub x} (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b{sub 1}, comparable to those of the binary Fe-Ga alloy.

  16. Highly mismatched crystalline and amorphous GaN(1-x)As(x) alloys in the whole composition range

    SciTech Connect (OSTI)

    Yu, K. M.; Novikov, S. V.; Broesler, R.; Demchenko, I. N.; Denlinger, J. D.; Liliental-Weber, Z.; Luckert, F.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2009-08-29

    Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17alloys with x>0.2, and to the upward movement of the valence band for alloys with x<0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices.

  17. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOE Patents [OSTI]

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  18. Swelling in several commercial alloys irradiated to very high neutron fluence

    SciTech Connect (OSTI)

    Gelles, D.S.; Pintler, J.S.

    1983-01-01

    Swelling values have been obtained from a set of commercial alloys irradiated in EBR-II to a peak fluence of 2.5 x 10/sup 23/ n/cm/sup 2/ (E > 0.1 MeV) or approx. 125 dpa covering the range 400 to 650/sup 0/C. The alloys can be ranked for swelling resistance from highest to lowest as follows: the martensitic and ferritic alloys, the niobium based alloys, the precipitation strengthened iron and nickel based alloys, the molybdenum alloys and the austenitic alloys.

  19. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  20. Corrosion behavior of Ni and Ni-based alloys in concentrated NaOH solutions at high temperatures

    SciTech Connect (OSTI)

    Yasuda, M.; Fukumoto, K.; Ogata, Y.; Hine, F.

    1988-12-01

    Corrosion behavior of SUS 310S austenitic stainless steel, Alloy 600, Monel 400, and Ni 200 and NaOH solutions in the concentration range 30-60% at high temperatures up to 166/sup 0/C was studied. In solutions containing dissolved oxygen or under oxidizing conditions, all the specimens examined were corroded seriously due to oxygen diffusion through the porous oxide layer consisting of ..beta..-Ni(OH)/sub 2/. In hydrogen-saturated solutions, on the other hand, these Ni alloys were corrosion resistant because nickel in the alloys was active to oxidation of hydrogen. The specimens were corroded by deaerated solution at high temperatures in which hydrogen evolution took place as the counterreaction. The corrosion rate controlled by the hydrogen formation reaction increased exponentially with the decrease of the Ni content in the alloy.

  1. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High Temperature Strenth and Creep-Resistance

    SciTech Connect (OSTI)

    Maziasz, PJ

    2004-09-30

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation-Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metals. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815EC (1500EC) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  2. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    SciTech Connect (OSTI)

    Bannikov, Mikhail E-mail: oborin@icmm.ru Oborin, Vladimir E-mail: oborin@icmm.ru Naimark, Oleg E-mail: oborin@icmm.ru

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  3. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  4. Mechanisms of stress corrosion cracking for iron-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Zhou, X.Y.; Congleton, J.; Bahraloloom, A.

    1998-11-01

    Stress corrosion cracking (SCC) susceptibilities of a series of iron-based alloys (IBA), including some high-purity irons, were evaluated in lithiated water at temperatures up to 300 C. Inclusion distributions in each material were established using quantitative metallography and energy dispersive x-ray analysis (EDX). Electrochemical measurements were performed to investigate film formation kinetics. Results showed the minimum potential for SCC was a function of the inclusion content. Reducing the inclusion content in IBA moved the minimum potential for SCC in the anodic direction and/or increased the temperature for the onset of cracking but did not eliminate SCC.

  5. Mechanisms of stress corrosion cracking and intergranular attack in Alloy 600 in high temperature caustic and pure water

    SciTech Connect (OSTI)

    Bandy, R.; van Rooyen, D.

    1984-01-01

    In recent years, several studies have been conducted on the intergranular stress corrosion cracking (SCC) and intergranular attack (IGA) of Alloy 600. A combination of SCC and IGA has been observed in Alloy 600 tubing on the hot leg of some operating steam generators in pressurized water reactor (PWR) nuclear power plants, and sodium hydroxide along with several other chemical species have been implicated in the tube degradations. SCC has been observed above and within the tube sheet, whereas IGA is generally localized within the tube sheet. Alloy 600 is also susceptible to SCC in pure and primary water. Various factors that influence SCC and IGA include metallurgical conditions of the alloy, concentrations of alkaline species, impurity content of the environment, temperature and stress. The mechanisms of these intergranular failures, however, are not well understood. Some of the possible mechanisms of the SCC and IGA in high temperature water and caustic are described in this paper.

  6. A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig; Farouqi, Khalil; Mller, Peter E-mail: kfarouqi@lsw.uni-heidelberg.de

    2014-09-01

    Attempts to explain the source of r-process elements in our solar system (S.S.) by particular astrophysical sites still face entwined uncertainties, stemming from the extrapolation of nuclear properties far from stability, inconsistent sources of different properties (e.g., nuclear masses and ?-decay properties), and the poor understanding of astrophysical conditions, which are hard to disentangle. In this paper we present results from the investigation of r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and ?-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to AME2003, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between A ? 110 and {sup 209}Bi, as well as remaining deficiencies, are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  7. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    SciTech Connect (OSTI)

    Li, Jianbo; Liu, Yong; Liu, Bin; Wang, Yan; Liang, Xiaopeng; He, Yuehui

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  8. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  9. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; Samolyuk, German D.; Daene, Markus; Weber, William J.; Zhang, Yanwen; Bei, Hongbin

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  10. Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: Applications to Dy{sub 70}Zr{sub 30} and DyCo{sub 3.4} alloys

    SciTech Connect (OSTI)

    Ranke, P. J. von Nóbrega, E. P.; Ribeiro, P. O.; Alvarenga, T. S. T.; Lopes, P. H. O.; Sousa, V. S. R. de; Oliveira, N. A. de; Caldas, A.; Alho, B. P.; Carvalho, G.; Magnus, A.

    2014-10-14

    We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphous magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.

  11. Effects of carbides on susceptibility of alloy 600 to stress corrosion cracking in high-temperature water

    SciTech Connect (OSTI)

    Rebak, R.B.; Xia, Z.; Szklarska-Smialowska, Z. . Fontana Corrosion Center)

    1993-11-01

    The electrochemical behavior of sensitized, carburized, and mill-annealed alloy 600 (UNS N06600) was studied in hydrogenated, aerated, and high-temperature (250 to 350 C) dilute aqueous solutions. In high-temperature water at high anodic potentials, the current density (DC) from carbide dissolution was higher than DC from matrix dissolution. In oxidizing environments, intergranular stress corrosion cracking propagated in alloy 600 by dissolution of continuous or semicontinuous carbides at the grain boundary, in sensitized and non-sensitized materials. These studies have been conducted in environments similar to those in the steam generators of pressurized water reactors (PWR) in nuclear power plants.

  12. Permeation of hydrogen in hastelloy C-276 alloy at high temperature

    SciTech Connect (OSTI)

    Zhang, D.; Liu, W.; Qian, Y.; Que, J.

    2015-03-15

    Tritium is generated by the interaction of neutrons with the lithium and beryllium in the molten salt reactors (MSRs), which use FLiBe as one of solvents of fluoride fuel. Tritium as by-product in the MSRs is an important safety issue because it could easily diffuse into environment through high temperature heat exchangers. The experimental technique of gas driven permeation has been used to investigate the transport parameter of hydrogen in Hastelloy C-276 which is considered as one of the candidate for structure materials. The measurements were carried out at the temperature range of 400-800 Celsius degrees with hydrogen loading pressures ranging from 5*10{sup 3} to 4*10{sup 4} Pa. The H diffusive transport parameters for Hastelloy C-276 follow an Arrhenius law in this temperature range. Regarding diffusivity and Sieverts' constant, Hastelloy C-276 has lower values compared with Ni201 alloy. The possible reason may be the trapping effects, which were formed by the alloying elements of Mo and Cr in the matrix. At the same time, the thin oxidation layer formed by the high Cr content could lead to a slower dissociation process of H{sub 2} at the surface. (authors)

  13. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect (OSTI)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  14. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    SciTech Connect (OSTI)

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Catalini, David

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital image correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.

  15. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect (OSTI)

    Bimal Kad

    2011-12-31

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep

  16. Stress corrosion cracking behavior of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Webb, G.L.; Burke, M.G.

    1995-07-01

    SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.

  17. Diffusive mixing and Tsallis entropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  18. Stress corrosion cracking of alloy 600 in high temperature aqueous solutions: Influencing factors, mechanisms and models

    SciTech Connect (OSTI)

    Szklarska-Smialowska, Z.; Rebak, R.B.

    1996-12-31

    A detailed critical review of the multiple variables affecting stress corrosion cracking (SCC) of in high temperature (deaerated) aqueous solutions is given. Most of the data in the literature deals with the cracking susceptibility in the primary side; however, it is clear that similar factors and to a similar extent influence the SCC susceptibility in both primary and secondary sides. Some factors such as alkalinity of the solution or presence of lead (Pb) may be more in the secondary side and others such as partial pressure of hydrogen (H{sub 2}) in the primary side. Even though the effect of the variables on SCC susceptibility is more or less established, in models, in most of the cases there is a lack of fundamental understanding of the mechanisms involved. The different mechanisms and models proposed to explain the SCC of alloy 600 are briefly reviewed and their validity to explain the influence of the variables and to predict the crack growth rate (CGR), is assessed. It is concluded that several of the proposed models seem to give a fair estimate of the CGR values under certain conditions; however, it appears that a single mechanism cannot explain in detail the complex case of alloy 600 SCC. 113 refs., 11 figs., 3 tabs.

  19. Corrosion, passivity and breakdown of alloys used in high energy density batteries: Final report

    SciTech Connect (OSTI)

    Kruger, J.

    1987-10-01

    The objective of this research is to further the understanding of the passivity of metals and alloys in non-aqueous and mixed solvents. There is a lack of data in this area, despite its importance to applications such as the construction materials for high energy density batteries. There have been a number of corrosion-related problems reported in the construction materials of such batteries. As demands for longevity for these batteries increase, problems associated with corrosion will become increasingly important. This work is concerned with analyzing the nature, mode of formation, and mode of breakdown of passive films that exist on alloys in non-aqueous and mixed solvents. Work during Year I has concentrated upon generating cyclic voltammograms and potentiodynamic curves as baseline data on Au and Armco Fe in water/propylene carbonate mixtures. In addition, Scanning Electron Microscopy has been performed in order to characterize the attack observed and to correlate it to the electrochemical parameters measured. 3 refs., 15 figs.

  20. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  1. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect (OSTI)

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  2. Cluster formula of Fe-containing Monel alloys with high corrosion-resistance

    SciTech Connect (OSTI)

    Li Baozeng; Gu Junjie; Wang Qing; Ji Chunjun; Wang Yingmin; Qiang Jianbing; Dong Chuang

    2012-06-15

    The cluster-plus-glue-atom model is applied in the composition interpretation of Monel alloys. This model considers ideal atomic nearest neighbor configurations among the constituent elements and has been used in understanding compositions of complex alloys like quasicrystals, amorphous alloys, and cupronickels. According to this model, any structure can be expressed by cluster formula [cluster](glue atom){sub x}, x denoting the number of glue atoms matching one cluster. According to this model, two groups of experimental composition series [Fe{sub 1}Ni{sub 12}]Cu{sub x} and [Fe{sub y}Ni{sub 12}]Cu{sub 5} were designed which fell close to conventional Fe-containing Monel alloys. The designed alloys after solution treatment plus water quenching, are monolithic FCC Ni-based solid solutions. Among them, the [Fe{sub 1}Ni{sub 12}]Cu{sub 5} alloy has the highest corrosion resistance in simulated sea water, and its performance is superior to that of industrial Monel 400 alloy. - Highlights: Black-Right-Pointing-Pointer A stable solid solution model is proposed using our 'cluster-plus-glue-atom model'. Black-Right-Pointing-Pointer This model is used to develop Monel corrosion resistant alloys. Black-Right-Pointing-Pointer Single FCC structure is easily retained. Black-Right-Pointing-Pointer The alloys show good corrosion properties. Black-Right-Pointing-Pointer This work contributes to the general understanding of engineering alloys.

  3. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    SciTech Connect (OSTI)

    Kalay, Yunus Eren

    2008-10-15

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T{sub 0} curves, which makes Al-Si a good candidate for solubility extension while the plunging T{sub 0} line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of {approx}0.2, JH and TMK deviate from each

  4. Iron-aluminum alloys having high room-temperature and method for making same

    DOE Patents [OSTI]

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  5. High-Resolution Characterization of Intergranular Attack and Stress Corrosion Cracking of Alloy 600 in High-Temperature Primary Water

    SciTech Connect (OSTI)

    Thomas, Larry E.; Bruemmer, Stephen M.

    2000-06-01

    Intergranular (IG) attack regions and stress-corrosion cracks in alloy 600 U-bend samples tested in 330C, pressurized-water-reactor water have been characterized by analytical transmission electron microscopy (ATEM). Observations of cross-sectional samples revealed short oxidized zones preceding crack tips and narrow (10-nm wide), deeply penetrated, oxidized zones along grain boundaries exposed along open cracks. High-resolution TEM imaging and fine-probe analysis were used to determine the local chemistries and structures in these corrosion-affected zones. Matrix areas surrounding the crack tips appeared highly strained, whereas the IG penetrations generally did not. The predominant oxide structure found along crack walls and just ahead of crack tips was NiO with metal-atom ratios similar to the alloy. The attacked grain boundaries off open cracks contained similar fine-grained NiO-structure oxide together with local areas of Cr-rich oxide and Ni-rich metal. In contrast, Cr-rich oxide identified as Cr2O3 predominated at the leading edges of the IG attack. Stereoscopic imaging of these tip structures revealed nm-scale porosity and tunnels within the oxide and pores along the grain-boundary plane ahead of the oxide. The general interpretation of these results is that IG attack and cracking follows local dissolution or oxidation and the formation of pores at grain boundaries. This degradation occurs at the nanometer scale and therefore requires high-resolution ATEM methods to reveal detailed characteristics. Experimental support for several possible IG degradation mechanisms is considered.

  6. Stress-corrosion cracking of Inconel alloy 600 in high-temperature water - an update

    SciTech Connect (OSTI)

    Bandy, R.; Van Rooyen, D.

    1984-08-01

    An experimental program on stress corrosion cracking (SCC) aimed at the development of a quantitative model for predicting the behavior of Inconel 600 tubing in high temperature water is described. Empirical data are gathered to relate factors that influence SCC. Work involves U-bends, constant extension rate tests (CERT), and constant load. Plots are made of failure time and crack velocity vs temperature, and also of SCC time vs stress, using a variety of environments related to the ingredients of primary or secondary water. Cold work of Alloy 600 is also included. The effect of temperature is found to yield-semi-log (Arrhenius) curves, and log-log plots of failure time vs stress are presented. Curves of this type are being evaluated for use in extrapolating accelerated test data to operating conditions for predictive purposes. 5 references, 8 figures, 3 tables.

  7. Damage structure in Nimonic PE16 alloy ion bombarded to high doses and gas levels

    SciTech Connect (OSTI)

    Farrell, K.; Packan, N.H.

    1981-01-01

    The Nimonic PE16 alloy in solution-treated-and-aged condition was bombarded simultaneously with nickel ions and ..cap alpha.. and deuteron beams at 625/sup 0/C to doses of 80 to 313 dpa at He/dpa = 10 and D/dpa = 25. Microstructural changes consisted of the introduction of dislocations and of cavities, and the redistribuion of ..gamma..' precipitates to these defects. Cavitational swelling remained below 1%. Cavities were represented by several distinct size classes, the smaller ones believed to be gas bubbles, and some larger ones associated with preferred growth of precipitate. Formation of bubbles at grain boundaries, and large cavities at incoherent twins intensified the possibility of mechanical separation of interfaces under high-gas irradiation conditions.

  8. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    SciTech Connect (OSTI)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  9. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of themore » PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less

  10. On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg{sub 2}Ni alloys

    SciTech Connect (OSTI)

    Kou, Hongchao; Hou, Xiaojiang; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hu, Rui; Li, Jinshan; Xue, Xiangyi

    2013-06-15

    Amorphous Mg{sub 2}Ni alloy was prepared by high energy ball-milling starting with polycrystalline Mg{sub 2}Ni which was prepared with the help of a metallurgy method by using a SPEX 8000D mill. The microstructural and phase structure characterization of the prepared materials was performed via scanning electron microscopy, transition electron microscope and X-ray diffraction. The thermal stabilities were investigated by differential scanning calorimetry. The apparent activation energies were determined by means of the Kissinger method. The first and second crystallization reactions take place at ? 255 C and ? 410 C, and the corresponding activation energy of crystallization is E{sub a1} = 276.9 and E{sub a2} = 382.4 kJ/mol, respectively. At 3 MPa hydrogen pressure and 250 C, the hydrogen absorption capacities of crystalline, partially and fully amorphous Mg{sub 2}Ni alloy are 2.0 wt.%, 3.2 wt.% and 3.5 wt.% within 30 min, respectively. - Graphical Abstract: We mainly focus on the amorphization behavior of crystalline Mg{sub 2}Ni alloy in the high energy ball-milling process and the crystallization behavior of the amorphous Mg{sub 2}Ni alloy in a follow-up heating process. The relationship of milling, microstructure and hydrogenation properties is established and explained by models. - Highlights: Amorphous Mg{sub 2}Ni has been obtained by high energy ball milling the as-cast alloy. The amorphization behavior of polycrystalline Mg{sub 2}Ni is presented. The crystallization behavior of the amorphous Mg{sub 2}Ni alloy is illustrated. Establish the relationship of milling, microstructure and hydrogenation properties.

  11. Vehicle Technologies Office Merit Review 2014: Alloy Development for High-Performance Cast Crankshafts

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied alloy...

  12. Highly-enhanced reflow characteristics of sputter deposited Cu alloy thin films for large scale integrated interconnections

    SciTech Connect (OSTI)

    Onishi, Takashi; Mizuno, Masao; Yoshikawa, Tetsuya; Munemasa, Jun; Mizuno, Masataka; Kihara, Teruo; Araki, Hideki; Shirai, Yasuharu

    2011-08-01

    An attempt to improve the reflow characteristics of sputtered Cu films was made by alloying the Cu with various elements. We selected Y, Sb, Nd, Sm, Gd, Dy, In, Sn, Mg, and P for the alloys, and ''the elasto-plastic deformation behavior at high temperature'' and ''the filling level of Cu into via holes'' were estimated for Cu films containing each of these elements. From the results, it was found that adding a small amount of Sb or Dy to the sputtered Cu was remarkably effective in improve the reflow characteristics. The microstructure and imperfections in the Cu films before and after high-temperature high-pressure annealing were investigated by secondary ion micrographs and positron annihilation spectroscopy. The results imply that the embedding or deformation mechanism is different for the Cu-Sb alloy films compared to the Cu-Dy alloy films. We consider that the former is embedded by softening or deformation of the Cu matrix, which has a polycrystalline structure, and the latter is embedded by grain boundary sliding.

  13. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    SciTech Connect (OSTI)

    Maziasz, Philip J.; Goodwin, Gene M.; Liu, Chain T.

    1996-01-01

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.

  14. High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability

    DOE Patents [OSTI]

    Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.

    1996-08-13

    This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.

  15. Rules for design of Alloy 617 nuclear components to very high temperatures

    SciTech Connect (OSTI)

    Corum, J.M.; Blass, J.J.

    1991-01-01

    Very-high-temperature gas-cooled reactors provide attractive options for electric power generation using a direct gas-turbine cycle and for process-heat applications. For the latter, temperatures of at least 950{degree}C (1742{degree}F) are desirable. As a first step to providing rules for the design of nuclear components operating at very high temperatures, a draft ASME Boiler and Pressure Vessel Code Case has been prepared by an ad hoc Code task force. The Case, which is patterned after the high-temperature nuclear Code Case N-47, covers Ni-Cr-Co-Mo Alloy 617 for temperatures to 982{degree}C (1800{degree}F). The purpose of this paper is to provide a synopsis of the draft Case and the significant differences between it and Case N-47. Particular emphasis is placed on the material behavior and allowables. The paper also recommends some materials and structures development activities that are needed to place the design methodology on a sound and defensible footing. 4 refs., 9 figs., 1 tab.

  16. Grain Boundary Character Along Intergranular Stress Corrosion Crack Paths in Austenitic Stainless Alloys Removed from High-Temperature Water Service

    SciTech Connect (OSTI)

    Gertsman, Valerii Y.; Bruemmer, Stephen M.

    2002-01-01

    Stress-corrosion cracks produced in high-temperature water environments were examined in alloy 600 and stainless steel samples. The alloy 600 samples were removed from pressurized-water reactor (PWR) steam generator tubing after exhibiting cracking in service or after model-boiler stress corrosion cracking tests. The 304 and 316 stainless steel samples also experienced intergranular stress corrosion cracking (IGSCC) in high-temperature-water environments similar to a PWR steam generator. Grain boundary misorientations were measured along IG crack paths as well as in the bulk. In general, only twin Sigma 3 boundaries exhibited improved resistance to crack propagation. If the Sigma 3 were factored out, the fractions of grain boundary types of cracked boundaries corresponded to their frequency of occurrence in the bulk alloy. Other boundaries with coincident site lattice misorientations, including Sigma 9 and Sigma 27, were observed to crack. The cracks were often (but not always) arrested at grain boundary junctions containing Sigma 3 boundaries. The results obtained indicate that grain boundary crystallography does not fully determine its susceptibility to IGSCC in typical commercial alloys. Other factors must be taken into account when assessing material?s propensity to IG failure.

  17. High Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology, Final Technical Report, 6 March 1998 - 15 October 2001

    SciTech Connect (OSTI)

    Guha, S.

    2001-11-08

    This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate with a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.

  18. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  19. Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production

    SciTech Connect (OSTI)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Walukiewicz, W.; Denlinger, J.; Demchenko, I.

    2009-10-06

    The authors have succeeded in growing GaN1?xAsx alloys over a large composition range (0 < x < 0.8) by plasma-assisted molecular beam epitaxy. The enhanced incorporation of As was achieved by growing the films with high As{sub 2} flux at low (as low as 100 C) growth temperatures, which is much below the normal GaN growth temperature range. Using x-ray and transmission electron microscopy, they found that the GaNAs alloys with high As content x > 0.17 are amorphous. Optical absorption measurements together with x-ray absorption and emission spectroscopy results reveal a continuous gradual decrease in band gap from -3.4 to < 1 eV with increasing As content. The energy gap reaches its minimum of -0.8 eV at x - 0.8. The composition dependence of the band gap of the crystalline GaN{sub 1?x}As{sub x} alloys follows the prediction of the band anticrossing model (BAC). However, our measured band gap of amorphous GaN{sub 1?x}As{sub x} with 0.3 < x < 0.8 are larger than that predicted by BAC. The results seem to indicate that for this composition range the amorphous GaN{sub 1?x}As{sub x} alloys have short-range ordering that resembles random crystalline GaN{sub 1?x}As{sub x} alloys. They have demonstrated the possibility of the growth of amorphous GaN{sub 1?x}As{sub x} layers with variable As content on glass substrates

  20. Characterization of Alloys with Potential for Application in Cable-in-Conduit Conductors for High-Field Superconducting Magnets

    SciTech Connect (OSTI)

    Walsh, R.P.; Miller, J.R.; Toplosky, V.J.

    2004-06-28

    Since the introduction of the cable-in-conduit conductor (CICC) concept, a variety of alloys have been proposed for fabricating the jacket. The jacket provides primary containment of the supercritical helium coolant and is typically also the primary structural component for the magnet. These functions create requirements for strength, toughness, weldability, and fabricability in tubular form. When the CICC uses Nb3Sn, there are additional requirements to accommodate the manufacturing and heat-treatment processes for the superconductor as well as its strain-sensitive performance during operation. Both of the present favorite jacket alloys, Incoloy 908 and modified (ultra-low carbon) 316LN, have both demonstrated acceptable functionality as well as a few undesirable features. In this paper, we present data from cryogenic mechanical tests on a group of heat-resistant, high-strength superalloys that appear to offer equal or better mechanical performance (e.g. strength, toughness, and modulus) while mitigating the undesirable aspects (e.g. SAGBO in the case of I908 and thermal-expansion mismatch with Nb3Sn in the case of 316LN). Data are presented for each alloy in the as-received and aged conditions. These alloys are presently being considered as candidates for use in the next-generation hybrid magnet for the NHMFL but may also be of interest to the fusion and energy storage communities.

  1. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  2. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  3. High Bandgap III-V Alloys for High Efficiency Optoelectronics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 130221326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search High Bandgap

  4. High Resolution Characterization of the Precipitation Behavior of an Al-Zn-Mg-Cu alloy

    SciTech Connect (OSTI)

    Li, Yi-Yun; Kovarik, Libor; Phillips, Patrick J.; Hsu, Yung-Fu; Wang, Wen-Hsiung; Mills, Michael J.

    2012-04-01

    The metastable particles in an Al-Zn-Mg-Cu alloy have been examined at atomic-resolution using high-angle annular dark field (HAADF) imaging. In underaged conditions, thin {eta}' plates were formed with a thickness of 7 atomic planes parallel to the {l_brace}111{r_brace}Al planes. The five inner planes of the {eta}' phase appear to be alternatively enriched in Mg and Zn, with two outer planes forming distinct Zn-rich interfacial planes. Similar Zn rich interfacial enrichment has also been identified for the {eta} phase, which is a minimum 11-planes thick structure. In rare instances, particles less than 7 planes were found indicating a very early preference for 7-layer particle formation. Throughout the aging, the plate thickness appears constant, while the plate radius increases and no particles between 7 and 11 planes were observed. Based on the HAADF contrast, our observations do not support the {eta}' models previously set forth by other authors. Clear structural similarities between {eta}' and {eta} were observed, suggesting that drawing distinctions between {eta}' and {eta} phases may not be necessary or useful.

  5. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrsmore » at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.« less

  6. Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method

    SciTech Connect (OSTI)

    Niu, E Wang, Zhen-Xi; Chen, Zhi-An; Rao, Xiao-Lei; Hu, Bo-Ping; Chen, Guo-An; Zhao, Yu-Gang; Zhang, Jin

    2014-03-21

    The R-Fe-B (R, rare earth) sintered magnets prepared with different ratio of alloys of MM-Fe-B (MM, misch-metal) and Nd-Fe-B by dual alloy method were investigated. As expected, the high ratio of MM-Fe-B alloy degrades the hard magnetic properties heavily with intrinsic coercivity lower than 5 kOe. When the atomic ratio MM/R???21.5% the magnetic properties can reach a practical level of B{sub r}???12.1 kGs, H{sub cj}???10.7 kOe, and (BH){sub max}???34.0 MGOe. And the effect of H{sub cj} enhancement by the grain boundary diffusion process is obvious when MM/R???21.5%. It is revealed that the decrement of intrinsic magnetic properties of R{sub 2}Fe{sub 14}B matrix phase is not the main reason of the degradation of the magnets with high MM ratio. The change of deteriorated microstructure together with phase component plays fundamental roles in low H{sub cj}. In high MM ratio magnets, (a) after annealing, Ce atoms inside main phase are inclined to be segregated in the outer layer of the main phase grains; (b) there is no thin layer of Ce-rich phase as an analogue of Nd-rich phase to separate main phase grains; (c) excessive Ce tends to form CeFe{sub 2} grains.

  7. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    SciTech Connect (OSTI)

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrs at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.

  8. PdAgAu alloy with high resistance to corrosion by H{sub 2}S

    SciTech Connect (OSTI)

    Braun, Fernando; Miller, James B.; Gellman, Andrew J.; Tarditi, Ana M.; Fleutot, Benoit; Petro, Kondratyuk, Cornaglia, Laura M

    2012-12-01

    PdAgAu alloy films were prepared on porous stainless steel supports by sequential electroless deposition. Two specific compositions, Pd{sub 83}Ag{sub 2}Au{sub 15} and Pd{sub 74}Ag{sub 14}Au{sub 12}, were studied for their sulfur tolerance. The alloys and a reference Pd foil were exposed to 1000 H{sub 2}S/H{sub 2} at 623 K for periods of 3 and 30 hours. The microstructure, morphology and bulk composition of both nonexposed and H{sub 2}S-exposed samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). XRD and SEM analysis revealed time-dependent growth of a bulk Pd{sub 4}S phase on the Pd foil during H{sub 2}S exposure. In contrast, the PdAgAu ternary alloys displayed the same FCC structure before and after H{sub 2}S exposure. In agreement with the XRD and SEM results, sulfur was not detected in the bulk of either ternary alloy samples by EDS, even after 30 hours of H{sub 2}S exposure. X-ray photoelectron spectroscopy (XPS) depth profiles were acquired for both PdAgAu alloys after 3 and 30 hours of exposure to characterize sulfur contamination near their surfaces. Very low S 2p and S 2s XPS signals were observed at the top-surfaces of the PdAgAu alloys, and those signals disappeared before the etch depth reached ~ 10 nm, even for samples exposed to H{sub 2}S for 30 hours. The depth profile analyses also revealed silver and gold segregation to the surface of the alloys; preferential location of Au on the alloys surface may be related to their resistance to bulk sulfide formation. In preliminary tests, a PdAgAu alloy membrane displayed higher initial H{sub 2} permeability than a similarly prepared pure Pd sample and, consistent with resistance to bulk sulfide formation, lower permeability loss in H{sub 2}S than pure Pd.

  9. Lead induced stress corrosion cracking of Alloy 690 in high temperature water

    SciTech Connect (OSTI)

    Chung, K.K.; Lim, J.K.; Moriya, Shinichi; Watanabe, Yutaka; Shoji, Tetsuo

    1995-12-31

    Recent investigations of cracked steam generator tubes at nuclear power plants concluded that lead significantly contributed to cracking the Alloy 600 materials. In order to investigate the stress corrosion cracking (SCC) behavior of Alloy 690, slow strain rate tests (SSRT) and anodic polarization measurements were performed. The SSRTs were conducted in a lead-chloride solution (PbCl{sub 2}) and in a chloride but lead free solution (NaCl) at pH of 3 and 4.5 at 288 C. The anodic polarization measurements were carried out at 30 C using the same solutions as in SSRT. The SSRT results showed that Alloy 690 was susceptible to SCC in both solutions. In the lead chloride solution, cracking had slight dependence on lead concentration and pH. Cracking tend to increase with a higher lead concentration and a lower pH and was mainly intergranular and was to be a few tens to hundreds micrometers in length. In the chloride only solution, cracking was similar to the lead induced SCC. The results of anodic polarization measurement and electron probe micro analysis (EPMA) helped to understand lead induced SCC. Lead was a stronger active corrosive element but had a minor affect on cracking susceptibility of the alloy. While, chloride was quite different from lead effect to SCC. A possible mechanism of lead induced SCC of Alloy 690 was also discussed based on the test results.

  10. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metals & Alloys Quantities of high-purity rare earth metals and alloys in ... storage, cutting and cleaning and SDS information for the rare earth elements (metals).

  11. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect (OSTI)

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  12. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect (OSTI)

    Sahli, M. L.; Necib, B.

    2011-05-04

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  13. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOE Patents [OSTI]

    Mao, Ho-kwang; Mao, Wendy L.

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  14. The magnetic phase transition in Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} magnetocaloric alloys

    SciTech Connect (OSTI)

    Chen, X.; Ramanujan, R. V.

    2015-02-14

    Mn-Fe-P-Ge alloys are promising, low cost, high performance candidates for magnetic cooling applications based on the magnetocaloric effect. These alloys undergo a magnetic phase transition which induces a large entropy change (ΔS). Experimental and modeling studies were conducted to study this transition for varying Ge content. Landau theory and the Bean-Rodbell model were applied to Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} (x = 0.26, 0.3, and 0.32) melt spun ribbons to model the phase transition and the associated entropy change. The critical behavior of these alloys was studied. The critical composition range at which the cross over from first order to second order magnetic transition occurs was determined. The calculated thermodynamic values and critical temperatures were in good agreement with our experimental results. A high maximum entropy change (ΔS) of ∼44.9 J kg{sup −1} K{sup −1} was observed in Mn{sub 1.1}Fe{sub 0.9}P{sub 0.74}Ge{sub 0.26} in a 5 T applied magnetic field. The results suggest that Mn-Fe-P-Ge alloys are very attractive materials for near room temperature magnetic cooling.

  15. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    SciTech Connect (OSTI)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  16. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

    DOE Patents [OSTI]

    Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

    1982-01-01

    A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

  17. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  18. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  19. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    SciTech Connect (OSTI)

    K. Coulter

    2010-12-31

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary

  20. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  1. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  2. Ductile transplutonium metal alloys

    DOE Patents [OSTI]

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  3. Amorphous metal alloy

    DOE Patents [OSTI]

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  4. Mechanisms of hydrogen-induced intergranular stress corrosion cracking of Alloy 600 in high-temperature water/steam

    SciTech Connect (OSTI)

    Shen, C.H.

    1989-01-01

    Intergranular stress-corrosion cracking (IGSCC) of Alloy 600 in high-temperature deaerated water or steam has been termed Hydrogen Induced IGSCC. It is suggested here that these cracks are initiated by the nucleation of a high density of bubbles on the grain boundary under the combined action of the applied stress and high-pressure methane formed from carbon in solution reacting with hydrogen injected by corrosion. The bubbles then grow together by grain-boundary diffusion to give local failure. This agrees with the observations made using the electron microscope and two-stage replicas, namely the subsurface formation of closely spaced (0.2 {mu}m) bubbles along boundaries, and the growth of these into fine cracks before they open up to communicate with the corroding atmosphere. The kinetics of this process are examined and shown to be in quantitative agreement with several experimental observations. This mechanism involves no dissolution of the metal, the only role of corrosion being the injection of hydrogen at a high fugacity. It also predicts an activation energy essentially equal to that for grain-boundary diffusion of nickel in the Alloy 600 grain boundary. The activation energy for grain-boundary self-diffusion in nickel is 115 kJ/mol.

  5. High strength Sn-Mo-Nb-Zr alloy tubes and method of making same

    DOE Patents [OSTI]

    Cheadle, Brian A.

    1977-01-01

    Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

  6. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOE Patents [OSTI]

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  7. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOE Patents [OSTI]

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  8. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  9. NICKEL-BASE ALLOY

    DOE Patents [OSTI]

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  10. Crystal structure of high-Zr inclusions in an alloy containing U, Pu, Np, Am, Zr and rare-earth elements

    SciTech Connect (OSTI)

    Dawn E. Janney; James W. Madden; J. Rory Kennedy; Thomas P. O'Holleran

    2014-05-01

    Researchers commonly observe high-Zr inclusions in actinide-Zr alloys. As there is very little published data on the crystal structures of these inclusions, it has generally been assumed that the inclusions were impurity-stabilized a-Zr. However, new electron-diffraction data from two high-Zr inclusions in an alloy containing U, Pu, Np, Am, Zr, and rare-earth elements show that these inclusions are not a-Zr (which has a hexagonal structure) but instead have a face-centered cubic structure. This data is unique in that it combines single-crystal diffraction patterns and microchemical analyses from individual inclusions. More data on other high-Zr inclusions is clearly required. However, the present results suggest that caution is needed in assuming that all high-Zr inclusions in actinide-Zr alloys are a-Zr.

  11. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    SciTech Connect (OSTI)

    J. Douglas Way

    2003-01-01

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating

  13. An improved model for the transit entropy of monatomic liquids

    SciTech Connect (OSTI)

    Wallace, Duane C; Chisolm, Eric D; Bock, Nicolas

    2009-01-01

    In the original formulation of V-T theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of {+-}2% among elemental liquids, and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of {+-}0.1% to the available experimental high temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S{sub vib}(T/{theta}{sub 0}), where T is temperature and {theta}{sub 0} is the vibrational characteristic temperature, and (b) the transit contribution S{sub tr}(T/{theta}{sub tr}), where {theta}{sub tr} is a scaling temperature for each liquid. The appearance of a common functional form of S{sub tr} for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S{sub tr} implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of {theta}{sub 0}, based on density functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

  14. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

    2016-02-19

    The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

  15. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect (OSTI)

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

  16. Corrosion protection of high-copper aluminum alloys using green technology

    SciTech Connect (OSTI)

    Mansfeld, F.; Wang, Y.

    1995-09-01

    The concept of surface modification as a new method of corrosion protection using chemicals without toxic problems is described for the Al alloys Al 6061, Al 7075-T6 and Al 2024-T3. In the Ce-Mo process Ce and Mo are incorporated into the original oxide film by chemical and electrochemical processes. The resulting surfaces are resistant to pitting in aggressive solutions such as 0.5 N NaCl. Surface modified Al 6013 has passed the salt spray test according to ASTM B 117. For Al 6061 and 7075, hot solutions of CeCl{sub 3} and Ce(NO{sub 3}){sub 3} are used, while for Al 2024 CeCl{sub 3} is replaced by Ce acetate. For all alloys anodic polarization is carried out in Na{sub 2}MoO{sub 4}. For Al 2024 and Al 7075 a Cu removal pre-treatment step is used in which Cu intermetallic compounds are removed from the outer surface layers. The resistance to localized corrosion has been evaluated by recording of impedance spectra in 0.5 N NaCl for 30 days. Surface analysis data suggest that Ce and Mo are concentrated at sites where local cathodes such as Cu intermetallic compounds are located. Polarization curves show that both the cathodic and the anodic reaction are inhibited on modified surfaces. The pitting potential E{sub pit} is increased for surface modified samples at constant corrosion potential E{sub corr}. This result could be due to a decrease of the amount of Cl adsorbed at a given potential for oxide layers containing Ce and Mo.

  17. Effect of Corrosion Film Composition and Structure on the Corrosion Kinetics of Ni-Cr-Fe Alloys in High Temperature Water

    SciTech Connect (OSTI)

    P.M. Rosecrans; N. Lewis; D.J. Duquette

    2002-02-27

    Nickel alloys such as Alloy 600 undergo Stress Corrosion Cracking (SCC) in pure water at temperatures between about 260 C and the critical point. Increasing the level of Cr in Ni-Fe-Cr alloys increases SCC resistance in aerated and deaerated water. The mechanism is not understood. The effect of Cr composition on oxide microstructure and corrosion kinetics of Ni-Fe-Cr alloys was determined experimentally, to evaluate whether the anodic dissolution model for SCC can account for the effect of Cr on SCC. The alloy corrosion rate and corrosion product oxide microstructure is strongly influenced by the Cr composition. Corrosion kinetics are parabolic and influenced by chromium concentration, with the parabolic constant first increasing then decreasing as Cr increases from 5 to 39%. Surface analyses using Analytical Electron microscopy (AEM) and Auger Electron Spectroscopy (AES) show that the corrosion product film that forms initially on all alloys exposed to high purity high temperature water is a nickel rich oxide. With time, the amount of chromium in the oxide film increases and corrosion proceeds toward the formation of the more thermodynamically stable spinel or hexagonal Cr-rich oxides, similar to high temperature gaseous oxidation. Due to the slower diffusion kinetics at the temperatures of water corrosion compared to those in high temperature gaseous oxidation, however, the films remain as a mixture of NiO, mixed Ni, Fe and Cr spinels, NiCrO{sub 3} and FeCrO{sub 3}. As the amount of Cr in the film increases and the nature of the film changes from NiO to spinel or hexagonal oxides, cation diffusion through the films slows, slowing the corrosion rate. These observations are qualitatively consistent with an anodic dissolution SCC mechanism. However, parametric modeling of the SCC growth process, applying available creep, oxide rupture strain and corrosion kinetics data, indicates that the anodic dissolution mechanism accounts for only a fraction of the effect of Cr

  18. Origin of Entropy Convergence in Hydrophobic Hydration and Protein Folding

    SciTech Connect (OSTI)

    Garde, S.; Hummer, G.; Garcia, A.E.; Paulaitis, M.E.; Pratt, L.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716 (United States); [Department of Chemical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    1996-12-01

    An information theory model of hydrophobic effects is used to construct a molecular explanation why hydrophobic solvation entropies of protein unfolding measured by high sensitivity calorimetry converge to zero at a common convergence temperature. The entropy convergence follows directly from the weak temperature dependence of occupancy fluctuations {l_angle}{delta}{ital n}{sup 2}{r_angle} for molecular-scale volumes in water. The macroscopic expression of the contrasting entropic behavior of water relative to common organic solvents is the {ital relative} temperature insensitivity of the water isothermal compressibility compared to hydrocarbon liquids. The information theory model used provides a quantitative description of small molecule hydration and, in addition, predicts that the value of the entropy at convergence is slightly {ital negative}. Interpretations of entropic contributions to protein folding should account for this result. {copyright} {ital 1996 The American Physical Society.}

  19. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water.

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-10-30

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  20. Mechanisms of intergranular attack and stress corrosion cracking of Alloy 600 by high-temperature caustic solutions containing impurities: Final report

    SciTech Connect (OSTI)

    Van Rooyen, D.; Bandy, R.

    1987-07-01

    The mechanisms of intergranular attack (IGA) and intergranular stress corrosion cracking (SCC) of Alloy 600 are investigated in high temperature sodium hydroxide environments contaminated with impurities such as carbonate, sulfate, silicate, magnetite, and chromic oxide. Results show that caustic alone can cause both IGA and SCC. The effects of electrochemical potential, stress, time, temperature and the metallurgical state of Alloy 600 on the IGA and SCC are discussed. It appears that both IGA and SCC are manifestations of a general intergranular failure process. In the presence of adverse potential, stress, strain rate and temperature, the slower IGA process is generally replaced by the faster SCC process.

  1. An XPS study of passive films on stainless steels and a high-grade Ni-base alloy in seawater environments

    SciTech Connect (OSTI)

    Hodgkiess, T.; Neville, A.

    1999-11-01

    In the present study an assessment has been made of the air-formed passive film and the passive film existing after a short exposure to a synthetic seawater environment on austenitic (UNS S31603), superaustenitic (UNS S31254 and UNS S32654) and superduplex (UNS S32760) stainless steels and a Ni-based alloy (UNS N06625) using X-Ray Photoelectron Spectroscopy (XPS). Assessment of their corrosion behavior has been made through use of electrochemical accelerated tests supported by post-test microscopy. The passive film on the Ni-base (low Fe) UNS N06625 alloy is remarkably similar to those formed on the high Cr and Mo stainless steels. It has been demonstrated that the Fe/Cr ratio in the passive film is dependent on alloy composition and on the conditions to which the material has been exposed and a general correlation between passive film constitution and corrosion resistance is evident.

  2. Intergranular stress corrosion cracking initiation and growth in mill-annealed Alloy 600 tubing in high-temperature caustic

    SciTech Connect (OSTI)

    Brisson, B.W.; Ballinger, R.G.; McIlree, A.R.

    1998-07-01

    Historically, pressurized water reactor (PWR) steam generator (SG) reliability has been dominated by degradation of alloy 600 (UNS N06600) tubing material. Stress corrosion cracking (SCC) crack initiation and crack growth rates (CGR) were measured in mill-annealed alloy 600 (UNS N06600) tubing as a function of the stress intensity factor (K) in 10% caustic at 315 C. Tests were conducted using internally pressurized smooth and precracked tubing. Samples were polarized to 150 mV (precracked tube test) or 225 mV (initiation test) with respect to a nickel electrode. Crack initiation and growth from the external tube surface were monitored using a multifrequency alternating current (AC) potential drop system. The AC potential drop system allowed detection of initiation from a smooth surface as well as the monitoring of crack extension in real time. In the case of precracked sample tests, the sample was precracked in fatigue from a sharp v-notch. CGR were obtained over the K range between 4 MPa{radical}m and 18 MPa{radical}m. Values for K were estimated based upon fractographic analysis of samples after testing and an estimate of the K-solution for a thin-walled tube. Average CGR ranged from 2 mm/y to 14 mm/y. CGR determined in this investigation represent the first SCC CGR data obtained in high-temperature caustic using actual steam generator tubing. Growth rates obtained fell within the overall range of the existing database for CGR (da/dt) in alloy 600. The data and analysis suggested a threshold value of K for K-driven crack growth of {approx} 4 MPa{radical}m. However, since the scatter in existing data is very large and the conditions for most of the data are poorly known or not known at all, this was surprising. More importantly, from the standpoint of life prediction, it was observed that da/dt responded to and was a function of K for cracks as small as 0.2 mm in depth, and probably smaller.

  3. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect (OSTI)

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  4. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect (OSTI)

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  5. On quantum Rnyi entropies: A new generalization and some properties

    SciTech Connect (OSTI)

    Mller-Lennert, Martin; Dupuis, Frdric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-15

    The Rnyi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rnyi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rnyi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  6. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect (OSTI)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  7. Mechanism of lead-induced stress corrosion cracking of nickel-based alloys in high-temperature water

    SciTech Connect (OSTI)

    Sakai, T.; Nakagomi, N.; Kikuchi, T.; Aoki, K.; Nakayasu, F.; Yamakawa, K.

    1998-07-01

    A study was undertaken to better understand the lead-induced corrosion mechanism of nickel-based alloys used for steam generator tubing materials (alloys 600 and 690 [UNS N06600 and N06690]) in pressurized-water reactor (PWR) plants. Electrochemical measurements (corrosion potential and polarization measurements) and constant extension rate tests (CERT) of tubing materials were performed in lead-contaminated environments. Results of electrochemical measurements showed lead did not raise the corrosion potential but did increase the anodic polarization current in the passivity region, which indicated degradation of the passive oxide film. CERT results showed alloy 690 had better corrosion resistance than alloy 600, which was in good agreement with the lower intensity of the anodic current. The mechanism of lead-induced corrosion was proposed as disruption of the oxide film of the alloys as a result of the incorporation of lead.

  8. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  9. High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy

    SciTech Connect (OSTI)

    Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.; Kennedy, J. Rory

    2015-03-01

    Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. The composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd2O3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.

  10. Entropy in an Arc Plasma Source

    SciTech Connect (OSTI)

    Kaminska, A.; Dudeck, M

    2008-03-19

    The entropy properties in a D.C. argon arc plasma source are studied. The local thermodynamical entropy relations are established for a set of uniform sub-systems (Ar, Ar{sup +}, e) in order to deduce the entropy balance equation in presence of dissipative effects and in the case of a thermal non equilibrium. Phenomenological linear laws are deduced in near equilibrium situation. The flow parameters inside the plasma source are calculated by a Navier-Stokes fluid description taking into account a thermal local non equilibrium. The entropy function is calculated in the plasma source using the values of the local variables obtained from the numerical code.