National Library of Energy BETA

Sample records for high energy physics

  1. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics High Energy Physics Investigating the field of high energy physics ... Through the Office of High Energy Physics (HEP), Los Alamos conducts research in particle ...

  2. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  3. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  4. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  5. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  6. High Energy Physics and Nuclear Physics Network Requirements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Energy Physics and Nuclear Physics Network Requirements Citation Details In-Document Search Title: High Energy Physics and Nuclear Physics Network ...

  7. Theoretical High Energy Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accelerator Technology ATLAS at the LHC Cosmology & Astrophysics Instrumentation Precision Muon Physics Neutrino Physics Theoretical High Energy Physics Theoretical High Energy Physics Theoretical High Energy Physics Much of the work of high-energy physics concentrates on the interplay between theory and experiment. The theory group of Argonne's High Energy Physics Division performs high-precision calculations of Standard Model processes, interprets experimental data in terms of

  8. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. ... At large I and high temperature we observe ...

  9. High Energy Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Technology Taking collider physics to higher energies More ATLAS at the LHC Colliding protons to learn about universal forces More Cosmology & Astrophysics Looking at the dawn and evolution of the universe More Instrumentation Innovative detectors for next-generation experiments More Precision Muon Physics Muons as a probe for new physics More Neutrino Physics Studying the elusive, but second most abundant particle in the universe More Theoretical High Energy Physics Motivating

  10. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema (OSTI)

    Ren-Yuan Zhu

    2010-01-08

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  11. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D� experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  12. Computing in high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mount, Richard P.

    2016-05-31

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  13. Research in High Energy Physics. Final report

    SciTech Connect (OSTI)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  14. PARTICIPATION IN HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  15. High Energy Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads About HEP at Work Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Accelerator Technology Taking collider physics to higher energies More ATLAS at the LHC Colliding protons to learn about universal forces More Cosmology & Astrophysics

  16. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  17. High energy physics at UC Riverside

    SciTech Connect (OSTI)

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  18. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  19. Advanced Analysis Methods in High Energy Physics

    SciTech Connect (OSTI)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  20. Indiana University High Energy Physics, Task A

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  1. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    Mendez, Hector

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1)#3; Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  2. University of Oklahoma - High Energy Physics

    SciTech Connect (OSTI)

    Skubic, Patrick L.

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances

  3. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review: High Energy Physics Bethesda Hyatt, June 10, 2015 Jim Siegrist Associate Director for High Energy Physics Office of Science, U.S. Department of Energy HEP Computing and ...

  4. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma’s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research

  5. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, ...

  6. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  7. UPR/Mayaguez High Energy Physics

    SciTech Connect (OSTI)

    López, Angel M.

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  8. DOE SC Exascale Requirements Review: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC Exascale Requirements Review: High Energy Physics Bethesda Hyatt, June 10, 2015 Jim Siegrist Associate Director for High Energy Physics Office of Science, U.S. Department of Energy HEP Computing and Data Challenges * What's new? * In May 2014, the U.S. particle physics community updated its vision for the future - The P5 (Particle Physics Project Prioritization Panel) report presents a strategy for the next decade and beyond that enables discovery and maintains our position as a global leader

  9. High Energy Physics and Nuclear Physics Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  10. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  11. Large Scale Computing and Storage Requirements for High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics HEPFrontcover.png Large Scale Computing and Storage Requirements for High Energy Physics An HEP / ASCR / NERSC Workshop November 12-13, 2009 Report Large Scale Computing and Storage Requirements for High Energy Physics, Report of the Joint HEP / ASCR / NERSC Workshop conducted Nov. 12-13, 2009 https://www.nersc.gov/assets/HPC-Requirements-for-Science/HEPFrontcover.png Goals This workshop was organized by the Department of

  12. High energy physics in cosmic rays

    SciTech Connect (OSTI)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  13. Participation in High Energy Physics at the University of Chicago

    SciTech Connect (OSTI)

    Martinec, Emil J.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  14. High Energy Physics Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads High Energy Physics Organization Chart PDF icon Org Chart 08-04-16.pdf

  15. Final Report. Research in Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Greensite, Jeffrey P.; Golterman, Maarten F.L.

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  16. Fourth International Conference on High Energy Density Physics

    SciTech Connect (OSTI)

    Beg, Farhat

    2015-01-06

    The Fourth International Conference on High Energy Density Physics (ICHED 2013) was held in Saint Malo, France, at the Palais du Grand Large on 25-28 June 2013 (http://web.luli.polytechnique.fr/ICHED2013/). This meeting was the fourth in a series which was first held in 2008. This conference covered all the important aspects of High Energy Density Physics including fundamental topics from strong-field physics to creating new states of matter (including radiation-dominated, high-pressure quantum and relativistic plasmas) and ultra-fast lattice dynamics on the timescale of atomic transitions.

  17. Princeton University High Energy Physics Research

    SciTech Connect (OSTI)

    Marlow, Daniel R.

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  18. Precision Timing Calorimeter for High Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  19. Experimental And Theoretical High Energy Physics Research At UCLA

    SciTech Connect (OSTI)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  20. Compilation of current high-energy physics experiments

    SciTech Connect (OSTI)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  1. CERN and high energy physics, the grand picture

    ScienceCinema (OSTI)

    None

    2011-10-06

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  2. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  3. An Experimental and Theoretical High Energy Physics Program

    SciTech Connect (OSTI)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  4. The Office of High Energy Physics Announces the Launch of Its...

    Office of Science (SC) Website

    Community Resources News Archives 2013 The Office of High Energy Physics Announces the Launch of Its New Accelerator R&D Stewardship Webpages High Energy Physics (HEP) HEP ...

  5. A novel zirconium K{alpha} imager for high energy density physics...

    Office of Scientific and Technical Information (OSTI)

    for high energy density physics research Citation Details In-Document Search Title: A novel zirconium Kalpha imager for high energy density physics research We report on the ...

  6. High Energy Physics Advisory Panel October 1-2, 2015 | U.S. DOE...

    Office of Science (SC) Website

    High Energy Physics Advisory Panel October 1-2, 2015 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2015 HEPAP Membership ChargesReports Charter...

  7. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Liss, Tony M.; Thaler, Jon J.

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  8. Theoretical Research in Cosmology, High-Energy Physics and String Theory

    SciTech Connect (OSTI)

    Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

    2013-07-29

    The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

  9. High Energy Physics at Tufts University Final Report

    SciTech Connect (OSTI)

    Goldstein, Gary R.; Oliver, William P.; Napier, Austin; Gallagher, Hugh R.

    2012-07-18

    In this Final Report, we the researchers of the high energy physics group at Tufts University summarize our works and achievements in three frontier areas of elementary particle physics: (i) Neutrino physics at the Intensity Frontier, (ii) Collider physics at the Energy Frontier, and (iii) Theory investigations of spin structure and quark-gluon dynamics of nucleons using quantum chromodynamics. With our Neutrino research we completed, or else brought to a useful state, the following: Data-taking, physics simulations, physics analysis, physics reporting, explorations of matter effects, and detector component fabrication. We conducted our work as participants in the MINOS, NOvA, and LBNE neutrino oscillation experiments and in the MINERvA neutrino scattering experiment. With our Collider research we completed or else brought to a useful state: Data-taking, development of muon system geometry and tracking codes, software validation and maintenance, physics simulations, physics analysis, searches for new particles, and study of top-quark and B-quark systems. We conducted these activities as participants in the ATLAS proton-proton collider experiment at CERN and in the CDF proton-antiproton collider experiment at Fermilab. In our Theory research we developed QCD-based models, applications of spin phenomenology to fundamental systems, fitting of models to data, presenting and reporting of new concepts and formalisms. The overarching objectives of our research work have always been: 1) to test and clarify the predictions of the Standard Model of elementary particle physics, and 2) to discover new phenomena which may point the way to a more unified theoretical framework.

  10. Design and operation of the high energy physics information server

    SciTech Connect (OSTI)

    Dingbaum, J.J.; Martin, D.E.

    1994-12-31

    HEPIC an information {open_quotes}center of centers{close_quotes} for the HEP community, is a 24 hour online location where a HEP researcher can start her/his search for information. Operated by the HEP Network Research Center, HEPIC is accessible via WWW, gopher, anonymous FTP, DECnet, and AFS. This paper describes HEPIC`s design and future plans, and the HEPNRC`s efforts to collect information and link high energy physics researchers world-wide.

  11. View from Washington: Perspectives on future high energy physics

    SciTech Connect (OSTI)

    Krebs, M.

    1997-03-01

    This is a talk by Martha Krebs (director of energy research at the U.S. Department of Energy). Funding priorities and the current budget constraints at the Department of Energy are discussed. {copyright} {ital 1997 American Institute of Physics.}

  12. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  13. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  14. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  15. High Energy Physics Advisory Panel August 2012 Meeting | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) High Energy Physics Advisory Panel August 2012 Meeting High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Meetings High Energy Physics Advisory Panel August 2012 Meeting Print Text Size: A A A FeedbackShare Page Agenda High Energy Physics Advisory Panel Hilton Hotel 1750 Rockville Pike Rockville, Maryland August 27-28, 2012

  16. High energy physics program at Texas A and M University

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Texas A M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

  17. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B.; Kapustin, Anton N.; Schwarz, John Henry; Carroll, Sean; Ooguri, Hirosi; Gukov, Sergei; Preskill, John; Hitlin, David G.; Porter, Frank C.; Patterson, Ryan B.; Newman, Harvey B.; Spiropulu, Maria; Golwala, Sunil; Zhu, Ren-Yuan

    2014-08-26

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas

  18. Large Scale Computing and Storage Requirements for High Energy Physics

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  19. Experimental High Energy Physics Brandeis University Final Report

    SciTech Connect (OSTI)

    Blocker, Craig A.; Bensinger, James; Sciolla, Gabriella; Wellenstein, Hermann

    2013-07-26

    During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb were delivered. The Brandeis group focused on two aspects of the ATLAS experiment -- the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' -> ll, Higgs -> ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs -> ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

  20. The Office of High Energy Physics Announces the Launch of Its New

    Office of Science (SC) Website

    Accelerator R&D Stewardship Webpages | U.S. DOE Office of Science (SC) Featured Content » 2013 » The Office of High Energy Physics Announces the Launch of Its New Accelerator R&D Stewardship Webpages High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Featured Content 2016 2015 2014 2013 2012-2008 Reports Contact Information High Energy Physics U.S. Department of Energy

  1. High Energy Physics Advisory Panel August 12, 2016 | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) August 12, 2016 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Meetings High Energy Physics Advisory Panel August 12, 2016 Print Text Size: A A A FeedbackShare Page DOE Logo NSF Logo U.S Department of Energy and the National Science Foundation Agenda .pdf file (191KB) High Energy Physics Advisory Panel Teleconference

  2. Energy Principles into High School Physics Dr. Ann Reimers, Albert Einstein Distinguished Educator Fellow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating a Holistic View of Energy Principles into High School Physics Dr. Ann Reimers, Albert Einstein Distinguished Educator Fellow Department of Energy -> UVa American Association of Physics Teachers Summer Meeting 2015 DOE Energy Literacy Framework 2 * Energy Literacy Framework is a guide to help energy educators teach energy from the natural to the social sciences. Also available in Spanish. http://energy.gov/eere/education/energy-literacy-essential-principles-and-fundamental-

  3. Langston University - High Energy Physics (LU-HEP)

    SciTech Connect (OSTI)

    Snow, Dr., Joel

    2012-08-13

    This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forces that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data

  4. High Energy Physics: Report of research accomplishments and future goals, FY 1988

    SciTech Connect (OSTI)

    Barish, B C; Stone, E C; Ames, C A

    1987-07-10

    This report discusses high energy physics research in the following areas: Research in elementary particle physics; QCD phenomenology; lattice gauge theory; Mark III; MARK J and Mark II/SLC.

  5. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation packagemorecapable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).less

  6. High-Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-11-01

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing (HPC) are essential for accurately modeling them. In the past decade, the DOE SciDAC program has produced such accelerator-modeling tools, which have beem employed to tackle some of the most difficult accelerator science problems. In this article we discuss the Synergia beam-dynamics framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. We present the design principles, key physical and numerical models in Synergia and its performance on HPC platforms. Finally, we present the results of Synergia applications for the Fermilab proton source upgrade, known as the Proton Improvement Plan (PIP).

  7. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    SciTech Connect (OSTI)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable of handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.

  8. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  9. High Energy Physics Advisory Panel (HEPAP) Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) HEPAP Home High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Print Text Size: A A A FeedbackShare Page P5 Final Report Building for Discovery The Particle Physics Project Prioritization Panel (P5), a subpanel of the High Energy Physics Advisory Panel (HEPAP), has now completed its Report, a ten-year strategic plan for high energy physics in

  10. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  11. High Energy Physics Advisory Panel April 6-7, 2015 | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) April 6-7, 2015 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Meetings High Energy Physics Advisory Panel April 6-7, 2015 Print Text Size: A A A FeedbackShare Page DOE Logo NSF Logo U.S Department of Energy and the National Science Foundation Agenda .pdf file (95KB) High Energy Physics Advisory Panel Washington Marriott

  12. High Energy Physics Advisory Panel December 9-11, 2015 | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) December 9-11, 2015 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Meetings High Energy Physics Advisory Panel December 9-11, 2015 Print Text Size: A A A FeedbackShare Page DOE Logo NSF Logo U.S Department of Energy and the National Science Foundation Agenda .pdf file (86KB) High Energy Physics Advisory Panel Newport

  13. High Energy Physics Advisory Panel March 31 - April 1, 2016 | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) March 31 - April 1, 2016 High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings Previous Meetings 2016 HEPAP Membership Charges/Reports Charter .pdf file (44KB) HEP Committees of Visitors Federal Advisory Committees HEP Home Meetings High Energy Physics Advisory Panel March 31 - April 1, 2016 Print Text Size: A A A FeedbackShare Page DOE Logo NSF Logo U.S Department of Energy and the National Science Foundation Agenda .pdf file (81KB) High Energy Physics

  14. High Energy Physics at the University of Illinois

    SciTech Connect (OSTI)

    Neubauer, Mark; Errede, Steve; Gollin, George; Thaler, Jon; El-Khadra, Aida; Willenbrock, Scott; Leigh, Robert; Pitts, Kevin

    2013-04-01

    Experimental and theoretical research in elementary particle physics and astronomy at the University of Illinois Urbana-Champaign is presented via a series of reprints of published papers.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  17. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  18. High Energy Physics (HEP) Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs » HEP Home High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » Intermediate Neutrino Research Program Awards ANNIE External link and PROSPECT External link will investigate the

  19. High Energy Physics: Report of research accomplishments and future goals, FY 1992

    SciTech Connect (OSTI)

    1991-09-05

    This report discusses high energy physics research in the following areas: Research in theoretical physics; phenomenology; experimental computer facility at Caltech; Beijing BES; MACRO; CLEO II; SLD; L3 at LEP; the B Factory R & D Program; SSC GEM Detector; and a high resolution barium fluoride calorimeter for the SSC.

  20. Used MRI magnets get a second chance at life in high-energy physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-energy and nuclear physics experiments. The two new magnets have a strength of 4 Tesla, not as strong as the newest generation of MRI magnets but ideal for benchmarking ...

  1. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  2. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect (OSTI)

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  3. UVA experimental and high energy physics. Final grant report

    SciTech Connect (OSTI)

    Cox, B.

    1999-10-07

    The period 1992--1997 was a mixture of frustrations and of accomplishments for the UVa HEP group. The experimental HEP group began this period with the completion of a truncated run of Experiment E771 at Fermilab in 1992. This experiment was designed to measure the cross section for beauty production in 800 GeV/c pN interactions. It succeeded in this goal as well as in obtaining one of the best limits on FCNC in charm decays by setting an upper limit on D{sup 0} {r_arrow} {mu}{sup +}{mu}{sup {minus}}. In addition, they were able to measure {Psi}, {Psi}, {chi}{sub 1},{chi}{sub 2} and upsilon production. Three UVa PhD theses have resulted from this experiment (as well as 12 other PhD's at other institutions). At the same time, the UVa experimental group was vigorously pursuing the goal of studying CP violation in B production. This took the form of a proposal to the SSC for a super fixed target facility, the SFT, which would focus on studies of B mesons. B. Cox was the spokesman of this experiment that had over thirty institutions. This proposal EOI-14 had a good reception by the SSC PAC. A R and D activity to prove the technique of crystal channeling was undertaken to prove the accelerator aspects of this proposal. This activity, known as E853 or CEX at Fermilab, resulted in proof of the crystal channeling technique as viable for the extraction of 20 TeV beam at the SSC. In addition to this activity, the UVa group investigated many other aspects of B physics at the SSC. They were among the leaders of the 1993 Snowmass meeting on B Physics at Hadronic Accelerators. The UVa HEP group worked vigorously on developing the ideas for B physics at the SSC, as evidenced by the many different studies listed in the publication list given, up to the very day the SSC was terminated by an act of Congress.

  4. Experimental High Energy Physics Research: Direct Detection of Dark Matter

    SciTech Connect (OSTI)

    Witherell, Michael S.

    2014-10-02

    The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.

  5. Basic Research Needs for High Energy Density Laboratory Physics

    National Nuclear Security Administration (NNSA)

    On the cover: Invisible infrared light from the 200-trillion watt Trident Laser enters from the bottom to interact with a one-micrometer thick foil target in the center of the photo. The laser pulse produces a plasma - an ionized gas - many times hotter than the center of the sun, which lasts for a trillionth of a second. During this time some electrons from the foil are accelerated to virtually the speed of light, and some ions are accelerated to energies of tens of millions of volts. In this

  6. Exploration of Plasma Jets Approach to High Energy Density Physics. Final report

    SciTech Connect (OSTI)

    Chen, Chiping

    2013-08-26

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  7. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    SciTech Connect (OSTI)

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  8. Special Colloquium : Looking at High Energy Physics from a gender studies perspective

    ScienceCinema (OSTI)

    None

    2011-04-25

    Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites of passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.

  9. Ion Desorption Stability in Superconducting High Energy Physics Proton Colliders

    SciTech Connect (OSTI)

    Turner, W.C.

    1995-05-29

    of the diagonal uncoupled feedback loops are first order in the ion desorption coefficients whereas the gains of the off diagonal coupled feedback loops are second and higher order. For this reason it turns out that in practical cases stability is dominated by the uncoupled diagonal elements and the inverse of the largest first order closed loop gain is a useful estimate of the margin of stability. In contrast to the case of a simple cold beam tube, the stability condition for a beam screen does not contain the desorption coefficient for physisorbed molecules, even when the screen temperature is low enough that there is a finite surface density of them on the screen surface. Consequently there does not appear to be any particular advantage to operating the beam screen at high enough temperature to avoid physisorption. Numerical estimates of ion desorption stability are given for a number of cases relevant to LHC and all of the ones likely to be encountered were found to be stable. The most important case, a I % transparency beam screen at {approx}4.2 K, was found to have a stability safety margin of approximately thirty determined by ion desorption of CO. Ion desorption of H{sub 2} is about a factor of eighty less stringent than CO. For these estimates the beam tube surface was assumed to be solvent cleaned but otherwise untreated, for example by a very high temperature vacuum bakeout or by glow discharge cleaning.

  10. Indiana University High Energy Physics, Task A. Technical progress report, 1992--1993

    SciTech Connect (OSTI)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-10-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN.

  11. Report of the Interagency Task Force on High Energy Density Physics

    SciTech Connect (OSTI)

    2007-08-01

    Identifies the needs for improving Federal stewardship of specific aspects of high energy density physics, particularly the study of high energy density plasmas in the laboratory, and strengthening university activities in this latter discipline. The report articulates how HEDP fits into the portfolio of federally funded missions and includes agency actions to be taken that are necessary to further this area of study consistent with Federal priorities and plans, while being responsive to the needs of the scientific community.

  12. (The 25th international conference on high-energy physics at Singapore)

    SciTech Connect (OSTI)

    Plasil, F.

    1990-08-17

    The traveler attended the 25th International Conference on High-Energy Physics in Singapore, August 1--8, 1990. The conference was dominated by results from the new LEP accelerator at CERN. The precision of the data from LEP is impressive, and all results are consistent with the standard model. No new physics'' has emerged at LEP. The traveler presented a talk on CERN/SPS WA80 results and had several interesting, private discussions on both L* and WA80 topics.

  13. Status of networking for high energy physics in the United States

    SciTech Connect (OSTI)

    Kunz, P.F.

    1985-06-01

    Networks are used extensively for High Energy Physics in the United States. Although the networks have grown in an ad hoc manner with connections typically being made to satisfy the needs of one detector group, they now encompass to large fraction of the US HEP community in one form or another. This paper summarizes the current status and experience with networks.

  14. Large-x connections of nuclear and high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  15. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  16. US/Japan Cooperation in High Energy Physics. Review of activities, 1988--1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-16

    The objective of the Implementing Arrangement was to further the energy programs of both countries by establishing a framework for cooperation in the field of high energy physics, including research, accelerator and detector instrumentation research and development, the fabrication and subsequent use of new experimental devices and facilities, and related joint efforts as may be mutually agreed. Over the years, this cooperation has been very effective and has strengthened the overall collaborative efforts and the understanding between our nations and their citizens. It has demonstrated to the world our ability to work together to attack difficult problems. High Energy Physics goes across national borders; the bond is clearly intellectual and common ground is shared for the benefit of all in a most effective manner. This review covers the activities conducted under the aegis of the US/Japan Committee for Cooperation in High Energy Physics during the past five years (1988--1993). This was the second such US review of the US/Japan cooperative activities; the first was held in 1987.

  17. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    SciTech Connect (OSTI)

    Hall, G. N. Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J.

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-?) from a laser plasma source driven by a ?7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  18. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  19. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    SciTech Connect (OSTI)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.; McDonald, Kirk T.; Meyers, Peter D.; Olsen, James D.; Smith, Arthur J.S.; Steinhardt, Paul J.; Tully, Christopher G.; Stickland, David P.

    2013-04-30

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  20. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    SciTech Connect (OSTI)

    Fradkin, Eduardo; Maldacena, Juan; Chatterjee, Lali; Davenport, James W

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  1. US Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    SciTech Connect (OSTI)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; et al.

    2005-09-19

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  2. Physics perspectives of heavy-ion collisions at very high energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; et al

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  3. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    Kr K-alpha X-ray Source For High Energy Density Physics Experiments A high contrast 12.6 keV Kr Kalpha source has been demonstrated on the petawatt-class Titan laser facility. ...

  4. Novel high-energy physics studies using intense lasers and plasmas

    SciTech Connect (OSTI)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric; Schroeder, Carl

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPA regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.

  5. A novel zirconium K{alpha} imager for high energy density physics research

    SciTech Connect (OSTI)

    Akli, K. U.; Jiang, S.; Storm, M. S.; Krygier, A.; Freeman, R. R.; Sanchez del Rio, M.; Stephens, R. B.; Pereira, N. R.; Baronova, E. O.; Theobald, W.; Ping, Y.; McLean, H. S.; Patel, P. K.; Key, M. H.

    2011-12-15

    We report on the development and characterization of a zirconium K{alpha} imager for high energy density physics research. The imager consists of a spherically bent quartz crystal operating at 15.7 keV photon energy. We compare the performance of the imager in terms of integrated reflectivity (R{sub int}) and temperature dependent collection efficiency ({eta}{sub Te}) to that of the widely used Cu K{alpha} imager. Our collisional-radiative simulations show that the new imager can be reliably used up to 250 eV plasma temperature. Monte Carlo simulations show that for a 25 {mu}m thick tracer layer of zirconium, the contribution to K{alpha} production from photo-pumping is only 2%. We present, for the first time, 2D spatially resolved images of zirconium plasmas generated by a high intensity short pulse laser interacting with Zr solid targets.

  6. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect (OSTI)

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  7. Massachusetts Institute of Technology New Trend in High Energy Physics, Alushta, Ukraine, Sep. 6, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9/06/2011 Teppei Katori, MIT 1 Teppei Katori for the MiniBooNE collaboration Massachusetts Institute of Technology New Trend in High Energy Physics, Alushta, Ukraine, Sep. 6, 2011 MiniBooNE, a neutrino oscillation experiment at Fermilab Outline 1. Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Neutrino oscillation result 6. Anti-neutrino oscillation result 7. Outlook 09/06/2011 Teppei Katori, MIT 2 Teppei Katori for the MiniBooNE collaboration Massachusetts

  8. High-energy physics detector MicroBooNE sees first accelerator-born

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutrinos MicroBooNE sees first accelerator-born neutrinos High-energy physics detector MicroBooNE sees first accelerator-born neutrinos The principal purpose of the detector is to confirm or deny the existence of a hypothetical particle known as the sterile neutrino. November 2, 2015 An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab. An accelerator-born neutrino candidate, spotted with the MicroBooNE detector. Image courtesy Fermilab.

  9. [High Energy Physics Program at the University of Alabama. Final report

    SciTech Connect (OSTI)

    Baksay, L.; Busenitz, J.K.

    1993-10-01

    The High Energy Physics group at University of Alabama is a member of the L3 collaboration studying e+e{minus} collisions near the Z{degree} pole at the LEP accelerator at CERN. About 2 million Z{degree} events have been accumulated and the experiment has been prolific in publishing results on the Z resonance parameters, the Z couplings to all leptons and quarks with mass less than half the Z mass, searches for new particles and interactions, and studies of strong interactions and/or weak charged current decays of the quarks and leptons abundantly produced in Z decays. The group is contributing to data analysis as well as to detector hardware. In particular, the authors are involved in a major hardware upgrade for the experiment, namely the design, construction and commissioning of a Silicon Microvertex Detector (SMD) which has successfully been installed for operation during the present grant period. The authors present here a report on their recent L3 activities and their plans for the next grant period of twelve months (April 1, 1994--March 31, 1995). Their main interests in data analysis are in the study of single photon final states and the physics made more accessible by the SMD, such as heavy flavor physics. Their hardware efforts continue to be concentrated on the high precision capacitive and optical alignment monitoring systems for the SMD and also includes gas monitoring for the muon system. They are also planning to participate in the coming upgrade of the L3 detector.

  10. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema (OSTI)

    None

    2011-10-06

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  11. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    SciTech Connect (OSTI)

    2010-05-11

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided About the speaker Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2 years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  12. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  13. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    SciTech Connect (OSTI)

    Ruebel, Oliver

    2009-12-01

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  14. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    SciTech Connect (OSTI)

    Ernst, Jesse; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  15. 12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics...

    Office of Scientific and Technical Information (OSTI)

    12.6 keV Kr K-alpha X-ray Source For High Energy Density Physics Experiments Citation Details In-Document Search Title: 12.6 keV Kr K-alpha X-ray Source For High Energy Density...

  16. Physics of (very) high energy e/sup +/-e/sup -/ colliders

    SciTech Connect (OSTI)

    Peskin, M.E.

    1984-10-01

    I review the physics capabilities of e/sup +/e/sup -/ colliders of hundred GeV to TeV center-of-mass energies, emphasizing issues relevant to the physics of symmetry breaking in the weak interactions. 24 references.

  17. The Ultimate Structure of Matter: The High Energy Physics Program from the 1950s through the 1980s

    DOE R&D Accomplishments [OSTI]

    1990-02-01

    This discusses the following topics in High Energy Physics: The Particle Zoo; The Strong and the Weak; The Particle Explosion; Deep Inside the Nucleon; The Search for Unity; Physics in Collision; The Standard Model; Particles and the Cosmos; and Practical Benefits.

  18. Physics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how

  19. Performance of bent-crystal x-ray microscopes for high energy density physics research

    SciTech Connect (OSTI)

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to find the best compromise between FOV, image fluence, and spatial resolution for a particular application.

  20. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; Smith, Ian C.; Porter, John L.

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  1. Final Technical Report for "High Energy Physics at The University of Iowa"

    SciTech Connect (OSTI)

    Mallik, Usha; Meurice, Yannick; Nachtman, Jane; Onel, Yasar; Reno, Mary

    2013-07-31

    Particle Physics explores the very fundamental building blocks of our universe: the nature of forces, of space and time. By exploring very energetic collisions of sub-nuclear particles with sophisticated detectors at the colliding beam accelerators (as well as others), experimental particle physicists have established the current theory known as the Standard Model (SM), one of the several theoretical postulates to explain our everyday world. It explains all phenomena known up to a very small fraction of a second after the Big Bang to a high precision; the Higgs boson, discovered recently, was the last of the particle predicted by the SM. However, many other phenomena, like existence of dark energy, dark matter, absence of anti-matter, the parameters in the SM, neutrino masses etc. are not explained by the SM. So, in order to find out what lies beyond the SM, i.e., what conditions at the earliest fractions of the first second of the universe gave rise to the SM, we constructed the Large Hadron Collider (LHC) at CERN after the Tevatron collider at Fermi National Accelerator Laboratory. Each of these projects helped us push the boundary further with new insights as we explore a yet higher energy regime. The experiments are extremely complex, and as we push the boundaries of our existing knowledge, it also requires pushing the boundaries of our technical knowhow. So, not only do we pursue humankind’s most basic intellectual pursuit of knowledge, we help develop technology that benefits today’s highly technical society. Our trained Ph.D. students become experts at fast computing, manipulation of large data volumes and databases, developing cloud computing, fast electronics, advanced detector developments, and complex interfaces in several of these areas. Many of the Particle physics Ph.D.s build their careers at various technology and computing facilities, even financial institutions use some of their skills of simulation and statistical prowess. Additionally, last

  2. The impact of Hall physics on magnetized high energy density plasma jets

    SciTech Connect (OSTI)

    Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.

    2014-05-15

    Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e} ∼ 10{sup 19} cm{sup −3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (∼1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10 T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)

  3. MCRUNJOB: A High energy physics workflow planner for grid production processing

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core metadata description language includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows, and data provenance information. The language features allow for structure in the metadata by including full expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular design which allows for easy expansion to new job description languages or new application level tasks.

  4. High energy physics program at Texas A&M University. Final report, April 1, 1990--March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The Texas A&M experimental high energy physics program has been supported since its inception by DOE Contract DE-AS05-81ER40039. During that period we established a viable experimental program at a university which before this time had no program in high energy physics. In 1990, the experimental program was augmented with a program in particle theory. In the accompanying final report, we outline the research work accomplished during the final year of this contract and the program being proposed for consideration by the Department of Energy for future grant support. Some of the particular areas covered are: Collider detector at Fermilab program; the TAMU MACRO program; SSC R&D program; SSC experimental program; and theoretical physics program.

  5. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  6. Stimulated scattering in laser driven fusion and high energy density physics experiments

    SciTech Connect (OSTI)

    Yin, L. Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J.; Kirkwood, R. K.; Milovich, J.

    2014-09-15

    In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

  7. A new variable-resolution associative memory for high energy physics

    SciTech Connect (OSTI)

    Annovi, A.; Amerio, S.; Beretta, M.; Bossini, E.; Crescioli, F.; Dell'Orso, M.; Giannetti, P.; Hoff, J.; Liu, T.; Magalotti, D.; Piendibene, M.; Sacco, I.; Schoening, A.; Soltveit, H. K.; Stabile, A.; Tripiccione, R.; Liberali, V.; Vitillo, R.; Volpi, G.

    2011-07-01

    We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out by finding track candidates in coarse resolution 'roads'. A large AM bank stores all trajectories of interest, called 'patterns', for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its 'coverage' and the level of fake roads. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least one pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of fakes unfortunately is roughly proportional to the number of patterns in the bank. Moreover, as the luminosity increases, the fake rate increases rapidly because of the increased silicon occupancy. To counter that, we must reduce the width of our roads. If we decrease the road width using the current technology, the system will become very large and extremely expensive. We propose an elegant solution to this problem: the 'variable resolution patterns'. Each pattern and each detector layer within a pattern will be able to use the optimal width, but we will use a 'don't care' feature (inspired from ternary CAMs) to increase the width when that is more appropriate. In other words we can use patterns of variable shape. As a result we reduce the number of fake roads, while keeping the efficiency high and avoiding excessive bank size due to the reduced width. We describe the idea, the implementation in the new AM design and the implementation of the algorithm in the simulation. Finally we show the effectiveness of the 'variable resolution patterns' idea using simulated

  8. The University of Virginia Experimental and Theoretical High Energy Physics Closeout Report

    SciTech Connect (OSTI)

    Principal Investigator: Harry B. Thacker

    2012-08-13

    The work covered in this report includes a joint project on using gauge-gravity duality to discover qualitatively new results on jet quenching in strongly-coupled QCD-like plasmas. Other topics addressed by the theoretical work include jet stopping and energy loss in weakly-coupled plasmas, perturbative QCD amplitudes, AdS/CMT, dynamical electroweak symmetry breaking with a heavy fourth generation, electroweak-scale #23;{nu}{sub R} model, vacuum topological structure and chiral dynamics in strongly coupled gauge theory. Effort committed to the CMS experiment is reported, particularly the management, maintenance, operation and upgrade of the CMS electromagnetic detector (ECAL). Activities in various physics analyses including Supersymmetry, Higgs, Top, and QCD analyses are reported. Physics projects covering wide areas of physics at the LHC are reported. CY2010 saw the accumulation of a data sample corresponding to approximately 36 pb{sup -1}; in CY 2011 the data sample swelled to more than 5 fb{sup -1}. The UVa CMS analysis efforts are focused on this large 2011 data sample in a suite of crucial measurements and searches. KTeV physics activities are reported. Efforts are reported pertaining to several experiments, including: HyperCP, CKM, MIPP, D?, NO#23;{nu}A, and Mu2e.

  9. Using the automata processor for fast pattern recognition in high energy physics experiments—A proof of concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; Guo, Deyuan; Wang, Ke; Zmuda, Ted

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  10. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; Guo, Deyuan; Wang, Ke; Zmuda, Ted

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  11. BELLE High Energy Physics Experiment at the KEK B-factory: Data and Physics Results for CPV, Rare, DKM, 5S, Charm, Tau, and New Particles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Belle is a high-energy physics (HEP) experiment that began in 1999 at the KEK B-factory in Japan under the direction of the International Belle Collaboration. The Collaboration was formed around the common interest of clarifying a long standing physics puzzle, that of CP violation. The goal of the experiments was to make a definitive test of the Standard Models predictions for CP violations in the decays of B mesons. The original Belle experiment verified the KM theory, leading to a Nobel prize in 2008 for Kobayashi and Maskawa. Belle II Collaboration is now working on additional discoveries.

  12. High energy physics research. Final report, October 1, 1969--December 31, 1990

    SciTech Connect (OSTI)

    1995-05-01

    The goal of this research was to understand the fundamental constituents of matter and their interactions. First, a brief history of the high energy research at Princeton University is presented. Next, the extensive research covered in this 21 year period is summarized. Finally, a list of all publications issued during this period is presented.

  13. Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    SciTech Connect (OSTI)

    Akopov, Zaven; Amerio, Silvia; Asner, David; Avetisyan, Eduard; Barring, Olof; Beacham, James; Bernardi, Gregorio; Bethke, Siegfried; Boehnlein, Amber; Brooks, Travis; Browder, Thomas; Brun, Rene; Cartaro, Concetta; Cattaneo, Marco; Chen, Gang; Corney, David; Cranmer, Kyle; Culbertson, Ray; Dallmeier-Tiessen, Sunje; Denisov, Dmitri

    2013-03-27

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.

  14. HepSim: A Repository with Predictions for High-Energy Physics Experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chekanov, S. V.

    2015-01-01

    A file repository for calculations of cross sections and kinematic distributions using Monte Carlo generators for high-energy collisions is discussed. The repository is used to facilitate effective preservation and archiving of data from theoretical calculations and for comparisons with experimental data. The HepSim data library is publicly accessible and includes a number of Monte Carlo event samples with Standard Model predictions for current and future experiments. The HepSim project includes a software package to automate the process of downloading and viewing online Monte Carlo event samples. Data streaming over a network for end-user analysis is discussed.

  15. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    SciTech Connect (OSTI)

    Beg, Farhat N

    2013-08-14

    Recent advances in technology has made possible to create matter with extremely high energy density (energy densities and pressure exceeding 1011 J/m3 and 1 Mbar respectively). The field is new and complex. The basic question for high energy density physics (HEDP) is how does matter behave under extreme conditions of temperature, pressure, density and electromagnetic radiation? The conditions for studying HEDP are normally produced using high intensity short pulse laser, x-rays, particle beams and pulsed power z-pinches. Most of these installations occupy a large laboratory floor space and require a team consisting of a large number of scientists and engineers. This limits the number of experiments that can be performed to explore and understand the complex physics. A novel way of studying HEDP is with a compact x-pinch in university scale laboratory. The x-pinch is a configuration in which a pulsed current is passed through two or more wires placed between the electrodes making the shape of the letter ‘X’. Extreme conditions of magnetic field (> 200 MGauss for less than 1 ns), temperature (1 keV) and density (~ 1022 cm-3) are produced at the cross-point, where two wires make contact. Further, supersonic jets are produced on either side of the cross-point. The physics of the formation of the plasma at the cross-point is complex. It is not clear what role radiation plays in the formation of high energy density plasma (>> 1011 J/m3) at the cross-point. Nor it is understood how the supersonic jets are formed. Present numerical codes do not contain complex physics that can take into account some of these aspects. Indeed, a comprehensive experimental study could answer some of the questions, which are relevant to wide-ranging fields such as inertial confinement fusion, astrophysical plasmas, high intensity laser plasma interactions and radiation physics. The main aim of the proposal was to increase the fundamental understanding of high energy density physics and

  16. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    SciTech Connect (OSTI)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  17. Final Report for Research in High Energy Physics at the University of Pennsylvania for the period ending April 30, 2012

    SciTech Connect (OSTI)

    Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.; Beier, E. W.; Cvetic, M.; Gladney, L.; Jain, B.; Klein, J.; Kroll, J.; Lipeles, E.; Ovrut, B.; Thomson, E.

    2015-07-23

    The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenance and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive

  18. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    SciTech Connect (OSTI)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  19. Low Energy Neutrino Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This large collection of low-energy (less than 30 GEV) neutrino cross sections is extracted from the results of many experiments from 1973 through 2002. The experiments, facilities, and collaborations include ANL, BNL, and FNAL in the U.S., along with CERN, Gargamelle, SKAT, LSND, and others. The data are presented in both tabular and plotted formats. The Durham High Energy Physics Database Group makes these data available in one place, easy to access and compare. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  20. Research in high energy physics. Progress report, 1 July 1993--30 June 1994

    SciTech Connect (OSTI)

    Rosen, J.; Block, M.; Buchholz, D.

    1994-07-01

    Progress on Task A centered around data analysis. E835 is now approved. It will extend E760 studies, exploring new charmonium states and featuring an upgraded detector system plus operation at 4--6 times higher luminosity. Results are given on E760 analysis. Task B has 10 papers that have either appeared in print, or have been prepared for publication. They break down into four categories; experimental physics, theoretical physics, and computer computational techniques. They are described here along with an exciting new experimental proposal to use Da{Phi}ne, the {Phi} factory that is being constructed at Frascati National Laboratory. Progress for Task C which includes participating in the D0 project at TeV I, and the photoproduction experiment, E687, at TeV II is given. While Northwestern is not participating in the top quark physics group at D0, they have been involved in the data analysis and the discussions that led to the limits on the top quark mass. Task D comprises the shared services for the Northwestern DOE contract. This includes the maintenance and operation of all computers within the HEP group. The projects supported by Task D during the past year are given. Task E progress was to resolve the apparent conflict between EMC, SMC, and SLAC results on nucleon structure functions and Bjorken sum rules. Task F covered research in hadronic decay of the tau, thermal field theory, plasma effects in astrophysics, and heavy quarkonium. Task G covers E665, a general purpose muon scattering experiment which can detect both the scattered muon and most charged and neutral hadrons produced in the forward region. The Northwest group has collaborated very closely in the past year with the Harvard group on analyses of structure functions and vector meson production in the 1991 data sample.

  1. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY14

    SciTech Connect (OSTI)

    Pierce, Aaron T.

    2014-04-01

    The workshop was held from September 23-25, 2013 on the University of Michigan campus. Local organizers were Dragan Huterer, Katherine Freese, and Heidi Wu (University of Michigan). Marilena Lo Verde (University of Chicago) also served as an external organizer. This workshop sought to gather experimentalists and theorists to discuss and define directions in cosmology research after the 1st year release of Planck data. The workshop included 35 invited (non-U-M) cosmologists, most of them relatively junior. The workshop was notable for spirited discussion of various theoretical ideas and experimental developments, and particularly on how one could test theory with ongoing and future experiments. In our follow-up poll, 95% of participants reported that interactions with other participants at the workshop may lead to further collaboration. Most participants (again about 95%) reported that they are very satisfied with the quality of the program, information they received, and the logistical support. Slides are available on line at: http://www.umich.edu/~mctp/SciPrgPgs/events/2013/CAP13/program.html. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 23 participants came under the program. Slides are available on line for talks when applicable: http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/winter 2014 and http://mctp.physics.lsa.umich.edu/brown-bag-seminar-history/fall-2013.

  2. Advantages of Real-Time Spectrum Analyzers in High-Energy Physics Applications

    SciTech Connect (OSTI)

    Parker, Louis

    2004-11-10

    Typically, particles are injected into the ring at low energy levels and then 'ramped up' to higher levels. During ramping, it is important that the horizontal and vertical tune frequencies do not shift, lest they hit upon a resonant combination that causes beam instability or sudden total loss of ring beam current (beam blow up). Beam instabilities can be caused by a number of factors. Non-linearities and/or different response times of independent controls such as beam position monitor (BPM) cables and circuits, magnets for guidance and focusing of the beam, Klystrons or Tetrodes (which provide power to RF cavities that transmit energy to the beam), and vacuum pumps and monitors can all cause beam instabilities. Vibrations and lack of proper shielding are other factors. The challenge for operators and researchers is to correctly identify the factors causing beam instabilities and blow up so that costly accelerator time is not interrupted and experimental results are not compromised. The instrument often used to identify problems in particle accelerator applications is the spectrum analyzer. This paper will discuss the advantages of real time spectrum analyzers (RSA) versus swept frequency spectrum analyzers in HEP applications. The main focus will be on monitoring beam position and stability, especially during ramp-up. Also covered will be use of RSA for chromaticity measurements, Phase Locked Loop (PLL) diagnostics, and vibration analysis.

  3. REPORT OF RESEARCH ACTIVITIES FOR THE YEARS 2000 - 2003; HIGH ENERGY PHYSICS GROUP; SOUTHERN METHODIST UNIVERSITY; EXPERIMENTAL TASK A AND THEORY TASK B

    SciTech Connect (OSTI)

    Dr. Ryszard Stroynowski

    2003-07-01

    The experimental program in High Energy Physics at SMU was initiated in 1992. Its main goal is the search for new physics phenomena beyond the Standard Model (SSC, LHC) and the study of the properties of heavy quarks and leptons (CLEO, BTeV).

  4. High Energy Theory Workshops and Visitors at the Michigan Center for Theoretical Physics FY15

    SciTech Connect (OSTI)

    Pierce, Aaron T.

    2015-09-18

    The String theory workshop was held from March 4-7, 2015 on the University of Michigan campus. Local organizers were Gordon Kane and Aaron Pierce. Piyush Kumar (Yale), Jim Halverson (KITP), Bobby Acharya (ICTP) and Sven Krippendorf (Oxford) served as external organizers.The meeting focused on the status of work to project 10 or 11 dimensional string/M theories onto our 4 spacetime dimensions (compactification). The workshop had 31 participants, half from outside the U.S. Participants were encouraged to focus on predictions for recent and forthcoming data, particularly for Higgs physics and LHC and dark matter, rather than on the traditional approach of embedding the Standard Model particles and forces. The Higgs boson sympoosium was locally organized by James Wells (chair), Aaron Pierce and Jianming Qian. Additional input in the early stages by Stefan Pokorski (Warsaw) who was unable to attend in the end. The workshop consistent of 22 talks from experts around the world, both theoretical and experimental. Experimentalists summarized the current state of knowledge of the Higgs boson and its varients. The theory talks ranged from technical calculations of Standard Model processes to speculative novel ideas. The YHET visitor program invited weekly young visitors to the University of Michigan campus to present their work. This year 24 participants came under the program, with 17 of them receiving at least partial support for their visits.

  5. High energy physics program at Texas A and M University. Annual report, April 1, 1991--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Texas A&M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A&M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

  6. Technical Report from the High Energy Physics Group of the University of California, Santa Barbara, DOE grant DE-FG02-91ER40618

    SciTech Connect (OSTI)

    Richman, Jeffrey; Berenstein, David; Campagnari, Claudio; Giddings, Steven; Incandela, Joseph; Nelson, Harry; Stuart, David; Witherell, Michael

    2014-09-11

    The research program of the UCSB high energy physics group encompasses advanced projects in both experimental and theoretical particle physics. This program has been strongly supported by the DOE Office of High Energy Physics for many years. The program addresses questions related to the properties of matter, the fundamental forces of nature, the origin and evolution of the universe, and the nature of spacetime. The mission of the group also has a strong educational component, and the training of physicists in advanced research is a key part of our program.

  7. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect (OSTI)

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

  8. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; et al

    2015-11-30

    ) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less

  9. High Energy Physics Jobs

    Office of Science (SC) Website

    aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  10. LHC Physics Potential versus Energy

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  11. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  12. high renewable energy penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high renewable energy penetration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  13. Department of Solar Energy and Environmental Physics | Open Energy...

    Open Energy Info (EERE)

    Solar Energy and Environmental Physics Jump to: navigation, search Name: Department of Solar Energy and Environmental Physics Place: Sede Boqer Campus, Israel Zip: 84990 Sector:...

  14. Experimental and theoretical high energy physics research. Annual grant progress report (FDP), January 15, 1993--January 14, 1993

    SciTech Connect (OSTI)

    Cline, D.B.

    1993-10-01

    Progress on seven tasks is reported. (I)UCLA hadronization model, antiproton decay, PEP4/9 e{sup +}e{sup {minus}} analysis: In addition to these topics, work on CP and CPT phenomenology at a {phi} factory and letters of support on the hadronization project are included. (II)ICARUS detector and rare B decays with hadron beams and colliders: Developments are summarized and some typcial events as shown; in addition, the RD5 collaboration at CERN and the asymmetric {phi} factory project are sketched. (III)Theoretical physics: Feynman diagram calculations in gauge theory; supersymmetric standard model; effects of quantum gravity in breaking of global symmetries; models of quark and lepton substructure; renormalized field theory; large-scale structure in the universe and particle-astrophysics/early universe cosmology. (IV)H dibaryon search at BNL, kaon experiments (E799/KTeV) at Fermilab: Project design and some scatterplots are given. (V)UCLA participation in the experiment CDF at Fermilab. (VI)Detectors for hadron physics at ultrahigh energy colliders: Scintillating fiber and visible light photon counter research. (VII)Administrative support and conference organization.

  15. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  16. Two-Photon Reactions Leading to Hadron Final States: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    The data gathered from the relevant collaborations at DOEs SLAC are available, and so are data from related collaborations based at CERN, DESY, KEK, NOVO, ORSAY, and CORNELL University. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  17. High frequency energy measurements

    SciTech Connect (OSTI)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described.

  18. Hadronic Total Cross Sections (R) in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction

  19. Inclusive Particle Production Data in E+E- Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lafferty, G. D.; Reeves, P. I.; Whalley, M. R.

    A comprehensive compilation of experimental data on inclusive particle production in e+e- interactions is presented. Data are given in both tabular and graphical form for multiplicities and inclusive differential cross sections from experiments at all of the world`s high energy e+e- colliders. To facilitate comparison between the data sets, curves are also shown from the JETSET 7.4 Monte Carlo program. (Taken from the abstract of A Compilation of Inclusive Particle Production Data in E+E- Annihilation, G.D. Lafferty, P.I. Reeves, and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 21, Number 12A, 1995.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  20. High Energy QCD

    SciTech Connect (OSTI)

    Yuri Kovchegov

    2012-05-31

    The project significantly advanced our understanding of the theory of strong interactions known as quantum chromodynamics (QCD) in high energy collisions of elementary particles and nuclei. QCD is one of the four fundamental forces of nature, but is understood quite poorly due to the complexity of strong interactions. This project advanced our understanding of QCD in the very high energy collisions of protons and nuclei, where densities of quarks and gluons inside the colliding particles are so high (due to high energy) that complicated nonlinear interactions between quarks and gluons become important. This regime is known as gluon (or parton) saturation. The result of the project is a significant improvement of our understanding of the physics of gluon saturation: important (running coupling) corrections to the existing description of the process (the so-called Balitsky-Kovchegov equation) have been calculated, placing the BK equation in good agreement with the experimental data on deep inelastic scattering (DIS), a process where an electron is collided with the proton to probe the proton's internal structure. Corresponding cross section for quark and gluon production in DIS and nuclear collisions have been calculated and corrected correspondingly, resulting in new and interesting predictions for the physics to be probed in heavy ion collisions at the Large Hadron Collider (LHC). The dense gluon systems play an important role in collisions of ultrarelativistic large nuclei, which are performed in order to create a plasma of quarks and gluons (QGP). An important question in the field is how exactly this QGP is produced in a collision of two heavy ions. The conclusion of this project is that QGP production happens due to strong coupling effects between quarks and gluons. This made theoretical description of QGP production only possible using the methods emerging from string theory. Using these methods QGP production was well understood as a result of this project

  1. Proceedings of the 1992 workshops on high-energy physics with colliding beams. Volume 1, Search for new phenomena at colliding-beam facilities

    SciTech Connect (OSTI)

    Rogers, J.

    1992-12-31

    This report contains brief papers and viewgraphs on high energy topics like: supersymmetry; new gauge bosons; and new high energy colliders.

  2. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    SciTech Connect (OSTI)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present

  3. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect (OSTI)

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  4. Drell-Yan Cross Sections: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stirling, W. J.; Whalley, M. R.

    A compilation of data on Drell-Yan cross sections above a lepton-pair mass of 4 GeV/c2 is presented. The relevant experiments at Fermilab and CERN are included dating from approximately 1977 to the present day, covering p, p and pi +or- beams on a variety of nuclear and hydrogen targets, with centre-of-mass energies from 8.6 GeV to 630 GeV. The type of data presented include d sigma /dm, d2 sigma /dm dx and d2 sigma /dm dy distributions as well as other variations of these, and also transverse momentum distributions. The data are compared with a standard theoretical model, and a phenomenological 'K-factor' for each set is calculated. (Taken from the abstract of A Compilation of Drell-Yan Cross sections, W.J. Stirling and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 19, Data Review, 1993.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  5. Experiments in intermediate energy physics

    SciTech Connect (OSTI)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  6. DoE Early Career Research Program: Final Report: Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics

    SciTech Connect (OSTI)

    Farbin, Amir

    2015-07-15

    This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".

  7. Two-Photon Reactions Leading to Hadron Final States: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Whalley, M. R.

    This collection is a compilation of all experimental cross sections, published since 1994, on two-photon initiated reactions is presented. The author, M.R. Whalley, published this compilation in the Journal of Physics G (Nuclear and Particle Physics), volume 27, in 2001. It updates data published in 1994 by D. Morgan et al. Whalley’s abstract notes Processes with both quasi-real and virtual photons coming from e+e- collisions are encoded. The data encompass hadronic and leptonic structure functions, inclusive and exclusive hadronic cross sections, inclusive jet cross sections, heavy quark cross sections and total hadronic cross sections. Where appropriate, comparisons with theoretical curves are shown to aid the reader in comparing the different data sets. The data gathered from the relevant collaborations at DOEÆs SLAC are available, and so are data from related collaborations based at CERN, DESY, KEK, NOVO, ORSAY, and CORNELL University. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  8. Single Photon Production in Hadronic Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vogelsang and Whalley in their 1997 paper, ôA Compilation of Data on Single and Double Prompt Photon Production in Hadron-Hadron Interactionsö published in volume 23 of Journal of Physics G (Nuclear and Particle Physics) present the compilation as well as ôan interpretation of these data in terms of the æstate-of-the-art NLO theory with specific emphasis on the uncertainties involved.ö They also say, ôComparisons of this theory with the individual data sets are made in order to indicate to the reader the scope and general status of the available data. For completeness, data on two-prompt-photon production are also included in a separate small section.ö The data gathered from the relevant collaborations at DOEÆs Fermilab are available, and so are data from related collaborations based at CERN. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  9. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  10. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functions as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  11. Single Photon Production in Hadronic Interactions: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vogelsang and Whalley in their 1997 paper, A Compilation of Data on Single and Double Prompt Photon Production in Hadron-Hadron Interactions published in volume 23 of Journal of Physics G (Nuclear and Particle Physics) present the compilation as well as an interpretation of these data in terms of the state-of-the-art NLO theory with specific emphasis on the uncertainties involved. They also say, Comparisons of this theory with the individual data sets are made in order to indicate to the reader the scope and general status of the available data. For completeness, data on two-prompt-photon production are also included in a separate small section. The data gathered from the relevant collaborations at DOEs Fermilab are available, and so are data from related collaborations based at CERN. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  12. OZSPEC-2: An improved broadband high-resolution elliptical crystal x-ray spectrometer for high-energy density physics experiments (invited)

    SciTech Connect (OSTI)

    Heeter, R. F.; Anderson, S. G.; Booth, R.; Brown, G. V.; Emig, J.; Fulkerson, S.; McCarville, T.; Norman, D.; Schneider, M. B.; Young, B. K. F.

    2008-10-15

    A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 {mu}m resolution over a 1500 {mu}m field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/{delta}E>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.

  13. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  14. Proceedings of the 34th International Conference in High Energy Physics (ICHEP08), Philadelphia, PA, 2008, eConf C080730, [hep-ph/0809.xxx

    SciTech Connect (OSTI)

    Lockyer, Nigel S.; Smith, AJ Stewart,; et. al.

    2008-09-01

    In 2004 a team from the University of Pennsylvania, Princeton University, and the Institute for Advanced Study proposed to host the 2008 International Conference on High Energy Physics (ICHEP) on the campus of the University of Pennsylvania in Philadelphia. The proposal was approved later that year by the C-11 committee of the International Union of Pure and Applied Physics. The Co-Chairs were Nigel S. Lockyer (U. Penn/TRIUMF) and A.J. Stewart Smith (Princeton); Joe Kroll of U. Penn served as Deputy Chair from 2007 on. Highlights of the proposal included 1. greatly increased participation of young scientists, women scientists, and graduate students 2. new emphasis on formal theory 3. increased focus on astrophysics and cosmology 4. large informal poster session (170 posters) in prime time 5. convenient, contiguous venues for all sessions and lodging 6. landmark locations for the reception and banquet. The conference program consisted of three days of parallel sessions and three days of plenary talks.

  15. Secretary Chu Recalls Garden City High School Physics Teacher | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Recalls Garden City High School Physics Teacher Secretary Chu Recalls Garden City High School Physics Teacher September 30, 2010 - 12:00am Addthis As part of President Obama's new initiative to recruit teachers, U.S. Energy Secretary Steven Chu is featured in a Public Service Announcement (PSA) video recalling how his high school physics teacher inspired him to pursue a career in science. In the PSA, Secretary Chu shares how his teacher, Mr. Thomas Miner, changed his approach to

  16. Large Scale Production Computing and Storage Requirements for High Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for High Energy Physics: Target 2017 HEPlogo.jpg The NERSC Program Requirements Review "Large Scale Computing and Storage Requirements for High Energy Physics" is organized by the Department of Energy's Office of High Energy Physics (HEP), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The review's goal is to characterize

  17. Fiscal Year 1985 Department of Energy authorization (high energy and nuclear physics). Volume II-A, No. 116. Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, House of Representatives, Ninety-Eighth Congress, Second Session, February 22, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Volume II-A of the hearing record covers the testimony of Alvin Trivelpiece, Director of the Office of Energy Research, and scientists from research laboratories which receive funding for high energy and nuclear physics programs. The two programs requested a 16% increase over 1985 for a total of $746.8 million. Trivelpiece gave an overview of basic research programs and the significance of large-scale facilities for physics research. The scientists described progress made on the superconducting super collider design, the Tevatron I and II, and the Linear Accelerator Center and linear collider at Stanford in the high energy physics areas. Nuclear physics panelists described work at electron accelerator facilities and the proposed continuous beam electron accelerator facility. An appendix with additional questions and responses for the record follows the testimony of the eight witnesses.

  18. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  19. Dark Energy: A Crisis for Fundamental Physics

    ScienceCinema (OSTI)

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2010-09-01

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  20. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  1. High Energy Cost Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Cost Grants High Energy Cost Grants The High Energy Cost Grant Program provides financial assistance for the improvement of energy generation, transmission, and distribution facilities servicing eligible rural communities with home energy costs that are over 275% of the national average. Grants under this program may be used for the acquisition, construction, installation, repair, replacement, or improvement of energy generation, transmission, or distribution facilities in

  2. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    SciTech Connect (OSTI)

    He, Yudong |

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled `Neutrino Mass and Oscillation`, `High Energy Neutrino Astrophysics`, `Detection of Dark Matter`, `Search for Strange Quark Matter`, and `Magnetic Monopole Searches`. The report is introduced by a survey of the field and a brief description of each of the author`s papers.

  3. Future high energy colliders symposium. Summary report

    SciTech Connect (OSTI)

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  4. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  5. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering High power ...

  6. Accelerator physics and technology limitations to ultimate energy...

    Office of Scientific and Technical Information (OSTI)

    Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders Citation Details In-Document Search Title: Accelerator physics and ...

  7. High Performance Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Energy Management Reduce energy use and meet your business objectives By applying continuous improvement practices similar to Lean and Six Sigma, the BPA Energy Smart...

  8. Atomic physics with highly charged ions

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  9. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingcwdd2015-03-18T21:41:24+00:00...

  10. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    SciTech Connect (OSTI)

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured. The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.

  11. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: physical properties and specific energy consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumuluru, Jaya Shankar

    2015-06-15

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  12. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location...

  13. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get ... HEP Theory at Los Alamos The Theoretical High Energy Physics group at ...

  14. Discharge Physics of High Power Impulse Magnetron Sputtering...

    Office of Scientific and Technical Information (OSTI)

    Discharge Physics of High Power Impulse Magnetron Sputtering Citation Details In-Document Search Title: Discharge Physics of High Power Impulse Magnetron Sputtering You are ...

  15. Large Scale Computing and Storage Requirements for High Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation ... Project-X http:www.er.doe.govhepHEPAPreportsP5Report%2006022008.pdf ComPASS The SciDAC2 ...

  16. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf (1.95 MB) More Documents & Publications High Energy Density Ultracapacitors ...

  17. High-precision arithmetic in mathematical physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  18. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf (1.09 MB) More Documents & Publications High Energy Density Ultracapacitors High ...

  19. Kathy Prestridge-Physics' solutions for energy independence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kathy Prestridge Kathy Prestridge-Physics' solutions for energy independence She leads a team whose high-resolution experiments in fluid dynamics have been applied to weapon design, astrophysics and inertial confinement fusion (ICF)-the power of the sun. March 19, 2014 Kathy Prestridge In college at Princeton and then U.C. San Diego where she obtained her doctorate, Prestridge studied applied mechanics and aerospace engineering. At Los Alamos, she researches the behavior of materials in extreme

  20. High energy physics facilities. Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, First Session, October 19, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Alvin W. Trivelpiece of the DOE Office of Energy Research and physicists from Stanford and Yale Universities testified on reports recommending the cancellation of the colliding beam accelerator (CBA) construction at Brookhaven National Laboratory and the initiation of physics experiments using the superconducting super collider (SSC). At issue were the funds already put into the CBA and the physics community's shift in support to the SSC. Trivelpiece discussed the controversy over facility funding and the uncertainties of frontier research programs before describing how funds would be allocated. The physicists discussed the background for the advisory panels recommendations. Two appendices with questions and responses and with additional material submitted for the record follow the testimony.

  1. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  2. Final Cooling for a High-Energy High-Luminosity Lepton Collider...

    Office of Scientific and Technical Information (OSTI)

    Batavia, IL (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: United States Language: English Subject: 43 ...

  3. Final Cooling for a High-Energy High-Luminosity Lepton Collider...

    Office of Scientific and Technical Information (OSTI)

    IL (United States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: United States Language: English Subject: 43 ...

  4. High Energy Density Capacitors

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  5. High Sheldon Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sheldon Energy Wind Farm Jump to: navigation, search Name High Sheldon Energy Wind Farm Facility High Sheldon Energy Wind Farm Sector Wind energy Facility Type Commercial Scale...

  6. Secretary of Energy Chu Congratulates 2012 Chemistry and Physics...

    Office of Environmental Management (EM)

    2 Chemistry and Physics Nobel Laureates Secretary of Energy Chu Congratulates 2012 Chemistry and Physics Nobel Laureates October 11, 2012 - 11:08am Addthis NEWS MEDIA CONTACT (202) ...

  7. DOE Science Showcase - Particle Physics | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Particle Physics Particle Physics Research in DOE Databases Energy Citations Database DOE R&D Accomplishments DOE Data Explorer ScienceCinema Science.gov WorldWideScience.gov More ...

  8. CeramPhysics Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: CeramPhysics is developing solid oxide fuel cells that use ceramic honeycomb membranes. References: CeramPhysics, Inc.1 This article is a stub. You can help OpenEI by...

  9. PHYSICAL INVENTORY LISTING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHYSICAL INVENTORY LISTING PHYSICAL INVENTORY LISTING Form supports nuclear materials control and accountability. PHYSICAL INVENTORY LISTING (15.97 KB) More Documents & Publications DOE/NRC F 742C o:\informs\fixforms\nrc740m.wpf DOE F 74

  10. Energy related applications of elementary particle physics

    SciTech Connect (OSTI)

    Rafelski, J.

    1989-10-30

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the t{mu}-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X{sup {minus}} is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs.

  11. Nuclear energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. How Does Fusion Energy Work? Click here to view a cool infographic about fusion energy from the U.S. Department of Energy. Read more about How Does Fusion Energy Work? How Does Fusion Energy Work? Fusion is the energy source of the sun and stars. Read more about

  12. Spin structure in high energy processes: Proceedings

    SciTech Connect (OSTI)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  13. Accelerator physics and technology limitations to ultimate energy...

    Office of Scientific and Technical Information (OSTI)

    Title: Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders Authors: Bauer, P. ; Limon, P. ; Peggs, Stephen G. ; Syphers, ...

  14. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013 Citation Details In-Document Search Title: Symposium on ...

  15. Low Energy Probes of New Physics | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this talk I discuss the role of low-energy nuclear probes in the quest for new physics beyond the Standard Model. After an introduction on the landscape of low-energy...

  16. Physical Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage » Physical Hydrogen Storage Physical Hydrogen Storage Physical storage is the most mature hydrogen storage technology. The current near-term technology for onboard automotive physical hydrogen storage is 350 and 700 bar (5,000 and 10,000 psi) nominal working-pressure compressed gas vessels-that is, "tanks." While low-pressure liquid hydrogen, near the normal boiling point of 20 K, is routinely used for bulk hydrogen storage and transport, there is currently little

  17. (The physics of highly charged ions)

    SciTech Connect (OSTI)

    Phaneuf, R.A.

    1990-10-12

    The Fifth International Conference on the Physics of Highly Charged Ions drew more than 200 participants, providing an excellent overview of this growing field. Important technical developments and experimental results in electron-ion collisions were reported. The merging of fast ion beams from accelerators or storage rings with advanced high-intensity electron-beam targets has yielded data of unprecedented quality on radiative and dielectronic recombination, providing stringent tests of theory. Long-awaited technical innovations in electron-impact excitation measurements were also reported. The level of activity in multicharged ion-surface interactions has increased. More sophisticated experimental studies of the neutralization process have shown the inadequacy of previously accepted mechanisms, and theoretical activity in this area is just being initiated. The IAEA meetings addressed atomic and molecular data needs for fusion research, with ITER providing a key focus. Such data are especially critical to modeling and diagnostics of the edge plasma. The ALADDIN data base system has been universally accepted and has streamlined the exchange of numerical data among data centers and the fusion community. The IAEA continues to play a pivotal role in the identification of data needs, and in the coordination of data compilation and research activities for fusion applications.

  18. Watauga High School Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Watauga High School Wind Energy Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Facility Status...

  19. Why Physics Needs Diamonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Physics Needs Diamonds Why Physics Needs Diamonds April 26, 2016 - 3:31pm Addthis A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. A detailed view of the diamond wafers scientists use to get a better measure of spinning electrons. | Photo courtesy of Jefferson Lab. Kandice Carter Jefferson Lab Diamonds are one of the most coveted gemstones. But while some may want the perfect diamond for its sparkle,

  20. Closeout for U.S. Department of Energy Final Technical Report for University of Arizona grant DOE Award Number DE-FG03-95ER40906 From 1 February 1995 to 31 January 2004 Grant title: Theory and Phenomenology of Strong and Weak High Energy Physics (Task A) and Experimental Elementary Particle Physics (Task B)

    SciTech Connect (OSTI)

    Rutherfoord, John; Toussaint, Doug; Sarcevic, Ina

    2005-03-03

    The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for the experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).

  1. Precision timing measurements for high energy photons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; et al

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.71.71.7 cm3 lutetiumyttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.52.1 psmorefor an incoming beam energy of 32 GeV. In a second measurement, using a 2.52.520 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 5911 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 545 ps for an incoming beam energy of 32 GeV.less

  2. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Stewart Prager Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the "Madison Symmetric Torus" (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also co-discovered the

  3. Custom VLSI circuits for high energy physics

    SciTech Connect (OSTI)

    Parker, S.

    1998-06-01

    This article provides a brief guide to integrated circuits, including their design, fabrication, testing, radiation hardness, and packaging. It was requested by the Panel on Instrumentation, Innovation, and Development of the International Committee for Future Accelerators, as one of a series of articles on instrumentation for future experiments. Their original request emphasized a description of available custom circuits and a set of recommendations for future developments. That has been done, but while traps that stop charge in solid-state devices are well known, those that stop physicists trying to develop the devices are not. Several years spent dodging the former and developing the latter made clear the need for a beginner`s guide through the maze, and that is the main purpose of this text.

  4. 3 HIGH ENERGY AND NUCLEAR PHYSICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Easy Tips to Reduce Your Standby Power Loads 3 Easy Tips to Reduce Your Standby Power Loads November 1, 2012 - 3:35pm Addthis Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of ©iStockphoto.com/DonNichols. Using a power strip to turn off electronics and appliances when they aren't in use ensures that they are truly off and not using extra electricity. | Photo courtesy of

  5. Basic physics program for a low energy antiproton source in North America

    SciTech Connect (OSTI)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs.

  6. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  7. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  8. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  9. Intermediate energy nuclear physics with electrons

    SciTech Connect (OSTI)

    Moniz, Ernest J.

    1987-10-10

    Inclusive electron scattering has made an enormous contribution to our understanding of hadron and of nuclear structure and to defining the questions which are driving the field in new directions. With intense CW intermediate energy electron beams and with the opportunity to exploit spin observables, central contributions to many of the most crucial questions are anticipated. (AIP)

  10. Fiscal year 1985 Department of Energy authorization (high-energy and nuclear physics). Volume II-B. Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, US House of Representatives, Ninety-Eighth Congress, Second Session, February 22, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Volume II-B of the DOE authorization hearings for fiscal year 1985 covers testimony on high-energy and nuclear physics programs. The volume opens with a continuation of Appendix I, which contains questions directed at Dr. Alvin Trivelpiece and his responses on research at several laboratories and four construction projects. The latter include general plant projects, the Continuous Electron Beam Accelerator Facility, the Tandem/AGS Heavy Ion Transfer Line, and the University Accelerator Upgrade at the University of Washington and Yale. Two 1983 DOE/National Science Foundation reports make up Appendix II. The volume concludes with the text of the 1985 budget request for $746,105,000 and a breakdown of line item expenditures.

  11. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  12. Secretary of Energy Chu Congratulates 2012 Chemistry and Physics Nobel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laureates | Department of Energy 2 Chemistry and Physics Nobel Laureates Secretary of Energy Chu Congratulates 2012 Chemistry and Physics Nobel Laureates October 11, 2012 - 11:08am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington - Secretary of Energy Steven Chu today congratulated Robert J. Lefkowitz and Brian K. Kobilka for winning the 2012 Nobel Prize in Chemistry "for studies of G-protein-coupled receptors" and Serge Haroche and David J. Wineland for winning the 2012 Nobel

  13. Final Report: High Energy Physics Program (HEP), Physics Department...

    Office of Scientific and Technical Information (OSTI)

    McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou19;e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and...

  14. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  15. Engineered High Energy Crop (EHEC) Programs

    Broader source: Energy.gov (indexed) [DOE]

    High Energy Crop Programs Final Programmatic Environmental Impact Statement DOEEIS-0481 JULY 2015 THIS PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs ...

  16. High energy photoproduction at the LHC

    SciTech Connect (OSTI)

    Ovyn, S.

    2008-08-29

    High-energy photon-photon and photon-proton interactions at the LHC offer interesting possibilities for the study of the electroweak sector up to TeV scale and searches for processes beyond the Standard Model. First results, based on a fast LHC-like detector simulation are presented, various signals and their irreducible backgrounds are presented after applying acceptance cuts. Prospects are discussed for the Higgs boson search, detection of SUSY particles and of anomalous quartic gauge couplings, as well as for the top quark physics.

  17. Channeling and dechanneling at high energy

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1987-09-30

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs.

  18. High West Energy, Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    West Energy, Inc Place: Nebraska Phone Number: 307.245.9292 Website: highwestenergy.com Twitter: @HighWestEnergy Facebook: https:www.facebook.comHighWestEnergy Outage Hotline:...

  19. Proposal for a High Energy Nuclear Database

    SciTech Connect (OSTI)

    Brown, D A; Vogt, R

    2005-03-31

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  20. How Particle Physics Improves Your Life | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Particle physics research from Fermilab and SLAC are helping to improve our daily lives and the products we use. | Illustration by Sandbox Studio, Chicago. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov Learn More Visit Symmetry Magazine for more on research and development from Fermilab and SLAC. Editor's Note: This article is

  1. High energy overcurrent protective device

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  2. New high power linacs and beam physics

    SciTech Connect (OSTI)

    Wangler, T.P.; Gray, E.R.; Nath, S.; Crandall, K.R.; Hasegawa, K.

    1997-08-01

    New high-power proton linacs must be designed to control beam loss, which can lead to radioactivation of the accelerator. The threat of beam loss is increased significantly by the formation of beam halo. Numerical simulation studies have identified the space-charge interactions, especially those that occur in rms mismatched beams, as a major concern for halo growth. The maximum-amplitude predictions of the simulation codes must be subjected to independent tests to confirm the validity of the results. Consequently, the authors compare predictions from the particle-core halo models with computer simulations to test their understanding of the halo mechanisms that are incorporated in the computer codes. They present and discuss scaling laws that provide guidance for high-power linac design.

  3. Angular correlations and high energy evolution

    SciTech Connect (OSTI)

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  4. High Energy Batteries India Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Batteries India Ltd Jump to: navigation, search Name: High Energy Batteries (India) Ltd Place: Chennai, Andhra Pradesh, India Zip: 600096 Product: Manufacturer of...

  5. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOE Patents [OSTI]

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  6. Workshop on Energy Research for Physics Graduate Students and Postdocs

    SciTech Connect (OSTI)

    Cole, Ken

    2015-03-01

    One-day workshop for a small group of graduate students and post-docs to hear talks and interact with experts in a variety of areas of energy research. The purpose is to provide an opportunity for young physicists to learn about cutting-edge research in which they might find a career utilizing their interest and background in physics.

  7. LHC Physics Potential vs. Energy: Considerations for the 2011 Run

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab /CERN

    2011-02-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quantify the advantage of increasing the beam energy from 3.5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u {bar d}, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes. This note extends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/.

  8. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Fusion Energy Work? By Raphael Rosen August 25, 2016 Tweet Widget Google Plus One Share on Facebook Fusion is the energy source of the sun and stars. (Photo by U.S. Department of Energy) Fusion is the energy source of the sun and stars. Click here to view a cool infographic about fusion energy from the U.S. Department of Energy. Contact Info PPPL Office of Communications Email: PPPL_OOC@pppl.gov Phone: 609-243-2755 Download Select and View High Resolution Images to Download Learn More

  9. New INL High Energy Battery Test Facility | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. Foro Energy partners with Dept of Energy to commercialize high power lasers for the oil, natural gas, geothermal, and mining industries. photo courtesy of Foro Energy. The Geothermal Technologies Office (GTO) partners with cutting- edge technology developers to pioneer applications that accelerate the adoption of geothermal

  10. High West Energy, Inc | Open Energy Information

    Open Energy Info (EERE)

    245-3261 Outage Map: highwestenergy.comoutage-cent References: Energy Information Administration.1 EIA Form 861 Data Utility Id 27058 This article is a stub. You can help OpenEI...

  11. INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER

    SciTech Connect (OSTI)

    Wootton, A J

    2004-01-15

    The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.

  12. High West Energy, Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: (307) 245-3261 Website: highwestenergy.com Twitter: @HighWestEnergy Facebook: https:www.facebook.comHighWestEnergy Outage Hotline: (888).834.1657 Outage Map:...

  13. General Engineer/Physical Scientist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer/Physical Scientist General Engineer/Physical Scientist Submitted by admin on Mon, 2016-08-08 00:15 Job Summary Organization Name Department Of Energy Agency SubElement National Nuclear Security Administration Locations Livermore, California Los Alamos, New Mexico Announcement Number 16-0149-DEU Job Summary The salary for Los Alamos Field Office ranges from $71,025 to $152,620. The salary for Livermore Field Office ranges from $84,302 to $160,300. A successful candidate in this position

  14. High Energy Density Laboratory Plasmas | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) High Energy Density Laboratory Plasmas NNSA's Office of Inertial Confinement Fusion and DOE's Office of Science established a joint program in HEDLP in 2008. Initially, this program was a combination of work that was funded as part of the NNSA's Stewardship Science Academic Alliances Program in the research area of high energy density physics and the DOE Office of Science's HEDLP Program and Innovative Confinement Concepts Program. Steady advances in increasing the

  15. Workshop on Energy Research Opportunities for Physics Graduates & Postdocs

    SciTech Connect (OSTI)

    Kate Kirby

    2010-03-14

    Young people these days are very concerned about the environment. There is also a great deal of interest in using technology to improve energy efficiency. Many physics students share these concerns and would like to find ways to use their scientific and quantitative skills to help overcome the environmental challenges that the world faces. This may be particularly true for female students. Showing physics students how they can contribute to environmental and energy solutions while doing scientific research which excites them is expected to attract more physicists to work on these very important problems and to retain more of the best and the brightest in physical science. This is a major thrust of the 'Gathering Storm' report, the 'American Competitiveness Initiative' report, and several other studies. With these concerns in mind, the American Physical Society (APS) and more specifically, the newly formed APS Topical Group on Energy Research and Applications (GERA), organized and conducted a one-day workshop for graduate students and post docs highlighting the contributions that physics-related research can make to meeting the nation's energy needs in environmentally friendly ways. A workshop program committee was formed and met four times by conference call to determine session topics and to suggest appropriate presenters for each topic. Speakers were chosen not only for their prominence in their respective fields of energy research but also for their ability to relate their work to young people. The workshop was held the day before the APS March Meeting on March 14, 2009 in Portland, OR. The workshop was restricted to approximately 80 young physicists to encourage group discussion. Talks were planned and presented at a level of participants with a physics background but no special knowledge of energy research. Speakers were asked to give a broad overview of their area of research before talking more specifically about their own work. The format was designed with

  16. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  17. Engineered High Energy Crop (EHEC) Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THIS PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Final Programmatic Environmental Impact Statement DOE/EIS-0481 JULY 2015 THIS PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Final PEIS Responsible Federal Agency: U.S. Department of Energy, Advanced Research Projects Agency-Energy Cooperating Agencies: U.S. Department of Agriculture, Animal and Plant Health Inspection Service; U.S. Department of Agriculture, Forest Service Title: Engineered High Energy

  18. PPPL now offering SUMMER high school internship! | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab PPPL now offering SUMMER high school internship! April 3, 2015 Apply by May 30! The Princeton Plasma Physics Laboratory is pleased to announce that applications are now open for internships for high school rising seniors for the SUMMER of 2015! Please click here for more information.

  19. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  20. High Energy Particle Transport Code System.

    Energy Science and Technology Software Center (OSTI)

    2003-12-17

    Version 00 NMTC/JAM is an upgraded version of the code CCC-694/NMTC-JAERI97, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAM simulates high energy nuclear reactions and nuclear meson transport processes. The applicable energy range of NMTC/JAM was extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code Jet-Aa Microscopic (JAM) for the intra-nuclear cascade part. For the evaporation andmore » fission process, a new model, GEM, can be used to describe the light nucleus production from the excited residual nucleus. According to the extension of the applicable energy, the nucleon-nucleus non-elastic, elastic and differential elastic cross section data were upgraded. In addition, the particle transport in a magnetic field was implemented for beam transport calculations. Some new tally functions were added, and the format of input and output of data is more user friendly. These new calculation functions and utilities provide a tool to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than with the previous model. It implements an intranuclear cascade model taking account of the in-medium nuclear effects and the preequilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the

  1. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect (OSTI)

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  2. Compact, high energy gas laser

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.

    1976-08-03

    An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

  3. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  4. Photon and dilepton production in high energy heavy ion collisions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  5. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es131_choi_2012_p.pdf (1.19 MB) More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

  6. High Bridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    High Bridge, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6670454, -74.8957231 Show Map Loading map... "minzoom":false,"mappi...

  7. High Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies High Efficiency Engine Technologies The energy wasted in combustion process is a huge untapped resource and the recovery or conversion of this energy into useful power is a huge opportunity. deer09_nelson_2.pdf (285.08 KB) More Documents & Publications Innovative Approaches to Improving Engine Efficiency Overview of High-Efficiency Engine Technologies High Engine Efficiency at 2010 Emissions

  8. High Performance Valve Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy The High-Performance Green Building Partnership Consortia are groups from the public and private sectors recognized by the U.S. Department of Energy (DOE) for their commitment to high-performance green buildings. Groups that met specific qualifications outlined in the Energy Independence and Security Act of 2007 applied to be recognized as Consortia members through a Federal Register Notice. DOE recognized the following groups: Collaborative for High Performance Schools The

  9. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High energy neutron Computed Tomography developed High energy neutron Computed Tomography developed LANSCE now has a high-energy neutron imaging capability that can be deployed on WNR flight paths for unclassified and classified objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs.

  10. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect (OSTI)

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  11. New High-Energy Nanofiber Anode Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0_zhang_2011_p.pdf (472.78 KB) More Documents & Publications New High-Energy Nanofiber Anode Materials FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D

  12. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema (OSTI)

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2009-09-01

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  13. High Plains Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    owned subsidiary of Seaboard Foods, is a renewable energy company focused on producing alternative fuels from the Seaboard Foods integrated system. References: High Plains...

  14. High Energy Electromagnetic and Weak Interaction Processes

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.

    1972-01-11

    This talk reviews some known features of the high energy electromagnetic and weak interaction processes and then tries to speculate on some particular aspects of their future possibilities.

  15. High Energy Lithium-Sulfur Cathodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Start: August 1, 2013 * End: July 31, 2016 * Percent complete: 60% Barriers of batteries - High cost (A) - Low energy density (C) - Short battery life (E) Targets:...

  16. High Plains Tech Center | Open Energy Information

    Open Energy Info (EERE)

    Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133, -99.4282195 Show Map Loading map... "minzoom":false,"mappi...

  17. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE » ADEPS » Physics » Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS Communications Email Physics Flash An electronic newsletter featuring interviews with Physics Division staff and news of awards and the latest research published in peer-reviewed journals. Physics Flash archive Focus on Physics Focus on Proton Radiography (pdf) High Energy Physics: LBNE, HAWC (pdf) Nuclear Physics:

  18. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » High Impact Technology Catalyst High Impact Technology Catalyst High impact technologies (HITs) are cost-effective, underutilized energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies and guides HITs through their early market introduction phases, ultimately leading them to the broader market through partnerships with the commercial buildings industry via

  19. September 2013 Most Viewed Documents for Physics | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information September 2013 Most Viewed Documents for Physics Computational procedures for determining parameters in Ramberg-Osgood elastoplastic model based on modulus and damping versus strain Ueng, Tzou-Shin; Chen, Jian-Chu. (1992) 50 White LED with High Package Extraction Efficiency Yi Zheng; Matthew Stough (2008) 46 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 39 Energy level structure and transition

  20. Energy Department to Host Event With 2011 Physics Nobel Laureate Saul

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perlmutter | Department of Energy Event With 2011 Physics Nobel Laureate Saul Perlmutter Energy Department to Host Event With 2011 Physics Nobel Laureate Saul Perlmutter January 10, 2012 - 12:02pm Addthis Washington, D.C. - The Department of Energy (DOE) will host an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at

  1. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments [OSTI]

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  2. Review of lattice results concerning low-energy particle physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aoki, S.; Aoki, Y.; Bernard, C.; Blum, T.; Colangelo, G.; Della Morte, M.; Dürr, S.; El-Khadra, A. X.; Fukaya, H.; Horsley, R.; et al

    2014-09-01

    We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less

  3. Shanghai Institute of Technical Physics SITP | Open Energy Information

    Open Energy Info (EERE)

    Technical Physics SITP Jump to: navigation, search Name: Shanghai Institute of Technical Physics (SITP) Place: Shanghai, Shanghai Municipality, China Zip: 200083 Product: A Chinese...

  4. Sandia Energy - American Physical Society Names Four Sandians...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News News & Events Research & Capabilities Systems Analysis Materials Science American Physical Society Names Four Sandians as Fellows Previous Next American Physical...

  5. Interdisciplinary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    offices: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics and Nuclear Physics. ...

  6. High-energy cosmic ray interactions

    SciTech Connect (OSTI)

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  7. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  8. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The

  9. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  10. High-Energy-Density Plasmas, Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The

  11. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highpowered lasers High-Powered Lasers for Clean Energy Eli-Beamlines Architectural Design Architect's Rendering of the exterior of the Eli-Beamlines facility now under construction in the Czech Republic. Fusion is the process by which the Sun and other stars convert or "burn" hydrogen (the lightest element) and produce helium (the next lightest element). The fusion of hydrogen releases immense amounts of energy. Conditions needed to burn fusion fuel include extremely high temperatures

  12. High Temperature Downhole Motor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Find More Like This Return to Search High Temperature Downhole Motor Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (164 KB) Technology Marketing Summary Drilling costs amount to over half of the total cost of geothermal energy production. To address the high cost of well construction, Sandia engineers are developing a high temperature downhole motor that provides a high-power downhole rotation solution for

  13. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  14. Progress with high-field superconducting magnets for high-energy colliders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors.more » Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  15. Progress with high-field superconducting magnets for high-energy colliders

    SciTech Connect (OSTI)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nb$_3$Sn superconductors. Nb$_3$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$_3$Sn accelerator magnet research and development and work toward 20-T magnets.

  16. Workshop Report: Health Physics Journal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Health Physics Journal Workshop Report: Health Physics Journal August 2013 In recognition of the need for an up-to-date review of the topic of residual radiation exposure ...

  17. The Particle Physics of You | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Particle Physics of You The Particle Physics of You November 6, 2015 - 2:12pm Addthis Not only are we made of fundamental particles, we also produce them and are constantly...

  18. EIA Energy Efficiency-Table 5c. Economic and Physical Indicators...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5c Page Last Modified: May 2010 Table 5c. Economic and Physical Indicators for the Aluminum Industry...

  19. EIA Energy Efficiency-Table 5d. Economic and Physical Indicators...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Efficiency > Manufacturing Trend Data, 1998, 2002, and 2006 > Table 5d Page Last Modified: May 2010 Table 5d. Economic and Physical Indicators for Basic Chemicals (NAICS...

  20. High-pressure stability relations, crystal structures, and physical...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; CRYSTAL STRUCTURE; EXCHANGE ...

  1. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C.

    1995-11-01

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  2. High Energy Two-Body Deuteron Photodisintegration

    SciTech Connect (OSTI)

    Terburg, Bart

    1999-07-31

    The differential cross section for two­body deuteron photodisintegration was measured at photon energies between 0.8 and 4.0 GeV and center­of­mass angles theta_cm =37deg, 53deg, 70deg, and 90deg as part of CEBAF experiment E89­012. Constituent counting rules predict a scaling of this cross section at asymptotic energies. In previous experiments this scaling has surprisingly been observed at energies between 1.4 and 2.8 GeV at 90deg. The results from this experiment are in reasonable agreement with previous measurements at lower energies. The data at 70deg and 90deg show a constituent counting rule behavior up to 4.0 GeV photon energy. The 37deg and 53deg data do not agree with the constituent counting rule prediction. The new data are compared with a variety of theoretical models inspired by quantum chromodynamics (QCD) and traditional hadronic nuclear physics.

  3. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that

  4. The Road to a Sustainable Energy Future | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium The Road to a Sustainable Energy Future Professor Emily Carter, Department ... Science on Saturday, January 31, 2015, "The Road to a Sustainable Energy Future", Prof. ...

  5. RF physics of ICWC discharge at high cyclotron harmonics

    SciTech Connect (OSTI)

    Lyssoivan, A.; Van Eester, D.; Wauters, T.; Vervier, M.; Van Schoor, M.; Bobkov, V.; Rohde, V.; Schneider, P.; Douai, D.; Kogut, D.; Kreter, A.; Möller, S.; Philipps, V.; Sergienko, G.; Moiseenko, V.; Noterdaeme, J.-M.; Collaboration: TEXTOR Team; ASDEX Upgrade Team

    2014-02-12

    Recent experiments on Ion Cyclotron Wall Conditioning (ICWC) performed in tokamaks TEXTOR and ASDEX Upgrade with standard ICRF antennas operated at fixed frequencies but variable toroidal magnetic field demonstrated rather contrasting parameters of ICWC discharge in scenarios with on-axis fundamental ion cyclotron resonance (ICR) for protons,ω=ω{sub H+}, and with its high cyclotron harmonics (HCH), ω=10ω{sub cH+}⋅ HCH scenario: very high antenna coupling to low density RF plasmas (P{sub pl}≈0.9P{sub RF-G}) and low energy Maxwellian distribution of CX hydrogen atoms with temperature T{sub H}≈350 eV. Fundamental ICR: lower antenna-plasma coupling efficiency (by factor of about 1.5 times) and generation of high energy non-Maxwellian CX hydrogen atoms (with local energy E{sub ⊥H} ≥1.0 keV). In the present paper, we analyze the obtained experimental results numerically using (i) newly developed 0-D transport code describing the process of plasma production with electron and ion collisional ionization in helium-hydrogen gas mixture and (ii) earlier developed 1-D Dispersion Relation Solver accounting for finite temperature effects and collision absorption mechanisms for all plasma species in addition to conventionally examined Landau/TTPM damping for electrons and cyclotron absorption for ions. The numerical study of plasma production in helium with minor hydrogen content in low and high toroidal magnetic fields is presented. The investigation of the excitation, conversion and absorption of plasma waves as function of B{sub T}-field suggests that only fast waves (FW) may give a crucial impact on antenna coupling and characteristics of the ICWC discharge using standard poloidally polarized ICRF antennas designed to couple RF power mainly to FW. The collisional (non-resonant) absorption by electrons and ions and IC absorption by resonant ions of minor concentration in low T{sub e} plasmas is studied at fundamental ICR and its high harmonics.

  6. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    SciTech Connect (OSTI)

    B.M.K. Nefkens; J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin

    2011-05-18

    complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâ??coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

  7. High-Z Non-Equilibrium Physics and Bright X-ray Sources with...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets Citation Details In-Document Search Title: High-Z Non-Equilibrium Physics and ...

  8. Fraunhofer Institute for Building Physics (IBP) | Open Energy...

    Open Energy Info (EERE)

    Integration Fraunhofer Institute for Building Physics (IBP) is a company located in Cambridge, MA. References "Fraunhofer IBP Website" Retrieved from "http:en.openei.orgw...

  9. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National Laboratory is active in a number of diverse areas of research. Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of

  10. Development of High Energy Cathode Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es056_zhang_2011_o.pdf (841.53 KB) More Documents & Publications Development of High Energy Cathode for Li-ion Batteries Phase Behavior and Solid State Chemistry in Olivines Low Cost SiOx-Graphite and Olivine Materials

  11. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been

  12. High Performance Colloidal Nanocrystals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed distribution circuits in the electrical grid. The High Penetration Solar Deployment projects are working with teams that include utility partners to model, test, and evaluate solutions to mitigate the impact of large amounts of PV-generated electricity on the reliability and stability of the

  13. Screening study on high temperature energy transport systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-10-01

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  14. Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems

    SciTech Connect (OSTI)

    Ferragut, Erik M; Laska, Jason A; Melin, Alexander M; Czejdo, Bogdan

    2013-01-01

    The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.

  15. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect (OSTI)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  16. Accelerating Polarized Protons to High Energy

    SciTech Connect (OSTI)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Butler, J.; Cameron, P.; Connolly, R.; Delong, J.; D'Ottavio, T.; Drees, A.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.

    2007-06-13

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  17. Proceedings of the 8th high energy heavy ion study

    SciTech Connect (OSTI)

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  18. Physics of Failure of Electrical Interconnects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape036_devoto_2011_p.pdf (402.27 KB) More Documents & Publications Physics of Failure of Electrical Interconnects Reliability

  19. Proceedings of the workshop on program options in intermediate-energy physics. Volume 1. Summary and panel reports

    SciTech Connect (OSTI)

    Allred, J.C.; Talley, B.

    1980-05-01

    A Workshop on Program Options in Intermediate-Energy Physics sponsored by the US Department of Energy was held at Los Alamos Scientific Laboratory, August 20 to 31, 1979. The scope of the workshop included all laboratories in intermediate-energy physics, worldwide, and all of these sent representatives to the workshop. The workshop addressed itself to the critical questions on nuclear and particle physics and how they can best be investigated by intermediate-energy accelerators. Among the questions that the workshop members considered were: (1) what are the important physics topics which might be understood through research on these accelerators in the next 10 years. These topics include, but are not restricted to, fundamental interactions and symmetries in particle physics, and nuclear modes of motion, structure, and reaction mechanisms; (2) what experiments should be undertaken to carry out the program. What are the kinematical conditions, accuracies, resolutions, and other parameters required to obtain the desired knowledge; (3) which accelerators are best suited for each experiment. What work at other laboratories (low-, intermediate-, or high-energy) could be undertaken to complement and/or supplement the proposed LAMPF program; and (4) what new facility capabilities should be explored for the long-term future. The workshop was divided into small panels in order to promote effective interchange of ideas. After reports to other panels and plenary sessions, the panelists prepared reports stating the results of their deliberations. These reports comprise the principal part of Volume I.

  20. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size Illinois: High-Energy,...

  1. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  2. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research ...

  3. High energy gas fracture experiments in liquid-filled boreholes...

    Office of Scientific and Technical Information (OSTI)

    High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application Citation Details In-Document Search Title: High energy gas fracture experiments in ...

  4. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...

  5. Vehicle Technologies Office Merit Review 2014: High Energy Lithium...

    Office of Environmental Management (EM)

    High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

  6. Engineering of High Energy Cathode Materials | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering of High Energy Cathode Materials Engineering of High Energy Cathode Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit ...

  7. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  8. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  9. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Our science answers questions about the nature of the universe and delivers solutions for national security concerns. Contact Us Division Leader David Meyerhofer Deputy Division Leader Scott Wilburn Division Office (505) 667-4117 For more than 70 years-from the Manhattan Project to today-Physics Division researchers have been performing groundbreaking fundamental and applied research. For more than 70 years-from the Manhattan Project to today-Physics Division researchers have

  10. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect (OSTI)

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  11. FREE ELECTRON LASERS AND HIGH-ENERGY ELECTRON COOLING.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.

    2007-08-31

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation of such beams is too feeble to provide significant cooling: even in the Large Hadron Collider (LHC) with 7 TeV protons, the longitudinal damping time is about thirteen hours. Decrements of traditional electron cooling decrease rapidly as the high power of beam energy, and an effective electron cooling of protons or antiprotons at energies above 100 GeV seems unlikely. Traditional stochastic cooling still cannot catch up with the challenge of cooling high-intensity bunched proton beams--to be effective, its bandwidth must be increased by about two orders-of-magnitude. Two techniques offering the potential to cool high-energy hadron beams are optical stochastic cooling (OSC) and coherent electron cooling (CEC)--the latter is the focus of this paper. In the early 1980s, CEC was suggested as a possibility for using various instabilities in an electron beam to enhance its interaction with hadrons (i.e., cooling them). The capabilities of present-day accelerator technology, Energy Recovery Linacs (ERLs), and high-gain Free-Electron Lasers (FELs), finally caught up with the idea and provided the all necessary ingredients for realizing such a process. In this paper, we discuss the principles, and the main limitations of the CEC process based on a high-gain FEL driven by an ERL. We also present, and summarize in Table 1, some numerical examples of CEC for ions and protons in RHIC and the LHC.

  12. Symposium on the Physical Chemistry of Solar Energy Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) ...

  13. High-price energy strategy failing

    SciTech Connect (OSTI)

    Gonze, R.

    1981-03-01

    An energy policy based on decontrol and high energy prices to allocate resources is examined and found wanting. An economic penalty results when the oil companies can operate as a virtual monopoly to set prices for other fuels as well as oil. The impact on consumers is a lowered standard of living and social inequity. Government intervention that is pro-competition is shown to be as inadequate as price control. A list of twelve measures that would moderate the economic losses and still encourage energy production and conservation include strong antitrust action, an active federal coal leasing program, competitive coal transactions, limits on severance taxes, a permanent windfall profits tax, and direct subsidy programs. (DCK)

  14. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  15. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  16. HIGH ENERGY GASEOUS PLASMA CONTAINMENT DEVICE

    DOE Patents [OSTI]

    Josephson, V.; Hammel, J.E.

    1959-01-13

    An apparatus is presenied for producing neutrons as a result of collisions between ions in high temperature plasmas. The invention resides in the particular arrangement of ihe device whereby ihe magneiic and electric fields are made to cross at substantially right angles in several places along a torus shaped containment vessel. A plasma of deuterium gas is generated in the vessel under the electric fields and is "trapped" in any one of the "crossed field" regions to produce a release of energy.

  17. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search High Temperature PEM Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (976 KB) Technology Marketing SummaryPolymer electrolyte fuel cells (PEFCs) have been identified as an attractive electrical power source due to it having a higher efficiency level and being an environmental friendly energy source. In

  18. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOE Patents [OSTI]

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  19. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOE Patents [OSTI]

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  20. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOE Patents [OSTI]

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  1. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    SciTech Connect (OSTI)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success. We had

  2. Women@Energy: Aliya Merali | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM | Department of Energy Women's History Month Twitter Chat on Changing the Face of Leadership in STEM Women's History Month Twitter Chat on Changing the Face of Leadership in STEM March 18, 2016 - 2:45pm Addthis On Tuesday March 22, 2016 we're hosting a twitter chat on Women in STEM. | Energy Department photo. On Tuesday March 22, 2016 we're hosting a twitter chat on Women in STEM. | Energy Department photo. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public

  3. How Does Fusion Energy Work? | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Does Fusion Energy Work? How Does Fusion Energy Work? July 29, 2016 - 1:27pm Addthis How Does Fusion Energy Work? Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer A plain building in Plainsboro, New Jersey houses a machine that can produce plasma -- superheated, charged gas -- hotter than the center of the sun. We're talking 100 million degrees Fahrenheit...in a building...in New Jersey. It's the NSTX-U, the National

  4. DOE Science Showcase - Particle Physics | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Energy Citations Database DOE R&D Accomplishments DOE Data Explorer ScienceCinema Science.... the Higgs, BNL ANL particle physicist Tom LeCompte Visit the Science Showcase homepage.

  5. Physics of Failure of Electrical Interconnects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This Friday, March 8, marks International Women's Day, and the recognition of women's achievements all over the world. At the Energy Department and each of the National Laboratories, some of the nation's top women scientists and engineers attend events to urge girls to open their minds to careers in science, technology, engineering and math (STEM). In this Febraury 2012 photo, a group of eighth grade girls were invited to Argonne National Laboratory to participate in

  6. Fermilab | Science | Particle Physics | Dark matter and dark energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark matter and dark energy photo Visible matter makes up just 4 percent of the contents of the universe; the remaining 96 percent is made of dark matter and dark energy. Scientists discovered both by observing their cosmic effects but have yet to directly detect either. Fermilab experiments seek to uncover the mysteries of the dark universe. Scientists discovered dark matter by studying the behavior of neighboring galaxies and galaxy clusters. They could not explain the way the galaxies moved

  7. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect (OSTI)

    Asner, David M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  8. Annex IV Environmental Webinar: Effects of Energy Removal on Physical Systems

    Broader source: Energy.gov [DOE]

    Please mark your calendars for the next Annex IV Environmental webinar titled: Effects of Energy Removal on Physical Systems. Held under the auspices of the Annex IV initiative to the IEA Ocean...

  9. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  10. High Current Energy Recovery Linac at BNL

    SciTech Connect (OSTI)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  11. Fine Structure of Dark Energy and New Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  12. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect (OSTI)

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  13. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  14. High Current Energy Recovery Linac at BNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  15. New High-Power Laser Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Laser Technology New High-Power Laser Technology December 10, 2013 - 10:38am Addthis Foro Energy partners with Dept of Energy to commercialize high power lasers for the ...

  16. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    SciTech Connect (OSTI)

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  17. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  18. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  19. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  20. High Energy Instrumentation Efforts in Turkey

    SciTech Connect (OSTI)

    Kalemci, Emrah

    2011-09-21

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  1. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  2. DOE SC Exascale Requirements Reviews: High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computational domain scientists, DOE planners and administrators, and experts in computer science and applied mathematics to determine the requirements for an exascale ecosystem ...

  3. High energy. Progress report, March 1, 1992--February 28, 1997

    SciTech Connect (OSTI)

    Bonner, B.E.; Roberts, J.B. Jr.

    1996-09-01

    The Bonner Lab High Energy Group at Rice University has major hardware and software design and construction responsibilities in three of the flagship experiments of US High Energy Physics: D0, CMS, and KTeV. These commitments were undertaken after managing boards of the collaborations had evaluated the unique capabilities that Bonner Lab has to offer. Although fiscal constraints prohibited their participation in the final year of the SMC experiment (1996) on the spin dependent structure functions of nucleons, they played a major role there since it was proposed in 1988. The new results from the SMC data taken in previous years continue to generate a buzz of theoretical activity--and to increase understanding of the nucleon structure functions and their behavior as a function of Q{sup 2} and x. They have also spawned large new experimental spin physics programs at HERA and at RHIC that ultimately will provide answers to these fundamental questions. This is a direct result of the unprecedented precision and kinematic range of the SMC results. Such precision would not have been possible without the improvement in the knowledge of the muon beam polarization using the Rice-designed beam polarimeter. In D0 Bonner Lab has been active in data taking, data analysis, upgrade design, and upgrade construction projects. In CMS they are responsible for the design and construction of the trigger electronics for one of the crucial subsystems: the end cap muon detectors. Other responsibilities are fully expected as the US commitment to LHC projects becomes clearer. The technical capabilities are well matched to the enormous challenges posed by the physics measurements being contemplated for the CMS detector. KTeV will be taking data shortly. Rice made major contributions to the construction and commissioning of this experiment. The long list of publications and presentations during the past five years attests to the fact that the group has been working hard and productively.

  4. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage ...

  5. Research Projects in Renewable Energy for High School Student

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL STUDENTS National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, CO 80401 Tel: (303) 275-3044 Home page: http:...

  6. Energy savings estimates and cost benefit calculations for high...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings ...

  7. Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gwitchyaa Zhee Gwich'in Tribal Government Counteracts High Energy Costs, Climate Challenges with Building Energy Retrofits Gwitchyaa Zhee Gwich'in Tribal Government Counteracts...

  8. Energy Savings Potential and Opportunities for High-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment Prepared for: U.S. Department of Energy Office of ...

  9. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery ...

  10. High School Semester-Long Internship | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semester-Long Internship Dr. Arturo Dominguez mentors a student on RGDX. Internship opportunities during the school year are avaialble for highly motivated high school students at PPPL! The spring internship application is open September 1 through November 30. The fall internship application is open February 1 through April 30. High School Semester Internship Application PPPL's Science Education department offers a limited number of internship positions for outstanding high school seniors

  11. High School Summer Internship | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Internship Internship opportunities for the summer of 2017 are available for highly motivated high school students at PPPL! High School Summer Internship Application - Applications are open Thanksgiving through January 31! PPPL's Science Education department offers a limited number of internship positions for outstanding high school graduating seniors during the summer. This paid internship offers students the chance to work on a project with a member of our research or engineering staff.

  12. A Program in Medium-Energy Nuclear Physics

    SciTech Connect (OSTI)

    Feldman, Gerald

    2015-03-23

    We report here on the final stages of the Berman grant. The study of the spectrum and properties of the excited states of the nucleon (the N* states) is one of the highest-priority goals of nuclear physics and one of the major programs of Jefferson Lab, especially in Hall B. We have most recently focused our attention on exclusive studies (in both spin and strangeness) of the neutron in the deuteron. Our g13 experiment, “Production of Kaons from the Deuteron with Polarized Photons” [Nadel-Turonski (2006)], was carried out between October 2006 and June 2007. This experiment was done using both linearly and circularly polarized photons, mainly to try to unscramble the multitude of wide and overlapping N* states and to measure their properties by studying in fine detail their decays into strange-particle reaction channels. To this end, one of our students, Edwin Munevar, has analyzed the γn→K+Σ- reaction channel for his Ph.D. topic. The strangeness-production channels constitute the subject of the original GW group’s g13 proposal. But the g13 data set, by virtue of its statistics, polarization, and kinematic coverage, is ideally suited for many other reaction channels as well. Among these is the azimuthal angular asymmetry for deuteron photodisintegration, which was analyzed by another of our students, Nicholas Zachariou, for his Ph.D. topic, with help from Nickolay Ivanov (from the Yerevan Physics Institute in Armenia). This study required a deuterium target and a linearly polarized photon beam.

  13. High energy electron beams for ceramic joining

    SciTech Connect (OSTI)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    SciTech Connect (OSTI)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  15. Fermilab | Science | Particle Physics 101 | Science of Matter, Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space and Time Science of Matter, Energy, Space and Time Standard Model and Higgs Illustration What is the world made of? The building blocks Physicists have identified 13 building blocks that are the fundamental constituents of matter. Our everyday world is made of just three of these building blocks: the up quark, the down quark and the electron. This set of particles is all that's needed to make protons and neutrons and to form atoms and molecules. The electron neutrino, observed in the

  16. New High-Energy Nanofiber Anode Materials

    SciTech Connect (OSTI)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  17. Igor Kaganovich | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interests include: beam-plasma interaction, high energy density plasmas, nanotechnology, atomic physics, and physics of partially ionized plasmas. He is involved in...

  18. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  19. 2016 High School Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 GreenGov Symposium (Washington, D.C.) 2016 GreenGov Symposium (Washington, D.C.) September 8, 2016 9:00AM to 5:00PM EDT The 2016 GreenGov Symposium will bring together senior Administration officials and Federal sustainability stakeholders to discuss the executive order, Planning for Federal Sustainability in the Next Decade. The purpose is to discuss strategies to green the fleet, improve water management, reduce greenhouse gas (GHG) emissions, increase energy efficiency and renewable

  20. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T.; Guesto-Barnak, Donna

    1992-01-01

    A low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K.sub.90.degree. C. >0.85 W/mK, a low coefficient of thermal expansion, .alpha..sub.20.degree.-300.degree. C. <80.times.10.sup.-7 /.degree.C., low emission cross section, .sigma.<2.5.times.10.sup.-20 cm.sup.2, and a high fluorescence lifetime, .tau.>325 .mu.secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): wherein Ln.sub.2 O.sub.3 is the sum of lanthanide oxides; .SIGMA.R.sub.2 O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al.sub.2 O.sub.3 and MgO is <24 unless .SIGMA.R.sub.2 O is 0, then the sum of Al.sub.2 O.sub.3 and MgO is <42; and the ratio of MgO to B.sub.2 O.sub.3 is 0.48-4.20.

  1. Keynote address: Reinventing fire: Physics + markets = energy solutions

    SciTech Connect (OSTI)

    Lovins, Amory B.

    2015-03-30

    Rocky Mountain Institute's multi-year, 61-author, peer-reviewed Reinventing Fire synthesis showed how the U.S. can realistically run a 2.6× bigger U.S. economy in 2050 with no oil, coal, or nuclear energy, one-third less natural gas, tripled efficiency, and 74% renewable supplies (80% for electricity). This transition, at historically reasonable rates, could be led by business for profit, applying normal rates of return, with some innovative subnational and administrative policies but no Acts of Congress. Excluding carbon emissions and all other externalities, the net present value would be $5 trillion more favorable than business-as-usual, averaging a 14% Internal Rate of Return.

  2. Focusing monochromators for high energy synchrotron radiation

    SciTech Connect (OSTI)

    Suortti, P. )

    1992-01-01

    Bent crystals are introduced as monochromators for high energy synchrotron radiation. The reflectivity of the crystal can be calculated reliably from a model where the bent crystal is approximated by a stack of lamellas, which have a gradually changing angle of reflection. The reflectivity curves of a 4 mm thick, asymmetrically cut ({chi}=9.5{degree}) Si(220) crystal are measured using 150 keV radiation and varying the bending radius from 25 to 140 m. The width of the reflectivity curve is up to 50 times the Darwin width of the reflection, and the maximum reflectivity exceeds 80%. The crystal is used as a monochromator in Compton scattering measurements. The source is on the focusing circle, so that the resolution is limited essentially by the detector/analyzer. A wide bandpass, sharply focused beam is attained when the source is outside the focusing circle in the transmission geometry. In a test experiment. 10{sup 12} photons on an area of 2 mm{sup 2} was observed. The energy band was about 4 keV centered at 40 keV. A powder diffraction pattern of a few reflections of interest was recorded by an intrinsic Ge detector, and this demonstrated that a structural transition can be followed at intervals of a few milliseconds.

  3. Low energy high pressure miniature screw valve

    DOE Patents [OSTI]

    Fischer, Gary J.; Spletzer, Barry L.

    2006-12-12

    A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.

  4. Energy Efficiency Opportunities in Federal High Performance Computing Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Centers | Department of Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers. Download the case study. (1.05 MB) More Documents & Publications Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Innovative Energy

  5. New High Energy Gradient Concentration Cathode Material | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 6_amine_2011_p.pdf (1.42 MB) More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D Design of Safer High-Energy Density Materials for Lithium-Ion Cells Developing new high energy gradient concentration cathode material

  6. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  7. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in basic...

  8. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental...

  9. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agency of the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. The Office of Science manages fundamental research programs in...

  10. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Energy Savers [EERE]

    Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - ...

  11. High-energy metal air batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    High-energy metal air batteries Title: High-energy metal air batteries Disclosed herein are embodiments of lithiumair batteries and methods of making and using the same. Certain ...

  12. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf (572.12 ...

  13. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  14. New Prospects in High Energy Astrophysics (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. ...

  15. Development of Novel Electrolytes for Use in High Energy Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with ...

  16. Reflection High-Energy Electron Diffraction Beam-Induced Structural...

    Office of Scientific and Technical Information (OSTI)

    Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films Citation Details In-Document Search Title: Reflection High-Energy ...

  17. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  18. Switchgrass as a High-Potential Energy Crop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Historical Perspective on How and Why Switchgrass was Selected as a “Model” High-Potential Energy Crop

  19. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  20. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect (OSTI)

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  1. High Frequency Physics-Based Earthquake System Simulations | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Ground motion simulations reveal regions at risk of strong shaking during a possible magnitude-8 earthquake on the San Andreas fault Ground motion simulations reveal regions at risk of strong shaking during a possible magnitude-8 earthquake on the San Andreas fault. For the CyberShake project, reciprocal simulations of all known possible quakes are combined to estimate the total probabilistic hazard for California. Geoffrey Ely, Argonne National Laboratory High

  2. High Efficiency Thermal Energy Storage System for CSP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Energy Storage System for CSP High Efficiency Thermal Energy Storage System for CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_singh.pdf (1.63 MB) More Documents & Publications High Efficiency Thermal Energy Storage System for CSP - FY13 Q1 High-Efficiency Thermal Energy Storage System for CSP - FY13 Q3 High-Efficiency Thermal Energy Storage

  3. USDA High Energy Cost Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) is accepting applications for the improvement of energy generation, transmission, and distribution facilities serving rural communities with home energy costs that are over 275% of the national average.

  4. Laser-Plasma Interactions in High-Energy-Density Plasmas

    SciTech Connect (OSTI)

    Baldis, H

    2006-10-17

    High temperature hohlraums (HTH) are designed to reach high radiation temperatures by coupling a maximum amount of laser energy into a small target in a short time. These 400-800 {micro}m diameter gold cylinders rapidly fill with hot plasma during irradiation with multiple beams in 1ns laser pulses. The high-Z plasmas are dense, (electron density, n{sub e}/n{sub c} {approx} 0.1-0.4), hot (electron temperature, T{sub e} {approx} 10keV) and are bathed in a high-temperature radiation field (radiation temperature, T{sub rad} {approx} 300eV). Here n{sub c}, the critical density, equals 9 x 10{sup 21}/cm{sup 3}. The laser beams heating this plasma are intense ({approx} 10{sup 15} - 10{sup 17} W/cm{sup 2}). The coupling of the laser to the plasma is a rich regime for Laser-Plasma Interaction (LPI) physics. The LPI mechanisms in this study include beam deflection and forward scattering. In order to understand the LPI mechanisms, the plasma parameters must be known. An L-band spectrometer is used to measure the and electron temperature. A ride-along experiment is to develop the x-radiation emitted by the thin back wall of the half-hohlraum into a thermal radiation source.

  5. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  6. Vehicle Technologies Office Merit Review 2014: Development of High Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density Lithium-Sulfur Cells | Department of Energy of High Energy Density Lithium-Sulfur Cells Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high energy density lithium-sulfur cells. es125_wang_2014_p.pdf (2.05 MB) More Documents &

  7. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect (OSTI)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  8. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Guesto-Barnak, D.

    1992-12-22

    Disclosed is a low-or no-silica, low- or no-alkali phosphate glass useful as a laser amplifier in a multiple pass, high energy laser system having a high thermal conductivity, K[sub 90 C] >0.85 W/mK, a low coefficient of thermal expansion, [alpha][sub 20-300 C] <80[times]10[sup [minus]7]/C, low emission cross section, [sigma]<2.5[times]10[sup [minus]20] cm[sup 2], and a high fluorescence lifetime, [tau]>325 [mu]secs at 3 wt. % Nd doping, consisting essentially of (on an oxide composition basis): (Mole %) P[sub 2]O[sub 5], (52-72); Al[sub 2]O[sub 3], (0-<20); B[sub 2]O[sub 3], (>0-25); ZnO, (0-31); Li[sub 2]O, (0-5); K[sub 2]O, (0-5); Na[sub 2]O, (0-5); Cs[sub 2]O, (0-5); Rb[sub 2]O, (0-5); MgO, (>0-<30); CaO, (0-20); BaO, (0-20); SrO, (0-<20); Sb[sub 2]O[sub 3], (0-<1); As[sub 2]O[sub 3], (0-<1); Nb[sub 2]O[sub 5], (0-<1); Ln[sub 2]O[sub 3], (up to 6.5); PbO, (0-<5); and SiO[sub 2], (0-3); wherein Ln[sub 2]O[sub 3] is the sum of lanthanide oxides; [Sigma]R[sub 2]O is <5, R being Li, Na, K, Cs, and Rb; the sum of Al[sub 2]O[sub 3] and MgO is <24 unless [Sigma]R[sub 2]O is 0, then the sum of Al[sub 2]O[sub 3] and MgO is <42; and the ratio of MgO to B[sub 2]O[sub 3] is 0.48-4.20. 7 figs.

  9. LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    SciTech Connect (OSTI)

    Bulgac, A

    2013-03-27

    This document is a summary of the physics research carried out by the University of Washington centered group. Attached are reports for the previous years as well as the full exit report of the entire UNEDF collaboration.

  10. USDA- High Energy Cost Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture (USDA) offers an ongoing grant program for the improvement of energy generation, transmission, and distribution facilities in rural communities. This program...

  11. High Lonesome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Location South of Willard NM Coordinates...

  12. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HITs through their early market introduction phases, ultimately leading them to ... LED Troffers with Controls Energy Management and Information Systems (including submetering, ...

  13. Energy Department Announces 61 Scientists to Receive Early Career...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Addthis Related ...

  14. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  15. High-Z Non-Equilibrium Physics and Bright X-ray Sources with...

    Office of Scientific and Technical Information (OSTI)

    X-ray Sources with New Laser Targets Citation Details In-Document Search Title: High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets You are ...

  16. High Speed Particle Image Velocimetry - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search High Speed Particle Image Velocimetry Simultaneously track the motion of high numbers of object images under extreme, high concentration conditions National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication Partnership Opportunity Notice: High Speed Particle Image Velocimetry (534 KB) Particle imaging Particle imaging <p> HSPI system recognizing and simultaneously

  17. Coal Study Guide - High School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Coal Study Guide - High School Coal Study Guide - High School (658.82 KB) More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for Elementary School Fossil Energy Today - First Quarter, 2011

  18. Oil Study Guide - High School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Oil Study Guide - High School Oil Study Guide - High School (602.29 KB) More Documents & Publications EIS-0165: DRAFT ENVIRONMENTAL IMPACT STATEMENT 2009 SPR Report to Congress Fossil Energy Today - First Quarter, 2012

  19. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  20. Phosphate glass useful in high energy lasers

    DOE Patents [OSTI]

    Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  1. Service Members Aim High-- for Energy Savings

    Broader source: Energy.gov [DOE]

    Service members are helping reduce our dependency on oil, and saving taxpayers' money, with their energy-saving efforts. Operation Change Out has cut $26.3 million in total energy costs and helped prevent more than 396 lbs. of carbon dioxide.

  2. Metrology Challenges for High Energy Density Science Target Manufacture

    SciTech Connect (OSTI)

    Seugling, R M; Bono, M J; Davis, P

    2009-02-19

    Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

  3. Ignite High Tech Startups | Open Energy Information

    Open Energy Info (EERE)

    Name: Ignite High Tech Startups Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Ignite High Tech...

  4. City of High Point Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

  5. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  6. Hotchkiss High School Seniors Recognized for Renewable Energy Project -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Hotchkiss High School Seniors Recognized for Renewable Energy Project April 10, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) presented a special Renewable Energy Award to Christopher Snow and Alexander Farinell from Hotchkiss High School, Hotchkiss, Colo., at the 51st Colorado Science and Engineering Fair (CSEF) on April 6. The award is sponsored by NREL's corporate partners, Midwest Research Institute (MRI) and

  7. CONTINUED HIGH PERFORMANCE ENERGY MANAGEMENT COMPANY Fitesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington, which transforms polymer pellets into sheets of non-woven fiber for diapers, wipes and filters, had been consuming about 19 million kWh of energy annually....

  8. PLZT Nano-Precursors for High Energy Density Applications - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PJM©2012 1 www.pjm.com Markets, Regulation and Energy Storage: A Match Made in Heaven? EIA 2013 Energy Conference June 17, 2013 Craig Glazer Vice President PJM Interconnection PJM©2012 2 www.pjm.com "We're Mad as Hell and We're Not Going to Take It Anymore!" PJM©2012 3 www.pjm.com * Need slide that is black. PJM©2012 4 www.pjm.com And What Were They Mad About??? At the Wholesale Level... * Transmission access - Negotiation of "wheeling rights" - Discriminatory treatment -

  9. Energy Programs at the Johns Hopkins University Applied Physics Laboratory, Quarterly Report, January-March 1980

    SciTech Connect (OSTI)

    Entingh, Daniel J.

    1980-03-01

    The Johns Hopkins University Applied Physics Laboratory, under contracts with several agencies of the federal government and an agency of the State of Maryland, is engaged in developing energy resources, utilization concepts, and monitoring and storage methods. This Quarterly Report summarizes the work on the various tasks as of 31 March 1980. The Energy Quarterly Report is divided into four sections. The first, Geothermal Energy Development Planning and Technical Assistance, supported by the Department of Energy/Division of Geothermal Energy (DOE/DGE), contains reports on the progress of geothermal-related tasks on which effort was concentrated during the quarter. The second section, Operational Research, Hydroelectric Power Development, supported by the Department of Energy/Resource Applications (DOE/DGE), contains reports on small-scale hydroelectric investigations in the southeastern states. The third section, Seismotectonic Investigation, supported by the Reactor Safety Research Division of the Nuclear Regulatory Commission, reports on a neotectonic investigation in Connecticut. The fourth section, Energy Conversion and Storage Techniques, contains two articles, the first on OTEC core unit testing supported by the Department of Energy/Division of Central Solar Technology (DOE/CST), and the second on an analysis of the Community Annual Storage Energy System at the U.S. Naval Air Station, Norfolk, Va. This work is supported by the Department of Energy and the Department of Defense, Naval Facilities Engineering Command/Atlantic Division.

  10. Hotline IV …High Temperature ESP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hotline IV …High Temperature ESP Hotline IV …High Temperature ESP Project Objective: Increase temperature rating of high temperature ESPs. high_dhruva_hotline_iv.pdf (1.64 MB) More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Novel Energy Conversion Equipment for Low Temperature Geothermal Resources High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

  11. Glass Capacitor for High-Temperature Applications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Glass Capacitor for High-Temperature Applications Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryTo meet the demand for smaller, lighter capacitors that have high energy densities, an ORNL researcher developed a capacitor made of glass rods that is constructed like insulated wire. This device can be used for power factor correction, high-voltage capacitors, power electronic

  12. Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)

    SciTech Connect (OSTI)

    Moses, David Lewis

    2011-10-01

    This report documents the detailed background information that has been compiled to support the preparation of a much shorter white paper on the design features and fuel cycles of Very High-Temperature Reactors (VHTRs), including the proposed Next-Generation Nuclear Plant (NGNP), to identify the important proliferation resistance and physical protection (PR&PP) aspects of the proposed concepts. The shorter white paper derived from the information in this report was prepared for the Department of Energy Office of Nuclear Science and Technology for the Generation IV International Forum (GIF) VHTR Systems Steering Committee (SSC) as input to the GIF Proliferation Resistance and Physical Protection Working Group (PR&PPWG) (http://www.gen-4.org/Technology/horizontal/proliferation.htm). The short white paper was edited by the GIF VHTR SCC to address their concerns and thus may differ from the information presented in this supporting report. The GIF PR&PPWG will use the derived white paper based on this report along with other white papers on the six alternative Generation IV design concepts (http://www.gen-4.org/Technology/systems/index.htm) to employ an evaluation methodology that can be applied and will evolve from the earliest stages of design. This methodology will guide system designers, program policy makers, and external stakeholders in evaluating the response of each system, to determine each system's resistance to proliferation threats and robustness against sabotage and terrorism threats, and thereby guide future international cooperation on ensuring safeguards in the deployment of the Generation IV systems. The format and content of this report is that specified in a template prepared by the GIF PR&PPWG. Other than the level of detail, the key exception to the specified template format is the addition of Appendix C to document the history and status of coated-particle fuel reprocessing technologies, which fuel reprocessing technologies have yet to be deployed

  13. High Impact Technology HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  14. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the ... More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up ...

  15. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  16. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop ... Solid State Vehicular Generators and HVAC Development An Innovative Pressure Sensor ...

  17. Forest City High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011, -93.653378 Show Map Loading map... "minzoom":false,"mappings...

  18. Development of Novel Electrolytes for Use in High Energy Lithium...

    Energy Savers [EERE]

    Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  19. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes Vehicle ...

  20. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  1. Engineered High Energy Crop Programs Draft Programmatic Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    PAGE INTENTIONALLY LEFT BLANK Engineered High Energy Crop Programs Draft Programmatic Environmental Impact Statement DOEEIS-0481 DECEMBER 2014 THIS PAGE INTENTIONALLY LEFT BLANK...

  2. Azimuthal anisotropy distributions in high-energy collisions...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Azimuthal anisotropy distributions in high-energy collisions Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the...

  3. Simulation of the Event Reconstruction of Ultra High Energy Cosmic...

    Office of Scientific and Technical Information (OSTI)

    Title: Simulation of the Event Reconstruction of Ultra High Energy Cosmic Neutrinos with Askaryan Radio Array Authors: Sun, Shang-Yu ; Taiwan, Natl. Taiwan U. ; Chen, Pisin ; ...

  4. Prospects for achieving high dynamic compression with low energy...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Prospects for achieving high dynamic compression with low energy Citation Details In-Document Search ... Publication Date: 2012-07-30 OSTI Identifier: 1057245 Report ...

  5. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses ...

  6. High Bandgap Phosphide Approaches for LED Applications - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new approach to fabricating high-efficiency Amber LEDs National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication AlInP Green ...

  7. High power and high energy electrodes using carbon nanotubes

    SciTech Connect (OSTI)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  8. Variable-energy collimator for high-energy radiation

    DOE Patents [OSTI]

    Hill, R.A.

    1982-03-03

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated ;energy from emergine from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  9. DOE Science Showcase - Particle Physics | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Particle Physics Particle Physics Research in DOE Databases Energy Citations Database DOE R&D Accomplishments DOE Data Explorer ScienceCinema Science.gov WorldWideScience.gov More information ATLAS and CMS experiments present Higgs search status , CERN The U.S. at the Large Hadrons Collider A Subatomic Venture CERN What is a Higgs Boson? Fermilab video Brookhaven Lab and the Search for the Higgs, BNL ANL particle physicist Tom LeCompte Visit the

  10. AMRH and High Energy Reinicke Problem

    SciTech Connect (OSTI)

    Shestakov, A I; Greenough, J A

    2001-05-14

    The authors describe AMRH results on a version of the Reinicke problem specified by the V and V group of LLNL's A-Div. The simulation models a point explosion with heat conduction. The problem specification requires that the heat conduction be replaced with diffusive radiation transport. The matter and radiation energy densities are tightly coupled.

  11. Electrolysis - High Temperature - Hydrogen - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolysis - High Temperature - Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility by taking a stream of water and heating it and then splitting the water into hydrogen and oxygen product streams. A

  12. MHL High Speed Cavitation | Open Energy Information

    Open Energy Info (EERE)

    16 Bandwidth(kHz) 20 Cameras Yes Description of Camera Types Wide variety of analog & digital surface cameras; high speed above and underwater cameras Available Sensors...

  13. High Risk Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon High Risk Plan More Documents & Publications DOE Site Facility Management Contracts Internet Posting DOE Head of Contracting Activity and Procurement Directors' Directory ...

  14. Meitag High Tech Ventures | Open Energy Information

    Open Energy Info (EERE)

    search Name: Meitag High-Tech Ventures Place: Israel Sector: Services Product: General Financial & Legal Services ( Partnership (investment, law etc) ) References: Meitag...

  15. High Performance Dielectrics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Dielectrics Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (342 KB) Technology Marketing Summary Current dielectric materials are limited and unable to meet all operating, temperature, response frequency, size, and reliability requirements needed for uncooled high-reliability electronics. To address this problem, scientists at Sandia have developed a method for producing dielectric materials using engineered

  16. Variable aperture collimator for high energy radiation

    DOE Patents [OSTI]

    Hill, Ronald A.

    1984-05-22

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated energy from emerging from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  17. Studies of High Energy Particle Astrophysics

    SciTech Connect (OSTI)

    Nitz, David F; Fick, Brian E

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  18. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    converters - Energy Innovation Portal High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Matching a semiconductor's bandgap to incident photon energy is a well-known method to achieve the most efficient photovoltaic devices. Since solar radiation consists of a wide range of wavelengths, having one semiconductor with a single bandgap to absorb all solar radiation

  19. High Energy Density Laboratory Plasmas Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible the exploration of matter at extremely high energy density in the laboratory. Exciting new experimental regimes are being realized by exploiting the scientific capabilities of existing ICF Office facilities, as well as the relevant Department of Defense (DoD) and university

  20. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications deer11_salvador.pdf (2.68

  1. Apparatus for advancing a wellbore using high power laser energy

    DOE Patents [OSTI]

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  2. Vehicle Technologies Office Merit Review 2016: Development of High Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Sulfur Batteries | Department of Energy Development of High Energy Lithium-Sulfur Batteries Vehicle Technologies Office Merit Review 2016: Development of High Energy Lithium-Sulfur Batteries Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es282_liu_2016_p_web.pdf (2.02 MB) More Documents & Publications Vehicle

  3. September 2015 Most Viewed Documents for Physics | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information September 2015 Most Viewed Documents for Physics Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 123 Cathodic arc plasma deposition Anders, Andre (2002) 105 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams] Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. (1978) 103 Synchrotron power supply light source note Fathizadeh, M.

  4. Jefferson Lab, a forefront U.S. Department of Energy nuclear physics research fa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, a forefront U.S. Department of Energy nuclear physics research facility, provides world- class, unique research capabilities and innovative technologies to serve an international scientific user community. Specifically, the laboratory's mission is to: * deliver discovery-caliber research by exploring the atomic nucleus and its fundamental constituents, including precise tests of their interactions; * apply advanced particle accelerator, detector and other technologies to develop new basic

  5. December 2015 Most Viewed Documents for Physics | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information December 2015 Most Viewed Documents for Physics Cathodic arc plasma deposition Anders, Andre (2002) 147 Synchrotron power supply light source note Fathizadeh, M. (1991) 114 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 112 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams] Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M.

  6. June 2015 Most Viewed Documents for Physics | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information June 2015 Most Viewed Documents for Physics Cathodic arc plasma deposition Anders, Andre (2002) 118 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 93 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams] Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. (1978) 89 Modification to the Monte Carlo N-Particle (MCNP) Visual Editor

  7. March 2015 Most Viewed Documents for Physics | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information 5 Most Viewed Documents for Physics Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 124 Cathodic arc plasma deposition Anders, Andre (2002) 98 Selected component failure rate values from fusion safety assessment tasks Cadwallader, L.C. (1998) 79 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams] Carnall, W.T.; Crosswhite, H.;

  8. Most Viewed Documents for Physics: December 2014 | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Most Viewed Documents for Physics: December 2014 Cathodic arc plasma deposition Anders, Andre (2002) 57 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 48 Klystron beam-bunching lecture Carlsten, B. (1996) 46 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams] Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. (1978) 45

  9. Hitachi High Technologies Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: Hitachi High-Technologies Corp Place: Tokyo, Japan Zip: 105-8717 Sector: Solar Product: Japan-based technology firm that is member of the...

  10. High Temperature ESP Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 C for measuring ...

  11. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Temperature Interfacial Superconductivity Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication High-temperature interface superconductivity between metallic and insulating copper oxides (791 KB) <p> (a) Annular dark field image of the structure showing extended defects in the metal layer (marked by white arrows). The black arrow shows the metal-insulator interface (b) A magnified image of one defect which nucleated at the

  12. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Highly Dispersed Metal Catalyst Method for full dispersion of active metals into a high surface area of support to promote efficiency Savannah River National Laboratory Contact SRNL About This Technology Dr. X. Steve Xiao, Fellow Engineer, Savannah River National Laboratory Dr. X. Steve Xiao, Fellow Engineer, Savannah River National Laboratory Technology Marketing Summary

  13. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  14. High energy, low frequency, ultrasonic transducer

    DOE Patents [OSTI]

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  15. Co-axial, high energy gamma generator

    DOE Patents [OSTI]

    Reijonen, Jani Petteri; Gicquel, Frederic

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  16. Solar Energy Education. Renewable energy activities for junior high/middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    school science (Technical Report) | SciTech Connect junior high/middle school science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for junior high/middle school science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  17. Status and plans of the United States and CERN high-energy-physics programs and the Superconducting Super Collider (SSC). Hearing before the Subcommittee on Energy Development and Applications of the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, First Session, October 29, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    After a brief statement by Dr. Alvin W. Trivelpiece, Director, Office of Energy Research, DOE, the hearing consisted mostly of statements and discussions that involved two panels: (1) Status and Plans for CERN, and (2) SSC Magnet Selection. Prepared statements, in most cases were submitted for the record and the informal discussions of each panel as well as questions and answers for the record are included.

  18. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect (OSTI)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  19. High energy density Z-pinch plasmas using flow stabilization

    SciTech Connect (OSTI)

    Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.

    2014-12-15

    scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.

  20. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect (OSTI)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  1. Atomic physics with highly charged ions. Progress report, FY 1989--91

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  2. USDA Helps Reduce High Energy Costs in Tribal Lands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps Reduce High Energy Costs in Tribal Lands USDA Helps Reduce High Energy Costs in Tribal Lands September 17, 2015 - 3:08pm Addthis On Sept. 16, 2015, the U.S. Department of Agriculture (USDA) announced five grants to help reduce energy costs for tribes in Alaska, Arizona, and South Dakota where the cost of producing electricity is extremely high. Through the High Energy Cost Grant program, the USDA will provide $7.9 million to nine grantees to help improve the environment by reducing carbon

  3. High energy density battery with cathode composition

    SciTech Connect (OSTI)

    Nalewajek, D.; Eibeck, R. E.; Sukornick, B.

    1985-10-22

    A cell which employs an active metal anode such as lithium and a liquid organic electrolyte that is improved by the use of a cathode comprised of carbon fluoride chloride is described. The cathode comprises a carbon fluoride chloride of the general formula (C /SUB y/ F /SUB x/ Cl /SUB z/ ) /SUB n/ wherein y is 1 to 2, x is greater than 0 to 1.2, z is less than or equal to0.1 and n defines the number of repeating units occurring in the carbon fluoride chloride molecule of high molecular weight. The resulting battery has improved discharge and shelf-life characteristics.

  4. Recent results of high p(T) physics at the CDF II

    SciTech Connect (OSTI)

    Tsuno, Soushi; /Okayama U.

    2005-02-01

    The Tevatron Run II program has been in progress since 2001. The CDF experiment has accumulated roughly five times as much data as did Run I, with much improved detectors. Preliminary results from the CDF experiment are presented. The authors focus on recent high p{sub T} physics results in the Tevatron Run II program.

  5. High Impact Technology - Request for Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology - Request for Information High Impact Technology - Request for Information October 5, 2014 - 4:11pm Addthis This Request for Information is closed. View the Request for Information DE-FOA-0001226, "High Impact Commercial Building Technology." BTO has developed the High Impact Technology (HIT) Catalyst, a framework for accelerating the voluntary adoption of high impact, cost-effective, energy-saving, and underutilized commercial building technologies. Advances in

  6. Women @ Energy: Emilie Hogan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in physics; as well as San Carlos de Bariloche, Argentina, and the University of Hamburg, Germany, where she earned a Ph.D in high energy physics. Women @ Energy: Marcela Carena...

  7. High-Performance Energy Applications and Systems

    SciTech Connect (OSTI)

    Miller, Barton

    2014-05-19

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  8. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  9. High Performance, Low Cost Hydrogen Generation from Renewable Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Performance, Low Cost Hydrogen Generation from Renewable Energy High Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pd071_ayers_2011_o.pdf (1.38 MB) More Documents & Publications Catalysis Working Group Meeting: June 2015 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2015

  10. High Reliability Redundant Solar Topology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Redundant Solar Topology High Reliability Redundant Solar Topology Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_tenksolar_johnson.pdf (226.96 KB) More Documents & Publications From Cleanup to Stewardship QER - Comment of Energy Innovation 6 QER - Comment of Energy Innovation 7

  11. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  12. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp10amine.pdf More Documents & Publications New High Energy Gradient Concentration ...

  13. COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 13, 2016, 4:15pm to 5:30pm Colloquia MBG AUDITORIUM COLLOQUIUM: Frontiers in Plasma Science: A High Energy Density Perspective Dr. Bruce A. Remington Lawrence Livermore ...

  14. Creating, Diagnosing and Controlling High-energy-density Matter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 22, 2013, 3:00pm to 4:15pm Colloquia MBG Auditorium Creating, Diagnosing and Controlling High-energy-density Matter with Lasers Dr. Yuan Ping Lawrence Livermore National ...

  15. Vehicle Technologies Office Merit Review 2015: High Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lithium-sulfur cathodes. PDF icon es230cui2015o.pdf More Documents & Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Vehicle Technologies...

  16. Imaging the Formation of High-Energy Dispersion Anomalies in...

    Office of Scientific and Technical Information (OSTI)

    Title: Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5 Authors: Das, Tanmoy ; Durakiewicz, Tomasz ; Zhu, Jian-Xin ; Joyce, John J. ; Sarrao, John ...

  17. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Authors: Kurahashi, ...

  18. Examination of Beryllium Under Intense High Energy Proton Beam...

    Office of Scientific and Technical Information (OSTI)

    Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility ... 6th International Particle Accelerator Conference. Richmond, Virginia, USA, 3-8 May 2015.

  19. Illinois: High-Energy, Concentration-Gradient Cathode Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a high-energy, concentration-gradient cathode material for plug-in hybrid and all-electric vehicles. ... market growth, leading to reductions in carbon pollution and imported oil. ...

  20. Effects of Cosmic Infrared Background on High Energy Delayed...

    Office of Scientific and Technical Information (OSTI)

    Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts Citation Details In-Document Search Title: Effects of Cosmic Infrared Background on...