Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Energy Density Capacitors  

SciTech Connect

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

2

Oxides having high energy densities  

DOE Patents (OSTI)

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

3

High Energy Density Secondary Lithium Batteries  

High Energy Density Secondary Lithium Batteries Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

4

High-Energy-Density Plasmas, Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids /science-innovation/_assets/images/icon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The laser delivers a power on target of 150 Terawatts focused into a 7 micrometer spot, yielding laser brilliance over 100 times more intense than needed to make the target electrons fully relativistic. These experiments test novel methods of producing intense

5

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas...

6

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

7

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

8

Amplifying Magnetic Fields in High Energy Density Plasmas | U...  

Office of Science (SC) Website

Amplifying Magnetic Fields in High Energy Density Plasmas Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities...

9

047 Glass-Ceramic Composites for High Energy Density Capacitors  

Science Conference Proceedings (OSTI)

047 Glass-Ceramic Composites for High Energy Density Capacitors .... 150 Analysis of Hf-Ta Alloys for Oxidation Protection in Ultra High Temperature ...

10

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Density Capacitor Design Offers Potential High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern, Pennsylvania's TroyCap, LLC is using nanolaminate technology patented by

11

Innovative High Energy Density Capacitor Design Offers Potential for Clean  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative High Energy Density Capacitor Design Offers Potential Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications Innovative High Energy Density Capacitor Design Offers Potential for Clean Energy Applications June 10, 2011 - 4:46pm Addthis Similar system to the clustering tool that will manufacture TroyCap’s High Energy Density Nanolaminate Capacitor | Credit: TroyC Similar system to the clustering tool that will manufacture TroyCap's High Energy Density Nanolaminate Capacitor | Credit: TroyC Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy Can you imagine a photovoltaic module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs? Malvern,

12

Aluminum Oxynitride Dielectrics for High Energy Density Capacitor ...  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Aluminum Oxynitride Dielectrics for High Energy Density Capacitor Applications by Kevin R. Bray, Richard L.C. Wu, Sandra Fries-Carr, and ...

13

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Daniel Bulger; Alexander Pushnitski

2011-10-17T23:59:59.000Z

14

The spectral density of the scattering matrix for high energies  

E-Print Network (OSTI)

We determine the density of eigenvalues of the scattering matrix of the Schrodinger operator with a short range potential in the high energy asymptotic regime. We give an explicit formula for this density in terms of the X-ray transform of the potential.

Bulger, Daniel

2011-01-01T23:59:59.000Z

15

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

16

High Energy Density Laboratory Plasmas | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog HEDLP High Energy Density Laboratory Plasmas Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > High Energy Density Laboratory Plasmas

17

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

18

High Energy Density Physics and Exotic Acceleration Schemes  

Science Conference Proceedings (OSTI)

The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And we saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.

Cowan, T.; /General Atomics, San Diego; Colby, E.; /SLAC

2005-09-27T23:59:59.000Z

19

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

20

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network (OSTI)

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

TRIDENT high-energy-density facility experimental capabilities and diagnostics  

Science Conference Proceedings (OSTI)

The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.

Batha, S. H.; Aragonez, R.; Archuleta, F. L.; Archuleta, T. N.; Benage, J. F.; Cobble, J. A.; Cowan, J. S.; Fatherley, V. E.; Flippo, K. A.; Gautier, D. C.; Gonzales, R. P.; Greenfield, S. R.; Hegelich, B. M.; Hurry, T. R.; Johnson, R. P.; Kline, J. L.; Letzring, S. A.; Loomis, E. N.; Lopez, F. E.; Luo, S. N. [Los Alamos National Laboratory, P.O. Box 1663, MS E526, Los Alamos, New Mexico 87545 (United States)] (and others)

2008-10-15T23:59:59.000Z

22

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

23

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

24

High Energy Density Lithium Capacitors Using Carbon-Carbon ...  

Science Conference Proceedings (OSTI)

We demonstrate a lithium capacitor which is capable of achieving high energy ... 3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and ...

25

Metrology Challenges for High Energy Density Science Target Manufacture  

Science Conference Proceedings (OSTI)

Currently, High Energy Density Science (HEDS) experiments are used to support and qualify predictive physics models. These models assume ideal conditions such as energy (input) and device (target) geometry. The experiments rely on precision targets constructed from components with dimensions in the millimeter range, while having micrometer-scale, functional features, including planar steps, sine waves, and step-joint geometry on hemispherical targets. Future target designs will likely have features and forms that rival or surpass current manufacturing and characterization capability. The dimensional metrology of these features is important for a number of reasons, including qualification of sub-components prior to assembly, quantification of critical features on the as-built assemblies and as a feedback mechanism for fabrication process development. Variations in geometry from part to part can lead to functional limitations, such as unpredictable instabilities during an experiment and the inability to assemble a target from poorly matched sub-components. Adding to the complexity are the large number and variety of materials, components, and shapes that render any single metrology technique difficult to use with low uncertainty. Common materials include metal and glass foams, doped transparent and opaque plastics and a variety of deposited and wrought metals. A suite of metrology tools and techniques developed to address the many critical issues relevant to the manufacture of HEDS targets including interferometry, x-ray radiography and contact metrology are presented including two sided interferometry for absolute thickness metrology and low force probe technology for micrometer feature coordinate metrology.

Seugling, R M; Bono, M J; Davis, P

2009-02-19T23:59:59.000Z

26

Basic Research Needs for High Energy Density Laboratory Physics  

National Nuclear Security Administration (NNSA)

those of high-power lasers, pulsed-power machines and particle accelerators, and advanced energy systems. Furthermore, the program will help develop the workforce needed for future...

27

Upgrading of biorenewables to high energy density fuels  

DOE Green Energy (OSTI)

According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.

Gordon, John C [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Chen, Weizhong [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Dirmyer, Matthew R [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Kim, Jin K [Los Alamos National Laboratory; Keith, Jason [Los Alamos National Laboratory; Martin, Richard L [Los Alamos National Laboratory; Pierpont, Aaron W [Los Alamos National Laboratory; Silks Ill, L. A. "" Pete [Los Alamos National Laboratory; Smythe, Mathan C [Los Alamos National Laboratory; Sutton, Andrew D [Los Alamos National Laboratory; Taw, Felicia L [Los Alamos National Laboratory; Trovitch, Ryan J [Los Alamos National Laboratory; Vasudevan, Kalyan V [Los Alamos National Laboratory; Waidmann, Christopher R [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Baker, R. Thomas [UNIV OF OTTAWWA; Schlaf, Marcel [UNIV OF GUELPH

2010-12-07T23:59:59.000Z

28

National Research Council Study on Frontiers in High-Energy-Density Physics  

E-Print Network (OSTI)

of Fusion Fusion Power Associates Washington, DC 19­21 November 2003 #12;E12541 High-energy-density physicsNational Research Council Study on Frontiers in High-Energy-Density Physics David D. Meyerhofer (HEDP) is a rapidly growing research area · Pressures in excess of 1 Mbar constitute high-energy

29

Application of Critical Strain Energy Density to Predicting High-Burnup Fuel Rod Failure  

Science Conference Proceedings (OSTI)

This report documents responses to Nuclear Regulatory Commission (NRC) staff concerning application of critical strain energy density (CSED) to predicting high-burnup fuel rod failure.

2005-09-26T23:59:59.000Z

30

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

31

High Energy Density Anode Materials Based on SiO-SnCo/FeC for ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High energy density anode material SiO-SnCoC is synthesized by mechanical alloying method and tested for lithium battery applications.

32

Kaon condensation in neutron stars and high density behaviour of nuclear symmetry energy  

E-Print Network (OSTI)

We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases.

S. Kubis; M. Kutschera

1999-07-24T23:59:59.000Z

33

ESS 2012 Peer Review - Novel High Energy Density Dielectrics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response Time Cost Electrolytic Temperature Energy Response Time Cost Temperature Energy Response Time Cost Polymer Film Ceramic Temp Energy Response Time Cost 10C...

34

"Using Magnetic Fields to Create and Control High Energy Density...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Princeton Plasma Physics Laboratory. All rights reserved. U.S. Department of Energy Princeton Plasma Physics Laboratory is a U.S. Department of Energy national...

35

Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density  

E-Print Network (OSTI)

supercapacitors of high energy density Qian Cheng a,b , Jie Tang a,b,**, Norio Shinya b , Lu-Chang Qin c as supercapacitor electrodes. Energy density of 188 Wh kgÃ?1 has been obtained. Graphene composite with carbon April 2013 Keywords: Supercapacitor Graphene Carbon nanotube PANI a b s t r a c t Graphene and single

Qin, Lu-Chang

36

4D-HD for high energy density plasmas: shedding light into rapidly...  

NLE Websites -- All DOE Office Websites (Extended Search)

D-HD for high energy density plasmas: shedding light into rapidly changing, opaque plasmas Wednesday, July 24, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Marta Fajardo,...

37

Short-range tensor interaction and high-density nuclear symmetry energy  

E-Print Network (OSTI)

Effects of the short-range tensor interaction on the density-dependence of nuclear symmetry energy are examined by applying an approximate expression for the second-order tensor contribution to the symmetry energy derived earlier by G.E. Brown and R. Machleidt. It is found that the uncertainty in the short-range tensor force leads directly to a divergent high-density behavior of the nuclear symmetry energy.

Li, Ang

2011-01-01T23:59:59.000Z

38

ESS 2012 Peer Review - Novel High Energy Density Dielectrics for Scalable Capacitor Needs - Geoff Brennecka, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel High Energy Density Novel High Energy Density Dielectrics for Scalable Capacitor Needs 27 September 2012 Geoff Brennecka The author gratefully acknowledges the support of Dr. Imre Gyuk and the Department of Energy's Office of Electricity Delivery and Energy Reliability. 400nF 2000V Project  Currently-available capacitor options force undesired choices:  (power, capacitance) vs. reliability  performance vs. (temperature, voltage) stability  Capacitors are often not deployed where they could be beneficial, or are deployed and fail (or are severely derated)  Stationary storage and related applications can realize significant value via improved capacitor performance and reliability  Improve reliability and efficiency of high temperature power electronics

39

Enabling High Energy Density Redox Chemistries and 3D Electrode ...  

Science Conference Proceedings (OSTI)

Carbon-Sulfur Nanocomposite Cathode Materials for Lithium-Sulfur Batteries · Carbonized ... Graphenic Material for High Performance Li-Ion Battery Electrodes .

40

High Energy Density Fused Cladding for Corrosion Control  

Science Conference Proceedings (OSTI)

Corrosion in Biodiesel Production Process Using High Free Fatty Acid Feedstocks · Corrosion Prediction in the Oil and Gas Industry Using Handheld X- ray ...

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

42

High Energy Density Film-on-foil Capacitor Fabrication Utilizing ...  

Science Conference Proceedings (OSTI)

... process, which promised high voltage operations of the PLZT based film-on-foil capacitors. ... A Study on Hydrostatic Extrusion of a High Strength Bimetal Pin ... Consolidation of Silica/Graphene Oxide Composite by Spark Plasma Sintering .... Phase Equilibria and Tie-line Compositions of the ? and (?, ?, ?) Phases in the ...

43

The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies  

E-Print Network (OSTI)

The scattering matrix of the Schrodinger operator with smooth short-range electric and magnetic potentials is considered. The asymptotic density of the eigenvalues of this scattering matrix in the high energy regime is determined. An explicit formula for this density is given. This formula involves only the magnetic vector-potential.

Daniel Bulger; Alexander Pushnitski

2012-08-21T23:59:59.000Z

44

Shock waves in a Z-pinch and the formation of high energy density plasma  

Science Conference Proceedings (OSTI)

A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

45

A Microelectromechanical High-Density Energy Storage/Rapid Release System  

DOE Green Energy (OSTI)

One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.

1999-07-21T23:59:59.000Z

46

High Thermal Energy Storage Density LiNO3-NaNO3-KNO3-KNO2 ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Thermal Energy Storage Density LiNO3-NaNO3-KNO3- KNO2 Quaternary Molten Salts for Parabolic Trough Solar Power Generation.

47

Optimization of Polymer-based Nanocomposites for High Energy Density Applications  

E-Print Network (OSTI)

Monolithic materials are not meeting the increasing demand for flexible, lightweight and compact high energy density dielectrics. This limitation in performance is due to the trade-off between dielectric constant and dielectric breakdown. Insulating polymers are of interest owing to their high inherent electrical resistance, low dielectric loss, flexibility, light weight, and low cost; however, capacitors produced with dielectric polymers are limited to an energy density of ~1-2 J/cc. Polymer nanocomposites, i.e., high dielectric particles embedded into a high dielectric breakdown polymer, are promising candidates to overcome the limitations of monolithic materials for energy storage applications. The main objective of this dissertation is to simultaneously increase the dielectric permittivity and dielectric breakdown without increasing the loss, resulting in a significant enhancement in the energy density over the unmodified polymer. The key is maintaining a low volume content to ensure a high inter-particle distance, effectively minimizing the effect of local field on the composite's dielectric breakdown. The first step is studying the particle size and aspect ratio effects on the dielectric properties to ensure a judicious choice in order to obtain the highest enhancement. The best results, as a combination of dielectric constant, loss and dielectric breakdown, were with the particles with the highest aspect ratio. Further improvement in the dielectric behavior is observed when the nanoparticles surface is chemically tailored to tune transport properties. The particles treatment leads to better dispersion, planar distribution and stronger interaction with the polymer matrix. The planar distribution of the high aspect ratio particles is essential to limit the enhancement of local fields, where minimum local fields result in higher dielectric breakdown in the composite. The most significant improvement in the dielectric properties is achieved with chemically-treated nano TiO2 with an aspect ratio of 14 at a low 4.6 vol% loading, where the energy density increased by 500% compared to pure PVDF. At this loading, simultaneous enhancement in the dielectric constant and dielectric breakdown occurs while the dielectric loss remains in the same range as that of the pristine polymer.

Barhoumi Ep Meddeb, Amira

2012-05-01T23:59:59.000Z

48

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

49

Development of high energy density fuels from mild gasification of coal  

SciTech Connect

The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

Not Available

1990-10-01T23:59:59.000Z

50

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

51

SAND2011-6616A Page 1 Session 2: High Energy Density, Plasmas, Magnetic Fields  

National Nuclear Security Administration (NNSA)

616A 616A Page 1 Session 2: High Energy Density, Plasmas, Magnetic Fields Dynamical Materials Experiments on Sandia's Z Machine: Obtaining Data with High Precision at HED Conditions Thomas R. Mattsson and Seth Root Sandia National Laboratories, Albuquerque, NM USA Summary: The Z machine at Sandia National Laboratories has successfully been used to study a wide range of materials under extreme conditions. In this paper, we will discuss the methodology resulting in high-pressure measurements at multi-Mbar pressures as well as present experimental data for shock compression of poly methyl-pentene, a hydrocarbon plastic. Introduction During the last few years, there has been a notable increase in the interest of high-pressure science. The increase in interest has been driven by the remarkable capabilities of new and improved platforms like

52

Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch  

SciTech Connect

Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

Prevosto, L.; Mancinelli, B. [Departamento Ing. Electromecanica, Grupo de Descargas Electricas, Universidad Tecnologica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto, Santa Fe 2600 (Argentina); Artana, G. [Departamento Ing. Mecanica, Laboratorio de Fluidodinamica, Facultad de Ingenieria (UBA), Paseo Colon 850 (C1063ACV), Buenos Aires (Argentina); Kelly, H. [Departamento de Fisica, Instituto de Fisica del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA), Ciudad Universitaria Pab. I, Buenos Aires 1428 (Argentina)

2010-01-15T23:59:59.000Z

53

Extended CO Solid: A New Class of High Energy Density Material  

DOE Green Energy (OSTI)

Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of materials with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including N{sub 2}, CO{sub 2},and CO. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties including high-energy content. In this paper, we present the first experimental evidence that these extended low-Z solids are indeed high energy density materials via milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). Our spectroscopic data reveal that p-CO is a random polymer made of lactonic entities and conjugated C=C with an energy content rivaling or exceeding that of HMX. Solid p-CO explosively decomposes to CO{sub 2} and glassy carbon and thus might be used as an advanced energetic material.

Lipp, M J; Evans, W J; Baer, B J; Yoo, C

2004-10-14T23:59:59.000Z

54

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage  

SciTech Connect

Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

2011-05-01T23:59:59.000Z

55

Symmetry energy effects on the mixed hadron-quark phase at high baryon density  

Science Conference Proceedings (OSTI)

The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,{rho}{sub B}) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.

Di Toro, M.; Greco, V.; Plumari, S. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy); Pysics and Astronomy Department, University of Catania (Italy); Liu, B. [IHEP, Chinese Academy of Sciences, Beijing (China); Theoretical Physics Center for Scientific Facilities, Chinese Academy of Sciences, 100049 Beijing (China); Baran, V. [Pysics Faculty, University of Bucharest and NIPNE-HH (Romania); Colonna, M. [Laboratori Nazionali del Sud INFN, I-95123 Catania (Italy)

2011-01-15T23:59:59.000Z

56

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

57

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

58

The Materials genome : rapid materials screening for renewable energy using high-throughput density functional theory  

E-Print Network (OSTI)

This thesis relates to the emerging field of high-throughput density functional theory (DFT) computation for materials design and optimization. Although highthroughput DFT is a promising new method for materials discovery, ...

Jain, Anubhav, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

59

High density photovoltaic  

DOE Green Energy (OSTI)

Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

1997-10-14T23:59:59.000Z

60

Magnetic reconnection in high-energy-density laser-produced plasmas  

SciTech Connect

Recently, novel experiments on magnetic reconnection have been conducted in laser-produced plasmas in a high-energy-density regime. Individual plasma bubbles self-generate toroidal, mega-gauss-scale magnetic fields through the Biermann battery effect. When multiple bubbles are created at small separation, they expand into one another, driving reconnection of this field. Reconnection in the experiments was reported to be much faster than allowed by both Sweet-Parker, and even Hall-MHD theories, when normalized to the nominal magnetic fields self-generated by single bubbles. Through particle-in-cell simulations (both with and without a binary collision operator), we model the bubble interaction at parameters and geometry relevant to the experiments. This paper discusses in detail the reconnection regime of the laser-driven experiments and reports the qualitative features of simulations. We find substantial flux-pileup effects, which boost the relevant magnetic field for reconnection in the current sheet. When this is accounted for, the normalized reconnection rates are much more in line with standard two-fluid theory of reconnection. At the largest system sizes, we additionally find that the current sheet is prone to breakup into plasmoids.

Fox, W.; Bhattacharjee, A.; Germaschewski, K. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, and Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of New Hampshire, Durham, New Hampshire 03824 (United States)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications  

SciTech Connect

The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I) , and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations. 2011 American Institute of Physics

Mikhail A. Dorf, Igor D. Kaganovich, Edward A. Startsev and Ronald C. Davidson

2011-04-27T23:59:59.000Z

62

High energy density batteries. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search  

SciTech Connect

The bibliography contains citations concerning high energy density electric batteries. Battery electrolyte materials such as sodium-sulfur, lithium-aluminum, nickel-cadmium, lithium-thionyl, lithium-lead, sodium-sodiumpolysulfide, nickel-iron, nickel-zinc, and alkali-sulfur are examined. Test methods for these high energy batteries are discussed. Molten salt electrochemical studies for high energy cells are included. Military applications are also presented. (Contains a minimum of 63 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

63

Development of low-cost, compact, reliable, high energy density ceramic nanocomposite capacitors.  

SciTech Connect

The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.

Cooley, Erika J.; Monson, Todd C.; DiAntonio, Christopher Brian; Huber, Dale L.; Fellows, Benjamin D.; Stevens, Tyler E.; Roesler, Alexander William; Chavez, Tom P.; Winter, Michael R.

2010-05-01T23:59:59.000Z

64

Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

Sun, K.

2011-05-04T23:59:59.000Z

65

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents (OSTI)

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

66

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

67

Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform today’s technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envia’s batteries exhibit world-record energy densities.

None

2010-01-01T23:59:59.000Z

68

Primary cell of high energy density in which the anode active material is an alkali metal  

Science Conference Proceedings (OSTI)

A primary cell of high specific energy in which the anode active material is an alkali metal and the cathode active material is sulphur oxychloride which simultaneously acts as an electrolyte solvent, said electrolyte further containing a dissolved salt and a co-solvent. The co-solvent is chosen from among phosphoryl chloride and benzoyl chloride; the dissolved salt is lithium tetrachloroaluminate.

Gabano, J.

1983-02-01T23:59:59.000Z

69

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network (OSTI)

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

70

Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications  

Science Conference Proceedings (OSTI)

We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

2012-12-15T23:59:59.000Z

71

High-energy-density solid and liquid hydrocarbon fuels. Final report, July 1987-December 1988  

Science Conference Proceedings (OSTI)

The development of new high-energy hydrocarbon fuels for use in air-breathing missiles has been the objective of a number of investigations which have received support during the past decade through programs sponsored by the Air Force Systems Command and/or the Naval Air Systems Command. The key characteristics which must be met by potential cruise missile fuels have been described by Burdette and coworkers. A primary requirement in this regard is that candidate fuels must possess high net volumetric heat of combustion (preferably greater than 160,000 BTU/gallon). In order to meet the primary requirement of high net volumetric heat of combustion, hydrocarbon systems have been sought which maximize the ratio of carbon-atom to hydrogen-atom content have been sought that maximize the ratio n/m.(JES)

Marchand, A.P.

1989-02-01T23:59:59.000Z

72

Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes  

SciTech Connect

The preparation and characterization of high surface area ruthenium/carbon aerogel composite electrodes for use in electrochemical capacitors is reported. These new materials have been prepared by the chemical vapor impregnation of ruthenium into carbon aerogels to produce a uniform distribution of adherent {approx}20 {angstrom} nanoparticles on the aerogel surface. The electrochemically oxidized ruthenium particles contribute a pseudocapacitance to the electrode and dramatically improve the energy storage characteristics of the aerogel. These composites have demonstrated specific capacitances in excess of 200 F/g, in comparison to 95 F/g for the untreated aerogel.

Miller, J.M.; Dunn, B. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Tran, T.D.; Pekala, R.W. [Lawrence Livermore National Labs., CA (United States). Chemical Sciences Div.

1997-12-01T23:59:59.000Z

73

Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density  

Science Conference Proceedings (OSTI)

BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

None

2010-10-01T23:59:59.000Z

74

Density-dependent covariant energy density functionals  

Science Conference Proceedings (OSTI)

Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

2012-10-20T23:59:59.000Z

75

High density laser-driven target  

DOE Patents (OSTI)

A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

Lindl, John D. (San Ramon, CA)

1981-01-01T23:59:59.000Z

76

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

77

High-density Fuel Development for High Performance Research ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High density UMo (7-12wt% Mo) fuel for high performance research ... High Energy X-ray Diffraction Study of Deformation Behavior of Alloy HT9.

78

Energy Densities for LLNL EMB  

Summary of Projected Power and Energy Density Parameters for the “New Generation” LLNL Electromechanical Batteries R.F. Post June 24, 2013

79

From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power  

SciTech Connect

Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.

Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.

1999-03-15T23:59:59.000Z

80

MEMS Fuel Cells--Low Temp--High Power Density - Energy Innovation ...  

Rechargeable batteries presently provide limited energy ... as well as to manufacture the fuel cell via a continuous integration ... Microfluidic systems with ...

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High thermal energy storage density molten salts for parabolic trough solar power generation.  

E-Print Network (OSTI)

??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

Wang, Tao

2011-01-01T23:59:59.000Z

82

Challenges in Developing High Energy Density Li-ion Batteries with ...  

Science Conference Proceedings (OSTI)

The approaches that have been taken recently include the use of high voltage cathodes coupled with graphite or high capacity Li-alloy anodes. In either ...

83

Tomographic reconstruction of high energy density plasmas with picosecond temporal resolution  

SciTech Connect

Three-dimensional reconstruction of the electron density in a plasma can be obtained by passing multiple beams at different field angles simultaneously through a plasma and performing a tomographic reconstruction of the measured field-dependent phase profiles. In this letter, a relatively simple experimental setup is proposed and simulations are carried out to verify the technique. The plasma distribution is modeled as a discreet number of phase screens and a Zernike polynomial representation of the phase screens is used to reconstruct the plasma profile. Using a subpicosecond laser, the complete three-dimensional electron density of the plasma can be obtained with a time resolution limited only by the transit time of the probe through the plasma.

Baker, K L

2005-09-20T23:59:59.000Z

84

High-Intensity and High-Density Charge-Exchange Injection Studies into the CERN PS Booster at Intermediate Energies  

E-Print Network (OSTI)

For the high brilliance LHC ultimate beam and the high intensity CNGS beam, single batch injections into the CERN Proton Synchrotron (PS) will be used to increase the overall machine intensity compared with the present double batch injections. Charge-exchange injection into the PS Booster with a new linac at intermediate energies is thus examined. A key parameter to consider is the energy dependence of beam incoherent tune shifts at injection. Increasing the linac energy from the present 50 MeV to 160 MeV should yield a safer tune shift. For each PS Booster ring, a charge-exchange injection scheme is envisaged inside a proper straight section, redesigned with new bends to make a local bump and using the existing fast bump magnets for horizontal phase-space painting. ACCSIM simulations for charge-exchange injection at 160 MeV have been investigated for both LHC and CNGS beams. After optimizing the parameters that are used for the space charge tracking routines, the results of the simulations agree well with ex...

Martini, M

2004-01-01T23:59:59.000Z

85

High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance  

E-Print Network (OSTI)

Today's batteries are penalized by their poor cycleability (limited to few thousand cycles), shelf life, and inability to quickly recharge (limited to tens of minutes). Commercial ultracapacitors are energy storage systems ...

Signorelli, Riccardo (Riccardo Laurea)

2009-01-01T23:59:59.000Z

86

SAND2011-6616A Page 1 Session 2: High Energy Density, Plasmas...  

National Nuclear Security Administration (NNSA)

on Sandia's Z Machine: Obtaining Data with High Precision at HED Conditions Thomas R. Mattsson and Seth Root Sandia National Laboratories, Albuquerque, NM USA Summary: The Z...

87

Multilayer co-extrusion technique for developing high energy density organic devices.  

DOE Green Energy (OSTI)

The purpose of this project is to develop multi-layered co-extrusion (MLCE) capabilities at Sandia National Laboratories to produce multifunctional polymeric structures. Multi-layered structures containing layers of alternating electrical, mechanical, optical, or structural properties can be applied to a variety of potential applications including energy storage, optics, sensors, mechanical, and barrier applications relevant to the internal and external community. To obtain the desired properties, fillers must be added to the polymer materials that are much smaller than the end layer thickness. We developed two filled polymer systems, one for conductive layers and one for dielectric layers and demonstrated the potential for using MLCE to manufacture capacitors. We also developed numerical models to help determine the material and processing parameters that impact processing and layer stability.

Spangler, Scott W.; Schroeder, John Lee; Mrozek, Randy (Army Research Lab, Adelphi, MD); Bieg, Lothar Franz; Rao, Rekha Ranjana; Lenhart, Joseph Ludlow (Army Research Lab, Adelphi, MD); Stavig, Mark Edwin; Cole, Phillip James (Northrop-Grumman, Herndon, VA); Mondy, Lisa Ann; Winter, Michael R.; Schneider, Duane Allen

2009-11-01T23:59:59.000Z

88

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

89

Development of high energy density fuels from mild gasification of coal. Final report  

SciTech Connect

METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

Not Available

1991-12-01T23:59:59.000Z

90

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

91

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

92

Innovative fuel designs for high power density pressurized water reactor  

E-Print Network (OSTI)

One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

Feng, Dandong, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

93

The tensor part of the Skyrme energy density functional. III. Time-odd terms at high spin  

E-Print Network (OSTI)

This article extends previous studies on the effect of tensor terms in the Skyrme energy density functional by breaking of time-reversal invariance. We have systematically probed the impact of tensor terms on properties of superdeformed rotational bands calculated within the cranked Hartree-Fock-Bogoliubov approach for different parameterizations covering a wide range of values for the isoscalar and isovector tensor coupling constants. We analyze in detail the contribution of the tensor terms to the energies and dynamical moments of inertia and study their impact on quasi-particle spectra. Special attention is devoted to the time-odd tensor terms, the effect of variations of their coupling constants and finite-size instabilities.

V. Hellemans; P. -H. Heenen; M. Bender

2011-12-15T23:59:59.000Z

94

The Quantum Energy Density: Improved E  

Science Conference Proceedings (OSTI)

We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

Krogel, Jaron [University of Illinois, Urbana-Champaign; Yu, Min [Lawrence Berkeley National Laboratory (LBNL); Kim, Jeongnim [ORNL; Ceperley, David M. [University of Illinois, Urbana-Champaign

2013-01-01T23:59:59.000Z

95

Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies  

E-Print Network (OSTI)

We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

T. Niksic; D. Vretenar; P. Ring

2008-09-08T23:59:59.000Z

96

Definition: Power density | Open Energy Information  

Open Energy Info (EERE)

density density Jump to: navigation, search Dictionary.png Power density The rate of energy flow (power) per unit volume, area or mass. Common metrics include: horsepower per cubic inch, watts per square meter and watts per kilogram.[1][2] View on Wikipedia Wikipedia Definition Power density (or volume power density or volume specific power) is the amount of power (time rate of energy transfer) per unit volume. In energy transformers like batteries, fuel cells, motors, etc. but also power supply units or similar, power density refers to a volume. It is then also called volume power density which is expressed as W/m. Volume power density is sometimes an important consideration where space is constrained. In reciprocated internal combustion engines, power density- power per swept

97

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

98

High Thermal Energy Storage Density LiNO3-KNO3-NaNO2-KNO2 ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and ... the energy storage capacity for concentrating solar power generation systems. ... Investigation on the Inhomogeneous Property Distribution of AZO Thin Film ...

99

High Density Fuel Development for Research Reactors  

SciTech Connect

An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

2007-09-01T23:59:59.000Z

100

Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides data on the bulk density of the rock surrounding the well Stratigraphic/Structural: Stratigraphic correlation between well bores. Hydrological: Porosity of the formations loggesd can be calculated for the Density log andprovide an indication potential aquifers. Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.6868 centUSD

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

102

Efficient high density train operations  

DOE Patents (OSTI)

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

103

High-energy-density batteries. January 1975-November 1989 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-November 1989  

SciTech Connect

This bibliography contains citations concerning high-energy-density electric batteries. Battery-electrolyte materials such as sodium-sulfur, lithium-aluminum, nickel-cadmium, lithium-thionyl, lithium-lead, sodium-sodiumpolysulfide, nickel-iron, nickel-zinc, and alkali-sulfur are examined. Test methods for these high-energy batteries are discussed. Molten salt electrochemical studies for high-energy cells are included. Military applications are also presented. (Contains 99 citations fully indexed and including a title list.)

Not Available

1989-12-01T23:59:59.000Z

104

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

Nowobilski, J.J.; Owens, W.J.

1985-01-29T23:59:59.000Z

105

High density load bearing insulation peg  

DOE Patents (OSTI)

A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

106

Phase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices  

E-Print Network (OSTI)

for the understanding of the transformation between the different amorphous ices and the two hypothesized phasesPhase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices Nicolas Giovambattista,1,2 H. Eugene Stanley,2 and Francesco Sciortino3 1 Department of Chemical

Sciortino, Francesco

107

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014  

SciTech Connect

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.-C.; Ebbers, C.; Emanuel, M.; Freitas, B.; Fulkerson, S.; Kanz, K.; Hinz, A.; Marshall, C.; Mills, S.; Nakano, H.; Orth, C.; Rothenberg, J.; Schaffers, K.; Seppala, L.; Skidmore, J.; Smith, L.; Sutton, S.; Telford, S.; Zapata, L.

2000-05-25T23:59:59.000Z

108

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014  

SciTech Connect

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.

Bayramian, A; Beach, R; Bibeau, C; Chanteloup, J; Ebbers, C; Emanuel, M; Freitas, B; Fulkerson, S; Kanz, K; Hinz, A; Marshall, C; Mills, S; Nakano, H; Orth, C; Rothenberg, J; Schaffers, K; Seppala, L; Skidmore, I; Smith, L; Sutton, S; Telford, S; Zapata, L

2000-05-23T23:59:59.000Z

109

Final Technical Report, DOE Grant DE-FG02-98ER54496, Physics of High-Energy-Density X Pinch Plasmas  

SciTech Connect

Abstract for the Final Technical Report, DOE Grant DE-FG02-98ER54496 An X-pinch plasma is produced by driving a high current (100-500 kiloamperes) through two or more fine wires that cross and touch at a point, forming an X in the case of two wires. The wires explode because of the high current, and then the resulting plasma is imploded radially inward by the magnetic field from the current. When the imploding material briefly stagnates at very small radius and high density, an intense burst of x-rays is produced and the plasma disassembles as rapidly as it imploded. When this project began, we could confidently state that at its minimum radius, X pinch plasmas made from such materials as titanium and molybdenum might be as hot as 10,000,000 K and had densities almost as high as the solid wire density, but their X-ray pulse durations were below one billionth of a second. We could also say that the X pinch was useful for point-projection imaging of rapidly changing objects, such as exploding wires, with high resolution, indicative of a very small X-ray source spot size. We can now confidently say that X-pinch plasma temperatures at the moment of the X-ray burst are 10-25 million K in titanium, molybdenum and several other wire X-pinches based upon the spectrum of emitted X-rays in the radiation burst. By the same means, as well as from the penetration of X-rays through the dense plasma, we know that ion densities are close to or higher than one-tenth of the density of the original (solid) wire material in molybdenum and a few other X-pinch plasmas. Furthermore, using the diffraction of X-rays radiated by the X-pinch when it reaches minimum radius, we have determined that the x-ray source size is about 1 thousandth of a millimeter for such wire materials as molybdenum and niobium, while it is 2-10 times larger for tungsten, titanium and aluminum wires. Finally, using a very high speed X-ray imaging “streak camera,” we have determined that X pinch X-ray pulses can be as short as 30 trillionths of a second. Additional experiments have demonstrated that a spherical shell of plasma expands away from the cross point region after the x-ray burst. It reaches millimeter scale in a few billionths of a second, leaving a small (less than 0.1 millimeter) gap in the middle that enables energetic electrons to be accelerated to 10 or a few 10’s of kilovolts of energy. In addition to gaining an understanding of the physics of the X pinch plasmas, we have had to develop several new X-ray diagnostic devices in order to obtain and verify the above results. On the non-technical side, 4 students have completed Ph.D.s working under the auspices of this project, including one woman, and another woman has begun her Ph.D. research under this project. In addition, several undergraduate students have worked with us on the X-pinch experiments, including one who is now a graduate student in plasma physics at Princeton University.

David Hammer

2008-12-03T23:59:59.000Z

110

Dark Energy Density in Brane World  

E-Print Network (OSTI)

We present a possible explanation to the tiny positive cosmological constant under the frame of AdS$_5$ spacetime embedded by a dS$_4$ brane. We calculate the dark energy density by summing the zero point energy of massive scalar fields in AdS$_5$ spacetime. Under the assumption that the radius of AdS$_5$ spacetime is of the same magnitude as the radius of observable universe, the dark energy density in dS$_4$ brane is obtained, which is smaller than the observational value. The reasons are also discussed.

Hai-Bao Wen; Xin-Bing Huang

2005-02-08T23:59:59.000Z

111

High Energy Density Laboratory Plasmas  

E-Print Network (OSTI)

faciliBes 1st users of MECI in FY13 Recognize common interests NNSA/FES Compliment NNSA investments Stability ­ investments in HEDLP: people, departments

112

Form-stable crystalline polymer pellets for thermal energy storage: high density polyethylene intermediate products. Final report, October 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

The primary objectives of this program were to demonstrate: (1) that form-stable high density polyethylene (HDPE), which has been shown to have desirable properties as a phase-change type of thermal energy storage material, could be produced by processing in a polyethylene plant for a projected price near 26 cents/lb; and (2) that the raw material, ethylene, will be available in the very long-term from alternate sources (other than petroleum and natural gas). These objectives were accomplished. Production of useful, form-stable HDPE pellets by radiation cross-linking was demonstrated. Such pellets are estimated to be obtainable at 26 cents/lb, using large-volume (> or equal to 10,000,000 lb/yr) in-plant processing. Well-developed technologies exist for obtaining ethylene from coal and plant (or biomass) sources, thus assuring its long-term availability and therefore that of polyethylene. A cost-benefit analysis of the HDPE thermal energy storage system was conducted over its 120 to 140/sup 0/C optimum operating range which is most suited for absorption air conditioning. The HDPE is more cost effective than either rocks, ethylene glycol, or pressurized water and is even competitive with a hypothetical 5 cents/lb salt-hydrate melting in this temperature range. These results applied, as appropriate, to both air and liquid transfer systems.

Botham, R.A.; Ball, G.L. III; Jenkins, G.H.; Salyer, I.O.

1978-01-01T23:59:59.000Z

113

Available Technologies: Ultra-High Density Diffraction ...  

The researchers have demonstrated that an extremely high diffraction intensity ... www.lbl.gov/Tech-Transfer/licensing/index ... OF ENERGY • OFFICE OF ...

114

Instabilities in the Nuclear Energy Density Functional  

E-Print Network (OSTI)

In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

M. Kortelainen; T. Lesinski

2010-02-05T23:59:59.000Z

115

An Optimization of Electrode Energy and Power Density through...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Optimization of Electrode Energy and Power Density through of Variations in Inactive Material and Electrode Porosity Title An Optimization of Electrode Energy and Power Density...

116

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

117

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

118

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

Nazarewicz, W; Satula, W; Vretenar, D

2013-01-01T23:59:59.000Z

119

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Vretenar, Dario

2008-01-01T23:59:59.000Z

120

Nuclear Energy Density Functionals Constrained by Low-Energy QCD  

E-Print Network (OSTI)

A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

Dario Vretenar

2008-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy trapping from Hagedorn densities of states  

E-Print Network (OSTI)

In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

2013-04-26T23:59:59.000Z

122

Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345  

DOE Green Energy (OSTI)

The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

Ghirardi, M.; Svedruzic, D.

2013-07-01T23:59:59.000Z

123

PROCESS FOR IMPROVING THE ENERGY DENSITY OF FEEDSTOCKS USING ...  

PROCESS FOR IMPROVING THE ENERGY DENSITY OF FEEDSTOCKS USING FORMATE SALTS United States Patent Application

124

Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water  

E-Print Network (OSTI)

Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water; published 18 March 2005) It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high- density liquid (HDL) water, while low-density amorphous ice is a structurally

Sciortino, Francesco

125

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

2009-12-21T23:59:59.000Z

126

Kinetics driving high-density chlorine plasmas  

Science Conference Proceedings (OSTI)

A simple fluid model was developed in order to investigate the driving kinetics of neutral and charged species in high-density chlorine plasmas. It was found that the dissociation degree of Cl{sub 2} molecules is directly linked to the power balance of the discharge which controls the electron density. The model was also used to identify those reactions that could be neglected in the particle balance of charged species and those that must be included. Our results further indicate that diffusion losses need to be considered up to a pressure that depends on magnetic-field intensity and reactor aspect ratio. Finally, it is shown that the dominant charged carriers are linked to the dissociation level of Cl{sub 2} molecules.

Stafford, L.; Margot, J.; Vidal, F.; Chaker, M.; Giroux, K.; Poirier, J.-S.; Quintal-Leonard, A.; Saussac, J. [Department de physique, Universite de Montreal, Montreal, Quebec (Canada); INRS-Energie, Materiaux et Telecommunications, Varennes, Quebec (Canada); Department de physique, Universite de Montreal, Montreal, Quebec (Canada)

2005-09-15T23:59:59.000Z

127

High density harp or wire scanner for particle beam diagnostics  

DOE Patents (OSTI)

A diagnostic detector head harp (23) used to detect and characterize high energy particle beams using an array of closely spaced detector wires (21), typically carbon wires, spaced less than 0.1 cm (0.040 inch) connected to a hybrid microcircuit (25) formed on a ceramic substrate (26). A method to fabricate harps (23) to obtain carbon wire spacing and density not previously available utilizing hybrid microcircuit technology. The hybrid microcircuit (25) disposed on the ceramic substrate (26) connects electrically between the detector wires (21) and diagnostic equipment (37) which analyzes pulses generated in the detector wires (21) by the high energy particle beams.

Fritsche, Craig T. (Overland Park, KS); Krogh, Michael L. (Lee' s Summit, MO)

1996-05-21T23:59:59.000Z

128

Ohmically heated high-density Z pinch  

SciTech Connect

The gross properties of a high-density (n approximately equal to 10$sup 27$ m$sup -3$), small-radius, (r = 10$sup -4$ m) gas-imbedded Z pinch have been examined considering only classical processes. The rate equation using only ohmic heating along with bremsstrahlung and radial heat transport shows that ohmic heating will rapidly take the pinch to thermonuclear temperatures for currents, I, greater than 1 MA. The radial heat loss for the pinch is very small for I greater than 1.5 MA. This suggests that the pinch could tolerate being driven to a nearby wall by an m = 1 kink. The laser technology for initiation of the small-diameter filament and the high-voltage technology for giving a 30-ns rise to a MA or more are available now. Some reactor considerations have been included. (auth)

Hammel, J.E.

1976-01-01T23:59:59.000Z

129

Vacuum Outgassing of High Density Polyethylene  

Science Conference Proceedings (OSTI)

A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

2008-08-11T23:59:59.000Z

130

Energy Density Functional for Nuclei and Neutron Stars  

Science Conference Proceedings (OSTI)

Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands. This functional is expected to yield more reliable predictions in the region of very neutron rich heavy nuclei.

Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

2013-01-01T23:59:59.000Z

131

Phase Diagram of Amorphous Solid Water: Low-Density, High-Density, and Very-High-Density Amorphous Ices  

E-Print Network (OSTI)

We describe the phase diagram of amorphous solid water by performing molecular dynamics simulations. Our simulations follow different paths in the phase diagram: isothermal compression/decompression, isochoric cooling/heating and isobaric cooling/heating. We are able to identify low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. The density $\\rho$ of these glasses at different pressure $P$ and temperature $T$ agree well with experimental values. We also study the radial distribution functions of glassy water. We obtain VHDA by isobaric heating of HDA, as in experiment. We also find that ``other forms'' of glassy water can be obtained upon isobaric heating of LDA, as well as amorphous ices formed during the transformation of LDA to HDA. We argue that these other forms of amorphous ices, as well as VHDA, are not altogether new glasses but rather are the result of aging induced by heating. Samples of HDA and VHDA with different densities are recovered at normal $P$, showing that there is a continuum of glasses. Furthermore, the two ranges of densities of recovered HDA and recovered VHDA overlap at ambient $P$. Our simulations are consistent with the possibility of HDA$\\to$LDA and VHDA$\\to$LDA transformations, reproducing the experimental findings. We do not observe a VHDA$\\to$HDA transformation.

Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

2005-02-22T23:59:59.000Z

132

New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator  

Science Conference Proceedings (OSTI)

BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

None

2010-07-01T23:59:59.000Z

133

The low-energy nuclear density of states and the saddle point approximation  

E-Print Network (OSTI)

The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.

Sanjay K. Ghosh; Byron K. Jennings

2001-07-30T23:59:59.000Z

134

The Quantum Energy Density: Improved Efficiency for Quantum Monte Carlo  

E-Print Network (OSTI)

We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon "gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy differences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more efficiently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

Krogel, Jaron T; Kim, Jeongnim; Ceperley, David M

2013-01-01T23:59:59.000Z

135

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

136

Anomalous evolution of Ar metastable density with electron density in high density Ar discharge  

SciTech Connect

Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

Park, Min; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, Shin-Jae; Kim, Jung-Hyung [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of); Shin, Yong-Hyeon

2011-10-15T23:59:59.000Z

137

Electrolytes and Electrodes for High-energy Secondary Batteries  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

138

Definition: Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search Dictionary.png Density Log Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock (i.e. matrix) and the fluid enclosed in the pore spaces.[1] View on Wikipedia Wikipedia Definition Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging

139

SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS  

Science Conference Proceedings (OSTI)

We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

2010-12-20T23:59:59.000Z

140

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes  

E-Print Network (OSTI)

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes

Albrecht, M

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Liu, Min; Li, Zhuxia; Zhang, Fengshou

2010-01-01T23:59:59.000Z

142

Nuclear symmetry energy at subnormal densities from measured nuclear masses  

E-Print Network (OSTI)

The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

2010-11-17T23:59:59.000Z

143

Design of annular fuel for high power density BWRs  

E-Print Network (OSTI)

Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

Morra, Paolo

2005-01-01T23:59:59.000Z

144

The nuclear energy density functional formalism  

E-Print Network (OSTI)

The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel $E[g',g]$ at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\\it mathematically} meaningful fashion even if $E[g',g]$ does {\\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

T. Duguet

2013-09-02T23:59:59.000Z

145

Nondestructive Evaluation: Ultrasonic Examination Techniques for High Density Polyethylene Pipes  

Science Conference Proceedings (OSTI)

High density polyethylene (HDPE) pipe has been used as a replacement material for buried carbon steel pipe in non-safety-related systems. Using the current butt fusion procedure that uses heat and pressure to melt and join two sections of plastic pipe, concerns have been raised that would indicate that the presence of decreased bond strength when the welding parameters for fusion set forth by the plastic pipe industry were not followed. Currently two utilities, Ameren UE at Callaway and Duke-Energy at Ca...

2011-11-15T23:59:59.000Z

146

Lattice QCD and High Baryon Density State  

SciTech Connect

We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and chemical potentials.

Nagata, Keitaro [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Information Science and Education, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Nakamura, Atsushi; Motoki, Shinji [Research Institute for Information Science and Education, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Nakagawa, Yoshiyuki [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Saito, Takuya [Integrated Information Center, Kochi University, Kochi, 780-8520 (Japan)

2011-10-21T23:59:59.000Z

147

Inexpensive Production of High Density Thin Ceramic Films on ...  

Steven Visco, Lutgard DeJonghe, and Craig Jacobson have developed a simple, inexpensive method for producing high density, crack-free, thin ceramic ...

148

Device Fabrication Method for High Power Density Capacitors  

Device Fabrication Method for High Power Density Capacitors Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual ...

149

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory, ...

150

Determining the density dependence of the nuclear symmetry energy using heavy-ion reactions  

E-Print Network (OSTI)

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Lie-Wen Chen; Che Ming Ko; Bao-An Li; Gao-Chan Yong

2007-11-12T23:59:59.000Z

151

Definition: Rock Density | Open Energy Information  

Open Energy Info (EERE)

in crustal rocks. Rock density is a physical characteristic that is governed by the chemical composition (in situ minerals) and pore spaces of a specific rock or rock type.1...

152

Brookhaven High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy Physics High-Energy Physics High-energy physicists probe the properties and behavior of the most elementary particles in the universe. At the Alternating Gradient Synchrotron (AGS), they perform experiments of unique sensitivity using high-intensity, intermediate-energy beams. The AGS currently provides the world's most intense high-energy proton beam. It is also the world's most versatile accelerator, accelerating protons, polarized protons, and heavy ions to near the speed of light. Magnet system at Brookhaven used to measure the magnetic moment of the muon. Important discoveries in high-energy physics were made at the AGS within the last decade. An international collaboration, including key physicists from Brookhaven, performed a very high-precision measurement of a property

153

Super-high density laser fusion CTR  

SciTech Connect

From sixth European conference on controlled fusion and plasma physics; Moscow, USSR (30 Jul 1973). A basic discussion of laser-induced fusion is presented. Implosion development and applications are described. Implosion and thermonuclear physics are discussed in some detail along with laser technology, laser fusion reactors, and fusion energy conversion. (MOW)

Thiessen, A.; Zimmerman, G.; Weaver, T.; Emmett, J.; Nuckolls, J.; Wood, L.

1973-09-01T23:59:59.000Z

154

Initial energy density of p+p collisions at the LHC  

E-Print Network (OSTI)

Accelerating, exact, explicit and simple solutions of relativistic hydrodynamics allow for a simple description of highly relativistic p+p collisions. These solutions yield a finite rapidity distribution, thus they lead to an advanced estimate of the initial energy density of high energy collisions. We show that such an advanced estimate yields an initial energy density in $\\sqrt{s}=7$ TeV p+p collisions at LHC aroundor above the critical energy density from lattice QCD, and a corresponding initial temperature above the critical temperature from QCD or the Hagedorn temperature. We also show, that several times the critical energy density may have been reached in high multiplicity events, hinting on a non-hadronic medium created in high multiplicity $\\sqrt{s}=7$ TeV p+p collisions.

Csanad, Mate

2013-01-01T23:59:59.000Z

155

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Oyamatsu, Kazuhiro

2010-01-01T23:59:59.000Z

156

Symmetry energy at subnuclear densities deduced from nuclear masses  

E-Print Network (OSTI)

We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

Kazuhiro Oyamatsu; Kei Iida

2010-02-23T23:59:59.000Z

157

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Untitled Document Argonne Logo DOE Logo High Energy Physics Division Home Division ES&H Personnel Publications HEP Awards HEP Computing HEP Committees Administration...

158

Density dependence of symmetry free energy of hot nuclei  

E-Print Network (OSTI)

The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework taking into account thermal and expansion effects. A finite-range momentum and density dependent two-body effective interaction is employed for this purpose. The role of mass, isospin and equation of state (EoS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

S. K. Samaddar; J. N. De; X. Vinas; M. Centelles

2008-04-15T23:59:59.000Z

159

A short remark on negative energy densities and quantum inequalities  

E-Print Network (OSTI)

In quantum field theory it is generally known that the energy density may be negative at a given point in spacetime. A number of papers have shown that there is a restriction on this energy density which is called a quantum inequality (QI). A QI is the lower bound to the "weighted average" of the energy density at a given point integrated over a time dependent sampling function. In this paper we give an example of a sampling function for which there is no QI.

Solomon, Dan

2009-01-01T23:59:59.000Z

160

A short remark on negative energy densities and quantum inequalities  

E-Print Network (OSTI)

In quantum field theory it is generally known that the energy density may be negative at a given point in spacetime. A number of papers have shown that there is a restriction on this energy density which is called a quantum inequality (QI). A QI is the lower bound to the "weighted average" of the energy density at a given point integrated over a time dependent sampling function. In this paper we give an example of a sampling function for which there is no QI.

Dan Solomon

2009-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Karan Singh Vinayak; Suneel Kumar

2011-10-11T23:59:59.000Z

162

Sensitivity of nuclear stopping towards density dependent symmetry energy  

E-Print Network (OSTI)

The effect of density dependent symmetry energy on nuclear-stopping is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin-dependent cross-section with soft(S) equation of state for the systems having different isostopic content, to explore the various aspects of nuclear stopping. The aim is to pin down the nature of the nuclear stopping with density dependent symmetry energy. Nuclear stopping is found to be sensitive towards the various forms of the density dependent symmetry energy. The nuclear stopping tends to decrease for the stiffer equation of state (EOS), i.e. larger values of gamma.

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

163

Energy density for chiral lattice fermions with chemical potential  

E-Print Network (OSTI)

We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.

Gattringer, Christof

2007-01-01T23:59:59.000Z

164

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption Table 2Density on Vehicle Usage and Energy Consumption with

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

165

Does Cosmological Vacuum Energy Density have an Electric Reason ?  

E-Print Network (OSTI)

Rather uncomplicated calculations by hand display a surprising connection between the energy density of the vacuum and the diameter and age of the universe. Among other things, the result explains the observation of the accelerated expansion of the universe.

Claus W. Turtur

2004-03-11T23:59:59.000Z

166

Magnetic Fields in High-Density Stellar Matter  

E-Print Network (OSTI)

I briefly review some aspects of the effect of magnetic fields in the high density regime relevant to neutron stars, focusing mainly on compact star structure and composition, superconductivity, combustion processes, and gamma ray bursts.

German Lugones

2005-04-20T23:59:59.000Z

167

Densities and energies of nuclei in dilute matter  

E-Print Network (OSTI)

We explore the ground-state properties of nuclear clusters embedded in a gas of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations. Two alternative representations of clusters are introduced, namely coordinate-space and energy-space clusters. We parameterize their density profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but also of the nucleon gas. We study the clusters' energies with the help of the local-density approximation, validated through our microscopic results. We find that the volume energies of coordinate-space clusters are determined by the saturation properties of matter, while the surface energies are strongly affected by the presence of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas and discuss implications for the nuclear EoS and related perspectives. Our study provides a simple, but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities, for direct use in consequential applications of astrophysical interest.

P. Papakonstantinou; J. Margueron; F. Gulminelli; Ad. R. Raduta

2013-05-01T23:59:59.000Z

168

Neutron skin uncertainties of Skyrme energy density functionals  

E-Print Network (OSTI)

Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron skin increase with neutron excess. Statistical errors due to uncertain coupling constants of the density functional are found to be larger than systematic errors, the latter not exceeding 0.06 fm in most neutron-rich nuclei across the nuclear landscape. The single major source of uncertainty is the poorly determined slope L of the symmetry energy that parametrizes its density dependence. Conclusions: To provide essential constraints on the symmetry energy of the nuclear energy density functional, next-generation measurements of neutron skins are required to deliver precision better than 0.06 fm.

M. Kortelainen; J. Erler; W. Nazarewicz; N. Birge; Y. Gao; E. Olsen

2013-07-16T23:59:59.000Z

169

High-Density Infrared Surface Treatments of Refractories  

SciTech Connect

Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

Tiegs, T.N.

2005-03-31T23:59:59.000Z

170

High Energy Photoproduction  

E-Print Network (OSTI)

The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

J. M. Butterworth; M. Wing

2005-09-15T23:59:59.000Z

171

Design of a 50 TW/20 J chirped-Pulse Amplification Laser for High-Energy-Density Plasma Physics Experiments at the Nevada Terawatt Facility of the University of Nevada  

DOE Green Energy (OSTI)

We have developed a conceptual design for a 50 TW/20 J short-pulse laser for performing high-energy-density plasma physics experiments at the Nevada Terawatt Facility of the University of Nevada, Reno. The purpose of the laser is to develop proton and x-ray radiography techniques, to use these techniques to study z-pinch plasmas, and to study deposition of intense laser energy into both magnetized and unmagnetized plasmas. Our design uses a commercial diode-pumped Nd:glass oscillator to generate 3-nJ. 200-fs mode-locked pulses at 1059 m. An all-reflective grating stretcher increases pulse duration to 1.1 ns. A two-stage chirped-pulse optical parametric amplifier (OPCPA) using BBO crystals boosts pulse energy to 12 mJ. A chain using mixed silicate-phosphate Nd:glass increases pulse energy to 85 J while narrowing bandwidth to 7.4 nm (FWHM). About 50 J is split off to the laser target chamber to generate plasma while the remaining energy is directed to a roof-mirror pulse compressor, where two 21 cm x 42 cm gold gratings recompress pulses to {approx}350 fs. A 30-cm-focal-length off-axis parabolic reflector (OAP) focuses {approx}20 J onto target, producing an irradiance of 10{sup 19} W/cm{sup 2} in a 10-{micro}m-diameter spot. This paper describes planned plasma experiments, system performance requirements, the laser design, and the target area design.

Erlandson, A C; Astanovitskiy, A; Batie, S; Bauer, B; Bayramian, A; Caird, J A; Cowan, T; Ebbers, C; Fuchs, J; Faretto, H; Glassman, J; Ivanov, V; LeGalloudec, B; LeGalloudec, N; Letzring, S; Payne, S; Stuart, B

2003-09-07T23:59:59.000Z

172

High-energy detector  

SciTech Connect

The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

2011-11-22T23:59:59.000Z

173

The gravitational field energy density for symmetrical and asymmetrical systems  

E-Print Network (OSTI)

The relativistic theory of gravitation has the considerable difficulties by description of the gravitational field energy. Pseudotensor t00 in the some cases cannot be interpreted as energy density of the gravitational field. In [1] the approach was proposed, which allow to express the energy density of such a field through the components of a metric tensor. This approach based on the consideration of the isothermal compression of the layer consisted of the incoherent matter. It was employ to the cylindrically and spherically symmetrical static gravitational field. In presented paper the approach is developed.

Roald Sosnovskiy

2006-07-25T23:59:59.000Z

174

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Rock Density At Alum Area (DOE GTP) Rock Density At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Rock Density Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Rock_Density_At_Alum_Area_(DOE_GTP)&oldid=402985" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

175

Piezoelectric Films for High Density Switching Arrays for Logic  

Science Conference Proceedings (OSTI)

Specific to this work is the functionality of the high aspect ratio piezoelectric ... and Their Electrochemical Performance for Energy Storage Applications.

176

PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES  

DOE Patents (OSTI)

A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

McNees, R.A. Jr.; Taylor, A.J.

1963-12-31T23:59:59.000Z

177

Neutron spectroscopy of high-density amorphous ice.  

DOE Green Energy (OSTI)

Vibrational spectra of high-density amorphous ice (hda-ice) for H{sub 2}O and D{sub 2}O samples were measured by inelastic neutron scattering. The measured spectra of hda-ice are closer to those for high-pressure phase ice-VI, but not for low-density ice-Ih. This result suggests that similar to ice-VI the structure of hda-ice should consist of two interpenetrating hydrogen-bonded networks having no hydrogen bonds between themselves.

Kolesnikov, A. I.

1998-07-17T23:59:59.000Z

178

High density electronic circuit and process for making  

DOE Patents (OSTI)

High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

Morgan, W.P.

1999-06-29T23:59:59.000Z

179

Air Kerma - High Energy Xray  

Science Conference Proceedings (OSTI)

... such as high energy megavoltage x rays with peak voltages of at least 5 MV. Currently, air-kerma measurements at these high energies are not ...

2013-03-13T23:59:59.000Z

180

LANL | Physics | High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring high energy physics Physics Division scientists and engineers investigate the field of high energy physics through experiments that strengthen our fundamental...

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Device and method for electron beam heating of a high density plasma  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

182

High density of electronic excitation in nanometric scale: transformation of the matter.  

NLE Websites -- All DOE Office Websites (Extended Search)

density density of electronic excitation in nanometric scale: transformation of the matter. Marcel Toulemonde CIMAP, Caen, France Within the several possibilities of producing high electronic excitation, swift heavy ions allow to create a high electronic density in nanometer scale. The energy deposited on the electrons along the ion path comes down to the lattice and transform the matter in a cylinder of around 10 nm in diameter (figure on left) After a review of selected experimental results concerning insulating materials, a transient thermal process will be developed to quantify the track size. In this model, the energy given to the electrons relaxes to the lattice atoms via the electron-phonon interaction. When considering the input parameters in this model, the main one will be the electron-phonon mean free path that defines the length of energy that diffuses on the electrons prior

183

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Vinayak, Karan Singh

2011-01-01T23:59:59.000Z

184

Role of density dependent symmetry energy in nuclear stopping  

E-Print Network (OSTI)

Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

Karan Singh Vinayak; Suneel Kumar

2011-07-27T23:59:59.000Z

185

Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study  

E-Print Network (OSTI)

We perform a comparative study of the free energies and the density distributions in hard sphere crystals using Monte Carlo simulations and density functional theory (employing Fundamental Measure functionals). Using a recently introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009)) we obtain crystal free energies to a high precision. The free energies from Fundamental Measure theory are in good agreement with the simulation results and demonstrate the applicability of these functionals to the treatment of other problems involving crystallization. The agreement between FMT and simulations on the level of the free energies is also reflected in the density distributions around single lattice sites. Overall, the peak widths and anisotropy signs for different lattice directions agree, however, it is found that Fundamental Measure theory gives slightly narrower peaks with more anisotropy than seen in the simulations. Among the three types of Fundamental Measure functionals studied, only the White Bear II functional (Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for the equilibrium vacancy concentration and a physical behavior of the chemical potential in crystals constrained by a fixed vacancy concentration.

M. Oettel; S. Goerig; A. Haertel; H. Loewen; M. Radu; T. Schilling

2010-09-03T23:59:59.000Z

186

Thin liquid lithium targets for high power density  

E-Print Network (OSTI)

Thin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability Thickness measurement results Next Steps Beta-beams 2 #12;Liquid Lithium Stripper for FRIB: Advantages

McDonald, Kirk

187

Nondestructive Evaluation: High-Density Polyethylene NDE Technology  

Science Conference Proceedings (OSTI)

BackgroundThis report summarizes the results of a study to evaluate and document the process of creating a manufacturing specification for producing quantifiable cold fusion controlled flaws of varying severity in high-density polyethylene (HDPE) fusion joints. This report is a continuation of previous research where nondestructive evaluation (NDE) techniques and flaws representing inclusions and cold fusion were ...

2013-11-22T23:59:59.000Z

188

Soil Density/Moisture Gauge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil Density/Moisture Gauge Soil Density/Moisture Gauge Soil Density/Moisture Gauge This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 - Radioactive). This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program (TEPP). Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors; and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper).

189

Gravitational Energy-Momentum Density in Teleparallel Gravity  

E-Print Network (OSTI)

In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the M{\\o}ller's canonical energy-momentum density of the gravitational field.

V. C. de Andrade; L. C. T. Guillen; J. G. Pereira

2000-03-27T23:59:59.000Z

190

Effect of Larch Forest Density on Snow Surface Energy Balance  

Science Conference Proceedings (OSTI)

It is established that the density of a larch forest strongly influences the snowmelt energy under its canopy. In the spring thaw of 1994, 1995, and 1996, the surface snowmelt at three different sites located at the southern foot of Mt. Iwate, ...

Kazuyoshi Suzuki; Takeshi Ohta

2003-12-01T23:59:59.000Z

191

High Density Nano-Electrode Array for Radiation Detection  

Science Conference Proceedings (OSTI)

Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011?-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 ?Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the CZT nanowire arrays can be used as a potential X-ray and low energy gamma ray detector material at room temperature with a much low bias potential (0.7 – 4V) as against 300 – 500 V applied in the commercial bulk detector materials.

Mano Misra

2010-05-07T23:59:59.000Z

192

Surface Symmetry Energy of Nuclear Energy Density Functionals.  

E-Print Network (OSTI)

??The thesis studies the bulk deformation properties of the Skyrme nuclear energy densityfunctionals. Following simple arguments based on the leptodermous expansion andliquid drop model, the… (more)

Nikolov, Nikola Iliev

2011-01-01T23:59:59.000Z

193

Why is the nuclear symmetry energy so uncertain at supra-saturation densities?  

E-Print Network (OSTI)

Within the Thomas-Fermi model for isospin asymmetric nuclear matter, the nuclear symmetry energy can be expressed explicitly in terms of the isospin-dependence of the nucleon-nucleon strong interaction. Respective effects of the in-medium three-body interaction and the two-body short-range tensor force due to the $\\rho$ meson exchange as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy are demonstrated in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at supra-saturation densities are discussed.

Xu, Chang

2009-01-01T23:59:59.000Z

194

Sub-barrier Fusion Cross Sections with Energy Density Formalism  

E-Print Network (OSTI)

We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

F. Muhammad Zamrun; K. Hagino; N. Takigawa

2006-06-07T23:59:59.000Z

195

High-energy  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 22. High-energy collider parameters HIGH-ENERGY COLLIDER PARAMETERS: e + e - Colliders (I) The numbers here were received from representatives of the colliders in late 1999 (contact C.G. Wohl, LBNL). Many of the numbers of course change with time, and only the latest values (or estimates) are given here; those in brackets are for coming upgrades. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, and TRISTAN colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I). VEPP-2M (Novosibirsk) VEPP-2000 ∗ (Novosibirsk) VEPP-4M (Novosibirsk) BEPC (China) DAΦNE (Frascati) Physics start date 1974 2001 1994 1989 1999 Maximum beam energy (GeV) 0.7 1.0 6 2.2 0.510 (0.75 max.) Luminosity (10 30 cm -2 s -1 ) 5 100 50 10 at 2 GeV 5 at 1.55 GeV 50(→500) Time between collisions (µs)

196

Nondestructive Evaluation: NDE for High Density Polyethylene (HDPE) Pipe for Cold Fusion  

Science Conference Proceedings (OSTI)

Over the past several years, the Electric Power Research Institute (EPRI) has been investigating nondestructive evaluation (NDE) techniques to volumetrically examine butt fusion joints in high density polyethylene (HDPE) piping. The interest in this comes from AmerenUE’s Callaway Plant and Duke Energy‘s Catawba Plant both submitting relief requests to the U.S. Nuclear Regulatory Commission (NRC) for using HDPE in place of carbon steel piping in Section III, Class 3 systems in accordance with Code Case N-...

2009-11-30T23:59:59.000Z

197

An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator  

DOE Green Energy (OSTI)

The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

1990-06-01T23:59:59.000Z

198

Fire Testing of High-Density Polyethylene Pipe  

Science Conference Proceedings (OSTI)

The results in this report are intended to demonstrate a method that can be used to protect high-density polyethylene (HDPE) piping located aboveground from postulated fire events. This includes protecting both pipe and pipe fittings (for example, elbows, tees, and valves) from the fire environmentincluding the heat transmitted from pipe supportsand preventing the fire environment from passing through building wall or floor penetrations. The report is intended to be complementary to other ongoing Electr...

2011-08-23T23:59:59.000Z

199

NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES  

DOE Patents (OSTI)

A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

Newson, H.W.

1958-06-01T23:59:59.000Z

200

DENSITY  

Science Conference Proceedings (OSTI)

... Table 2: Principal mineral phases found in the granite rock. Mineral phase. ... Table 4. Average density of 12 granite rocks by Archimedes and CT. ...

2007-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

residential transportation energy usage is vital for theDensity on Vehicle Usage and Energy Consumption ReferencesDensity on Vehicle Usage and Energy Consumption UCI-ITS-WP-

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

202

Teleparallel Gravity and the Gravitational Energy-Momentum Density  

E-Print Network (OSTI)

In the context of the teleparallel equivalent of general relativity, we show that the energy-momentum density for the gravitational field can be described by a true spacetime tensor. It is also invariant under local (gauge) translations of the tangent space coordinates, but transforms covariantly only under global Lorentz transformations. When the gauge gravitational field equation is written in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and we recover M{\\o}ller's expression for the canonical gravitational energy-momentum pseudotensor.

V. C. de Andrade; L. C. T. Guillen; J. G. Pereira

2000-11-22T23:59:59.000Z

203

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleUsage Total annual residential vehicular energy consumption

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

204

High energy photon emission  

E-Print Network (OSTI)

The primary goal of this work was to initiate the use of BaF2 arrays for detection of high energy photon emission from nuclear reactions. A beam from the Texas A&M University K-500 Superconducting Cyclotron, and a variety of detectors for hard photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities at angles of 90' and 135'. Two 19-element barium fluoride (BaF2) arrays, an array of liquid scintillation fast neutron detectors and plastic scintillation charged-particle veto detectors, together with a silicon-cesium iodide (Si-CsI) telescope and a silicon fission fragment detector allowed the possibility of impact parameter selection through neutron and charged particle multiplicities. The associated multiplicity distributions of photon and fast neutron triggers were compared at 30' and 90' angles. The hardware and electronics layout of the experimental set up are described. Fundamental properties of the various detectors are explained and typical spectra are shown as examples for each detector system. The data acquisition and data compression is described in Chap. III, and followed by the calibration methods used for the BaF2 and Nal(TI) detectors. A description of a dynamic pedestal (zero level) correction mechanism, is followed by a description of several cosmic ray background reduction methods, including the highly effective centrality condition. A summary is given to compare the various methods. After a description of the other types of detectors used in the experiment, an example is given how the final photon spectra were produced. In Chap. IV the measured results are presented and compared to those in the literature. The last chapter provides the conclusions of this work.

Jabs, Harry

1997-01-01T23:59:59.000Z

205

Equation-of-state for fluids at high densities-hydrogen isotope measurements and thermodynamic derivations  

DOE Green Energy (OSTI)

Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H/sub 2/ and n-D/sub 2/ in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table.

Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

1977-01-01T23:59:59.000Z

206

Explanation of persistent high frequency density structure in coalesced bunches  

SciTech Connect

It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

Jackson, Gerald P.

1988-07-01T23:59:59.000Z

207

Method for providing a low density high strength polyurethane foam  

SciTech Connect

Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

2013-06-18T23:59:59.000Z

208

A Cherenkov Radiation Detector with High Density Aerogels  

E-Print Network (OSTI)

We have designed a threshold Cherenkov detector at the Rutherford-Appleton Laboratory to identify muons with momenta between 230 and 350 MeV/c. We investigated the properties of three aerogels for the design. The nominal indexes of refraction were n = 1.03, 1.07, 1.12, respectively. Two of the samples are of high density aerogel not commonly used for Cherenkov light detection. We present results of an examination of some optical properties of the aerogel samples and present basic test beam results.

Cremaldi, Lucien; Sonnek, Peter; Summers, Donald J; Reidy, Jim

2009-01-01T23:59:59.000Z

209

Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies  

DOE Green Energy (OSTI)

The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

Wu, Q.; Ayers, P.W.; Zhang, Y.

2009-10-28T23:59:59.000Z

210

High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer...

211

The Energy Density of the Quaternionic Field as Dark Energy in the Universe  

E-Print Network (OSTI)

In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret $\\Lambda$ as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to $\\Lambda$ and show that the ratio of ordinary dark matter energy density assigned to $\\Lambda$ is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined $\\Lambda$ fulfils the requirements asked from the dark energy. In this model of the universe, the cosmical constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.

V. Majernik

2003-11-05T23:59:59.000Z

212

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Lattice Boltzmann Method for Multiphase Flows with High Density and Viscosity Ratios Seckin Gokaltun, Dwayne McDaniel and David Roelant Florida International University, Miami, FL Background As a result of atomic weapons production, millions of gallons of radioactive waste was generated and stored in underground tanks at various U.S. Department of Energy sites. Department of Energy is currently in the process of transferring the waste from single shell tanks to double shell tanks. Various waste retrieval and processing methods are employed during the transfer of the waste. One such method, pulsed-air mixing, involves injection of discrete pulses of compressed air or inert gas at the bottom of the tank to produce large bubbles that rise due to buoyancy and mix the waste in the tank

213

Curvature and Frontier Orbital Energies in Density Functional Theory  

SciTech Connect

Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties that exact Kohn-Sham density functional theory (DFT) must obey: (i) The exact total energy versus particle number must be a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump’’ by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of density functional theory. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

2012-12-20T23:59:59.000Z

214

A thermal analysis model for high power density beam stops  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV injector for the Spallation Neutron Source (SNS). The design includes various beam intercepting devices such as beam stops and slits. The target power densities can be as high as 500 kW/cm{sup 2} with a beam stopping range of 25 to 30 microns, producing stresses well above yield in most materials. In order to analyze the induced temperatures and stresses, a finite element model has been developed. The model has been written parametrically to allow the beam characteristics, target material, dimensions, angle of incidence and mesh densities to be easily adjusted. The heat load is applied to the model through the use of a 3-dimensional table containing the calculated volumetric heat rates. The load is based on a bi-gaussian beam shape which is absorbed by the target according to a Bragg peak distribution. The results of several analyses using the SNS Front End beam are presented.

Virostek, S.; Oshatz, D.; Staples, J.

2001-06-08T23:59:59.000Z

215

High Energy Physics  

Office of Science (SC) Website

http:science.energy.govhepaboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the...

216

Reduced density matrix hybrid approach: Application to electronic energy transfer  

SciTech Connect

Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)

2012-02-28T23:59:59.000Z

217

Ultra-high current density thin-film Si diode  

DOE Patents (OSTI)

A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

Wang; Qi (Littleton, CO)

2008-04-22T23:59:59.000Z

218

High power density supercapacitors using locally aligned carbon nanotube electrodes  

E-Print Network (OSTI)

B E 1999 Electrochemical Supercapacitor ( New York: Kluwer–power density of a supercapacitor is its most remarkablepower density of a supercapacitor is given by P max = V i

Du, C S; Yeh, J; Pan, Ning

2005-01-01T23:59:59.000Z

219

Inexpensive Production of High Density Thin Ceramic Films ...  

For Industry; For Researchers; Success Stories; About Us; Available Technologies. Browse By Category Advanced Materials; ... density of the ceramic ...

220

Fatigue Weak-Link Density and Strength Distribution in High ...  

Science Conference Proceedings (OSTI)

Symposium, Fatigue and Corrosion Damage in Metallic Materials: Fundamentals, Modeling and Prevention. Presentation Title, Fatigue Weak-Link Density and ...

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High fidelity field simulations using density and pressure based approaches  

Science Conference Proceedings (OSTI)

Density-based and pressure-based approaches in solving the Navier-Stokes equations for computational field simulations for compressible and incompressible flows have been presented. For the density-based flow solver, a generalized grid based framework ... Keywords: CFD, Density-based method, Pressure-based method

Gary C. Cheng; Roy P. Koomullil; Bharat K. Soni

2005-11-01T23:59:59.000Z

222

File:Air Density Lab.pdf | Open Energy Information  

Open Energy Info (EERE)

Air Density Lab.pdf Air Density Lab.pdf Jump to: navigation, search File File history File usage Metadata File:Air Density Lab.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 240 KB, MIME type: application/pdf, 4 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:36, 3 January 2014 Thumbnail for version as of 09:36, 3 January 2014 1,275 × 1,650, 4 pages (240 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools High School Curricula You cannot overwrite this file. Edit this file using an external application (See the setup

223

Problems in High Energy Astrophysics  

E-Print Network (OSTI)

This contribution discusses some of the main problems in high energy astrophysics, and the perspectives to solve them using different types of "messengers": cosmic rays, photons and neutrinos

Lipari, Paolo

2008-01-01T23:59:59.000Z

224

Problems in High Energy Astrophysics  

E-Print Network (OSTI)

This contribution discusses some of the main problems in high energy astrophysics, and the perspectives to solve them using different types of "messengers": cosmic rays, photons and neutrinos

Paolo Lipari

2008-08-04T23:59:59.000Z

225

Highly Compressed Ion Beam for High Energy Density Science  

E-Print Network (OSTI)

discuss plans toward a user facility for target experiments.a rep-rated (>10Hz) user facility. [18] R. C. Davidson, et

2005-01-01T23:59:59.000Z

226

Fracture behavior of kaolin-reinforced high density polyethylene  

SciTech Connect

The addition of the low-cost mineral filler kaolin to high-density polyethylene (HDPE) creates a composite with both improved stiffness and toughness properties. This study focuses on two aspects of the toughness of these composites: the fracture toughness increment produced by work at the fracture surface and the directionality induced by the injection molding fabrication process. The Essential Work of Fracture (EWF) method gives results which show that a higher volume fraction of kaolin produces more surface work, consistent with earlier work using Compact Tension (CT) tests. The EWF method also demonstrates that a lower volume fraction can produce a higher overall plastic work and apparent toughness. A heat treatment that removes the orientation of the matrix but not that of the particles was applied to study the effect of matrix crystallinity. The results indicate that the matrix supramolecular structure (crystallinity and skin-core effect) is responsible for the directionality of toughness, and that a heat treatment can be used to produce high toughness behavior in both major directions.

Wetherhold, R.C.; Mouzakis, D.E.

1999-10-01T23:59:59.000Z

227

Thermodynamics and Structural Properties of the High Density Gaussian Core Model  

E-Print Network (OSTI)

We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

Atsushi Ikeda; Kunimasa Miyazaki

2011-04-18T23:59:59.000Z

228

Argonne CNM Highlight: High density, high-aspect-ratio precision polyimide  

NLE Websites -- All DOE Office Websites (Extended Search)

High density, high-aspect-ratio precision polyimide nanofilters High density, high-aspect-ratio precision polyimide nanofilters Polyimide Nanofilter SEM of a polyimide film with holes ~250 nm in diameter and ~10 µm deep. The cross-sectional cut of the channels in the front are made visible by focused ion-beam milling. Collaborative users from Creatv MicroTech, Inc. and Los Alamos National Laboratory, working with CNM's Nanofabrication & Devices Group, have demonstrated a novel fabrication process that produces high-porosity polymer nanofilters with smooth, uniform. and straight pores and high aspect ratios. Nanofilters have a wide range of applications for various size-exclusion-based separations in bioseparation and nanomedicine, such as laboratory assays, removing bacteria and viruses, drug delivery devices,

229

Anomalously High Density of Adsorbed Hydrogen on Surface ...  

Science Conference Proceedings (OSTI)

The amount of adsorbed hydrogen at 20 K under relative pressure = 0.9 was about 11 mass%, indicating that the hydrogen density of the adsorbed state should ...

230

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

231

Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1  

E-Print Network (OSTI)

1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

Gerstein, Mark

232

High-Energy Petawatt Capability for the Omega Laser  

Science Conference Proceedings (OSTI)

The 60-beam Omega laser system at the University of Rochester's Laboratory for Laser Energetics (LLE) has been a workhorse on the frontier of laser fusion and high-energy-density physics for more than a decade. LLE scientists are currently extending the performance of this unique, direct-drive laser system by adding high-energy petawatt capabilities.

Waxer, L.J.; Maywar, D.N.; Kelly, J.H.; Kessler, T.J.; Kruschwitz, B.E.; Loucks, S.J.; McCrory, R.L.; Meyerhofer, D.D.; Morse, S.F.B.; Stoeckl, C.; Zuegel, J.D.

2005-07-25T23:59:59.000Z

233

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Slane, Patrick

2008-01-01T23:59:59.000Z

234

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Patrick Slane

2008-11-12T23:59:59.000Z

235

High-energy Cosmic Rays  

E-Print Network (OSTI)

After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

Thomas K. Gaisser; Todor Stanev

2005-10-11T23:59:59.000Z

236

An evolutionary fuel assembly design for high power density BWRs  

E-Print Network (OSTI)

An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

Karahan, Aydin

2007-01-01T23:59:59.000Z

237

The design of high power density annular fuel for LWRs  

E-Print Network (OSTI)

Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

Yuan, Yi, 1975-

2004-01-01T23:59:59.000Z

238

Surface interactions involved in flashover with high density electronegative gases.  

Science Conference Proceedings (OSTI)

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

2010-01-01T23:59:59.000Z

239

Estimation of Surface Radiation and Energy Flux Densities from Single-Level Weather Data  

Science Conference Proceedings (OSTI)

A scheme is proposed that relates surface flux densities of sensible heat, latent heat, and momentum to routine weather data. The scheme contains parameterizations concerning the radiation components and the surface energy flux densities. The ...

Wim C. de Rooy; A. A. M. Holtslag

1999-05-01T23:59:59.000Z

240

SCALING OF THE SUPERFLUID DENSITY IN HIGH-TEMPERATURE SUPERCONDUCTORS.  

Science Conference Proceedings (OSTI)

A scaling relation N{sub c} {approx} 4.4{sigma}{sub dc}T{sub c} has been observed parallel and perpendicular to the copper-oxygen planes in the high-temperature superconductors; N{sub c} is the spectral weight and {sigma}{sub dc} is the dc conductivity just above the critical temperature T{sub c}. In addition, Nb and Pb also fall close to the this scaling line. The application of the Ferrell-Glover-Tinkham sum rule to the BCS optical properties of Nb above and below T{sub c} yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} when the normal-state scattering rate is much greater than the superconducting energy gap (1/{tau} > 2{Delta}, the ''dirty'' limit). This result implies that the high-temperature superconductors may be in the dirty limit. The superconductivity perpendicular to the planes is explained by the Josephson effect, which again yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} in the BCS formalism. The similar forms for the scaling relation in these two directions suggests that in some regime the dirty limit and the Josephson effect may be viewed as equivalent.

HOMES, C.C.

2005-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Research in High Energy Physics  

SciTech Connect

This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

Conway, John S.

2013-08-09T23:59:59.000Z

242

Building A Universal Nuclear Energy Density Functional (UNEDF)  

Science Conference Proceedings (OSTI)

During the period of Dec. 1 2006 â?? Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.

Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa

2012-09-30T23:59:59.000Z

243

Optimal estimation of free energies and stationary densities from multiple biased simulations  

E-Print Network (OSTI)

When studying high-dimensional dynamical systems such as macromolecules, quantum systems and polymers, a prime concern is the identification of the most probable states and their stationary probabilities or free energies. Often, these systems have metastable regions or phases, prohibiting to estimate the stationary probabilities by direct simulation. Efficient sampling methods such as umbrella sampling, metadynamics and conformational flooding have developed that perform a number of simulations where the system's potential is biased such as to accelerate the rare barrier crossing events. A joint free energy profile or stationary density can then be obtained from these biased simulations with weighted histogram analysis method (WHAM). This approach (a) requires a few essential order parameters to be defined in which the histogram is set up, and (b) assumes that each simulation is in global equilibrium. Both assumptions make the investigation of high-dimensional systems with previously unknown energy landscape ...

Wu, Hao

2013-01-01T23:59:59.000Z

244

High Country Energy | Open Energy Information  

Open Energy Info (EERE)

High Country Energy High Country Energy Place Kasson, Minnesota Zip MN 55944 Sector Wind energy Product Developing a planned 300MW wind project in Dodge and Olmsted countries, Minnesota. Coordinates 44.02676°, -92.748254° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02676,"lon":-92.748254,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Two-dimensional modeling of high plasma density inductively coupled sources for materials processing  

SciTech Connect

Inductively coupled plasma sources are being developed to address the need for high plasma density (10[sup 11]--10[sup 12] cm[sup [minus]3]), low pressure (a few to 10--20 mTorr) etching of semiconductor materials. One such device uses a flat spiral coil of rectangular cross section to generate radio-frequency (rf) electric fields in a cylindrical plasma chamber, and capacitive rf biasing on the substrate to independently control ion energies incident on the wafer. To investigate these devices we have developed a two-dimensional hybrid model consisting of electromagnetic, electron Monte Carlo, and hydrodynamic modules; and an off line plasma chemistry Monte Carlo simulation. The results from the model for plasma densities, plasma potentials, and ion fluxes for Ar, O[sub 2], Ar/CF[sub 4]/O[sub 2] gas mixtures will be presented.

Ventzek, P.L.G.; Hoekstra, R.J.; Kushner, M.J. (Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

1994-01-01T23:59:59.000Z

246

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

247

Few transportation fuels surpass the energy densities of gasoline ...  

U.S. Energy Information Administration (EIA)

Natural gas, either in liquefied form (LNG) or compressed (CNG), are lighter than gasoline but again have lower densities per unit volume.

248

Loss of Quantum Coherence and Positivity of Energy Density in Semiclassical Quantum Gravity  

E-Print Network (OSTI)

In the semiclassical quantum gravity derived from the Wheeler-DeWitt equation, the energy density of a matter field loses quantum coherence due to the induced gauge potential from the parametric interaction with gravity in a non-static spacetime. It is further shown that the energy density takes only positive values and makes superposition principle hold true. By studying a minimal massive scalar field in a FRW spacetime background, we illustrate the positivity of energy density and obtain the classical Hamiltonian of a complex field from the energy density in coherent states.

Sang Pyo Kim; Kwang-Sup Soh

1998-07-09T23:59:59.000Z

249

Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

250

Prospects of High Energy Laboratory Astrophysics  

SciTech Connect

Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

Ng, J.S.T.; Chen, P.; /SLAC

2006-09-21T23:59:59.000Z

251

MEMS Fuel Cells – Low Temp – High Power Density  

The miniature fuel-cell technology uses thin-film fuel ... Reduced life cycle cost in comparison to ... for the Department of Energy's National Nuclear Security ...

252

Interferometric measurements of plasma density in high-. beta. plasmas  

SciTech Connect

The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma.

Quinn, W.E.

1977-01-01T23:59:59.000Z

253

The Nuclear Equation of State at high densities  

E-Print Network (OSTI)

Ab inito calculations for the nuclear many-body problem make predictions for the density and isospin dependence of the nuclear equation-of-state (EOS) far away from the saturation point of nuclear matter. I compare predictions from microscopic and phenomenological approaches. Constraints on the EOS derived from heavy ion reactions, in particular from subthreshold kaon production, as well as constraints from neutron stars are discussed.

Christian Fuchs

2006-10-10T23:59:59.000Z

254

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O' Gallagher, J.J.

1991-04-09T23:59:59.000Z

255

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O' Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

256

Behavior of a plasma in a high-density gas-embedded Z-pinch configuration  

Science Conference Proceedings (OSTI)

The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

Shlachter, J.S.

1982-05-01T23:59:59.000Z

257

On the breaking and restoration of symmetries within the nuclear energy density functional formalism  

E-Print Network (OSTI)

We review the notion of symmetry breaking and restoration within the frame of nuclear energy density functional methods. We focus on key differences between wave-function- and energy-functional-based methods. In particular, we point to difficulties encountered within the energy functional framework and discuss new potential constraints on the underlying energy density functional that could make the restoration of broken symmetries better formulated within such a formalism. We refer to Ref.~\\cite{duguet10a} for details.

T. Duguet; J. Sadoudi

2010-10-19T23:59:59.000Z

258

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munity’s ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

259

High uranium density dispersion fuel for the reduced enrichment of research and test reactors program.  

E-Print Network (OSTI)

??This work describes the fabrication of a high uranium density fuel for the Reduced Enrichment of Research and Test Reactors Program. In an effort to… (more)

[No author

2006-01-01T23:59:59.000Z

260

Metrology of High Current Density Electron Field Emitters  

Science Conference Proceedings (OSTI)

... through a biasing grid. These thermal electron sources have limitations due to the required high operating temperature, power consumption, and ...

2012-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AGE-1 WALLEYE POLLOCK IN THE EASTERN BERING SEA: DISTRIBUTION, ABUNDANCE, DIET, AND ENERGY DENSITY  

E-Print Network (OSTI)

AGE-1 WALLEYE POLLOCK IN THE EASTERN BERING SEA: DISTRIBUTION, ABUNDANCE, DIET, AND ENERGY DENSITY performed at sea · Energy density estimated using bomb calorimetry for samples from BASIS and MACE surveys · Confirm ages of age-0 and age-1 pollock using otoliths · Distribution of age-1's further north than age-0

262

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network (OSTI)

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density of Sn and Pb nuclei are studied as test cases for the isospin dependence of the underlying interactions

Weise, Wolfram

263

Adaptive nearest-nodes finite element method guided by gradient of linear strain energy density  

Science Conference Proceedings (OSTI)

In this paper, an adaptive finite element method is formulated based on the newly developed nearest-nodes finite element method (NN-FEM). In the adaptive NN-FEM, mesh modification is guided by the gradient of strain energy density, i.e., a larger gradient ... Keywords: Gradient of strain energy density, Mesh intensity, Mesh modification operator, Nearest-nodes finite element method

Yunhua Luo

2009-10-01T23:59:59.000Z

264

USDA - High Energy Cost Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Cost Grant Program USDA - High Energy Cost Grant Program Eligibility Commercial Industrial Institutional Local Government Municipal Utility Nonprofit Residential...

265

Microscopically-based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization  

E-Print Network (OSTI)

In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test $\\chi^2$ function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

M. Stoitsov; M. Kortelainen; S. K. Bogner; T. Duguet; R. J. Furnstahl; B. Gebremariam; N. Schunck

2010-09-17T23:59:59.000Z

266

High West Energy, Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name High West Energy, Inc Place Colorado Utility Id 27058 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Farm and Home Residential Irrigation Industrial Large Power Industrial Large Power T-O-D Industrial Large Power T-O-D V2 Industrial Large Power V2 Industrial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-400 watt M V/ HPS Lighting Time-of-Use Commercial

267

3-D Density Model Of Mt Etna Volcano (Southern Italy) | Open Energy  

Open Energy Info (EERE)

3-D Density Model Of Mt Etna Volcano (Southern Italy) 3-D Density Model Of Mt Etna Volcano (Southern Italy) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Density Model Of Mt Etna Volcano (Southern Italy) Details Activities (0) Areas (0) Regions (0) Abstract: A detailed density model of Mt. Etna and its surrounding areas has been evaluated using a 3-D inversion of the gravimetric data acquired in the 1980's. Several high-density and low-density bodies are found, penetrating from shallow depths as far down as 12 km bsl. A positive correlation (in terms of location, extent, density, and velocity) is established between several anomalies of the density model and features identified in previously published seismic tomographies. A prominent high-density body extending down to 7 km bsl is recognized in the southern

268

Optimization of Power and Energy Densities in Supercapacitors  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title ...

269

Low Loss, High Power Density Magnetics in Inductor/Transformer ...  

Science Conference Proceedings (OSTI)

The former power requirements motivate high efficiency materials for use in bulk scale inductors and transformers. The magnetic material requirements include ...

270

Estimates for the energy density of critical points of a class of conformally invariant variational problems  

E-Print Network (OSTI)

We show that the energy density of critical points of a class of conformally invariant variational problems with small energy on the unit 2-disk B_1 lies in the local Hardy space h^1(B_1). As a corollary we obtain a new proof of the energy convexity and uniqueness result for weakly harmonic maps with small energy on B_1.

Lamm, Tobias

2012-01-01T23:59:59.000Z

271

Energy density functional analysis of shape coexistence in {sup 44}S  

SciTech Connect

The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2012-10-20T23:59:59.000Z

272

Hydrodynamical modeling of targets compression to high densities  

E-Print Network (OSTI)

by composite schemes on moving grid. Both models also include heat conductivity. The quotidian equation, E is total energy and heat flux W is given by W = - grad T (2) where T is temperature and is heat note that for most presented computations the heat conductivity is negligible. The above system

Limpouch, Jiri

273

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known...

Sinegovsky, S I; Sinegovskaya, T S

2010-01-01T23:59:59.000Z

274

Development of optimized core design and analysis methods for high power density BWRs  

E-Print Network (OSTI)

Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR ...

Shirvan, Koroush

2013-01-01T23:59:59.000Z

275

High density phase change data on flexible substrates by thermal curing type nanoimprint lithography  

Science Conference Proceedings (OSTI)

In this study, high density phase change nano-pillar device (Tera-bit per inch^2 data density) was fabricated on flexible substrates by thermal curing type nanoimprint lithography with high throughput at a relatively low temperature (120^oC). Phase change ... Keywords: Flexible nano-device, Nanoimprint lithography, Phase change memory, Phase change nano-pillar device, Tera-bit record

Sung-Hoon Hong; Jun-Ho Jeong; Kang-In Kim; Heon Lee

2011-08-01T23:59:59.000Z

276

Replication of high density optical disc using injection mold with MEMS heater  

Science Conference Proceedings (OSTI)

In this study, an injection mold equipped with a MEMS heater was designed and constructed to raise the stamper surface temperature over the glass transition temperature during the filling stage of the injection molding. First, high density optical disc ... Keywords: High density optical disc, Injection mold, MEMS RTD sensor, MEMS heater, Solidified layer, Stamper surface temperature

Youngmin Kim; Yong Choi; Shinill Kang

2005-07-01T23:59:59.000Z

277

herbicides, burning, and high-density loblolly pine  

DOE Green Energy (OSTI)

Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) and soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.

T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.

2003-11-01T23:59:59.000Z

278

Few transportation fuels surpass the energy densities of gasoline ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

279

Laboratory high-energy astrophysics on lasers  

SciTech Connect

The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.

1994-12-01T23:59:59.000Z

280

High-energy atmospheric neutrinos  

E-Print Network (OSTI)

High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, $D^\\pm$, $D^0$, $\\bar{D}{}^0$, $D_s^\\pm$, $\\Lambda^+_c$, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range $10-10^7$ GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.

S. I. Sinegovsky; A. A. Kochanov; T. S. Sinegovskaya

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Jump to: navigation, search Name High Mesa Facility High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location Bliss ID Coordinates 42.88797667°, -115.0169849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88797667,"lon":-115.0169849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Street-facing Dwelling Units and Livability: The Impacts of Emerging Building Types in Vancouver's New High-density Residential Neighbourhoods  

E-Print Network (OSTI)

s New High-density Residential Neighbourhoods Elizabeths New High-density Residential Neighbourhoods ELIZABETHbuilding new high-density residential neighbourhoods around

Macdonald, Elizabeth

2006-01-01T23:59:59.000Z

283

Raman spectroscopy on simple molecular systems at very high density  

DOE Green Energy (OSTI)

We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs.

Schiferl, D.; LeSar, R.S.; Moore, D.S.

1988-01-01T23:59:59.000Z

284

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

DOE Green Energy (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

285

Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers  

E-Print Network (OSTI)

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

2005-09-26T23:59:59.000Z

286

Calculations of free energies in liquid and solid phases: Fundamental measure density-functional approach  

E-Print Network (OSTI)

Calculations of free energies in liquid and solid phases: Fundamental measure density, a theoretical description of the free energies and correlation functions of hard-sphere (HS) liquid and solid-Chandler-Andersen perturbation theory, free energies of liquid and solid phases with many interaction potentials can be obtained

Song, Xueyu

287

Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses  

Science Conference Proceedings (OSTI)

Three-dimensional particle-in-cell simulations show that the anisotropic collapse of a plasma microshell by impact of two oppositely directed intense laser pulses can create at the center of the shell cavity a submicron-sized plasma of high density and temperature suitable for generating fusion neutrons.

Xu, H. [National Laboratory for Parallel and Distributed Processing, School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Yu Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); Wong, A. Y. [Department of Physics, University of California, Los Angeles, California 90095 (United States); Sheng, Z. M.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)

2012-04-02T23:59:59.000Z

288

High Energy Laser Diagnostic Sensors  

Science Conference Proceedings (OSTI)

Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures.We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

Luke, James R.; Goddard, Douglas N.; Thomas, David [AEgis Technologies Group, 10501 Research Rd SE, Suite D, Albuquerque, NM 87123, 505-938-9221 (United States); Lewis, Jay [RTI International, Research Triangle Park, NC (United States)

2010-10-08T23:59:59.000Z

289

HIGH ENERGY GASEOUS DISCHARGE DEVICES  

DOE Patents (OSTI)

The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

Josephson, V.

1960-02-16T23:59:59.000Z

290

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

291

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

292

Short-Term Probabilistic Forecasts of Ceiling and Visibility Utilizing High-Density Surface Weather Observations  

Science Conference Proceedings (OSTI)

An automated statistical system that utilizes regional high-density surface observations to forecast low ceiling and visibility events in the upper Midwest is presented. The system is based solely upon surface observations as predictors, ...

Stephen M. Leyton; J. Michael Fritsch

2003-10-01T23:59:59.000Z

293

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel  

National Nuclear Security Administration (NNSA)

Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel Production: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel ... Fact Sheet Quadrilateral Cooperation on High-density Low-enriched Uranium Fuel

294

Interplay between Spin Polarization and Color Superconductivity in High Density Quark Matter  

E-Print Network (OSTI)

Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical potential. It follows that the transition from one to the other phase occurs passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase is realized at a lower density region.

Y. Tsue; J. da Providencia; C. Providencia; M. Yamamura; H. Bohr

2012-11-27T23:59:59.000Z

295

String Scattering Amplitudes in High Energy Limits  

E-Print Network (OSTI)

A very review of string scattering amplitudes in two important high energy limits: hard scattering and Regge scattering. Recent results of the symmetries in string theory by studying high energy string scattering anplitudes are showed.

Yang, Yi

2011-01-01T23:59:59.000Z

296

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

297

Bringing Energy Efficiency to High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Energy Efficiency to High Performance Computing Oak Ridge National Laboratory's Jaguar Supercomputer William Tschudi September 2013 The ability of high performance...

298

2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING  

E-Print Network (OSTI)

1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

Braun, Paul

299

Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density  

Science Conference Proceedings (OSTI)

The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

Bake, Muhammad Ali; Xie Baisong [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Shan Zhang [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Hong Xueren [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Hongyu [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd, Shanghai 200136 (China)

2012-08-15T23:59:59.000Z

300

Towards a Microscopic Reaction Description Based on Energy Density Functionals  

SciTech Connect

A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for {sup 40,48}Ca, {sup 58}Ni, {sup 90}Zr and {sup 144}Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.

Nobre, G A; DIetrich, F S; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

2011-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

1992-10-06T23:59:59.000Z

302

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile for high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, G.M.; Kugel, H.W.

1991-12-31T23:59:59.000Z

303

Casimir Energy Density at Planck Time: Cosmic Coincidence or Double Solution to the Cosmological Dark Energy Problem?  

E-Print Network (OSTI)

The Casimir energy density calculated for a spherical shell of radius equal to the size of the Universe projected back to the Planck time is almost equal to the present day critical density. Is it just a coincidence, or is it a solution to the ‘cosmic dark energy ’ and the ‘cosmic coincidence ’ problems? The correspondence is too close to be ignored as a coincidence, especially since this solution fits the conceptual and numerical ideas about the dark energy, and also answers why this energy is starting to dominate at the present era in the evolution of the Universe. It is startling to notice that the Casimir energy density of a spherical bounded space with its radius equal to the size of our present Universe scaled back to its size at the Planck time is almost exactly the critical energy density. It is perhaps not reasonable to discard this as a coincidence, since it solves the two important current problems in cosmology with vacuum energy [1], namely the problem of the smallness of the cosmological vacuum energy

C. S. Unnikrishnan

2002-01-01T23:59:59.000Z

304

High Energy Density Fusion Claddings for Wear and Corrosion ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Hardfacing Coatings for Wear and Corrosion Resistance Applications.

305

PLZT NANO PRE URSORS FOR HIGH ENERGY DENSITY APPLI ATIONS  

APPLI ATIONS & INDUSTRIES ENEFITS Pulsed Power Oil Exploration Capacitors Refer to SD # 12119 Thermistors Transducers Military & Defense Automotive

306

Basic Research Needs for High Energy Density Laboratory Physics  

National Nuclear Security Administration (NNSA)

On the cover: On the cover: Invisible infrared light from the 200-trillion watt Trident Laser enters from the bottom to interact with a one-micrometer thick foil target in the center of the photo. The laser pulse produces a plasma - an ionized gas - many times hotter than the center of the sun, which lasts for a trillionth of a second. During this time some electrons from the foil are accelerated to virtually the speed of

307

Activities of the High Energy Density Laboratory Plasmas  

E-Print Network (OSTI)

3-4, 2008 Livermore, CA on behalf of the HEDLP FESAC subpanel #12;"joint HEDLP program [OFES+NNSA and 28 contributed talks M. Donovan (NNSA) NNSA perspective G. Nardella (OFES) OFES perspective HEDLP #12;IFE HEDLP science: conventional and alternative concepts · Conventional ICF (NNSA funded

308

High Energy Density Coating Processing for Oil and Gas Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Corrosion Protection through Metallic and Non-Metallic Coatings. Presentation ...

309

Fabrication and Electrical Properties of High Energy Density Devices  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Ferroelectrics and Multiferroics. Presentation Title, Nano-Scale PLZT ...

310

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

311

HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS  

E-Print Network (OSTI)

system in mind. For a WDM user facility the goal is to havefor any future WDM user facility in the HIFS-VNL. Figure 7.

Bieniosek, F.M.

2008-01-01T23:59:59.000Z

312

Supercapacitor CCTO for High Energy Density Storage^x  

Science Conference Proceedings (OSTI)

New materials and novel engineering approaches are needed to overcome the challenges facing the society to minimize its dependence on fossil fuel.

313

Replacing Critical Rare Earth Materials in High Energy Density ...  

Science Conference Proceedings (OSTI)

... magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily ...

314

PLZT Nano-Precursors for High Energy Density Applications  

To improve the manufacturing and performance of ceramic materials Sandia National Laboratories has developed a method for synthesizing lanthanum-doped lead zirconate titanate (PLZT) nanoparticle precursors.

315

Innovative High Energy Density Capacitor Design Offers Potential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

module that's able to generate and store electricity on its own? Or an electric vehicle (EV) powered by a technology more durable than the advanced batteries in today's EVs?...

316

A Model for the Origin of High Density in Loop-top X-ray Sources  

E-Print Network (OSTI)

Super-hot looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 megakelvins. High observed emission measure, as well as inference of electron thermalization within the small source region, both provide evidence of high densities at the looptop; typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through flux retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancemen...

Longcope, D W

2011-01-01T23:59:59.000Z

317

Doped LiFePO? cathodes for high power density lithium ion batteries  

E-Print Network (OSTI)

Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

Bloking, Jason T. (Jason Thompson), 1979-

2003-01-01T23:59:59.000Z

318

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context  

E-Print Network (OSTI)

High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

Bicknell, Geoff

319

Compact, high energy gas laser  

DOE Patents (OSTI)

An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.

Rockwood, Stephen D. (Los Alamos, NM); Stapleton, Robert E. (Los Alamos, NM); Stratton, Thomas F. (Los Alamos, NM)

1976-08-03T23:59:59.000Z

320

High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter  

E-Print Network (OSTI)

Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

Lie-Wen Chen; Che Ming Ko; Bao-An Li

2005-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The final stage of gravitational collapse for high density fluid medium  

Science Conference Proceedings (OSTI)

The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

Souza, R. G. [Physics Department , Roraima Federal University, 69304-000 Boa Vista, RR (Brazil); De Campos, M. [Physics Department, Roraima Federal University, 69304-000 Boa Vista, RR (Brazil) and Astronomy Department, Sao Paulo University, 05508-900 Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

322

Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions  

E-Print Network (OSTI)

In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

L. Herrera; G. Le Denmat; N. O. Santos

2009-03-27T23:59:59.000Z

323

Expansion-free evolving spheres must have inhomogeneous energy density distributions  

Science Conference Proceedings (OSTI)

In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.

Herrera, L. [Escuelade Fisica Facultadde Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Le Denmat, G. [LERMA-PVI, Universite Paris 06, Observatoire de Paris, CNRS, 3 rue Galilee, Ivry sur Seine 94200 (France); Santos, N. O. [LERMA-PVI, Universite Paris 06, Observatoire de Paris, CNRS, 3 rue Galilee, Ivry sur Seine 94200 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis Rio de Janeiro (Brazil)

2009-04-15T23:59:59.000Z

324

Free energy density for mean field perturbation of states of a one-dimensional spin chain  

E-Print Network (OSTI)

Motivated by recent developments on large deviations in states of the spin chain, we reconsider the work of Petz, Raggio and Verbeure in 1989 on the variational expression of free energy density in the presence of a mean field type perturbation. We extend their results from the product state case to the Gibbs state case in the setting of translation-invariant interactions of finite range. In the special case of a locally faithful quantum Markov state, we clarify the relation between two different kinds of free energy densities (or pressure functions).

Fumio Hiai; Milan Mosonyi; Hiromichi Ohno; Denes Petz

2007-06-28T23:59:59.000Z

325

DEGAS 2 Neutral Transport Modeling of High Density, Low Temperature Plasmas  

E-Print Network (OSTI)

Neutral transport in the high density, low temperature plasma regime is examined using the degas 2 Monte Carlo neutral transport code. Degas 2 is shown to agree with an analytic fluid neutral model valid in this regime as long as the grid cell spacing is less than twice the neutral mean-free path. Using new atomic physics data provided by the collisional radiative code cramd, degas 2 is applied to a detached Alcator C-Mod discharge. A model plasma with electron temperature # 1 eV along detached flux tubes, between the target and the ionization front, is used to demonstrate that recombination is essential to matching the experimental data. With the cramd data, # 20% of the total recombination is due to molecular activated recombination. # Massachusetts Institute of Technology , Plasma Fusion Center, 167 Albany Street, Cambridge, MA 02139, USA + Also at I. V. Kurchatov Institute of Atomic Energy 1 Kurchatov Sq., Moscow 123098, Russia # Presently at McKinsey & Company, Inc., London...

D. P. Stotler; A. Yu. Pigarov; C. F. F. Karney; S. I. Krasheninnikov; B. LaBombard; B. Lipschultz; G. M. McCracken; A. Niemczewski; J. A. Snipes; J. L. Terry; R. A. Vesey

1997-01-01T23:59:59.000Z

326

Matter density perturbations and effective gravitational constant in modified gravity models of dark energy  

E-Print Network (OSTI)

We derive the equation of matter density perturbations on sub-horizon scales for a general Lagrangian density f(R, phi, X) that is a function of a Ricci scalar R, a scalar field phi and a kinetic term X=-(nabla phi)^2/2. This is useful to constrain modified gravity dark energy models from observations of large-scale structure and weak lensing. We obtain the solutions for the matter perturbation delta_m as well as the gravitational potential Phi for some analytically solvable models. In a f(R) dark energy model with the Lagrangian density f(R)=alpha R^{1+m}-Lambda, the growth rates of perturbations exhibit notable differences from those in the standard Einstein gravity unless m is very close to 0. In scalar-tensor models with the Lagrangian density f=F(phi)R+2p(phi,X) we relate the models with coupled dark energy scenarios in the Einstein frame and reproduce the equations of perturbations known in the current literature by making a conformal transformation. We also estimate the evolution of perturbations in both Jordan and Einstein frames when the energy fraction of dark energy is constant during the matter-dominated epoch.

Shinji Tsujikawa

2007-05-08T23:59:59.000Z

327

Very high energy explosives systems  

SciTech Connect

A discussion is given of where to go next in exploring HE systems with energy equal to LX-09, or better.

Scribner, K.

1968-08-01T23:59:59.000Z

328

Heavy quark free energies and screening at finite temperature and density  

E-Print Network (OSTI)

We study the free energies of heavy quarks calculated from Polyakov loop correlation functions in full 2-flavour QCD using the p4-improved staggered fermion action. A small but finite Baryon number density is included via Taylor expansion of the fermion determinant in the Baryo-chemical potential mu. For temperatures above Tc we extract Debye screening masses from the large distance behaviour of the free energies and compare their mu-dependence to perturbative results.

M. Doring; S. Ejiri; O. Kaczmarek; F. Karsch; E. Laermann

2005-09-27T23:59:59.000Z

329

Nature of the beam-density effect on energy loss by nonrelativistic charged-particle beams  

DOE Green Energy (OSTI)

The authors present a new formulation of the beam-density effect on energy loss by charged particles passing through matter, which exhibits an increased loss with a beam-shape dependence. This arises from a long-range dipolelike term contained in the two-particle vicinage function for cooperative energy loss by a pair of nonrelativistic particles. A new analytic expression for the vicinage function, which exhibits the long-range term, is also presented.

Rule, D.W.; Crawford, O.H.

1984-03-12T23:59:59.000Z

330

High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene  

SciTech Connect

The understanding of metal nucleation on graphene is essential for promising future applications, especially of magnetic metals which can be used in spintronics or computer storage media. A common method to study the grown morphology is to measure the nucleated island density n as a function of growth parameters. Surprisingly, the growth of Fe on graphene is found to be unusual because it does not follow classical nucleation: n is unexpectedtly high, it increases continuously with the deposited amount ? and shows no temperature dependence. These unusual results indicate the presence of long range repulsive interactions. Kinetic Monte Carlo simulations and density functional theory calculations support this conclusion. In addition to answering an outstanding question in epitaxial growth, i.e., to find systems where long range interactions are present, the high density of magnetic islands, tunable with ?, is of interest for nanomagnetism applications.

Binz, Steven M.; Hupalo, Myron; Liu, Xiaojie; Wang, Cai-Zhuang; Lu, Wen-Cai; Thiel, Kai-Ming; Conrad, E.H.; Tringides, Michael C.

2012-07-13T23:59:59.000Z

331

Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei  

E-Print Network (OSTI)

Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Delta r(np) of Sn isotopes give an important constraint on the symmetry energy E(sym)(rho(0)) and its density slope L at saturation density rho(0). Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E(sym)(rho(0)). The implication of these new constraints on the Delta r(np) of (208)Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Xu, Jun.

2010-01-01T23:59:59.000Z

332

Nuclear energy density functional from chiral two- and three-nucleon interactions  

E-Print Network (OSTI)

An improved density-matrix expansion is used to calculate the nuclear energy density functional from chiral two- and three-nucleon interactions. The two-body interaction comprises long-range one- and two-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition we employ the leading order chiral three-nucleon interaction with its parameters $c_E, c_D$ and $c_{1,3,4}$ fixed in calculations of nuclear few-body systems. With this input the nuclear energy density functional is derived to first order in the two- and three-nucleon interaction. We find that the strength functions $F_\

J. W. Holt; N. Kaiser; W. Weise

2011-07-29T23:59:59.000Z

333

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational  and  Storage  for High Energy Physics Computational  and  Storage  

Gerber, Richard A.

2011-01-01T23:59:59.000Z

334

Service Members Aim High -- for Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Members Aim High -- for Energy Savings Service Members Aim High -- for Energy Savings Service Members Aim High -- for Energy Savings February 22, 2010 - 12:32pm Addthis Joshua DeLung What does this mean for me? Service members are helping reduce our dependency on oil, and saving taxpayers' money, with their energy-saving efforts. Operation Change Out has cut $26.3 million in total energy costs and helped prevent more than 396 lbs. of carbon dioxide. Reducing our dependency on foreign oil means finding ways to harness the power of renewable energy sources, but it also means saving energy whenever and wherever possible. The Americans charged with keeping the country safe are now helping the U.S. reach its energy savings goals by taking small, important steps. "Operation Change Out: The Military Challenge" is a campaign asking

335

Service Members Aim High -- for Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Members Aim High -- for Energy Savings Service Members Aim High -- for Energy Savings Service Members Aim High -- for Energy Savings February 22, 2010 - 12:32pm Addthis Joshua DeLung What does this mean for me? Service members are helping reduce our dependency on oil, and saving taxpayers' money, with their energy-saving efforts. Operation Change Out has cut $26.3 million in total energy costs and helped prevent more than 396 lbs. of carbon dioxide. Reducing our dependency on foreign oil means finding ways to harness the power of renewable energy sources, but it also means saving energy whenever and wherever possible. The Americans charged with keeping the country safe are now helping the U.S. reach its energy savings goals by taking small, important steps. "Operation Change Out: The Military Challenge" is a campaign asking

336

Production of high density fuel through low temperature devolatilization of fossil fuels with hydrogen and iron oxides  

DOE Patents (OSTI)

A method is provided for producing high-energy high-density fuels and valuable co-products from fossil fuel sources which comprises the low temperature devolatilization of a fossil fuel such as coal in a moving fluid-bed reactor at a temperature of about 450-650C in the presence of hydrogen and iron oxides. The method is advantageous in that high quality liquid fuels are obtained in addition to valuable co-products such as elemental iron, elemental sulfur and carbon black, and the process is carried out efficiently with a large number of recyclable steps. In addition, the hydropyrolysis of the present invention can produce a highly reactive low-sulfur char which is convertible into a slurry fuel. 1 fig.

Khan, M.R.

1990-01-29T23:59:59.000Z

337

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

electric vehicle (PEV), performance requirements are raised especially from the aspects of energy/power density, cycling life and safety

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

338

Observations of High Ground Flash Densities of Positive Lightning in Summertime Thunderstorms  

Science Conference Proceedings (OSTI)

Observations of summertime thunderstorms indicate that positive polarity cloud-to-ground lightning activity can occur with rates as high as 67 flashes in 5 min and spatial densities up to 0.60 flashes per square kilometer per hour. All ground ...

Maribeth Stolzenburg

1994-08-01T23:59:59.000Z

339

Design and Qualification of High-Density Polyethylene for ASME Safety Class 3 Piping Systems  

Science Conference Proceedings (OSTI)

This report identifies the activities necessary and recommends a plan to gather needed data to establish design and qualification methods that will serve as the basis for ASME and regulatory approvals for allowing the nuclear power industry to use high-density polyethylene for Safety Class 3 applications.

2005-12-23T23:59:59.000Z

340

Commissioning of a magnetic suspension densitometer for high-accuracy density measurements of natural gas mixtures  

E-Print Network (OSTI)

High-accuracy density measurement data are required to validate equations of state (EOS) for use in custody transfer of natural gas through pipelines. The AGA8-DC92 EOS, which is the current industry standard has already been validated against a databank of natural gas mixtures with compositions containing up to 0.2 mole percent of the heavier C6+ fraction and is expected to predict densities of natural gas mixtures containing higher mole percentages of the C6+ fraction with the same accuracy. With the advances in exploration, drilling and production, natural gas streams containing higher percentages of the C6+ fraction have become available from the deepwater and ultra-deepwater Gulf of Mexico in recent years. High-accuracy, density data for such natural gas mixtures are required to check if the AGA8-DC92 EOS covers the entire range of pressure, temperature and compositions encountered in custody transfer. A state-of-the-art, high pressure, high temperature, compact single-sinker magnetic suspension densitometer has been used to measure densities of two simulated natural gas mixtures named M91C1 and M94C1 after validating its operation by measuring densities of pure argon, nitrogen and methane in the range (270 to 340) K [(26.33 to152.33) oF, (-3.15 to 66.85) oC] and (3.447 to 34.474) MPa [(500 to 5,000) psia]. Measured densities of M91C1, not containing the C6+ fraction show larger than expected relative deviations from the AGA8-DC92 EOS predictions in regions 1 and 2 but agree well with predictions from the recently developed REFPROP EOS, implyingthat the AGA8-DC92 EOS may be unreliable in its present state even for natural gas mixtures not containing the C6+ fraction. Measured densities of M94C1 containing more than 0.2 mole percent of the C6+ fraction deviate from the AGA8-DC92 EOS predictions by more than the expected values in region 1 which is not surprising but the agreement with AGA8-DC92 EOS predictions in region 2 is misleading which becomes evident when the measured densities are compared to the REFPROP EOS predictions. The measured data can be used to recalibrate the parameters of the AGA8-DC92 EOS or to validate an entirely new EOS.

Patil, Prashant Vithal

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Construction of the free energy landscape by the density functional theory  

E-Print Network (OSTI)

On the basis of the density functional theory, we give a clear definition of the free energy landscape. To show the usefulness of the definition, we construct the free energy landscape for rearrangement of atoms in an FCC crystal of hard spheres. In this description, the cooperatively rearranging region (CRR) is clealy related to the hard spheres involved in the saddle between two adjacent basins. A new concept of the simultaneously rearranging region (SRR) emerges naturally as spheres defined by the difference between two adjacent basins. We show that the SRR and the CRR can be determined explicitly from the free energy landscape. 1 1

Takashi Yoshidome; Akira Yoshimori; Takashi Odagaki

2005-01-01T23:59:59.000Z

342

High Energy Emission from Magnetars  

E-Print Network (OSTI)

The recently discovered soft gamma-ray emission from the anomalous X-ray pulsar 1E 1841-045 has a luminosity L_g ~ 10^{36} ergs/s. This luminosity exceeds the spindown power by three orders of magnitude and must be fed by an alternative source of energy such as an ultrastrong magnetic field. A gradual release of energy in the stellar magnetosphere is expected if it is twisted and a strong electric current is induced on the closed field lines. We examine two mechanisms of gamma-ray emission associated with the gradual dissipation of this current. (1) A thin surface layer of the star is heated by the downward beam of current-carrying charges, which excite Langmuir turbulence in the layer. As a result, it can reach a temperature kT ~ 100 keV and emit bremsstrahlung photons up to this characteristic energy. (2) The magnetosphere is also a source of soft gamma rays at a distance of ~100 km from the star, where the electron cyclotron energy is in the keV range. A large electric field develops in this region in resp...

Thompson, C

2004-01-01T23:59:59.000Z

343

Method of Fabrication of High Power Density Solid Oxide Fuel Cells  

DOE Patents (OSTI)

A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2008-09-09T23:59:59.000Z

344

High Energy Emission from Magnetars  

E-Print Network (OSTI)

The recently discovered soft gamma-ray emission from the anomalous X-ray pulsar 1E 1841-045 has a luminosity L_g ~ 10^{36} ergs/s. This luminosity exceeds the spindown power by three orders of magnitude and must be fed by an alternative source of energy such as an ultrastrong magnetic field. A gradual release of energy in the stellar magnetosphere is expected if it is twisted and a strong electric current is induced on the closed field lines. We examine two mechanisms of gamma-ray emission associated with the gradual dissipation of this current. (1) A thin surface layer of the star is heated by the downward beam of current-carrying charges, which excite Langmuir turbulence in the layer. As a result, it can reach a temperature kT ~ 100 keV and emit bremsstrahlung photons up to this characteristic energy. (2) The magnetosphere is also a source of soft gamma rays at a distance of ~100 km from the star, where the electron cyclotron energy is in the keV range. A large electric field develops in this region in response to the outward drag force felt by the current-carrying electrons from the flux of keV photons leaving the star. A seed positron injected in this region undergoes a runaway acceleration and upscatters keV photons above the threshold for pair creation. The created pairs emit a synchrotron spectrum consistent with the observed 20-100 keV emission. This spectrum is predicted to extend to higher energies and reach a peak at ~1 MeV.

C. Thompson; A. M. Beloborodov

2004-08-30T23:59:59.000Z

345

Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions  

Science Conference Proceedings (OSTI)

We derive an approximate local density functional for the exchange-correlation energy to be used in density-functional calculations of two-dimensional systems. In the derivation we employ the Colle-Salvetti wave function within the scheme of Salvetti and Montagnani [Phys. Rev. A 63, 052109 (2001)] to satisfy the sum rule for the exchange-correlation hole. We apply the functional to the two-dimensional homogeneous electron gas as well as to a set of quantum dots and find a very good agreement with exact reference data.

Sakiroglu, S. [Nanoscience Center, Department of Physics, University of Jyvaeskylae, P. O. Box 35, FI-40014 Jyvaeskylae (Finland); Physics Department, Faculty of Arts and Sciences, Dokuz Eyluel University, 35160 Izmir (Turkey); Raesaenen, E. [Nanoscience Center, Department of Physics, University of Jyvaeskylae, P. O. Box 35, FI-40014 Jyvaeskylae (Finland)

2010-07-15T23:59:59.000Z

346

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

347

Control of the radiant flux of high-temperature solar-energy installations with respect to two parameters  

SciTech Connect

The simultaneous control of both the power level and energy density level at the center of the focal plane of a high-temperature solar-energy installation with a paraboloid concentrator is considered.

Afyan, V.V.; Vartanyan, A.V.

1978-01-01T23:59:59.000Z

348

High Temperature, high pressure equation of state density correlations and viscosity correlations  

Science Conference Proceedings (OSTI)

Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

2012-07-31T23:59:59.000Z

349

Calcium balance and bone density in immature horses fed a high protein diet  

E-Print Network (OSTI)

Studies in other species indicate high protein diets increase urinary calcium (Ca) excretion and may lead to negative calcium balance and reduced bone density. As overfeeding of protein is commonplace in the horse industry, this study was undertaken to determine the effects of excess dietary protein on growth, physiologic response, mineral balance, bone density, and bone geometry in immature horses. Sixteen 10-month-old American Quarter Horses were blocked by age and sex into two dietary treatments. The control diet was formulated to provide the NRC (1989) recommended concentration of crude protein, while the high protein diet provided 130% of NRC (1989) recommendations. All other nutrients were formulated at or slightly above NRC (1989) recommendations. Blood samples, feces, and urine were collected during the 116-day study to determine any diet effect on pH and mineral balance. Radiographs were made of the left third metacarpal (MCIII) to determine bone density via radiographic bone aluminum equivalence (RBAE), and bone geometry was determined metrically from the radiographs. Urine pH decreased over time (p < 0.001), but there were no diet effects on blood pH or urine pH. Conversely, when normalized to day 0 values, fecal pH was reduced by feeding the high protein treatment (p < 0.02). Density of dorsal and palmar cortices increased over time (p < 0.001), but no differences were observed between diets. But, normalized total medial-lateral (ML) width of the MCIII was higher in the control diet (p < 0.05). Fecal Ca loss was greater in horses fed the high protein diet (p < 0.005), while Ca absorption and retention were lower for horses on the high protein treatment (p < 0.02). Phosphorus (P) balance was not different between diets, although feeding the high protein diet resulted in higher P intake overall (p < 0.001). While excess dietary protein may decrease fecal pH, increase fecal Ca excretion, and decrease Ca absorption and retention, there was no consistent effect of the high protein diet on bone density over the course of this study. Further research is necessary to determine if feeding high-protein diets is detrimental to bone quality in the growing horse.

Spooner, Holly Sue

2005-08-01T23:59:59.000Z

350

Low temperature high density Si3N4 MIM capacitor technology for MMMIC and RF-MEMs applications  

Science Conference Proceedings (OSTI)

In this work, a novel, high quality, high-density, deposited at room temperature ultra thin 5 nm Si3N4 metal insulator metal (MIM) capacitor process for monolithic millimetre-wave integrated circuit (MMMIC) applications ... Keywords: RF MEMs, RF MIM capacitors, dielectric films, high density capacitors, room temperature ultra thin silicon nitride films metal insulator metal capacitors

K. Elgaid; H. Zhou; C. D. W. Wilkinson; I. G. Thayne

2004-06-01T23:59:59.000Z

351

High Density Hydrogen Storage Systems Demonstration Using NaAIH4  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Hydrogen Storage Density Hydrogen Storage System Demonstration Using NaAlH 4 Complex Compound Hydrides D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello United Technologies Research Center East Hartford, Connecticut Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610 December 19, 2006 * * Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team This presentation does not contain proprietary or confidential information 2 Overview Objective: Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which differ from conventional metal hydride systems, to meet DOE system targets. Approach: Design, fabricate and test a sequence of subscale and full scale

352

High-energy cosmic ray interactions  

SciTech Connect

Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

Engel, Ralph [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Orellana, Mariana [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina); Reynoso, Matias M. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, (7600) Mar del Plata (Argentina); Instituto de Investigaciones Fisicas de Mar del Plata, (UNMdP-CONICET) (Argentina); Vila, Gabriela S. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina)

2009-04-30T23:59:59.000Z

353

Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique  

SciTech Connect

We describe a new method for the in situ measurement of the density of a liquid at high pressure and high temperature using the falling-sphere technique. Combining synchrotron radiation X-ray radiography with a large-volume press, the newly developed falling-sphere method enables the determination of the density of a liquid at high pressure and high temperature based on Stokes' flow law. We applied this method to liquid sulfur and successfully obtained the density at pressures up to 9 GPa. Our method could be used for the determination of the densities of other liquid materials at higher static pressures than are currently possible.

Funakoshi, Ken-ichi; Nozawa, Akifumi [Japan Synchrotron Radiation Research Institute, Sayo-cho, Hyogo 679-5198 (Japan)

2012-10-15T23:59:59.000Z

354

Durability of Low Pt Fuel Cells Operating at High Power Density  

NLE Websites -- All DOE Office Websites (Extended Search)

SPIRE Program Kickoff SPIRE Program Kickoff Topic 3A. Cell Degradation Studies / Degradation Studies Durability of Low Pt Fuel Cells Operating at High Power Density US DOE Fuel Cell Projects Kickoff Meeting DOE Award: DE-EE0000469 October 1 st , 2009 Program Objectives The objective of this program is to study and identify strategies to assure durability of fuel cells designed to meet DOE cost targets. Technical Barriers Barrier Approach Strategy A. Durability Reinforced, Stabilized Membrane MEA Partner Durability-Enhanced Electrodes Electrocatalyst/MEA Partner Optimized Operating Conditions Parametric model & experimental studies B. Cost Low Pt Loadings (0.2 mg/cm 2 ) Electrocatalyst/MEA Partner High Power Density (>1.0W/cm 2 ) Open Flowfield Stack Metallic Stack Architecture Incumbent Derivative

355

DUST EXTINCTION BIAS IN THE COLUMN DENSITY DISTRIBUTION OF GAMMA-RAY BURSTS: HIGH COLUMN DENSITY, LOW-REDSHIFT GRBs ARE MORE HEAVILY OBSCURED  

SciTech Connect

The afterglows of gamma-ray bursts (GRBs) have more soft-X-ray absorption than expected from the foreground gas column in the Galaxy. While the redshift of the absorption can in general not be constrained from current X-ray observations, it has been assumed that the absorption is due to metals in the host galaxy of the GRB. The large sample of X-ray afterglows and redshifts now available allows the construction of statistically meaningful distributions of the metal column densities. We construct such a sample and show, as found in previous studies, that the typical absorbing column density (N{sub H{sub X}}) increases substantially with redshift, with few high column density objects found at low-to-moderate redshifts. We show, however, that when highly extinguished bursts are included in the sample, using redshifts from their host galaxies, high column density sources are also found at low-to-moderate redshift. We infer from individual objects in the sample and from observations of blazars that the increase in column density with redshift is unlikely to be related to metals in the intergalactic medium or intervening absorbers. Instead we show that the origin of the apparent increase with redshift is primarily due to dust extinction bias: GRBs with high X-ray absorption column densities found at z {approx}< 4 typically have very high dust extinction column densities, while those found at the highest redshifts do not. It is unclear how such a strongly evolving N{sub H{sub X}}/A{sub V} ratio would arise, and based on current data, remains a puzzle.

Watson, Darach [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Jakobsson, Pall, E-mail: darach@dark-cosmology.dk, E-mail: pja@raunvis.hi.is [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhaga 5, IS-107 Reykjavik (Iceland)

2012-08-01T23:59:59.000Z

356

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

357

An Assessment of Industry Data Related to Essential Variables for Fusing High Density Polyethylene Pipe  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission has expressed concern about the essential variables used for fusing safety-related nuclear power plant piping systems constructed of high density polyethylene (HDPE). The essential variables detailed in the American Society of Mechanical Engineers (ASME) Code Case N-755-1, “Use of Polyethylene (PE) Plastic Pipe,” were considered to be incomplete. In addition, there were questions about using data in the Plastic Pipe Institute (PPI) report TR-33 ...

2013-07-31T23:59:59.000Z

358

Applicability of High-Density Polyethylene in Nuclear Piping Systems with Internal Radionuclides  

Science Conference Proceedings (OSTI)

This report serves as a preliminary evaluation on the long-term impact of radiation on high-density polyethylene (HDPE) piping for nuclear power plant applications. A short literature review is provided on the impact of radiation on HDPE material, followed by a Monte Carlo N-Particle (MCNP) model of internal radiation exposure from radionuclides commonly encountered at nuclear power facilities. Ultimately, this work seeks to provide guidance on the applicability of HDPE piping in radioactive ...

2013-05-16T23:59:59.000Z

359

High Energy Physics Research at Louisiana Tech  

SciTech Connect

The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

2013-06-28T23:59:59.000Z

360

Study of fusion dynamics using Skyrme energy density formalism with different surface corrections  

E-Print Network (OSTI)

Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

Ishwar Dutt; Narinder K. Dhiman

2010-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA  

Science Conference Proceedings (OSTI)

We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

Imanishi, Masatoshi [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile)

2013-09-15T23:59:59.000Z

362

Communication: Density functional theory overcomes the failure of predicting intermolecular interaction energies  

Science Conference Proceedings (OSTI)

Density-functional theory (DFT) revolutionized the ability of computational quantum mechanics to describe properties of matter and is by far the most often used method. However, all the standard variants of DFT fail to predict intermolecular interaction energies. In recent years, a number of ways to go around this problem has been proposed. We show that some of these approaches can reproduce interaction energies with median errors of only about 5% in the complete range of intermolecular configurations. Such errors are comparable to typical uncertainties of wave-function-based methods in practical applications. Thus, these DFT methods are expected to find broad applications in modelling of condensed phases and of biomolecules.

Podeszwa, Rafal [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland); Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Szalewicz, Krzysztof [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

2012-04-28T23:59:59.000Z

363

High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources  

Science Conference Proceedings (OSTI)

In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still in progress. At this level, even if the pulses are not perfect, post-oscillator pulse cleaning can be used to create a clean high energy pulse for injection into a peta-watt laser beam line.

Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

2006-06-15T23:59:59.000Z

364

High Sheldon Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sheldon Energy Wind Farm Sheldon Energy Wind Farm Jump to: navigation, search Name High Sheldon Energy Wind Farm Facility High Sheldon Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Market Location WY County NY Coordinates 42.721106°, -78.406972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.721106,"lon":-78.406972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

High-performance Electrochemical Capacitors - Energy ...  

... metal oxides on the high-surface-area walls of carbon nanofoam papers (0 ... Pairing MnOx–carbon nanofoam with FeOx–carbon nanofoam yields an energy ...

366

The evolution of high energy accelerators  

SciTech Connect

In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

Courant, E.D.

1989-10-01T23:59:59.000Z

367

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Viqar Husain; Sanjeev S. Seahra; Eric J. Webster

2013-05-13T23:59:59.000Z

368

High energy modifications of blackbody radiation and dimensional reduction  

E-Print Network (OSTI)

Quantization prescriptions that realize generalized uncertainty relations (GUP) are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure $P$ and energy density $\\rho$ interpolates between $P=\\rho/3$ at low $T$ and $P=2\\rho/3$ at high $T$, where $T$ is the temperature. Furthermore, the Stefan-Boltzman law gets modified from $\\rho \\propto T^{4}$ to $\\rho \\propto T^{5/2}$ at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.

Husain, Viqar; Webster, Eric J

2013-01-01T23:59:59.000Z

369

High Performance Buildings Database | Open Energy Information  

Open Energy Info (EERE)

High Performance Buildings Database High Performance Buildings Database Jump to: navigation, search The High Performance Buildings Database (HPBD), developed by the United States Department of Energy and the National Renewable Energy Laboratory, is "a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad."[1] Map of HPBD entries Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"-","intro":"","outro":"","searchlabel":"\u2026

370

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

Marquet, C; Lappi, T; Venugopalan, R

2008-01-01T23:59:59.000Z

371

Nuclear diffractive structure functions at high energies  

E-Print Network (OSTI)

A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

2008-05-30T23:59:59.000Z

372

Elementary particle physics and high energy phenomena  

SciTech Connect

This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

1992-06-01T23:59:59.000Z

373

Utilization of Wind Energy at High Altitude  

E-Print Network (OSTI)

Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

Alexander Bolonkin

2007-01-10T23:59:59.000Z

374

Energy Star Helps Manufacturers To Achieve High Energy Performance  

E-Print Network (OSTI)

From personal electronic devices to homes and office buildings, ENERGY STAR® is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U.S. Environmental Protection Agency, within the construct of ENERGY STAR, is extending the benefits to manufacturers in new and meaningful ways. Through the development of tools and technical resources specifically targeting manufacturing companies, ENERGY STAR seeks to provide a means for these businesses to understand and achieve excellence in energy performance by reinforcing the link between energy, financial, and environmental performance. Discussed are the enhanced programmatic offerings as well as two new tools under development that will illustrate the impact of energy consumption on financial performance. The first tool will permit an assessment of energy performance, or benchmark it, at a plant level normalizing for such variables as product type, annual plant hours, plant capacity, annual product value, number of employees, and location. Use of this tool and the information it provides as a means to assess, track and provide targets for plant energy performance is examined. The second tool seeks to elevate the consideration of energy use to an executive level within an organization by calculating financial energy indices specific to individual companies and industrial sectors. These indices relate a business' energy use to such factors as net operating income, value of sales, net income, and so forth. Corporate executives, Wall Street analysts, and energy managers are intended to be the primary users of these ratios. Programmatic improvements to ENERGY STAR include greater networking among participants in the partnership and more opportunities for recognition of their achievements. With the new tools, resources, and program enhancements, it is believed that manufacturers will be equipped with valuable and credible information from which more informed and progressive energy performance decisions can be made. Further, these businesses will be doing their part to demonstrate that protection of the environment is good for business.

Dutrow, E.; Hicks, T.

2001-05-01T23:59:59.000Z

375

The Use of Density Meters and Microprocessors for Energy Measurement and Control  

E-Print Network (OSTI)

ANSI/API 2530 shows how natural gas volume and weight flow rates may be calculated from the differential pressure across an in-line orifice plate. AGA Report No.5 uses these equations and known relationships between specific gravity and calorific value, to calculate the energy flow rate. Both publications point to weight flow rate as the simplest and most direct approach to energy flow rate and indicate much wider use for equations originally developed for natural gas. This paper discusses the advantages of density measurement and shows how a single, in-line density meter may be used with an easily programmed micro-processor to provide rapid, reliable, low-cost, on-line solutions to the flow and energy equations, without using specific gravity meters and calorimeters. Similar techniques enable computation of calorific values to produce a so-called "flameless calorimeter" and measurement and feed-forward control of fuel gas supplies for steam generators, process furnaces, etc., thereby improving combustion and process efficiencies and promoting energy savings. These techniques increase in value as fuel costs rise and as industry is forced to use more variable gas supplies.

Balls, B. W.; Agar, J.

1979-01-01T23:59:59.000Z

376

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

High Energy Particles in the Solar Corona  

E-Print Network (OSTI)

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

A. Widom; Y. N. Srivastava; L. Larsen

2008-04-16T23:59:59.000Z

378

Rhodium dihydride (RhH[subscript 2]) with high volumetric hydrogen density  

DOE Green Energy (OSTI)

Materials with very high hydrogen density have attracted considerable interest due to a range of motivations, including the search for chemically precompressed metallic hydrogen and hydrogen storage applications. Using high-pressure synchrotron X-ray diffraction technique and theoretical calculations, we have discovered a new rhodium dihydride (RhH{sub 2}) with high volumetric hydrogen density (163.7 g/L). Compressing rhodium in fluid hydrogen at ambient temperature, the fcc rhodium metal absorbs hydrogen and expands unit-cell volume by two discrete steps to form NaCl-typed fcc rhodium monohydride at 4 GPa and fluorite-typed fcc RhH{sub 2} at 8 GPa. RhH{sub 2} is the first dihydride discovered in the platinum group metals under high pressure. Our low-temperature experiments show that RhH{sub 2} is recoverable after releasing pressure cryogenically to 1 bar and is capable of retaining hydrogen up to 150 K for minutes and 77 K for an indefinite length of time.

Li, Bing; Ding, Yang; Kim, Duck Young; Ahuja, Rajeev; Zou, Guangtian; Mao, Ho-Kwang (Jilin); (Uppsala); (Cambridge); (CIW)

2012-03-14T23:59:59.000Z

379

High-energy emission from pulsar binaries  

E-Print Network (OSTI)

Unpulsed, high-energy emission from pulsar binaries can be attributed to the interaction of a pulsar wind with that of a companion star. At the shock between the outflows, particles carried away from the pulsar magnetosphere are accelerated and radiate both in synchrotron and inverse Compton processes. This emission constitutes a significant fraction of the pulsar spin-down luminosity. It is not clear however, how the highly magnetized pulsar wind could convert its mainly electromagnetic energy into the particles with such high efficiency. Here we investigate a scenario in which a pulsar striped wind converts into a strong electromagnetic wave before reaching the shock. This mode can be thought of as a shock precursor that is able to accelerate particles to ultrarelativistic energies at the expense of the electromagnetic energy it carries. Radiation of the particles leads to damping of the wave. The efficiency of this process depends on the physical conditions imposed by the external medium. Two regimes can b...

Mochol, Iwona

2013-01-01T23:59:59.000Z

380

Energy efficient Phase Change Memory based main memory for future high performance systems  

Science Conference Proceedings (OSTI)

Phase Change Memory (PCM) has recently attracted a lot of attention as a scalable alternative to DRAM for main memory systems. As the need for high-density memory increases, DRAM has proven to be less attractive from the point of view of scaling and ... Keywords: DDR3 commodity DRAM memory system, energy efficient phase change memory, main memory, future high performance systems, energy consumption, latency issues, write energy, write endurance, cache, embedded DRAM

R. A. Bheda; Jason A. Poovey; J. G. Beu; T. M. Conte

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High-Resolution Simulations of Gas-Solids Jet Penetration Into a High Density Riser Flow  

SciTech Connect

High-resolution simulations of a gas-solids jet in a 0.3 m diameter and 15.9 m tall circulating fluidized bed (CFB) riser were conducted with the open source software-MFIX. In the numerical simulations, both gas and solids injected through a 1.6 cm diameter radial-directed tube 4.3 m above the bottom distributor were tracked as tracers, which enable the analysis of the characteristics of a two-phase jet. Two jetting gas velocities of 16.6 and 37.2 m/s were studied with the other operating conditions fixed. Reasonable flow hydrodynamics with respect to overall pressure drop, voidage, and solids velocity distributions were predicted. Due to the different dynamic responses of gas and particles to the crossflow, a significant separation of gas and solids within the jet region was predicted for both cases. In addition, the jet characteristics based on tracer concentration and tracer mass fraction profiles at different downstream levels are discussed. Overall, the numerical predictions compare favorably to the experimental measurements made at NETL.

Li, Tingwen

2011-05-01T23:59:59.000Z

382

Bellevue High School | Open Energy Information  

Open Energy Info (EERE)

Bellevue High School Bellevue High School Jump to: navigation, search Name Bellevue High School Facility Bellevue High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bellevue High School Energy Purchaser Bellevue High School Location Bellevue WA Coordinates 41.28241024°, -82.84591019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.28241024,"lon":-82.84591019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Margaretta High School | Open Energy Information  

Open Energy Info (EERE)

Margaretta High School Margaretta High School Jump to: navigation, search Name Margaretta High School Facility Margaretta High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Margaretta High School Energy Purchaser Margaretta High School Location Castalia OH Coordinates 41.39923794°, -82.80122995° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39923794,"lon":-82.80122995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

High Energy Physics Division, ANL Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum chromodynamics(QCD) de- scribes Hadrons and their strong inter- actions. Hadrons consist of quarks held together by gluons. Lattice QCD is QCD on a 4-dimensional (space-time) lattice. Allows numerical simulation of the functional integrals which define this quantum field theory, and non-perturbative QCD calculations. Physics - properties of hadrons (masses, etc.), hadronic matrix elements (HEP), hadronic matter at finite temperature and/or densities (RHIC, early universe, neutron stars). 2 Computational Methods * Functional integral is mapped to the partition function for a classical sys- tem. Molecular-dynamics methods are used to calculate the observables for this classical system.

385

A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices  

E-Print Network (OSTI)

This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

H. Chen; L. Hsu; X. Wei

2008-01-07T23:59:59.000Z

386

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

Science Conference Proceedings (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

387

Magnetized Bianchi Type $VI_{0}$ Barotropic Massive String Universe with Decaying Vacuum Energy Density $?$  

E-Print Network (OSTI)

Bianchi type $VI_{0}$ massive string cosmological models using the technique given by Letelier (1983) with magnetic field are investigated. To get the deterministic models, we assume that the expansion ($\\theta$) in the model is proportional to the shear ($\\sigma$) and also the fluid obeys the barotropic equation of state. It was found that vacuum energy density $\\Lambda \\propto \\frac{1}{t^{2}}$ which matches with natural units. The behaviour of the models from physical and geometrical aspects in presence and absence of magnetic field is also discussed.

Anirudh Pradhan; Raj Bali

2008-05-22T23:59:59.000Z

388

Fusion Engineering and Design 45 (1999) 145167 Exploring novel high power density concepts for attractive  

E-Print Network (OSTI)

lower than Li17Pb83, see Fig. 6). Thus, surface wall load could, in principle, be deposited it is deposited at the surface in the case of Li17Pb83 due to its high attenuation coeffi- cient. The incident X-rays in Lithium, Beryllium, Flibe, Lead, and Li17Pb83 vs. photon energy. ularly in the case where the Flibe

Abdou, Mohamed

389

Scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

The convergence of numerous factors makes the time ripe for the development of a community of researchers to use the high-energy laser for scientific investigations. This document attempts to outline the steps necessary to access high-energy laser systems and create a realistic plan to implement usage. Since an academic/scientific user community does not exist in the USA to any viable extent, we include information on present capabilities at the Nova laser. This will briefly cover laser performance and diagnostics and a sampling of some current experimental projects. Further, to make the future possibilities clearer, we will describe the proposed next- generation high-energy laser, named for its inertial fusion confinement (ICF) goal, the multi-megaJoule, 500-teraWatt National Facility, or NIF.

Lee, R.W. [comp.

1994-03-01T23:59:59.000Z

390

Stochastic Jet Quenching in High Energy Nuclear Collisions  

E-Print Network (OSTI)

Energy losses of fast color particles in random inhomogeneous color medium created in high energy nuclear collisions are estimated.

Kirakosyan, M R

2008-01-01T23:59:59.000Z

391

High Efficiency Electrical Energy Storage Using Reversible Solid ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, High Efficiency Electrical Energy Storage Using Reversible ...

392

Glass Capacitor for High-Temperature Applications - Energy ...  

Energy storage; Power factor correction; High-voltage capacitors; Power electronic filters; More Information Inventor: Enis Tuncer Fusion Energy Division

393

Mapping Metal-Enriched High Velocity Clouds to Very Low HI Column Densities  

E-Print Network (OSTI)

Our galaxy is the nearest known quasar absorption line system, and it uniquely provides us with an opportunity to probe multiple lines of sight through the same galaxy. This is essential for our interpretations of the complex kinematic profiles seen in the MgII absorption due to lines of sight through intermediate redshift galaxies. The Milky Way halo has never been probed for high velocity clouds below the 21-cm detection threshold of N(HI)~10^18 cm-2. Through a survey of MgII absorption looking toward the brightest AGNs and quasars, it will be possible to reach down a few orders of magnitude in HI column density. The analogs to the high velocity components of the MgII absorption profiles due to intermediate redshift galaxies should be seen. We describe a program we are undertaking, and present some preliminary findings.

Chris Churchill; Jane Charlton; Joe Masiero

2001-08-13T23:59:59.000Z

394

Implications to Sources of Ultra-high-energy Cosmic Rays from their Arrival Distribution  

E-Print Network (OSTI)

We estimate the local number density of sources of ultra-high-energy cosmic rays (UHECRs) based on the statistical features of their arrival direction distribution. We calculate the arrival distributions of protons above $10^{19}$ eV taking into account their propagation process in the Galactic magnetic field and a structured intergalactic magnetic field, and statistically compare those with the observational result of the Pierre Auger Observatory. The anisotropy in the arrival distribution at the highest energies enables us to estimate the number density of UHECR sources as $\\sim 10^{-4} {\\rm Mpc}^{-3}$ assuming the persistent activity of UHECR sources. We compare the estimated number density of UHECR sources with the number densities of known astrophysical objects. This estimated number density is consistent with the number density of Fanaroff-Reily I galaxies. We also discuss the reproducability of the observed {\\it isotropy} in the arrival distribution above $10^{19}$ eV. We find that the estimated source model cannot reproduce the observed isotropy. However, the observed isotropy can be reproduced with the number density of $10^{-2}$-$10^{-3} {\\rm Mpc}^{-3}$. This fact indicates the existence of UHECR sources with a maximum acceleration energy of $\\sim 10^{19}$ eV whose number density is an order of magnitude more than that injecting the highest energy cosmic rays.

Hajime Takami; Katsuhiko Sato

2008-07-22T23:59:59.000Z

395

High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter RID A-2398-2009  

E-Print Network (OSTI)

Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schrodinger-equivalent potential, the high-energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such a high-energy nucleon, the symmetry potential is slightly negative below a baryon density of about rho = 0.22 fm(-3) and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

Chen, LW; Ko, Che Ming; Li, Ba.

2005-01-01T23:59:59.000Z

396

Frontiers in High-Energy Astroparticle Physics  

E-Print Network (OSTI)

With the discovery of evidence for neutrino mass, a vivid gamma ray sky at multi-TeV energies, and cosmic ray particles with unexpectedly high energies, astroparticle physics currently runs through an era of rapid progress and moving frontiers. The non-vanishing neutrino mass establishes one smooth component of dark matter which does not, however, supply a critical mass to the Universe. Other dark matter particles are likely to be very massive and should produce high-energy gamma rays, neutrinos, and protons in annihilations or decays. The search for exotic relics with new gamma ray telescopes, extensive air shower arrays, and underwater/-ice neutrino telescopes is a fascinating challenge, but requires to understand the astrophysical background radiations at high energies. Among the high-energy sources in the Universe, radio-loud active galactic nuclei seem to be the most powerful accounting for at least a sizable fraction of the extragalactic gamma ray flux. They could also supply the bulk of the observed cosmic rays at ultrahigh energies and produce interesting event rates in neutrino telescopes aiming at the kubic kilometer scale such as AMANDA and ANTARES. It is proposed that the extragalactic neutrino beam can be used to search for tau lepton appearance thus allowing for a proof of the neutrino oscillation hypothesis. Furthermore, a new method for probing the era of star formation at high redshifts using gamma rays is presented which requires new-generation gamma ray telescopes operating in the 10-100 GeV regime such as MAGIC and GLAST.

Karl Mannheim

1999-02-12T23:59:59.000Z

397

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

Tech Center Tech Center Jump to: navigation, search Name High Plains Tech Center Facility High Plains Tech Center Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133°, -99.4282195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.40645133,"lon":-99.4282195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

399

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

400

Energy Efficiency Opportunities in Federal High Performance Computing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High Energy Diffraction Microscopy at the Advanced Photon Source ...  

Science Conference Proceedings (OSTI)

The APS 1-ID beamline is dedicated to high-energy diffraction and the status of the ... High Energy Diffraction Microscopy at the Advanced Photon Source 1-ID ...

402

ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

2006-10-02T23:59:59.000Z

403

Permeability enhancement using high energy gas fracturing  

DOE Green Energy (OSTI)

This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

1986-01-01T23:59:59.000Z

404

Very high energy heavy-ion accelerators  

SciTech Connect

A review is given of various programs for building heavy ion accelerators. Topics discussed are (1) options of reaching very high energies with heavy ions; (2) present performance of the superHILAC and the Bevalac; (3) heavy ion sources; (4) applications of heavy ion accelerators outside of basic research; and (5) reliability and operating costs of heavy ion sources. (PMA)

Grunder, H.A.

1975-10-01T23:59:59.000Z

405

Trends in experimental high-energy physics  

SciTech Connect

Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry.

Sanford, T.W.L.

1982-06-01T23:59:59.000Z

406

Pair-production opacity at high and very-high gamma-ray energies  

E-Print Network (OSTI)

The propagation of high energy (HE, $E_\\gamma>100$ MeV) and very high-energy gamma-rays (VHE, $E_\\gamma>100$ GeV) in the extra-galactic photon field leads to pair-production and consequently energy- and distance-dependent attenuation of the primary intensity. The spectroscopy of an increasing number of extra-galactic objects at HE and VHE energies has demonstrated indeed the presence of such an attenuation which in turn has been used to constrain the photon density in the medium. At large optical depth ($\\tau\\gtrsim 2$) potential modifications of pair-production due to competing but rare processes (as, e.g., the presence of sub-neV axion-like particle) may be found. Indications for a pair-production anomaly have previously been found with VHE-spectra. Here, we present further indications (at the level of $3.68 \\sigma$) for a reduced optical depth at high energies from an analysis of Fermi-\\textit{LAT} data.

Dieter Horns; Manuel Meyer

2013-09-16T23:59:59.000Z

407

A study of fast electron energy transport in relativistically intense laser-plasma interactions with large density scalelengths  

SciTech Connect

A systematic experimental and computational investigation of the effects of three well characterized density scalelengths on fast electron energy transport in ultra-intense laser-solid interactions has been performed. Experimental evidence is presented which shows that, when the density scalelength is sufficiently large, the fast electron beam entering the solid-density plasma is best described by two distinct populations: those accelerated within the coronal plasma (the fast electron pre-beam) and those accelerated near or at the critical density surface (the fast electron main-beam). The former has considerably lower divergence and higher temperature than that of the main-beam with a half-angle of {approx}20 Degree-Sign . It contains up to 30% of the total fast electron energy absorbed into the target. The number, kinetic energy, and total energy of the fast electrons in the pre-beam are increased by an increase in density scalelength. With larger density scalelengths, the fast electrons heat a smaller cross sectional area of the target, causing the thinnest targets to reach significantly higher rear surface temperatures. Modelling indicates that the enhanced fast electron pre-beam associated with the large density scalelength interaction generates a magnetic field within the target of sufficient magnitude to partially collimate the subsequent, more divergent, fast electron main-beam.

Scott, R. H. H.; Norreys, P. A. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Perez, F.; Baton, S. D. [LULI, Ecole Polytechnique, UMR 7605, CNRS/CEA/UPMC, Route de Saclay, 91128 Palaiseau (France); Santos, J. J.; Nicolai, Ph.; Hulin, S. [Univ. Bordeaux/CNRS/CEA, CELIA, UMR 5107, 33405 Talence (France); Ridgers, C. P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Davies, J. R. [GoLP, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Lancaster, K. L.; Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Bell, A. R.; Tzoufras, M. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX (United Kingdom); Rose, S. J. [Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

2012-05-15T23:59:59.000Z

408

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

DC. Steiner, R.L. (1994). Residential density and traveland Brownstone The Impact of Residential Density on VehicleWP-05-1 The Impact of Residential Density on Vehicle Usage

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

409

Process and system for producing high-density pellets from a gaseous medium  

DOE Patents (OSTI)

A process and system for producing pellets of high density carbon dioxide or other gases utilize a chamber containing a plurality of cell-like freezing compartments within which ice is to be formed. A gas desired to be frozen into ice is introduced into the chamber while the internal pressure of the chamber is maintained at a level which is below the equilibrium triple pressure of the gas. The temperature of the freezing compartments is lowered to a temperature which is below the equilibrium vapor pressure temperature of the gas at the chamber pressure so that the gas condenses into ice within the compartments. The temperature of the freezing compartments is thereafter raised so that the ice is thereby released from and falls out of the compartments as pellets for collection.

Foster, Christopher A. (Clinton, TN)

1999-01-01T23:59:59.000Z

410

Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration...

411

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density Log at Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration...

412

Fabrication and characterization of a new high density Sc/Si multilayer sliced grating  

SciTech Connect

State of the art soft x-ray spectroscopy techniques like Resonant Inelastic X-ray Scattering (RIXS) require diffraction gratings which can provide extremely high spectral resolution of 105-106. This problem may be addressed with a sliced multilayer grating with an ultra-high groove density (up to 50,000 mm-1) proposed in the recent publication [Voronov, D. L., Cambie, R., Feshchenko, R. M., Gullikson, E., Padmore, H. A., Vinogradov, A. V., Yashchuk, V. V., Proc. SPIE 6705, 67050E (2007)]. It has been suggested to fabricate such a grating by deposition of a soft x-ray multilayer on a substrate which is a blazed saw-tooth grating (echellette) with low groove density. Subsequent polishing applied to the coated grating removes part of the coating and forms an oblique-cut multiline structure that is a sliced multilayer grating. The resulting grating has a short-scale periodicity of lines (bilayers), which is defined by the multilayer period and the oblique-cut angle. We fabricated and tested a Sc/Si multilayer sliced grating suitable for EUV applications, which is a first prototype based on the suggested technique. In order to fabricate an echellette substrate, we used anisotropic KOH etching of a Si wafer. The etching regime was optimized to obtain smooth and flat echellette facets. A Sc/Si multilayer was deposited by dc-magnetron sputtering, and after that it was mechanically polished using a number of diamond pastes. The resulting sliced grating prototype with ~;;270 nm line period has demonstrated a dispersive ability in the 41-49 nm photon wavelength range with a diffraction efficiency of ~;;7percent for the optimized 38th order assigned to the echellette grating of 10 mu m period.

Advanced Light Source; Voronov, Dmitriy L.; Cambie, Rossana; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Pershin, Yuri; Ponomarenko, Alexander; Kondratenko, Valeriy

2008-07-21T23:59:59.000Z

413

Carbonate fuel cell monolith design for high power density and low cost  

SciTech Connect

Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

Allen, J.; Doyon, J.

1996-08-01T23:59:59.000Z

414

ENERGY SPECTRA OF COSMIC-RAY NUCLEI AT HIGH ENERGIES  

SciTech Connect

We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to approx10{sup 14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E {sup -2.66} {sup +}- {sup 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 +- 0.025 (stat.)+-0.025 (sys.) at approx800 GeV/n, in good agreement with a recent result from the first CREAM flight.

Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinine, A. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Allison, P.; Beatty, J. J.; Brandt, T. J. [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S. [Department of Physics, University of Siena and INFN, Via Roma 56, 53100 Siena (Italy); Barbier, L. [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Childers, J. T.; DuVernois, M. A. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Conklin, N. B.; Coutu, S. [Department of Physics, Penn State University, University Park, PA 16802 (United States); Jeon, J. A. [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Minnick, S., E-mail: paolo.maestro@pi.infn.i [Department of Physics, Kent State University, Tuscarawas, New Philadelphia, OH 44663 (United States)

2009-12-10T23:59:59.000Z

415

Coupled-channels density-matrix approach to low-energy nuclear reaction dynamics  

E-Print Network (OSTI)

Atomic nuclei are complex, quantum many-body systems whose structure manifests itself through intrinsic quantum states associated with different excitation modes or degrees of freedom. Collective modes (vibration and/or rotation) dominate at low energy (near the ground-state). The associated states are usually employed, within a truncated model space, as a basis in (coherent) coupled channels approaches to low-energy reaction dynamics. However, excluded states can be essential, and their effects on the open (nuclear) system dynamics are usually treated through complex potentials. Is this a complete description of open system dynamics? Does it include effects of quantum decoherence? Can decoherence be manifested in reaction observables? In this contribution, I discuss these issues and the main ideas of a coupled-channels density-matrix approach that makes it possible to quantify the role and importance of quantum decoherence in low-energy nuclear reaction dynamics. Topical applications, which refer to understanding the astrophysically important collision $^{12}$C + $^{12}$C and achieving a unified quantum dynamical description of relevant reaction processes of weakly-bound nuclei, are highlighted.

Alexis Diaz-Torres

2010-09-02T23:59:59.000Z

416

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network (OSTI)

Energy Density Functional (NP) Objective: Develop and use ab initio predictive power to test nuclear theory

Antypas, Katie

2013-01-01T23:59:59.000Z

417

Model Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition. In particular we find that an increasing iron content in silicates mainly causes an increase of the dust absorption effiency and thus increases the dust reemission continuum. Furthermore, the influence of the sp 2 /sp 3 hybridization

Sebastian Wolf; Lynne A. Hillenbr

2003-01-01T23:59:59.000Z

418

Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition.

Sebastian Wolf; Lynne Hillenbrand

2003-06-23T23:59:59.000Z

419

Energy density functional study of nuclear matrix elements for neutrinoless $??$ decay  

E-Print Network (OSTI)

We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double beta decay of the nuclei $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{116}$Cd, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NME's around 4.7 with the exception of $^{48}$Ca and $^{150}$Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of $^{150}$Nd.

Tomás R. Rodríguez; G. Martinez-Pinedo

2010-08-31T23:59:59.000Z

420

JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS  

E-Print Network (OSTI)

of the Office of High Energy and Nuclear Physics of the U.S.distributions and energy flux in violent nuclear collisions.of the Office of High Energy and Nuclear Physics of the U.S.

Stocker, H.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE))

Case study describes an outline of energy efficiency opportunities in federal high performance computing data centers.

422

EEEL Researchers Develop Novel Attenuator for High-energy ...  

Science Conference Proceedings (OSTI)

EEEL Researchers Develop Novel Attenuator for High-energy Lasers. For Immediate Release: June 2, 2008. ...

2011-10-03T23:59:59.000Z

423

The evolution of high energy accelerators  

SciTech Connect

Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

Courant, E.D.

1994-08-01T23:59:59.000Z

424

High Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name High Plains Wind Farm Facility High Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Southwest of Rock River WY Coordinates 41.665943°, -106.043487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.665943,"lon":-106.043487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

High energy physics at UC Riverside  

SciTech Connect

This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

1997-07-01T23:59:59.000Z

426

Wausau High School | Open Energy Information  

Open Energy Info (EERE)

Wausau High School Wausau High School Jump to: navigation, search Name Wausau High School Facility Wausau High School Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Wausau WI Coordinates 44.97944687°, -89.59666014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.97944687,"lon":-89.59666014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Viscosity of High Energy Nuclear Fluids  

E-Print Network (OSTI)

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

428

Gratings for High-Energy Petawatt Lasers  

Science Conference Proceedings (OSTI)

To enable high-energy petawatt laser operation we have developed the processing methods and tooling that produced both the world's largest multilayer dielectric reflection grating and the world's highest laser damage resistant gratings. We have successfully delivered the first ever 80 cm aperture multilayer dielectric grating to LLNL's Titan Intense Short Pulse Laser Facility. We report on the design, fabrication and characterization of multilayer dielectric diffraction gratings.

Nguyen, H T; Britten, J A; Carlson, T C; Nissen, J D; Summers, L J; Hoaglan, C R; Aasen, M D; Peterson, J E; Jovanovic, I

2005-11-08T23:59:59.000Z

429

Support Vector Machines in High Energy Physics  

E-Print Network (OSTI)

This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case. The kernel trick will be introduced and in the context of structural risk minimization, large margin algorithms for classification and regression will be presented. Current applications in high energy physics will be discussed.

Anselm Vossen

2008-03-16T23:59:59.000Z

430

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

Anil V. Virkar

2001-09-26T23:59:59.000Z

431

Composite Cathode for High-Power Density Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low-temperature performances are expected based on further development of barrier layer fabrication processes and optimization of cathode microstructure.

Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

2004-01-31T23:59:59.000Z

432

High Density Three-Dimensional Nanomagnetic Logic Systems Composed of Material with Crystalline Anisotropy  

E-Print Network (OSTI)

A. Symbols B Magnetic induction E: Energy H: Magnetic fieldfrom the total energy of the magnetic system according toeff :Effective magnetic field J: Dipolar coupling energy k:

Tian, Yuan

2013-01-01T23:59:59.000Z

433

Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

2012-09-01T23:59:59.000Z

434

Assessment of an ORION-based experimental platform for measuring the opacity of high-temperature and high-density plasma  

SciTech Connect

The following provides an assessment of an experimental platform based on the ORION laser at AWE Aldermasten, England, for measuring the opacity of high-temperature and high-density LTE plasmas. The specific points addressed are (1) the range of electron density and temperature that can be achieved with short-pulse beams alone, as well as (2) by means of compression with a long-pulse beam; (3) the accuracy with which electron density, electron temperature, and absolute emissivity can be measured; (4) the use of pulse shaping to increase the sample density to above solid density; (5) the effect that target materials and target design have on maintaining spatial uniformity of the sample, and (6) the need for additional diagnostics to produce and characterize samples for decisive measurements.

Beiersdorfer, P; Schneider, M; Shepherd, R

2012-06-11T23:59:59.000Z

435

Oil Study Guide - High School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High School Oil Study Guide - High School Oil Study Guide - High School More Documents & Publications Oil Study Guide - Middle School Fossil Energy Today - First Quarter, 2012...

436

Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems  

Science Conference Proceedings (OSTI)

A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method'Â?s potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H{sub 2} dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH{sub 4}){sub 4} stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH{sub 4}){sub 4} ligand complex in SiO{sub 2} aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in nano-frameworks did not improve their H{sub 2} absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

Xia Tang , Susanne M. Opalka , Daniel A. Mosher, Bruce L. Laube, Ronald J. Brown, Thomas H. Vanderspurt, Sarah Arsenault, Robert Wu, Jamie Strickler, Ewa. Ronnebro, Tim. Boyle and Joseph Cordaro

2010-06-30T23:59:59.000Z

437

High energy resolution, high angular acceptance crystal monochromator  

DOE Patents (OSTI)

A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

1996-06-04T23:59:59.000Z

438

High energy resolution, high angular acceptance crystal monochromator  

DOE Patents (OSTI)

A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

Alp, E.E.; Mooney, T.M.; Toellner, T.

1996-06-04T23:59:59.000Z

439

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Biehs, Svend-Age

2011-01-01T23:59:59.000Z

440

Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials  

E-Print Network (OSTI)

We investigate the thermal radiation and thermal near-field energy density of a metal-coated semi-infinite body for different substrates. We show that the surface polariton coupling within the metal coating leads to an enhancement of the TM-mode part of the thermal near-field energy density when a polar substrate is used. In this case the result obtained for a free standing metal film is retrieved. In contrast, in the case of a metal substrate there is no enhancement in the TM-mode part, as can also be explained within the framework of surface plasmon coupling within the coating. Finally, we discuss the influence of the enhanced thermal energy density on the near-field radiative heat transfer between a simple semi-infinite and a coated semi-infinite body for different material combinations.

Svend-Age Biehs

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gold charge state distributions in highly ionized, low-density beam plasmas  

Science Conference Proceedings (OSTI)

We present a systematic study of Au charge state distributions (CSDs) from low density, nonlocal thermodynamic equilibrium plasmas created in the Livermore electron beam ion traps (EBIT-I and EBIT-II). X-ray emission from Ni-like to Kr-like Au ions has been recorded from monoenergetic electron beam plasmas having E{sub beam}=2.66, 2.92, 3.53, and 4.54 keV, and the CSDs of the beam plasmas have been inferred by fitting the collisionally excited line transitions and radiative recombination emission features with synthetic spectra. We have modeled the beam plasmas using a collisional-radiative code with various treatments of the atomic structure for the complex M- and N-shell ions and find that only models with extensive doubly excited states can properly account for the dielectronic recombination (DR) channels that control the CSDs. This finding would be unremarkable for plasmas with thermal electron distributions, where many such states are sampled, and the importance of DR is well established. But in an EBIT source, the beam is resonant with only a subset of such states having spectator electrons in orbitals with high principal quantum number n (8{<=}n{<=}20). The inclusion of such states in the model was also necessary to obtain agreement with observed stabilizing transitions in the x-ray spectra.

May, M. J.; Scofield, J.; Schneider, M.; Wong, K.; Beiersdorfer, P. [PO Box 808 L260, Lawrence Livermore National Laboratory, Livermore California 94551 (United States); Hansen, S. B. [Sandia National Laboratories, ICF Target Design, Albuquerque New Mexico, 87185-1186 (United States)

2011-10-15T23:59:59.000Z

442

High density quark matter in the Nambu-Jona-Lasinio model with dimensional versus cutoff regularization  

SciTech Connect

We investigate color superconducting phase at high density in the extended Nambu-Jona-Lasinio model for two-flavor quarks. Because of the nonrenormalizability of the model, physical observables may depend on the regularization procedure; that is why we apply two types of regularization, the cutoff and the dimensional one to evaluate the phase structure, the equation of state, and the relationship between the mass and the radius of a dense star. To obtain the phase structure we evaluate the minimum of the effective potential at finite temperature and chemical potential. The stress tensor is calculated to derive the equation of state. Solving the Tolman-Oppenheimer-Volkoff equation, we show the relationship between the mass and the radius of a dense star. The dependence on the regularization is found not to be small, interestingly. The dimensional regularization predicts color superconductivity phase at rather large values of {mu} (in agreement with perturbative QCD in contrast to the cutoff regularization), in the larger temperature interval, the existence of heavier and larger quark stars.

Fujihara, T.; Kimura, D.; Inagaki, T.; Kvinikhidze, A. [Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Information Media Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); A. Razmadze Mathematical Institute of Georgian Academy of Sciences, M. Alexidze Str. 1, 380093 Tbilisi (Georgia)

2009-05-01T23:59:59.000Z

443

The phase diagram of nuclear and quark matter at high baryon density  

E-Print Network (OSTI)

We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third regime that is being recognized recently is what is called quarkyonic matter, which has both aspects of nuclear and quark matter. We closely elucidate the basic idea of quarkyonic matter in the large-Nc limit and its physics implications. Finally, we discuss some experimental indications for the QCD phase diagram and close the review with outlooks.

Kenji Fukushima; Chihiro Sasaki

2013-01-27T23:59:59.000Z

444

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

Science Conference Proceedings (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

445

HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.  

SciTech Connect

We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

2005-05-16T23:59:59.000Z

446

High West Energy, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name High West Energy, Inc Place Wyoming Utility Id 27058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Farm and Home Residential Irrigation Industrial Large Power Industrial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting

447

High West Energy, Inc (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

Place Nebraska Place Nebraska Utility Id 27058 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-400 watt M V/ HPS Lighting Average Rates Residential: $0.1100/kWh Commercial: $0.1040/kWh Industrial: $0.1000/kWh The following table contains monthly sales and revenue data for High West Energy, Inc (Nebraska).

448

High Resolution Solar Energy Resource Assessment within the UNEP...  

Open Energy Info (EERE)

High Resolution Solar Energy Resource Assessment within the UNEP Project SWERA

(Abstract):  To expand the world wide use of renewable energy a consistent,...

449

Complex Oxides for Highly Efficient Solid-State Energy ...  

Complex Oxides for Highly Efficient Solid-State Energy ... Using complex oxides to directly convert thermal to electrical energy is both ... Thermal P ...

450

Net-Zero Energy, High-Performance Buildings Program  

Science Conference Proceedings (OSTI)

Net-Zero Energy, High-Performance Buildings Program. ... NIST completed design and construction of Net-Zero Energy Residential Test Facility; ...

2013-05-03T23:59:59.000Z

451

[Experimental and theoretical high energy physics program  

Science Conference Proceedings (OSTI)

Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

1993-04-01T23:59:59.000Z

452

Emerging Computing Technologies in High Energy Physics  

E-Print Network (OSTI)

While in the early 90s High Energy Physics (HEP) lead the computing industry by establishing the HTTP protocol and the first web-servers, the long time-scale for planning and building modern HEP experiments has resulted in a generally slow adoption of emerging computing technologies which rapidly become commonplace in business and other scientific fields. I will overview some of the fundamental computing problems in HEP computing and then present the current state and future potential of employing new computing technologies in addressing these problems.

Amir Farbin

2009-10-19T23:59:59.000Z

453

High Energy Instrumentation Efforts in Turkey  

Science Conference Proceedings (OSTI)

This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

Kalemci, Emrah [Sabanci University, Tuzla, Istanbul (Turkey)

2011-09-21T23:59:59.000Z

454

GEM applications outside high energy physics  

E-Print Network (OSTI)

From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

Pinto, Serge Duarte

2013-01-01T23:59:59.000Z

455

Channeling and dechanneling at high energy  

SciTech Connect

The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs.

Carrigan, R.A. Jr.

1987-09-30T23:59:59.000Z

456

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

457

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

458

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

459

High Lonesome Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lonesome Wind Farm Lonesome Wind Farm Jump to: navigation, search Name High Lonesome Wind Farm Facility High Lonesome Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Location South of Willard NM Coordinates 34.498433°, -105.927606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.498433,"lon":-105.927606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

High Energy Laser for Space Debris Removal  

SciTech Connect

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal. Our cost estimates range from $2500 to $5000 per J depending on choices for laser gain medium, amplifier pump source, and thermal management method. A flashlamp-pumped, Nd:glass heat-capacity laser operating in the burst mode would have costs at the lower end of this spectrum and would suffice to demonstrate the efficacy of this approach as a prototype system. A diode-pumped, gas-cooled laser would have higher costs but could be operated continuously, and might be desirable for more demanding mission needs. Maneuverability can be incorporated in the system design if the additional cost is deemed acceptable. The laser system would need to be coupled with a target pointing and tracking telescope with guide-star-like wavefront correction capability.

Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

2009-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "high energy density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High Energy Laser for Space Debris Removal  

SciTech Connect

The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored pulse designed for high transmission through the atmosphere, as well as efficient ablative coupling to the target. The main amplifier would use either diode-pumped or flashlamp-pumped solid state gain media, depending on budget constraints of the project. A continuously operating system would use the gas-cooled amplifier technology developed for Mercury, while a burst-mode option would use the heat capacity laser technology. The ground-based system that we propose is capable of rapid engagement of targets whose orbits cross over the site, with potential for kill on a single pass. Very little target mass is ablated per pulse so the potential to create additional hazardous orbiting debris is minimal.