Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

2

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

3

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

4

Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles  

DOE Green Energy (OSTI)

A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

Ehsani, Mark

2002-10-07T23:59:59.000Z

5

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

6

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

7

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

8

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

9

High Efficiency, Clean Combustion  

DOE Green Energy (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

10

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

11

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Goals to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Vehicle Acquisition Goals To help achieve the statewide goal of reducing petroleum use by 20% by July

12

Financial Vehicles within an Integrated Energy Efficiency Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Vehicles within an Integrated Energy Efficiency Program Slide 1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency...

13

Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions in Directions in Engine-Efficiency and Emissions Research (DEER) Conference to someone by E-mail Share Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Facebook Tweet about Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Twitter Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Google Bookmark Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Delicious Rank Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference on Digg Find More places to share Vehicle Technologies Office: Directions in

14

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

15

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

16

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

17

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

18

Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Diesel 8 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

19

Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

Directions in Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on

20

Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Diesel 7 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2007 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Digg

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Directions in 0 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Facebook Tweet about Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Twitter Bookmark Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Google Bookmark Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on Delicious Rank Vehicle Technologies Office: 2010 Directions in Engine-Efficiency and Emissions Research (DEER) Conference Presentations on

22

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improve Vehicle Fuel Efficiency Improve Vehicle Fuel Efficiency Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency October 7, 2013 - 11:53am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Improve Fuel Efficiency Strategy When Applicable Best Practices Acquiring higher fuel economy vehicles Applicable to all types of vehicles, regardless of ownership or vehicle and fuel type Mission and geographical (e.g., terrain, climate) constraints should be evaluated when acquiring new vehicles Use a VAM to ensure vehicles are right-sized to their intended mission.

23

Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations to someone by E-mail Share Vehicle Technologies Office: 2006 Diesel Engine-Efficiency and Emissions...

24

Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Vehicle Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center:

25

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

26

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

27

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles January 11, 2010 - 12:00am Addthis Columbus, Ind. - At an event today in Columbus, Indiana, Secretary Chu announced the selection of nine projects totaling more than $187 million to improve fuel efficiency for heavy-duty trucks and passenger vehicles. The funding includes more than $100 million from the American Recovery and Reinvestment Act, and with a private cost share of 50 percent, will support nearly $375 million in total research, development and demonstration projects across the country. The nine winners have stated their projects

28

DOE Announces 12 Projects To Increase Vehicle Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces 12 Projects To Increase Vehicle Efficiency Announces 12 Projects To Increase Vehicle Efficiency DOE Announces 12 Projects To Increase Vehicle Efficiency February 16, 2005 - 10:16am Addthis Industry Partners to Cost-Share Funding on $175 Million in Research Projects WASHINGTON, DC -- Secretary of Energy Samuel Bodman today announced the selection of projects that will increase the energy efficiency of passenger and commercial vehicles while maintaining low emissions. Twelve projects, with a total value of $175 million (50 percent, or $87.5 million contributed by the private sector) will focus on development of advanced combustion engine and waste heat recovery technologies. "Together with our private sector partners, the Department of Energy is pursuing innovative new technologies to improve vehicle fuel efficiency and

29

Fuel Efficient Vehicle Tax Incentives Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Credits AFVs include vehicles using compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), hydrogen, or any liquid at least 85% methanol by...

30

Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric  

SciTech Connect

ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

None

2010-09-14T23:59:59.000Z

31

Thermal management concepts for higher efficiency heavy vehicles.  

DOE Green Energy (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

32

Energy efficient navigation management for hybrid electric vehicles on highways  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are gaining popularity due to their economical efficiency as well as their contribution to environmental preservation. PHEVs allow the driver to use exclusively electric power for 30-50 miles of driving, and switch ... Keywords: formal model, navigation plan, plug-in hybrid vehicle

Mohammad Ashiqur Rahman, Qi Duan, Ehab Al-Shaer

2013-04-01T23:59:59.000Z

33

A study in hybrid vehicle architectures : comparing efficiency and performance  

E-Print Network (OSTI)

This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

Cotter, Gavin M

2009-01-01T23:59:59.000Z

34

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have...

35

Vehicle Efficiency Incentives: An Update on Feebates for States | Open  

Open Energy Info (EERE)

Vehicle Efficiency Incentives: An Update on Feebates for States Vehicle Efficiency Incentives: An Update on Feebates for States Jump to: navigation, search Tool Summary Name: Vehicle Efficiency Incentives: An Update on Feebates for States Agency/Company /Organization: American Council for an Energy-Efficient Economy Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.aceee.org/sites/default/files/publications/researchreports/t051.pd This report is an account of vehicle feebates as a tool to reduce emissions and fuel use at the state level in the U.S. It discusses past and current efforts to implement feebates; structural and policy issues in feebate design; and analyses of feebate effectiveness. The report concludes with recommendations for state feebate program design.

36

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High

37

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle (HOV) Lane Exemption to someone by High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on

38

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle (HOV) Lane Exemption to someone by High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) High Occupancy Vehicle (HOV) Lane Exemption on

39

Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems  

DOE Green Energy (OSTI)

This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

Peter J. Blau

2000-04-26T23:59:59.000Z

40

Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Decal and High Occupancy Vehicle (HOV) Lane Exemption to someone by Decal and High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Decal and High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

42

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing |  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Vehicle Motor Vehicle Manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance ENERGY STAR Energy Performance Indicators for plants

43

Alternative Fuels Data Center: Authorization for High Occupancy Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Authorization for High Authorization for High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Authorization for High Occupancy Vehicle (HOV) Lane Exemption on

44

High efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

Anderson, D.F.

1984-01-31T23:59:59.000Z

45

High efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

Anderson, David F. (3055 Trinity, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

46

Improving Costs and Efficiency of PEM Fuel Cell Vehicles by ...  

Fuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle’s motor on hydrogen rather than gasoline ...

47

What Efficiency Information Do You Look for When You Buy a Vehicle? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What Efficiency Information Do You Look for When You Buy a Vehicle? What Efficiency Information Do You Look for When You Buy a Vehicle? What Efficiency Information Do You Look for When You Buy a Vehicle? June 9, 2011 - 7:30am Addthis On Tuesday, Eric told you about some recent developments in vehicle technologies: Gasoline vehicle label Electric vehicle label Plug-in hybrid electric vehicle label One change that you'll soon see when you shop for vehicles is new fuel economy labels. The new versions of the labels include estimated annual fuel costs, savings, and information on the vehicle's environmental impact. And these labels aren't just for gasoline-powered vehicles; plug-in hybrids and electric vehicles also will have this information. The labels will also provide an estimate how much fuel or electricity it takes to drive 100

48

What Efficiency Information Do You Look for When You Buy a Vehicle? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Information Do You Look for When You Buy a Vehicle? Efficiency Information Do You Look for When You Buy a Vehicle? What Efficiency Information Do You Look for When You Buy a Vehicle? June 9, 2011 - 7:30am Addthis On Tuesday, Eric told you about some recent developments in vehicle technologies: Gasoline vehicle label Electric vehicle label Plug-in hybrid electric vehicle label One change that you'll soon see when you shop for vehicles is new fuel economy labels. The new versions of the labels include estimated annual fuel costs, savings, and information on the vehicle's environmental impact. And these labels aren't just for gasoline-powered vehicles; plug-in hybrids and electric vehicles also will have this information. The labels will also provide an estimate how much fuel or electricity it takes to drive 100

49

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

50

HIGH EFFICIENCY SYNGAS GENERATION  

DOE Green Energy (OSTI)

This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

2005-02-01T23:59:59.000Z

51

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

52

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

53

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

54

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

55

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

56

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

57

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

58

Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

High Occupancy Vehicle High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: High Occupancy Vehicle (HOV) Lane Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type High Occupancy Vehicle (HOV) Lane Exemption

59

Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient and Fuel-Efficient and Alternative Fuel Vehicle Use to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

60

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fuel-Efficient Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Carbon Fuel and Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com...

62

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fuel-Efficient Vehicle Title Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on AddThis.com...

63

Fuel economy standards have affected vehicle efficiency - Today in ...  

U.S. Energy Information Administration (EIA)

This new footprint standard required that all vehicle manufacturers improve their fuel economy at a similar rate, regardless of the types and sizes of vehicles sold.

64

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

#LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET December 11, 2012 - 10:09am Q&A Researchers are developing technologies that will help consumers drive farther using less fuel. Have questions? Ask us here or on #LabChat. Ask Us Addthis What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. What improvements are making vehicles drive farther? Learn about the technologies that are increasing vehicle efficiency. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet your questions to @ENERGY using #LabChat. Send questions via email to NewMedia@hq.doe.gov.

65

Simulated comparisons of emissions and fuel efficiency of diesel and gasoline hybrid electric vehicles  

SciTech Connect

This paper presents details and results of hybrid and plug-in hybrid electric passenger vehicle (HEV and PHEV) simulations that account for the interaction of thermal transients from drive cycle demands and engine start/stop events with aftertreatment devices and their associated fuel penalties. The simulations were conducted using the Powertrain Systems Analysis Toolkit (PSAT) software developed by Argonne National Laboratory (ANL) combined with aftertreatment component models developed at Oak Ridge National Lab (ORNL). A three-way catalyst model is used in simulations of gasoline powered vehicles while a lean NOx trap model in used to simulated NOx reduction in diesel powered vehicles. Both cases also use a previously reported methodology for simulating the temperature and species transients associated with the intermittent engine operation and typical drive cycle transients which are a significant departure from the usual experimental steady-state engine-map based approach adopted often in vehicle system simulations. Comparative simulations indicate a higher efficiency for diesel powered vehicles but the advantage is lowered by about a third (for both HEVs and PHEVs) when the fuel penalty associated with operating a lean NOx trap is included and may be reduced even more when fuel penalty associated with a particulate filter is included in diesel vehicle simulations. Through these preliminary studies, it is clearly demonstrated how accurate engine and exhaust systems models that can account for highly intermittent and transient engine operation in hybrid vehicles can be used to account for impact of emissions in comparative vehicle systems studies. Future plans with models for other devices such as particulate filters, diesel oxidation and selective reduction catalysts are also discussed.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL

2011-01-01T23:59:59.000Z

66

EcoCAR 2: Racing Towards Vehicle Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency EcoCAR 2: Racing Towards Vehicle Efficiency May 23, 2012 - 1:55pm Addthis Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Teams of university students are exploring the hardware of plug-in hybrid electric vehicles this week at the EcoCAR 2 finals in Los Angeles, CA. | Energy Department photo, credit Myles Regan. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What are the key facts? First year finals of the EcoCAR2 competition conclude today in Los Angeles, CA. For the second and third years of the competition, teams integrate their systems into a "mule" vehicle and refine their vehicles to meet

67

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

68

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Acquisition and Emissions Reduction Requirements on

69

#LabChat Recap: Innovations Driving More Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations Driving More Efficient Vehicles Innovations Driving More Efficient Vehicles #LabChat Recap: Innovations Driving More Efficient Vehicles December 21, 2012 - 10:47am Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs #LabChat Recap: Innovations Driving More Efficient Vehicles The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy. Three researchers answered questions about advanced combustion, lightweighting and hybridization. Here is an overview of some of the conversations. Storified by Energy Department · Fri, Dec 21 2012 08:19:22 We kicked off the #LabChat with introductions from all the researchers. Each researcher focuses on a different vehicle technology that is expected to make great strides in improving vehicle

70

Fuel economy standards have affected vehicle efficiency - Today in ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Notes: Combined means both foreign and domestic vehicles.

71

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

72

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

73

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

74

Energy efficiency of electric vehicles at the 1994 American Tour de Sol  

DOE Green Energy (OSTI)

In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

1994-11-01T23:59:59.000Z

75

Vehicle Technologies Office: 2009 Directions in Engine-Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Engine Combustion Network Lyle Pickett Sandia National Laboratories Advanced Natural Gas Engine Technology for Heavy Duty Vehicles Mostafa Kamel Cummins Westport Inc....

76

Clean Cities 2014 Vehicle Buyer's Guide (Brochure), Energy Efficiency...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

mation on vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, energy impact, and emissions. When you are ready to identify your options, com- pare...

77

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current. A 200-W prototype unit is being developed.

Pham, A Q

2001-06-20T23:59:59.000Z

78

Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Will You Be Trading in Your Clunker for Cash--and a More Efficient Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? Will You Be Trading in Your Clunker for Cash--and a More Efficient Vehicle? August 6, 2009 - 11:43am Addthis On Tuesday, Amy told you about the Car Allowance Rebate System (CARS) Program, widely known as "Cash-for-Clunkers," which provides an incentive to trade in your old vehicle for a new, fuel-efficient model. Will you be trading in your clunker for cash--and a more efficient vehicle? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can Still Save on the Road -- Even with No Cash for Clunkers

79

Advanced high efficiency concentrator cells  

DOE Green Energy (OSTI)

This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

Gale, R. (Varian Associates, Inc., Palo Alto, CA (United States). Varian Research Center)

1992-06-01T23:59:59.000Z

80

XAUV : modular high maneuverability autonomous underwater vehicle  

E-Print Network (OSTI)

The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

Walker, Daniel G. (Daniel George)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Program High-temperaturestrengthinthe  

E-Print Network (OSTI)

and Renewable Energy Vehicle Technologies Program For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov/informationcenter/ Solar Turbines'4.6 megawatt Mercury 50

Pennycook, Steve

82

Secretary Chu Announces $187 Million to Improve Vehicle Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the transportation sector accounts for 28 percent of total U.S. energy use. As these vehicle technologies are adopted broadly across the country, they could save more than 100...

83

High Efficiency Engine Technologies Program  

Science Conference Proceedings (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

84

Enabling High Efficiency Ethanol Engines  

Science Conference Proceedings (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

85

Evaluating High Efficiency Motor Retrofit  

E-Print Network (OSTI)

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a significant factor. Engineers Involved In motor specification can help lower plant operating costs and reduce electrical energy consumption dramatically by a relatively simple technique: retrofit of existing, standard-efficiency motors with new, high efficiency models. This article demonstrates strong reasons for motor retrofit, and explains step-by step how process and manufacturing engineering personnel can fully evaluate a retrofit decision.

Evans, T. A.

1984-01-01T23:59:59.000Z

86

U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Continue to Increase Cooperation on Vehicle Continue to Increase Cooperation on Vehicle Efficiency U.S. and China Continue to Increase Cooperation on Vehicle Efficiency September 20, 2007 - 2:41pm Addthis WASHINGTON, DC - Representing the two largest automotive markets in the world, the U.S. Department of Energy (DOE) and the China's Ministry of Science and Technology (MOST) this week signed a five-year agreement to promote large-scale deployment of next-generation efficiency vehicle technologies in the U.S. and China, specifically focusing on electric, hybrid-electric, fuel cell, and alternative fuel technologies. This agreement falls under the "umbrella" Agreement on Cooperation in Science and Technology between the U.S. and Chinese governments, and implements a Protocol for Cooperation in the Fields of Energy Efficiency and Renewable

87

U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. and China Continue to Increase Cooperation on Vehicle U.S. and China Continue to Increase Cooperation on Vehicle Efficiency U.S. and China Continue to Increase Cooperation on Vehicle Efficiency September 20, 2007 - 2:41pm Addthis WASHINGTON, DC - Representing the two largest automotive markets in the world, the U.S. Department of Energy (DOE) and the China's Ministry of Science and Technology (MOST) this week signed a five-year agreement to promote large-scale deployment of next-generation efficiency vehicle technologies in the U.S. and China, specifically focusing on electric, hybrid-electric, fuel cell, and alternative fuel technologies. This agreement falls under the "umbrella" Agreement on Cooperation in Science and Technology between the U.S. and Chinese governments, and implements a Protocol for Cooperation in the Fields of Energy Efficiency and Renewable

88

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network (OSTI)

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

89

City-Car : optimizing vehicle and urban efficiencies through a shared adaptive platform  

E-Print Network (OSTI)

Research focused on developing an innovative, yet simple automobile platform that maximizes its efficiency through shared convenience. Work was initially put into studying both current vehicles and urban architecture, in ...

Lark, William, 1981-

2005-01-01T23:59:59.000Z

90

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current density. During FY02, we have accomplished several major milestones, including the development of a metal-to-ceramic seal that withstands 150 psi differential, the fabrication of the electrolyzer tubes of up to 16 inches in length, the improvement of single tube performance and the demonstration of the first electrolyzer stack.

Pham, A Q; See, E; Lenz, D; Martin, P; Glass, R

2002-07-03T23:59:59.000Z

91

Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies  

DOE Green Energy (OSTI)

The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments.

Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

2000-06-19T23:59:59.000Z

92

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

93

ENERGY STAR Focus on Energy Efficiency in Motor Vehicle Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

94

Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates  

DOE Green Energy (OSTI)

Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

Duleep, G.

2011-02-01T23:59:59.000Z

95

Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge  

DOE Green Energy (OSTI)

Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electric vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.

Sluder, S.; Duoba, M.; Larsen, R.

1997-02-01T23:59:59.000Z

96

Numerical investigation of the thrust efficiency of a laser propelled vehicle  

DOE Green Energy (OSTI)

The flow situation for a thruster propelled by ablated gas which is energized by a laser pulse is numerically simulated. The flow is axisymmetric and nonsteady, and is assumed to be inviscid due to its high Reynolds number. The high pressure expansion of the laser heated gas generates thrust as it pushes against the vehicle. Gas expansion lateral to the thrust vector causes performance to decrease. The vehicle geometry and the laser pulse characteristics determine the degree to which the flow is one dimensional. As the thruster's parameters are varied, its impulse is calculated and compared to the limiting impulse of a one-dimensional system, and thus the thrust efficiency is computed. Lateral expansion losses computed by simulating the flow of the expanding gas time-accurately on a computer are far less than losses predicted using the method of characteristics, which is the best alternate means of computation. Flows which exhibit a substantial amount of lateral expansion can still yield an expansion efficiency which exceeds 70%. This finding has significant implications on the eventual design of flight hardware. Steger and Warming's flux split numerics for the Euler equations are modified for blast simulations into near vacuum ambient conditions. At the interface between the near vacuum ambient and the wave front, the solution is first order accurate but sufficiently robust to handle pressure ratios exceeding one million and density ratios exceeding 10,000 between the thrust gas and the ambient gas. Elsewhere the solution is second order accurate. The majority of the calculations performed assume an ideal gas equation of state with {gamma} = 1.2. The propellant Lithium Hydride has shown excellent promise in the laboratory, yielding I{sub sp} = 800-1000 sec. Equilibrium and kinetic modeling of LiH is undertaken, with a variable {gamma} of from 1.25 to 1.66 resulting from the kinetic assumptions of ionization equilibrium and frozen chemistry. These additional mechanisms are then incorporated into the efficiency calculations.

mulroy jr

1990-08-01T23:59:59.000Z

97

High-efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 +- 0.02 eV, and a vapor pressure of 0.35 torr at 20/sup 0/C.

Anderson, D.F.

1981-05-12T23:59:59.000Z

98

High reduction transaxle for electric vehicle  

DOE Patents (OSTI)

A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

Kalns, Ilmars (Plymouth, MI)

1987-01-01T23:59:59.000Z

99

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network (OSTI)

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin. By replacing old inefficient centrifugal fans with new higher efficiency fans, additional power savings can be achieved.

Breedlove, C. W.

1989-09-01T23:59:59.000Z

100

High-efficiency photovoltaic cells  

DOE Patents (OSTI)

High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

Yang, H.T.; Zehr, S.W.

1982-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Digg

102

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity.

103

Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout  

National Nuclear Security Administration (NNSA)

4: NNSA Highlights Energy Efficient Vehicles Throughout 4: NNSA Highlights Energy Efficient Vehicles Throughout NNSA | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Green Week 2011 Day 4: NNSA Highlights ... Press Release Green Week 2011 Day 4: NNSA Highlights Energy Efficient Vehicles Throughout NNSA

104

High power battery test methods for hybrid vehicle applications  

DOE Green Energy (OSTI)

Commonly used EV battery tests are not very suitable for testing hybrid vehicle batteries, which may be primarily intended to supply vehicle acceleration power. The capacity of hybrid vehicle batteries will be relatively small, they will typically operate over a restricted range of states-of-charge, and they may seldom if ever be fully recharged. Further, hybrid propulsion system designs will commonly impose a higher regeneration content than is typical for electric vehicles. New test methods have been developed for use in characterizing battery performance and life for hybrid vehicle use. The procedures described in this paper were developed from the requirements of the government-industry cooperative Partnership for A New Generation of Vehicles (PNGV) program; however, they are expected to have broad application to the testing of energy storage devices for hybrid vehicles. The most important performance measure for a high power battery is its pulse power capability as a function of state-of-charge for both discharge and regeneration pulses. It is also important to characterize cycle life, although the {open_quote}cycles{close_quote} involved are quite different from the conventional full-discharge, full-recharge cycle commonly used for EV batteries, This paper illustrates in detail several test profiles which have been selected for PNGV battery testing, along with some sample results and lessons learned to date from the use of these test profiles. The relationship between the PNGV energy storage requirements and these tests is described so that application of the test methods can be made to other hybrid vehicle performance requirements as well. The resulting test procedures can be used to characterize the pulse power capability of high power energy storage devices including batteries and ultracapacitors, as well as the life expectancy of such devices, for either power assist or dual mode hybrid propulsion system designs.

Hunt, G.L.; Haskins, H.; Heinrich, B.; Sutula, R.

1997-11-01T23:59:59.000Z

105

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

106

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

107

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

108

Bringing Energy Efficiency to High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Energy Efficiency to High Performance Computing Oak Ridge National Laboratory's Jaguar Supercomputer William Tschudi September 2013 The ability of high performance...

109

Octane number requirements of vehicles at high altitude  

Science Conference Proceedings (OSTI)

Past tests of vehicles show that their octane number requirements decrease with altitude. As a result, gasoline marketers sell lower-octane-number(ON) gasoline in the mountain states and other high-altitude areas. The current ASTM specifications, which allow reduction of gasoline octane of 1.0 to 1.5 ON per thousand feet, are based on CRC test programs run on 1967 to 1972 model vehicles. However, many new vehicles are now equipped with sophisticated electronic engine systems for control of emissions and improvement of performance and fuel economy at all altitudes. Because these new systems could minimize the altitude effect on octane requirement, Amoco Oil tested twelve 1984-1986 model cars and light trucks. The authors found their ON requirements were reduced on average about 0.2 ON per thousand feet on an (R+M)/2 basis (RMON/1,000 feet). The authors expect octane demand on gasoline suppliers in high-altitude areas to increase as these new cars make up a larger part of the vehicle population, and this could raise the cost of gasoline.

Callison, J.C.

1987-01-01T23:59:59.000Z

110

High-Efficiency Neutron Detection and Spectroscopy  

Science Conference Proceedings (OSTI)

High-Efficiency Neutron Detection and Spectroscopy. ... such as searches for WIMP dark matter, neutrinoless double beta decay, and solar neutrinos. ...

2013-07-22T23:59:59.000Z

111

High-Efficiency Neutron Detection and Spectroscopy ...  

Science Conference Proceedings (OSTI)

... are also working on a large volume detector to use in the underground environment where high efficiency is more important that energy resolution. ...

2013-07-22T23:59:59.000Z

112

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

DOE Green Energy (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

113

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

114

Efficient high density train operations  

DOE Patents (OSTI)

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

115

High Efficiency New Metallurgical Technology  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The alumina leaching rate of calcium aluminate in residue is over 80%. .... Different types of plasma torches including a high power steam plasma torch ... for about 50% of the total NOX emissions in the iron and steel industry.

116

Multicolor, High Efficiency, Nanotextured LEDs  

SciTech Connect

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Jung Han; Arto Nurmikko

2011-09-30T23:59:59.000Z

117

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

118

FY2001 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH-POWER HIGH-POWER ENERGY STORAGE 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Ave., S.W. Washington, DC 20585-0121 FY 2001 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy

119

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

Science Conference Proceedings (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

120

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

122

Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 14, 8: November 14, 2005 Effect of High Gasoline Prices on Older Adults to someone by E-mail Share Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Facebook Tweet about Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Twitter Bookmark Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Google Bookmark Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Delicious Rank Vehicle Technologies Office: Fact #398: November 14, 2005 Effect of High Gasoline Prices on Older Adults on Digg Find More places to share Vehicle Technologies Office: Fact #398:

123

Laboratory testing of high energy density capacitors for electric vehicles  

DOE Green Energy (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

124

Control of a high beta maneuvering reentry vehicle using dynamic inversion.  

DOE Green Energy (OSTI)

The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to perform the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.

Watts, Alfred Chapman

2005-05-01T23:59:59.000Z

125

A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy  

Open Energy Info (EERE)

A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Review of High Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Focus Area: Vehicle Distance Traveled Reduction Topics: Best Practices Website: ops.fhwa.dot.gov/publications/fhwahop09029/index.htm Equivalent URI: cleanenergysolutions.org/content/review-high-occupancy-vehicle-hov-lan Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides an assessment of performance of existing high occupancy vehicle (HOV) lane facilities in the United States and explores policy alternatives and effects related to conversion of existing HOV lanes

126

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

127

High-efficiency silicon concentrator cell commercialization  

SciTech Connect

This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

Sinton, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (US)

1993-05-01T23:59:59.000Z

128

BetterBuildings Webinar Transcription - Financial Vehicles within an Integrated Energy Efficiency Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Webinar Better Buildings Webinar Financial Vehicles within an Integrated Energy Efficiency Program July 29, 2010 2pm EST Danielle Byrnett : Hi folks. Welcome to the first Better Buildings webcast. We're going to be having a series of these. It looks like we've got more than thirty grantees on the phone and hopefully also up online. If you're having any trouble, feel free to use the box on the right-hand side of your screen to let us know, and we'll see what we can do to help you out. Erin Jackson is going to describe how the webcast is going to be run and moderated and then we will get started very shortly thereafter with our presenters: Chris Lohmann, Stockton Williams, Julie Bennett, and Brandon Belford. This is Danielle Byrnett if I didn't say that, Program Manager for Better Buildings. I

129

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

130

Energy Efficiency Opportunities in Federal High Performance Computing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

131

High efficiency inverter and ballast circuits  

SciTech Connect

A high efficiency push-pull inverter circuit employing a pair of relatively high power switching transistors is described. The switching on and off of the transistors is precisely controlled to minimize power losses due to common-mode conduction or due to transient conditions that occur in the process of turning a transistor on or off. Two current feed-back transformers are employed in the transistor base drives; one being saturable for providing a positive feedback, and the other being non-saturable for providing a subtractive feedback.

Nilssen, O.K.

1984-02-07T23:59:59.000Z

132

Multi-band high efficiency power amplifier  

E-Print Network (OSTI)

Baseline) Output Power (Transformer) Drain Efficiency (Performance Frequency (GHz) Output Power (Transformer) DrainEfficiency (Transformer) Output Power (Baseline) Drain

Besprozvanny, Randy-Alexander Randolph

2011-01-01T23:59:59.000Z

133

Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead-acid batteries  

DOE Green Energy (OSTI)

Charge efficiencies were determined for ESB EV-106 lead-acid batteries by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state-of-charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

Rowlette, J.J.

1981-01-15T23:59:59.000Z

134

Building Technologies Office: High Efficiency, Low Emission Supermarket  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency, Low High Efficiency, Low Emission Supermarket Refrigeration Research Project to someone by E-mail Share Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Facebook Tweet about Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Twitter Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Google Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Delicious Rank Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Digg Find More places to share Building Technologies Office: High

135

Highly Efficient Silicon Light Emitting Diode  

E-Print Network (OSTI)

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

136

Increasing vehicle fuel efficiency and decreasing de-pendence on foreign oil are priorities of the U.S. De-  

E-Print Network (OSTI)

#12;Increasing vehicle fuel efficiency and decreasing de- pendence on foreign oil are priorities manufacturing research facility in the DOE laboratory system. For more than ten years, it has worked with government and industry to address commercialization challeng- es, including cost and manufacturing

137

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE))

Case study describes an outline of energy efficiency opportunities in federal high performance computing data centers.

138

Hazard avoidance for high-speed rough-terrain unmanned ground vehicles  

E-Print Network (OSTI)

High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is ...

Spenko, Matthew J. (Matthew Julius), 1976-

2005-01-01T23:59:59.000Z

139

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing  

E-Print Network (OSTI)

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing limiting the scope and impact of high performance computing (HPC). This scenario is rapidly changing due

140

High efficiency compressor uses direct drive  

Science Conference Proceedings (OSTI)

This article focuses on the high efficiency of a compressor which uses only direct drive. This compressor was evaluated by judges and won Top Honors in the 1982 Chemical Processing magazine Vaaler Awards category of compressors, blowers and fans. Applications for the compressor include combustion air, process air and gas booster, incineration, fermentation, and vacuum filtration systems. In addition to a 50% reduction in power comsumption, the use of the compressor eliminated the need for a water seal, thus saving 200 gpm of water. And, since the elimination of the water seal reduced the necessary downtime for seal maintenance, on stream time was increased by 5%.

Not Available

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-efficiency concentrator silicon solar cells  

DOE Green Energy (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

142

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

143

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

144

Using a High Order Sliding Modes for diving control a torpedo Autonomous Underwater Vehicle  

E-Print Network (OSTI)

Using a High Order Sliding Modes for diving control a torpedo Autonomous Underwater Vehicle T Underwater Vehicle AUV is not a trivial task, due to: Parameter uncertainties (as added mass, hydrodynamic underwater robots are basically two: PD [2] [10] and Sliding Modes Control (SMC) [6] [11]. These algorithms

Paris-Sud XI, Université de

145

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

146

FY2000 Highlights Report for the Vehicle High-Power Energy Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader November 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

147

White LED with High Package Extraction Efficiency  

Office of Scientific and Technical Information (OSTI)

WHITE LED WITH HIGH PACKAGE WHITE LED WITH HIGH PACKAGE EXTRACTION EFFICIENCY Final Report Report Period Start Date: 10/01/2006 Report Period End Date: 09/30/2008 Authors: Yi Zheng and Matthew Stough Report Submission Date: November 2008 DOE Award Number: DE-FC26-06NT42935 Project Manager: Ryan Egidi OSRAM SYLVANIA Product Inc Central Research and Service Laboratory 71 Cherry Hill Dr., Beverly, MA 01915 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

148

Analysis of hydrogen vehicles with cryogenic high pressure storage  

DOE Green Energy (OSTI)

Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LIQ) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

Aceves, S. M.; Berry, G. D.

1998-06-19T23:59:59.000Z

149

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

150

Development of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The popularity of the internal combustion engine (ICE) vehicles has contributed to global warming problem and degradation of air quality around the world. Furthermore, the… (more)

Zhuge, Kun

2013-01-01T23:59:59.000Z

151

Novel Nanophosphors for High Efficiency Fluorescent Lamps  

SciTech Connect

This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation, which are detailed in this report. Within the program we have carried out fundamental investigations into the physical processes that determine the quantum splitting behavior of the Pr{sup 3+} ion in solids. Specifically, we have investigated the quantum splitting luminescence of this ion in the LaPO{sub 4}, SrAl{sub 12}O{sub 19} and LiLaP{sub 4}O{sub 12} host lattices. In this final report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivatava

2007-03-31T23:59:59.000Z

152

Improving Real World Efficiency of High Performance Buildings  

E-Print Network (OSTI)

Improving Real World Efficiency of High Performance Buildings Buildings End-Use Energy Efficiency Research www.energy.ca.gov/research/buildings February 2012 The Issue Highperformance buildings efficiency in highperformance buildings, however, are not always realized in practice. Addressing

153

Highly Efficient Modeling of Dynamic Coronal Loops  

E-Print Network (OSTI)

Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It ...

Klimchuk, J A; Cargill, P J

2007-01-01T23:59:59.000Z

154

High efficiency Brayton cycles using LNG  

DOE Patents (OSTI)

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

155

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

156

White LED with High Package Extraction Efficiency  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

Yi Zheng; Matthew Stough

2008-09-30T23:59:59.000Z

157

Tailored Materials for High Efficiency CIDI Engines  

DOE Green Energy (OSTI)

The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

Grant, G.J.; Jana, S.

2012-03-30T23:59:59.000Z

158

Highly Efficient Modeling of Dynamic Coronal Loops  

E-Print Network (OSTI)

Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.

J. A. Klimchuk; S. Patsourakos; P. J. Cargill

2007-10-01T23:59:59.000Z

159

High efficiency photodetection below the quantum noise limit  

E-Print Network (OSTI)

Two low-noise, high quantum efficiency, high bandwidth photodetectors have constructed to form a balanced homodyne detector to detect squeezed light. The detectors have quantum efficiencies of 85% and 90%, a bandwidth of ...

Bullard, Elizabeth Caryn

2005-01-01T23:59:59.000Z

160

EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE  

SciTech Connect

This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines  

SciTech Connect

This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

None

2011-01-31T23:59:59.000Z

162

High Efficiency Organic Light Emitting Devices for Lighting  

SciTech Connect

Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

So, Franky; Tansu, Nelson; Gilchrist, James

2013-06-30T23:59:59.000Z

163

High Efficiency Electrical Energy Storage Using Reversible Solid ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, High Efficiency Electrical Energy Storage Using Reversible ...

164

High Efficiency Low Emission Supermarket Refrigeration Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies.

165

Clean Cities 2013 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Propane Electric Hybrid Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2013 Today's auto manufacturers offer hundreds of light-duty vehicle models that take advantage of alternative fuels and advanced technologies in order to help drivers and fleets reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of such vehicles set to arrive in Model Year 2013. Contents Introduction . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . 10 All-Electric . . . . . . . . . . . . . . . . . . 12 Plug-In Hybrid Electric . . . . . . . 16 Hybrid Electric . . . . . . . . . . . . . . 18 Ethanol Flex-Fuel . . . . . . . . . . . . 24 Biodiesel . . . . . . . . . . . . . . . . . . . 34 Vehicle Buyer's Guide Clean Cities 2013 Disclaimers This report was

166

Clean Cities 2012 Vehicle Buyer's Guide (Brochure), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. This guide features a comprehensive list of vehicles set to hit the market in model year 2012. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas . . . . . . . . . . . . 6 Propane . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 All-Electric . . . . . . . . . . . . . . . . . . . . . . . . . 10 Plug-In Hybrid Electric . . . . . . . . . . . . . . 13 Hybrid Electric . . . . . . . . . . . . . . . . . . . . . 14 Ethanol Flex-Fuel . . . . . . . . . . . . . . . . . . . 20 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Vehicle Buyer's Guide Clean Cities 2012 Disclaimers This report was prepared as an account of work sponsored by an agency of the United States government. Neither the

167

Highly Efficient Multigap Solar Cell Materials  

Scientists at Berkeley Lab have invented multiband gap semiconducting materials for developing solar cells that could achieve power conversion efficiencies of 50 percent or higher.

168

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation — Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

169

Hybrid Vehicles: a Temporary Step J.J. CHANARON1  

E-Print Network (OSTI)

to the fuel tax. 3. Incentives for fuel efficiency maintained, but electric vehicles still pay -- Drivers: there are relatively few electric vehicles on the road, and hybrids can be expensive, meaning that not that many people. The current fuel tax system essentially subsidizes travel by highly fuel-efficient vehicles and electric

Paris-Sud XI, Université de

170

High efficiency, radiation-hard solar cells  

DOE Green Energy (OSTI)

The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

Ager III, J.W.; Walukiewicz, W.

2004-10-22T23:59:59.000Z

171

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

172

Potential single-occupancy vehicle demand for the Katy Freeway and Northwest Freeway high-occupancy vehicle lanes  

E-Print Network (OSTI)

Since the 1960�s, high-occupancy vehicle (HOV) lanes have been successfully used as a travel demand management technique. In recent years, there has been a growing interest in the use of high-occupancy toll (HOT) lanes as an alternative to HOV lanes to help manage the increasing demand for travel. HOT lanes combine pricing and vehicle occupancy restrictions to optimize the demand for HOV lanes. As two of the four HOT lanes in the world, the HOT lane facilities in Houston, Texas received relatively low patronage after operating for over 6 years on the Katy Freeway and over 4 years on the Northwest Freeway. There existed an opportunity to increase the usage of these HOT lanes by allowing single-occupancy vehicle (SOV) travelers to use the lanes, for an appropriate toll. The potential SOV demand for HOV lane use during the off-peak periods from the Katy Freeway and Northwest Freeway general-purpose lane (GPL) travelers was estimated in this study by using the data collected from a 2003 survey of travelers on the Katy and Northwest Freeway GPLs who were not enrolled in QuickRide. Based on survey results, more travelers would choose to drive on the HOT lanes as SOV travelers during the off-peak periods when the facilities provided higher travel time savings and charged lower tolls. Two important factors influencing travelers� use of the HOV lanes were their value of travel time savings (VTTS) and penalty for changing travel schedule (VPCS). It was found that respondents had VTTS approximately 43 percent of their hourly wage rate and VPCS approximately 3 percent of their hourly wage rate. Combining this information with current travel time savings and available capacity on the HOV lanes, it was found that approximately 2000 SOV travelers per day would pay an average toll of $2.25 to use the HOV lanes during the off-peak periods.

Xu, Lei

2005-08-01T23:59:59.000Z

173

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

174

High efficiency pulse motor drive for robotic propulsion  

E-Print Network (OSTI)

The goal of this research is to improve the power efficiency of robotic locomotion through the use of series elastic actuation, with a focus on swimming motion. To achieve high efficiency, electromechanical drives need to ...

Sun, Zhen, M.S. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

175

Techniques for high-efficiency outphasing power amplifiers  

E-Print Network (OSTI)

A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for ...

Godoy, Philip (Philip Andrew)

2011-01-01T23:59:59.000Z

176

Energy efficiency indicators for high electric-load buildings  

Science Conference Proceedings (OSTI)

Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

2003-06-01T23:59:59.000Z

177

Design of high efficiency Mid IR QCL lasers  

E-Print Network (OSTI)

The proposed research is a study of designing high-efficiency Mid-IR quantum cascade lasers (QCL). This thesis explores "injector-less" designs for achieving lower voltage defects and improving wall plug efficiencies through ...

Hsu, Allen Long

2008-01-01T23:59:59.000Z

178

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Green Energy (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

179

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network (OSTI)

process efficiency (UoK, GA) · Estimate the size and cost of the process equipment (All) #12;s NERI H2 6 cycle analysis (SNL) · Develop detailed chemical flowsheet for selected process and determine projected UT-3 process is conceptually simple. . . l Invented at Univ. of Tokyo, being pursued in Japan, SI

180

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Available Technologies: High Efficiency Spiral RF-Induction ...  

The spiral antennas efficient use of source geometry also ... Neutron and high energy gamma ... A typical RF-induction plasma generator with a ...

182

Titania Coated Silica Microspheres for High Efficiency Dye ...  

Science Conference Proceedings (OSTI)

These microspheres, if used in DSSCs, can boost the efficiency of solar cell ... In- situ Characterization of Intercalation-induced Damage of High Purity Graphite ...

183

Energy Efficiency in Mineral Processing Industry Using High ...  

Science Conference Proceedings (OSTI)

Presentation Title, Energy Efficiency in Mineral Processing Industry Using High ... These studies were prepared by Tetra Tech on eight different projects at ...

184

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

Wladek Walukiewicz, Joel Ager, and Kin Man Yu of Berkeley Lab have developed high-efficiency solar cells that leverage the well-established design and ...

185

High-Efficiency Photovoltaics at Thin Film Costs  

Time (Years) 0-+ 5. 10. 15. 20. 25. Opportunity. Technology. ... • 15 years renewable energy business development ... High-Efficiency Photovoltaics at ...

186

Complex Oxides for Highly Efficient Solid-State Energy ...  

Complex Oxides for Highly Efficient Solid-State Energy ... Using complex oxides to directly convert thermal to electrical energy is both ... Thermal P ...

187

Available Technologies: High Quantum Efficiency Charge-Coupled ...  

Scientists at Berkeley Lab have developed a p-channel CCD with high quantum efficiency in the blue and near infrared wavelengths by combining a ...

188

Clean Cities Program Contacts (Fact Sheet), Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

hybrid electric bus powered by natural gas in downtown Denver. Clean Cities works hybrid electric bus powered by natural gas in downtown Denver. Clean Cities works to reduce petroleum use in the transportation sector by supporting the deployment of alternative fuels, advanced vehicles, and other strategies. Photo by Pat Corkery, NREL 17976 Transforming Transportation for Two Decades Clean Cities strives to reduce U.S. depen- dence on petroleum. The program's successes include the following: â–  Clean Cities projects and activities have saved more than 4.5 billion gallons of petroleum. â–  Clean Cities efforts have helped place more than 660,000 alternative fuel vehicles on the road and develop the fueling infrastructure to support them. â–  In 2011 alone, Clean Cities activities helped to avert more than 5.8 million tons of greenhouse gas emissions.

189

A Review of High Occupancy Vehicle (HOV) Lane Performance and...  

Open Energy Info (EERE)

in the United States and explores policy alternatives and effects related to conversion of existing HOV lanes to high occupancy toll lane operations. References Retrieved...

190

Candidate Alloys for Cost-Effective, High-Efficiency, High ...  

Science Conference Proceedings (OSTI)

the efficiency of heat exchange in these fuel cells require both development and careful ..... 3rd EPRI Conference on Advances in Materials Technology for Fossil.

191

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

192

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

193

"Tuning" microalgae for high photosynthesis efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

"Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper published in the journal Algal Research. Los Alamos scientist Richard Sayre of Bioenergy and Biome Sciences (B-11) and his team of researchers have recently developed more efficient microalgae. Microalgae have large rates of biomass accumulation due to their high photosynthetic efficiencies. This makes them attractive candidates for

194

"Tuning" microalgae for high photosynthesis efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

"Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper published in the journal Algal Research. Los Alamos scientist Richard Sayre of Bioenergy and Biome Sciences (B-11) and his team of researchers have recently developed more efficient microalgae. Microalgae have large rates of biomass accumulation due to their high photosynthetic efficiencies. This makes them attractive candidates for

195

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

196

Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City.  

E-Print Network (OSTI)

't seem to decrease. Electric cars can be a solution for cities like Santiago. This paper evaluates the performance of an electric car in this site. Experimental data is obtained for three different drivingPage 1 of 6 Electric Vehicle Performance in a Highly Polluted City. Esteban J. Pino Eduardo P

Rudnick, Hugh

197

Ultra high temperature ceramics for hypersonic vehicle applications.  

SciTech Connect

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

2006-01-01T23:59:59.000Z

198

Categorical Exclusion Determinations: Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory August 13, 2010 CX-003365: Categorical Exclusion Determination Advanced Combustion Controls - Enabling Systems and Solutions (ACCESS) for High Efficiency Vehicles...

199

High-temperature sodium nickel chloride battery for electric vehicles  

DOE Green Energy (OSTI)

Although the sodium-nickel chloride cell couple has a high voltage (2.59 V) and a high specific energy (790 Wh/kg), the performance of present incarnations of this battery tend to be limited by their power. Because the nickel chloride electrode dominates the resistance and weight of the cell, research on this cell couple at Argonne National Laboratory (ANL) has been primarily directed toward improving both the specific power and energy of the NiCl{sub 2} electrodes. During the course of these investigations a major breakthrough was achieved in lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. This improved Ni/NiCl{sub 2} electrode has excellent performance characteristics, wide-temperature operation and fast recharge capability. Modeling studies done on this electrode indicate that a fully developed Na/NiCl{sub 2} battery based on ANL-single tube and bipolar designs would surpass the mid-term and approach the long-term goals of the US Advanced Battery Consortium.

Prakash, J.; Redey, L.; Nelson, P.A.; Vissers, D.R. [Argonne National Lab., IL (United States). Electrotechnical Technology Program

1996-07-01T23:59:59.000Z

200

User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package  

DOE Green Energy (OSTI)

EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

Marr, W.W.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

202

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Patents (OSTI)

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

203

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. efficiency">Click here to...

204

Compact and highly efficient laser pump cavity  

SciTech Connect

A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

1999-01-01T23:59:59.000Z

205

Compact and highly efficient laser pump cavity  

SciTech Connect

A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

Chang, J.J.; Bass, I.L.; Zapata, L.E.

1999-11-02T23:59:59.000Z

206

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

Prices by Vehicle Type and Manufacturer Fuel Efficient andto understand how vehicle manufacturers and dealers sharePrices by Vehicle Type and Manufacturer Section 3.4. Section

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

207

PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES  

Science Conference Proceedings (OSTI)

The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

Seidman, M.R.; Markel, T.

2008-01-01T23:59:59.000Z

208

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

209

Highly Energy Efficient Wall Systems Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Energy Efficient Wall Systems Highly Energy Efficient Wall Systems Research Project Highly Energy Efficient Wall Systems Research Project The Department of Energy is currently conducting research into highly energy efficient wall systems. Walls with high R-values are better insulators, and their development can help buildings come closer to having zero net energy consumption. Project Description This project seeks to develop a commercially viable wall system up to R-40 through integration of vacuum technology with the exterior insulated façade system (EIFS). Dow Corning will develop a wall system configuration of expanded polystyrene vacuum isolation panels that can be specified for R-values of 20, 30, and 40. This project also aims to develop a unitized protection system of vacuum isolation panels and to validate current code

210

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

211

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

212

Energy Efficiency Indicators for High Electric-Load Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Indicators for High Electric-Load Buildings Energy Efficiency Indicators for High Electric-Load Buildings Speaker(s): Bernard Aebischer Date: February 6, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare Energy per unit of floor area is not an adequate indictor for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed. Prerequisites in order to be able to use these indicators in energy efficiency programmes are discussed. The opportunity of an internationally coordinated research activity is also presented. Since 1999, Dr. Bernard Aebischer has served as a senior scientist at CEPE (Centre for Energy Policy and Economics) of the Swiss Federal Institutes of

213

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

214

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

215

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

216

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

217

Improving efficiency of high-concentrator photovoltaics by cooling with  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving efficiency of high-concentrator photovoltaics by cooling with Improving efficiency of high-concentrator photovoltaics by cooling with two-phase forced convection Title Improving efficiency of high-concentrator photovoltaics by cooling with two-phase forced convection Publication Type Journal Article Year of Publication 2010 Authors Ho, Tony, Samuel S. Mao, and Ralph Greif Journal International Journal of Energy Research Volume 34 Start Page 1257 Issue 14 Pagination 1257-1271 Date Published 11/2010 Keywords high-concentrator photovoltaic efficiency, two-phase flow cooling applications Abstract The potential of increasing high-concentrator photovoltaic cell efficiency by cooling with two-phase flow is analyzed. The governing energy equations were used to predict cell temperature distributions and cell efficiencies for a photovoltaic cell under 100 suns' concentration. Several design conditions were taken into consideration in the analysis, including cooling channel height, working fluid type (between water and R134a), working fluid inlet temperature, pressure, and mass flow rate. It was observed that the dominant parameter for increasing cell efficiency was the working fluid saturation temperature, which itself is affected by a number of the aforementioned design parameters. The results show R134a at low inlet pressures to be highly effective in this two-phase cooling design.

218

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

219

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

Science Conference Proceedings (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

220

Durable and Highly Efficient Energy-harvesting Electrochromic ...  

Science Conference Proceedings (OSTI)

The resulting device performed three states: solar cell, transparent, and dark, and ... Anatase Nanostructures for High Efficiency Photocatalysis Application ... EBSD Study of Electromigration Damage in Idealized SnAgCu 305 Interconnects.

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Efficiency Indicators for High Electric-Load Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Indicators for High Electric-Load Buildings Speaker(s): Bernard Aebischer Date: February 6, 2003 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

222

Conversion efficiency, scaling and global optimization of high harmonic generation  

E-Print Network (OSTI)

Closed form expressions for the high harmonic generation (HHG) conversion efficiency in the plateau and cut-off region are derived showing agreement with previous observations. Application of these results to optimal ...

Falcao-Filho, Edilson L.

223

City of High Point Electric- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

224

Highly efficient blue polyfluorene-based polymer light-emitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Physics Volume 42 Pagination 5 Abstract A highly efficient blue polymer light-emitting diode based on poly(9,9-di(2-(2-(2-methoxy-ethoxy)ethoxy)ethyl)fluorenyl-2,7-diyl)...

225

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction  

DOE Green Energy (OSTI)

Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, the letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.

Jennifer Rumsey

2005-12-31T23:59:59.000Z

226

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

227

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

228

A hybrid vehicle evaluation code and its application to vehicle design  

DOE Green Energy (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

229

EAGLES 1.1: A microcomputer software package for analyzing fuel efficiency of electric and gasoline vehicles  

SciTech Connect

As part of the U.S. Department of Energy`s electric/hybrid vehicle research program, Argonne National Laboratory has developed a computer software package called EAGLES. This paper describes the capability of the software and its many features and potential applications. EAGLES version 1.1 is an interactive microcomputer software package for the analysis of battery performance in electric-vehicle applications, or the estimation of fuel economy for a gasoline vehicle. The principal objective of the electric-vehicle analysis is to enable the prediction of electric-vehicle performance (e.g., vehicle range) on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile, taking into consideration the effects of battery depth-of-discharge and regenerative braking. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements (e.g., range and driving patterns). For gasoline-vehicle analysis, an empirical model relating fuel economy, vehicle parameters, and driving-cycle characteristics is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be simulated. The software package includes many default data sets for vehicles, driving cycles, and battery technologies. EAGLES 1.1 is written in the FORTRAN language for use on IBM-compatible microcomputers.

Marr, W.M.

1994-05-15T23:59:59.000Z

230

Principles of energy efficiency in high performance computing  

Science Conference Proceedings (OSTI)

High Performance Computing (HPC) is a key technology for modern researchers enabling scientific advances through simulation where experiments are either technically impossible or financially not feasible to conduct and theory is not applicable. However, ... Keywords: HPC, PUE, energy efficiency, high performance computing, power usage effectiveness

Axel Auweter; Arndt Bode; Matthias Brehm; Herbert Huber; Dieter Kranzlmüller

2011-08-01T23:59:59.000Z

231

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

DOE Green Energy (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10˘/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

232

High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers  

SciTech Connect

BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

None

2010-10-01T23:59:59.000Z

233

Self-Learning Controller for Plug-in Hybrid Vehicles Learns ...  

electric vehicles (PHEVs). This device improves PHEV performance and fuel efficiency by maintaining as high a state of battery charge as possible, given the ...

234

Home Performance with Energy Star High Efficiency Measure Incentive (HEMI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star High Efficiency Measure Incentive Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate $3,000 Program Info State New York Program Type State Rebate Program Rebate Amount 10% of project costs Provider New York State Energy Research and Development Authority The New York State Research and Development Authority (NYSERDA) offers an incentive for homeowners of 1-4 homes that participate in the Home Performance with Energy Star program. The program entitles the participant

235

A high-efficiency thermoelectric converter for space applications  

DOE Green Energy (OSTI)

This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

Metzger, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States); El-Genk, M.S. [New Mexico Univ., Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies

1990-12-31T23:59:59.000Z

236

A high-efficiency thermoelectric converter for space applications  

DOE Green Energy (OSTI)

This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reduce or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.

Metzger, J.D. (Westinghouse Savannah River Co., Aiken, SC (United States)); El-Genk, M.S. (New Mexico Univ., Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies)

1990-01-01T23:59:59.000Z

237

Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Commercial High-Efficiency Equipment Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Weatherization Commercial Heating & Cooling Water Heating Maximum Rebate General: 50% of price Boiler Steam Trap: 25% of price Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Modulating Burner Control: $10,000 Boiler O2 Trim Control Pad: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Storage Water Heater: 50% of cost, up to $1,100 Tankless Water Heater: 50% of cost, up to $450 Griddle: 50% of cost, up to $600 Fryer: 50% of cost, up to $1,350

238

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network (OSTI)

of a triple cell showing 10.7% stable efficiency. Figure 4-1 Schematic diagram of the Hot Wire CVD deposition. Task 7: High-rate deposition of a-Si based solar cells We have conducted extensive research using a hot1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual

Deng, Xunming

239

High efficiency III-nitride light-emitting diodes  

DOE Patents (OSTI)

Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

2013-05-28T23:59:59.000Z

240

LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization  

Science Conference Proceedings (OSTI)

A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

powers,Charles A.; Derbidge, T. Craig

2001-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

DOE Green Energy (OSTI)

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

242

Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells  

DOE Green Energy (OSTI)

This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

2005-08-01T23:59:59.000Z

243

Properties of High Efficiency CIGS Thin Film Solar Cells  

DOE Green Energy (OSTI)

We present experimental results in three areas. Solar cells with an efficiency of 19% have been fabricated with an absorber bandgap in the range of 1.1-1.2 eV. Properties of solar cells fabricated with and without an undoped ZnO layer were compared. The data show that high efficiency cells can be fabricated without using the high-resistivity or undoped ZnO layer. Properties of CIGS solar cells were fabricated from thin absorbers (1 {micro}m) deposited by the three-stage process and simultaneous co-deposition of all the elements. In both cases, solar cells with efficiencies of 16%-17% are obtained.

Ramanathan, K.; Keane, J.; Noufi, R.

2005-02-01T23:59:59.000Z

244

Desalination of seawater using a high-efficiency jet ejector  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary focus of seawater desalination research. There are numerous methods to desalinate water, including reverse osmosis, multi-stage flash distillation, and multi-effect evaporation. These methods cost more than potable water produced from natural resources; hence an attempt is made in this research project to produce potable water using a modified high-efficiency jet ejector in vapor-compression distillation. The greater efficiency of the jet ejector is achieved by properly mixing propelled and motive streams. From experiments conducted using air, the pressure rise across the jet ejector is better in case of one or two mixing vanes and the highest back pressure (pinch valve closed 83.33%). At other pinch valve closings, the air velocity through the jet ejector was high, so the extra surface area from the mixing vanes caused excessive friction and lowered the efficiency.

Vishwanathappa, Manohar D.

2003-05-01T23:59:59.000Z

245

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

246

Area-efficient high-throughput MAP decoder architectures  

Science Conference Proceedings (OSTI)

Iterative decoders such as turbo decoders have become integral components of modern broadband communication systems because of their ability to provide substantial coding gains. A key computational kernel in iterative decoders is the maximum a posteriori ... Keywords: area efficient, block-interleaved pipelining, high throughput, parallel processing, pipeline, symbol-based decoding, turbo decoder, turbo equalizer

Seok-Jun Lee; Naresh R. Shanbhag; Andrew C. Singer

2005-08-01T23:59:59.000Z

247

Motor voltage high harmonics influence to efficient energy usage  

Science Conference Proceedings (OSTI)

Analysis of the effect of non-sinusoidal voltages on the three-phase induction motor is presented in the paper. When the induction motors are supplied by a rectangular shape of the voltage inverter with high levels of harmonic voltage (Uh,i ... Keywords: energy efficiency, harmonics, induction motor, non-sinusoidal voltage, power losses

Miloje M. Kostic; Branka B. Kostic

2011-07-01T23:59:59.000Z

248

Basic studies of 3-5 high efficiency cell components  

DOE Green Energy (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

249

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production  

E-Print Network (OSTI)

it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, currentSecond Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable

Kudela, Raphael M.

250

High-quantum efficiency, long-lived luminescing refractory oxides  

DOE Patents (OSTI)

A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

Chen, Yok (Oak Ridge, TN); Gonzalez, Roberto (Knoxville, TN); Summers, Geoffrey P. (Stillwater, OK)

1984-01-01T23:59:59.000Z

251

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1991-12-01T23:59:59.000Z

252

Ultra-Compact High-Efficiency Luminaire for General Illumination  

SciTech Connect

Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in todayâ??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of â?Ą 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

Ted Lowes

2012-04-08T23:59:59.000Z

253

Introducing the High-Efficiency Hybrid Cycle Engine  

• Utilize 3rd party manufacturers, with LPI manufacturing engineering ... Non-Auto Vehicles. GM Volt. Vectrix Electric Scooter. Tata $2500 Car (Nano) Honda Riding

254

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

255

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network (OSTI)

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

256

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for the U.S. Department of Energy Federal Energy Management Program By Lawrence Berkeley National Laboratory Rod Mahdavi, P.E. LEED A.P. September 2013 2 Contacts Rod Mahdavi, P.E. LEED AP Lawrence Berkeley National Laboratory (510) 495-2259 rmahdavi@lbl.gov For more information on FEMP: Will Lintner, P.E. Federal Energy Management Program U.S. Department of Energy (202) 586-3120 william.lintner@ee.doe.gov 3 Contents Executive Summary .................................................................................................... 6 Overview .................................................................................................................... 7

257

High-efficiency multidetector system for tumor scanning  

SciTech Connect

A high-efficiency detector system developed especially for medical imaging has three specially cut Ge(Li) coaxial detectors (total volume 249 cm$sup 3$). At 122 keV, the peak efficiency is 93 percent of that of a 7.6 x 7.6 cm NaI (Tl) detector. Degradation of the paralleled energy resolution is avoided and resolution is improved by 35 percent over that of conventional output-summing techniques by gating the detector outputs. In effect this multiplexes them to a single line output. (auth)

Kirby, J.A.; Phelps, P.L.; Armantrout, G.A.; Sawyer, D.; Beck, R.N.

1975-11-18T23:59:59.000Z

258

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

259

A Perspective on the Future of High Efficiency Engines  

SciTech Connect

New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

Wagner, Robert M [ORNL; Curran, Scott [ORNL; Green Jr, Johney Boyd [ORNL

2013-01-01T23:59:59.000Z

260

High Quality Down Lighting Luminaire with 73% Overall System Efficiency  

Science Conference Proceedings (OSTI)

This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

2010-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Quality Down Lighting Luminaire with 73% Overall System Efficiency  

SciTech Connect

This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

2010-08-31T23:59:59.000Z

262

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

263

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

264

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800°F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffilä at 1.5, 3, 6 lb/ft 3 , Q-Fiberä felt at 3, 6 lb/ft 3 , Cerachromeä at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to...

Kamran Daryabeigi

1999-01-01T23:59:59.000Z

265

Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles  

E-Print Network (OSTI)

An experimental apparatus was designed to measure the effective thermal conductivity of various high temperature insulations subject to large temperature gradients representative of typical launch vehicle reentry aerodynamic heating conditions. The insulation sample cold side was maintained around room temperature, while the hot side was heated to temperatures as high as 1800F. The environmental pressure was varied from 1 x 10 -4 to 760 torr. All the measurements were performed in a dry gaseous nitrogen environment. The effective thermal conductivity of the following insulation samples were measured: Saffil at 1.5, 3, 6 lb/ft 3 , Q-Fiber felt at 3, 6 lb/ft 3 , Cerachrome at 6, 12 lb/ft 3 , and three multi-layer insulation configurations at 1.5 and 3 lb/ft 3 .. Introduction Metallic and refractory-composite thermal protection systems are being considered for a new generation of reusable launch vehicles (RLV). The main function of the thermal protection system (TPS) is to mai...

Kamran Daryabeigi Langley

1999-01-01T23:59:59.000Z

266

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

267

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

268

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

269

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

270

Test Program for High Efficiency Gas Turbine Exhaust Diffuser  

DOE Green Energy (OSTI)

This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

Norris, Thomas R.

2009-12-31T23:59:59.000Z

271

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network (OSTI)

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

272

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

273

High Energy-Efficiency Retrofits to Baltimore's Row Homes  

SciTech Connect

The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

1999-04-19T23:59:59.000Z

274

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

DOE Green Energy (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

275

Modelling and fabrication of high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

Rohatgi, A.; Smith, A.W.; Salami, J. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering] [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering

1991-10-01T23:59:59.000Z

276

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

277

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

278

Symmetric quantum dots as efficient sources of highly entangled photons  

E-Print Network (OSTI)

An ideal source of entangled photon pairs combines the perfect symmetry of an atom with the convenient electrical trigger of light sources based on semiconductor quantum dots. We create a naturally symmetric quantum dot cascade that emits highly entangled photon pairs on demand. Our source consists of strain-free GaAs dots self-assembled on a triangular symmetric (111)A surface. The emitted photons strongly violate Bell's inequality and reveal a fidelity to the Bell state as high as 86 (+-2) % without postselection. This result is an important step towards scalable quantum-communication applications with efficient sources.

T. Kuroda; T. Mano; N. Ha; H. Nakajima; H. Kumano; B. Urbaszek; M. Jo; M. Abbarachi; Y. Sakuma; K. Sakoda; I. Suemune; X. Marie; T. Amand

2013-02-26T23:59:59.000Z

279

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

280

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

In-Plant Testing of High-Efficiency Hydraulic Separators  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

2006-06-30T23:59:59.000Z

282

IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

2006-05-22T23:59:59.000Z

283

System Effects of High Efficiency Filters in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

System Effects of High Efficiency Filters in Homes System Effects of High Efficiency Filters in Homes Title System Effects of High Efficiency Filters in Homes Publication Type Conference Paper LBNL Report Number LBNL-6144E Year of Publication 2013 Authors Walker, Iain S., Darryl J. Dickerhoff, David Faulkner, and William J. N. Turner Conference Name ASHRAE Annual Conference Date Published 03/2013 Abstract Occupant concern about indoor air quality (IAQ) issues has led to the increased use of more effective air filters in residential heating and cooling systems. A drawback of improved filtration is that better filters tend to have more flow resistance. This can lead to lower system airflows that reduce heat exchanger efficiency, increase duct pressure that leads to increased air leakage for ducts and, in some case s, increased blower power consumption. There is currently little knowledge on the magnitude of these effects. In this study, the performance of ten central forced air systems was monitored for a year. The systems used either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) blower. Each system was operated with a range of filter efficiencies ranging from MERV 6 (the lowest currently permitted in ASHRAE Standard 62.2) up to MERV 16. Measurements were recorded every ten seconds for blower power, filter pressure drop, supply and return plenum pressures together with plenum and indoor temperatures. These detailed continuous measurements allowed observation of filter loading effects as well as the initial change in system performance when filters were swapped. The results of the field measurements were used in simulations to examine more general system performance effects for a wider range of climates. The field tests showed that system static pressures were highly influenced by filter selection, filter loading rates varied more from house to house than by MERV rating and overall were quite low in many of the homes. PSC motors showed reduced power and airflow as the filters loaded, but BPM motors attempted to maintain a constant airflow and increased their power to do so. The combined field test and simulation results from this study indicate that for MERV 10-13 filters the effects on energy use are small (5%) and usability. In systems using low MERV filters that are already close to blower performance limits the addition of a MERV 16 filter pushed the blowers to their performance limits.

284

Design of high efficiency blowers for future aerosol applications  

E-Print Network (OSTI)

High efficiency air blowers to meet future portable aerosol sampling applications were designed, fabricated, and evaluated. A Centrifugal blower was designed to achieve a flow rate of 100 L/min (1.67 x 10^-3 m^3/s) and a pressure rise of WC " 4 (1000 PA). Commercial computational fluid dynamics (CFD) software, FLUENT 6.1.22, was used extensively throughout the entire design cycle. The machine, Reynolds number (Re) , was around 10^5 suggesting a turbulent flow field. Renormalization Group (RNG) �ºâ���µ turbulent model was used for FLUENT simulations. An existing design was scaled down to meet the design needs. Characteristic curves showing static pressure rise as a function of flow rate through the impeller were generated using FLUENT and these were validated through experiments. Experimentally measured efficiency (�·EXP) for the base-design was around 10%. This was attributed to the low efficiency of the D.C. motor used. CFD simulations, using the �ºâ���µ turbulent model and standard wall function approach, over-predicted the pressure rise values and the percentage error was large. Enhanced wall function under-predicted the pressure rise but gave better agreement (less than 6% error) with experimental results. CFD predicted a blower scaled 70% in planar direction (XZ) and 28% in axial direction (Y) and running at 19200 rpm (70xz_28y@19.2k) as the most appropriate choice. The pressure rise is 1021 Pa at the design flow rate of 100 L/min. FLUENT predicts an efficiency value based on static head (�·FLU) as 53.3%. Efficiency value based on measured static pressure rise value and the electrical energy input to the motor (�·EXP) is 27.4%. This is almost a 2X improvement over the value that one gets with the hand held vacuum system blower.

Chadha, Raman

2005-12-01T23:59:59.000Z

285

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary  

DOE Green Energy (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

Don Karner; Francfort, James Edward

2003-01-01T23:59:59.000Z

286

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

287

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

288

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

289

Potential Impacts of High Penetration of Plug-in Hybrid Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory's GREET well-to-wheel model SOx from vehicles doubles: cap-and-trade will require investment in cleaner plants 9 Increased Sales of Electricity from...

290

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

DOE Green Energy (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

291

Analysis of highly-efficient electric residential HPWHs  

DOE Green Energy (OSTI)

A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

Baxter, Van D [ORNL; Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL

2011-09-01T23:59:59.000Z

292

Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas  

SciTech Connect

Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

2011-01-01T23:59:59.000Z

293

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

294

HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS  

E-Print Network (OSTI)

The first high efficiency p÷-n-n + bifacial solar cells are presented. Efficiencies of 15.7 % and 13.6 % were measured under front and back air mass one illumination respectively at 28 °C. At 7 air mass one illumination and 28 °C the front efficiency increases to 16.5%. A pilot production of 200 cells was made following a fabrication process as simple as that for conventional back surface field cells. Mean efficiencies of 13.4 % and 10.7 % were obtained under front and back illumination respectively. The production yield is higher than 80%. The advantages that bifacial cells present in some applications, compared with conventional cells, have been pointed out for static [1] and quasi-static [2] concentrating systems, for luminescent concentrators [3] and also for flat panels. A transistor-like structure (n+-p-n +) has already been developed as a bifacial cell [4]. We have also suggested [5] and theoretically analysed [6] the use of a back surface field (BSF) structure (n+-p-p ÷ or p+-n-n +) as a bifacial cell. The purpose here is to demonstrate the feasibility of high efficiency bifacial BSF solar cells. p+-n-n ÷ bifacial cells with a 5 cm 2 area were made on float-zone silicon wafers. The resistivity of the n-type base region was 10 ~2 cm and the thickness was 260 pm. The p ÷ and n + regions were formed by open-tube diffusions using BBr3 and POC13 sources, the resulting sheet resistance being 45- 60 ~2/[:] for the p ÷ layer and 20- 30 ~2/[:] for the n ÷ layer. A TiOx antireflection (AR) coating was spun onto both sides of the cell; Ti-Pd-Ag grids were sputtered and lift-off defined also on both faces. The metallization pattern was designed for the cells to operate inside static compound parabolic mirrors with a concentration factor of 5 and a non-uniform distribution of light intensity on the cell surface. The optimum grid has ten fingers per centimetre (each finger is 50- 70 pm wide) and produces a coverage factor in the illuminated area of about 5.5%.

A. Cuevas; A. Luque; J. Eguren; J. Del Alamo

1980-01-01T23:59:59.000Z

295

High-Efficiency Nitride-Base Photonic Crystal Light Sources  

DOE Green Energy (OSTI)

The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

2010-01-31T23:59:59.000Z

296

Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles  

E-Print Network (OSTI)

at high efficiency. For a Prius size vehicle, if the useablesustaining hybrid like the Prius. If the energy stored inplanetary, dual-mode (Toyota/Prius) c. Multiple-planetary,

Burke, Andy

2009-01-01T23:59:59.000Z

297

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

298

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

299

How Will You Shop for Your Next Vehicle? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? How Will You Shop for Your Next Vehicle? July 28, 2011 - 11:41am Addthis On Monday, Shannon talked about how she's been using the online tools from the Advanced Technology Vehicle Data Center (AFDC) to help her decide what type of highly efficient vehicle may be best for her household. The AFDC provides excellent information such as a Light Duty Vehicle Search, an Alternative Fueling Station Locator, and a Hybrid and Plug-in Electric Vehicles section. All of these are helpful if you're wondering what type of vehicle can fit your needs while using the least possible amount of gasoline. In June, Eric's post Driving Home to a Clean Energy Future shared the latest in gasoline, electric, and hybrid vehicle labels. How about you? Are you starting to research vehicles, and if so, what tools

300

New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calculator Helps You Buy the Energy-Saving Vehicle of Your Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams New Calculator Helps You Buy the Energy-Saving Vehicle of Your Dreams November 15, 2011 - 5:25am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Every day, people across America are making the choice to buy energy-efficient vehicles that save energy and money, protect the environment, and help reduce America's dependence on foreign oil. The work we do at the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) has played an important role in developing key technologies - such as innovative batteries - that are making possible the hybrids, electric vehicles, and other alternative fuel vehicles available to consumers and fleets today. These high-efficiency vehicles,

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

302

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

303

Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles  

DOE Green Energy (OSTI)

The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

2001-06-22T23:59:59.000Z

304

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems  

Science Conference Proceedings (OSTI)

Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

Clifton B. Higdon III

2011-01-07T23:59:59.000Z

305

The Importance of Domain Size and Purity in High-Efficiency Organic...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs...

306

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

307

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

308

Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion  

DOE Green Energy (OSTI)

Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL

2009-01-01T23:59:59.000Z

309

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

310

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

311

Highly Efficient Small Form Factor LED Retrofit Lamp  

SciTech Connect

This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

Steven Allen; Fred Palmer; Ming Li

2011-09-11T23:59:59.000Z

312

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

313

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

314

Processes for producing low cost, high efficiency silicon solar cells  

SciTech Connect

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

315

High Efficiency Driving Electronics for General Illumination LED Luminaires  

SciTech Connect

New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (?90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very reliable having an operating life of over 50,000 hours. This technology will enable growth of LED light sources in the use. This will also help in energy saving and reducing total life cycle cost of LED units. Two topologies selected for next generation of LED drivers: 1) Value engineered single stage Flyback topology. This is suitable for low powered LED drivers up to 50W power. 2) Two stage boost power factor correction (PFC) plus LLC half bridge platform for higher powers. This topology is suitable for 40W to 300W LED drivers. Three new product platforms were developed to cover a wide range of LED drivers: 1) 120V 40W LED driver, 2) Intellivolt 75W LED driver, & 3) Intellivolt 150W LED driver. These are standalone LED drivers for rugged outdoor lighting applications. Based on these platforms number of products are developed and successfully introduced in the market place meeting key performance, size and cost goals.

Upadhyay, Anand

2012-10-31T23:59:59.000Z

316

A hybrid vehicle evaluation code and its application to vehicle design. Revision 1  

DOE Green Energy (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

Aceves, S.M.; Smith, J.R.

1994-09-15T23:59:59.000Z

317

A hybrid vehicle evaluation code and its application to vehicle design. Revision 2  

DOE Green Energy (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

Aceves, S.M.; Smith, J.R.

1994-12-13T23:59:59.000Z

318

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

319

Efficiency and Loss Models for Key Electronic Components of Hybrid and Plug-in Hybrid Electric Vehicles' Electrical Propulsion Systems  

DOE Green Energy (OSTI)

Isolated gate bipolar transistors (IGBTs) are widely used in power electronic applications including electric, hybrid electric, and plug-in hybrid electric vehicles (EVs, HEVs, and PHEVs). The trend towards more electric vehicles (MEVs) has demanded the need for power electronic devices capable of handling power in the range of 10-100 kW. However, the converter losses in this power range are of critical importance. Therefore, thermal management of the power electronic devices/converters is crucial for the reliability and longevity of the advanced vehicles. To aid the design of heat exchangers for the IGBT modules used in propulsion motor drives, a loss model for the IGBTs is necessary. The loss model of the IGBTs will help in the process of developing new heat exchangers and advanced thermal interface materials by reducing cost and time. This paper deals with the detailed loss modeling of IGBTs for advanced electrical propulsion systems. An experimental based loss model is proposed. The proposed loss calculation method utilizes the experimental data to reconstruct the loss surface of the power electronic devices by means of curve fitting and linear extrapolating. This enables the calculation of thermal losses in different voltage, current, and temperature conditions of operation. To verify the calculation method, an experimental test set-up was designed and built. The experimental set-up is an IGBT based bi-directional DC/DC converter. In addition, simulation results are presented to verify the proposed calculation method.

Cao, J.; Bharathan, D.; Emadi, A.

2007-01-01T23:59:59.000Z

320

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network (OSTI)

to energy-efficient windows André Anders, Jonathan L. Slack,to electrochromic windows for vehicles and buildings [1].in conventional electrochromic windows because of its high

Anders, Andre

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

322

Method and Apparatus for High-Efficiency Direct Contact Condensation  

clean energy. But continuing to produce geothermal power efficiently and economically requires innovative adjustments to the technology used to ...

323

Thermal Evaluation of a High-Voltage Ultracapacitor Module for Vehicle Applications (Presentation)  

DOE Green Energy (OSTI)

The objectives of this paper are: (1) identify thermal issues of ultracapacitor cells and modules over a range of vehicle duty cycles to understand and minimize thermal impacts; and (2) identify improvements for ultracapacitor thermal management.

Lustbader, J.; King, C.; Gonder, J.; Keyser, M.; Pesaran, A.

2008-07-15T23:59:59.000Z

324

Fuel Savings from Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

325

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

326

High-efficiency photovoltaics based on semiconductor nanostructures  

SciTech Connect

The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

Yu, Paul K.L. [University of California, San Diego; Yu, Edward T. [University of Texas at Austin; Wang, Deli [University of California, San Diego

2011-10-31T23:59:59.000Z

327

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

Science Conference Proceedings (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

328

NREL: Vehicles and Fuels Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL helps industry partners develop the next generation of energy efficient, high performance vehicles and fuels. NREL's transportation research spans from the materials to the systems level. NREL conducts research on the full range of vehicle types, from light-duty passenger cars to heavy-duty freight trucks. NREL's credible transportation research is grounded in real-world data. NREL's integrated approach links automotive technology advances to the full spectrum of renewable energy solutions. NREL researchers examine infrastructure, market conditions and driver behavior, as well as fuels and vehicles. NREL helps put fuel-efficient, low-emission cars and trucks on the road through research and innovation in electric vehicle, biofuel, and conventional automotive technologies. Researchers collaborate with industry

329

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

330

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

331

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

332

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

333

Project: Novel Working Fluids for High-Efficiency HVAC&R ...  

Science Conference Proceedings (OSTI)

... of the best replacements for high-GWP hydrofluorocarbon (HFC) refrigerants; and to demonstrate improved energy efficiency of chillers through ...

2012-12-27T23:59:59.000Z

334

Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Workplace Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for Workplace Charging . . . . . . . 9 Workplace Charging Management and Policy Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Workplace Charging Installation . . . . . . . . . . . . . . . . . . . . . . 16 Electrifying Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clean Cities Helps Establish Charging Infrastructure The U .S . Department of Energy's Clean Cities program supports local actions to reduce petroleum use in transportation . Nearly 100 Clean Cities coalitions across the country work

335

Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects  

Science Conference Proceedings (OSTI)

High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI. Engine-out data for several MSAT species (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, naphthalene, PAHs, diesel PM) as well as other HC species are presented and compared when possible with conventional operation. In addition, catalyst-out values were measured to assess the destruction of individual MSATs over the catalyst. At low engine loads, MSATs were higher and catalyst performance was poorer. Particle sizing results identify large differences between PM from conventional and HECC operation.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL; Barone, Teresa L [ORNL; Prikhodko, Vitaly Y [ORNL

2008-01-01T23:59:59.000Z

336

Hydrogen as a zero-emission, high-efficiency fuel: Uniqueness, experiments and simulations  

DOE Green Energy (OSTI)

The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop an engine design capability based on the KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions for an experimental engine over a wide range of ignition timings. The NO{sub x} emissions of this engine satisfy the Equivalent Zero Vehicle (EZEV) standard established by the California Resource Board.

Johnson, N.L.

1997-11-01T23:59:59.000Z

337

Design of Bulk Nanocomposites as High Efficiency Thermoelectric...  

Office of Science (SC) Website

structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design...

338

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

tools to evaluate cost and energy implications of efficiencytools to evaluate cost and energy implications of efficiencyand low first cost, not energy efficiency. Utilization of “

Singer, Brett C.

2010-01-01T23:59:59.000Z

339

Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells.  

E-Print Network (OSTI)

??Abundant, scalable, environmentally-friendly organic photovoltaic (OPV) technology is increasingly promising in recent years. The power conversion efficiency (PCE) of OPVs has been raised to around… (more)

Yang, Bin

2013-01-01T23:59:59.000Z

340

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

for efficient and meaningful sub-metering. • Develop&architecture to facilitate sub-metering • Include sub-metersintermingled, making sub-metering expensive and complicated.

Singer, Brett C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Efficiency Multiple-Junction Solar Cells - Energy ...  

Technology Marketing Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific ...

342

Available Technologies: Highly Efficient Multigap Solar Cell Materials  

Scientists at Berkeley Lab have invented multiband gap semiconducting materials for developing solar cells that could achieve power conversion efficiencies of 50 ...

343

Highly efficient 6-stroke engine cycle with water injection  

combustion piston engine. The increased efficiency is a result of recovering heat primarily from the engine exhaust gases, and also from the engine coolant.

344

Southwest Gas Corporation - Commercial High-Efficiency Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless water heaters, boiler equipment, griddles, fryers, conveyor ovens,...

345

Sandia National Laboratories High Efficiency Multiple-Junction ...  

Sandia National Laboratories TECHNOLOGY SUMMARY Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific

346

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect

In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

Paul T. Fini; Shuji Nakamura

2003-10-30T23:59:59.000Z

347

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

348

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

349

Novel Morphology of Highly Efficient Two-phase Ferrite Cores for ...  

Science Conference Proceedings (OSTI)

This discovery may very well usher in a new chapter in high efficiency power cores for high frequency inductors, transformers, power supplies, converters, and

350

Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit  

E-Print Network (OSTI)

Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a freeway median HOV lane into a guideway transit line. A full-cost model was developed to determine the cost effectiveness of converting an HOV lane into a rail transit line. The measure of cost-effectiveness used was the benefit-to-cost ratio. The full-cost model contained two cost categories (capital and operating costs) and two benefit categories (travel time and externality benefits). This fullcost model was adopted to conditions on the Katy Freeway in Houston Texas which served as a case study for this thesis. It was found that 29 percent of the person-miles of travel on the Katy Freeway under given conditions must utilize guideway transit for conversion to be cost-effective. It was also found that the model is sensitive to assumptions of the value of time, project soft costs (administrative, planning, and design costs) and the operating cost of the rail transit system. The model is also sensitive to assumptions regarding latent demand. It was concluded that conversion to rail guideway transit in the case study example is not cost-effective. It was reconunended that further investigation be taken into full-cost model components to allow more certain estimates of cost components. Also recommended was further consideration of the effects of latent demand on HOV to rail guideway transit conversions.

Best, Matthew Evans

1996-01-01T23:59:59.000Z

351

Heavy Vehicle Propulsion Materials Program  

DOE Green Energy (OSTI)

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

Sidney Diamond; D. Ray Johnson

1999-04-26T23:59:59.000Z

352

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Managers Fleet Managers Plug-In Electric Vehicle Handbook for Fleets 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

353

Plug-In Electric Vehicle Handbook for Consumers (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumers Consumers Plug-In Electric Vehicle Handbook for Consumers 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the ac- curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and

354

Design and global optimization of high-efficiency thermophotovoltaic systems  

E-Print Network (OSTI)

Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of ...

Bermel, Peter A.

355

Required Materials Properties for High-Efficiency CIGS Modules: Preprint  

DOE Green Energy (OSTI)

This paper discusses material properties required for each CIGS device layer so that large-area CIGS modules can achieve efficiencies of >15%, substantially higher than the current state of the art.

Repins, I.; Glynn, S.; Duenow, J.; Coutts, T. J.; Metzger, W.; Contreras, M. A.

2009-07-01T23:59:59.000Z

356

Program on Technology Innovation: Very High Efficiency Photovoltaics Research, 2009 Update  

Science Conference Proceedings (OSTI)

This is the second interim annual summary report on the collaborative activities of CNRS and EDF RD to advance the state of high-efficiency photovoltaics (PV). This activity is principally concerned with basic research to enhance longer-term prospects of very high efficiency PV, but it also includes possible nearer-term outcomes of improved conversion efficiency for existing technologies.

2010-02-19T23:59:59.000Z

357

Vehicle Technologies Office: About the Vehicle Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

percent of the country's greenhouse gas emissions. Our research and development enables vehicle manufacturers to adopt new, efficient technologies. Reducing fuel consumption by...

358

Optimization of a CNG series hybrid concept vehicle  

DOE Green Energy (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

359

Australia's Green Vehicle Guide | Open Energy Information  

Open Energy Info (EERE)

Australia's Green Vehicle Guide Australia's Green Vehicle Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Australia's Green Vehicle Guide Agency/Company /Organization: Commonwealth of Australia Focus Area: Vehicles, Fuel Efficiency Topics: Analysis Tools, Market Analysis Website: www.greenvehicleguide.gov.au/GVGPublicUI/home.aspx Equivalent URI: cleanenergysolutions.org/content/australias-green-vehicle-guide,http:/ Language: English Policies: Regulations Regulations: Fuel Efficiency Standards The Green Vehicle Guide provides information about the environmental performance of new light-duty vehicles sold in Australia, including carbon dioxide (CO2) emissions and fuel consumption. The Guide includes resources such as a fuel calculator, electric vehicle information and a truck buyers

360

SunShot Initiative: High-Efficiency Thermal Storage System for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Thermal Storage System for Solar Plants to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Storage System for Solar Plants on Facebook Tweet about...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

362

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

363

Electric and Hybrid Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

results. Generally, hotel loads while on charge in fleet use contributes to lower energy efficiencies. These hotel loads can include heating and cooling vehicle battery...

364

High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion  

SciTech Connect

This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

D'Agostini, M.D.

2000-06-02T23:59:59.000Z

365

High efficiency carbonate fuel cell/turbine hybrid power cycles  

SciTech Connect

Carbonate fuel cells developed in commercial 2.85 MW size, have an efficiency of 57.9%. Studies of higher efficiency hybrid power cycles were conducted to identify an economically competitive system and an efficiency over 65%. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine, and a steam cycle, which generates power at a LHV efficiency over 70%; it is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95% of the fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming the fuel, and flows to a direct carbonate fuel cell system which generates 72% of the power. The portion of fuel cell anode exhaust not recycled, is burned and heat is transferred to compressed air from a gas turbine, heating it to 1800 F. The stream is then heated to 2000 F in gas turbine burner and expands through the turbine generating 13% of the power. Half the gas turbine exhaust flows to anode exhaust burner and the rest flows to the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Studies of the TTC for 200 and 20 MW size plants quantified performance, emissions and cost-of-electricity, and compared the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6%; estimated cost of electricity is 45.8 mills/kWhr. A 20-MW TTC plant has an efficiency of 65.2% and a cost of electricity of 50 mills/kWhr.

Steinfeld, G.

1996-12-31T23:59:59.000Z

366

High-Resolution Topography-Following Chemical Mapping of Ocean Hypoxia by Use of an Autonomous Underwater Vehicle: The Santa Monica Basin Example  

Science Conference Proceedings (OSTI)

We report on the execution of a combined chemical sensing/high-resolution terrain-following autonomous underwater vehicle (AUV) survey to explore the fine structure and functional boundaries of the Santa Monica Basin sub-oxic zone and its ...

Andreas F. Hofmann; Peter M. Walz; Hans Thomas; Edward T. Peltzer; Peter G. Brewer

367

Small core axial compressors for high efficiency jet aircraft  

E-Print Network (OSTI)

This thesis quantifies mechanisms that limit efficiency in small core axial compressors, defined here as compressor exit corrected flow between 1.5 and 3.0 lbm/s. The first part of the thesis describes why a small engine ...

DiOrio, Austin Graf

2012-01-01T23:59:59.000Z

368

High efficiency thin-film multiple-gap photovoltaic device  

SciTech Connect

A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

Dalal, Vikram L. (Newark, DE)

1983-01-01T23:59:59.000Z

369

Highly efficient 6-stroke engine cycle with water injection  

Science Conference Proceedings (OSTI)

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23T23:59:59.000Z

370

Power Efficiency in High Performance Computing Shoaib Kamil  

E-Print Network (OSTI)

of 192 cores per cabinet. The power feed to each cabinet is 208 VAC 3-phase and is capable of handling 25 KW per rack. Each cabinet has a single 92 percent efficient power supply at the bottom of the rack system performance (ssp) metric. LBNL Tech Report 58868, 2005. [13] L. Oliker, A. Canning, J. Carter, J

371

2011 Vehicle Technologies Market Report  

DOE Green Energy (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

372

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

373

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

374

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

375

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

376

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

377

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

378

High-efficiency large-area CdTe panels  

DOE Green Energy (OSTI)

The objective of this three year effort has been to develop an improved materials technology and fabrication process for limited volume production of 1 ft{sup 2} and 4 ft{sup 2} CdS/CdTe photovoltaic modules. The module stability objective by the end of this three year subcontract was to develop techniques to provide ten year life exploration with no greater than 10% degradation. In order to achieve these efficiency and stability objectives, the research program has been separated into tasks including: (1) analysis and characterization of CdS/CdTe Devices; (2) performance optimization on small cells; (3) encapsulation and stability testing; and (4) module efficiency optimization. 27 refs., 18 figs., 3 tabs.

Albright, S.P.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (USA))

1990-11-01T23:59:59.000Z

379

High-efficiency free-electron laser results  

Science Conference Proceedings (OSTI)

Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency and show deceleration of electrons by as much as 7%, and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator.

Boyer, K.; Baru, C.A.; Newnam, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

1983-01-01T23:59:59.000Z

380

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation  

DOE Green Energy (OSTI)

Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

2005-01-01T23:59:59.000Z

382

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

SciTech Connect

This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

Singer, Brett C.; Tschudi, William F.

2009-09-08T23:59:59.000Z

383

Concept Tests for a New Wire Flying Vehicle Designed to Achieve High Horizontal Resolution Profiling in Deep Water  

Science Conference Proceedings (OSTI)

Efficiently profiling the water column to achieve both high vertical and horizontal resolution from a moving vessel in deep water is difficult. Current solutions, such as CTD tow-yos, moving vessel profilers, and undulating tow bodies, are limited ...

Chris Roman; Dave Hebert

2011-12-01T23:59:59.000Z

384

Alloy Design of 9% Cr Steel for High Efficiency Ultra-Supercritical ...  

Science Conference Proceedings (OSTI)

Presentation Title, Alloy Design of 9% Cr Steel for High Efficiency Ultra- Supercritical Power Plants. Author(s), Fujio Abe. On-Site Speaker (Planned), Fujio Abe.

385

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network (OSTI)

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

386

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

387

High-Efficiency Solar Cells for Large-Scale Electricity Generation  

DOE Green Energy (OSTI)

One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

2008-09-26T23:59:59.000Z

388

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Vehicle Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Emission Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Multiple-Stage Construction of Medium- and Heavy-Duty Vehicles . . . . . . . . . . . . . . . . . . 6 Chassis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

389

Highly efficient photochemical HCOOH production from CO{sub 2} and water using an inorganic system  

SciTech Connect

We have constructed a system that uses solar energy to react CO{sub 2} with water to generate formic acid (HCOOH) at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In) cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH) can be used as a renewable energy source.

Yotsuhashi, Satoshi; Hashiba, Hiroshi; Deguchi, Masahiro; Zenitani, Yuji; Hinogami, Reiko; Yamada, Yuka [Advanced Technology Research Laboratory, Panasonic Corporation, Soraku-gun, Kyoto 619-0237 (Japan); Deura, Momoko; Ohkawa, Kazuhiro [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

2012-12-15T23:59:59.000Z

390

Current-matched high-efficiency, multijunction monolithic solar cells  

DOE Patents (OSTI)

The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1993-01-01T23:59:59.000Z

391

High efficiency fuel cell/advanced turbine power cycles  

Science Conference Proceedings (OSTI)

The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

Morehead, H.

1996-12-31T23:59:59.000Z

392

High-efficiency solar cells using HEM silicon  

DOE Green Energy (OSTI)

Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

Khattak, C.P.; Schmid, F. [Crystal Systems, Inc., Salem, MA (United States); Schubert, W.K. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

393

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network (OSTI)

Cogeneration project feasibility sometimes fails during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through steam injection, NOx control without selective catalytic reduction, (SCR), reduced down time during maintenance and dispatchability. Other factors influencing enhanced aeroderivative economics are complete generator set packaging at the factory and full string testing before the delivery. A wide variety of hosts, including institutions, utilities, municipalities and industrial factories are observing that their cogeneration projects move faster by implementing aeroderivative gas turbine generation packages.

King, J.

1988-09-01T23:59:59.000Z

394

Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms  

SciTech Connect

PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

None

2012-01-01T23:59:59.000Z

395

Optimization of high-performance superscalar architectures for energy efficiency  

Science Conference Proceedings (OSTI)

In recent years reducing power has become a critical design goal for high-performance microprocessors. This work attempts to bring the power issue to the earliest phase of high-performance microprocessor development. We propose a methodology for power-optimization ...

V. Zyuban; P. Kogge

2000-08-01T23:59:59.000Z

396

High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity  

SciTech Connect

The klystron-like relativistic backward wave oscillator (RBWO) combines the transition radiation with Cerenkov radiation and has demonstrated microwave output of high power and high efficiency. The coaxial slow wave structure device can produce microwave with a lower frequency in a smaller cross section. For the purpose of high efficiency, low frequency, and miniaturization, a coaxial klystron-like RBWO with a premodulation cavity is presented. Particle-in-cell simulations show that a microwave with power of 1.15 GW and frequency of 2.1 GHz is generated with conversion efficiency of 48%, whereas for the device with a reflector, the efficiency is 38%.

Xiao Renzhen; Teng Yan; Chen Changhua; Sun Jun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

2011-11-15T23:59:59.000Z

397

High-efficiency spectral purity filter for EUV lithography  

DOE Patents (OSTI)

An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

Chapman, Henry N. (Livermore, CA)

2006-05-23T23:59:59.000Z

398

Towards a high-efficiency micro-thermophotovoltaic generator  

E-Print Network (OSTI)

Hydrocarbon fuels have such a high energy density that even a relatively inefficient converter of chemical energy into electrical can significantly exceed the energy density of state- of-the-art batteries. This work attempts ...

Walker, Chan (Walker R.)

2010-01-01T23:59:59.000Z

399

High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a...

400

City of High Point Electric - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of High Point. In order to qualify, the heat pump must be between 1 and 5 tons, have a SEER rating of 14 or more, and be installed by an authorizedlicensed electrical or HVAC...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Highly Efficient Polymer Light-Emitting Diodes Using Graphene ...  

Science Conference Proceedings (OSTI)

A30: Study on Super Stable All-solid-state Battery at High Temperature · A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by  ...

402

Program on Technology Innovation: Very High Efficiency Photovoltaics Research at IRDEP  

Science Conference Proceedings (OSTI)

This is an interim report on the collaborative activities of Centre National de la Recherche Scientifique (CNRS) and Electricité de France (EDF) R&D to advance the state of high-efficiency photovoltaics (PV). These efforts are principally concerned with basic research to enhance the longer-term prospects of very high-efficiency PV, but they may also produce nearer-term outcomes in the shape of improved conversion efficiency for existing technologies.

2009-03-31T23:59:59.000Z

403

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells  

E-Print Network (OSTI)

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E soluble energy relay dyes with high molar extinction coefficients. KEYWORDS Solar cell, energy transfer-sensitized solar cells, the excited ERDs must be able to efficiently transfer energy to the sensitizing dyes

McGehee, Michael

404

Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices  

DOE Green Energy (OSTI)

As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated (2) Where are they located and (3) What are their usual fueling practices Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

Miaou, S.P.; Hu, P.S. (Oak Ridge National Lab., TN (United States)); Young, J.R. (Tennessee Univ., Knoxville, TN (United States))

1992-05-01T23:59:59.000Z

405

Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices  

DOE Green Energy (OSTI)

As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

Miaou, S.P.; Hu, P.S. [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)

1992-05-01T23:59:59.000Z

406

Highly-efficient noise-assisted energy transport in classical oscillator systems  

E-Print Network (OSTI)

Photosynthesis is a biological process that involves the highly-efficient transport of energy captured from the sun to a reaction center, where conversion into useful biochemical energy takes place. Even though one can always use a quantum perspective to describe any physical process, since everything follows the laws of Quantum Mechanics, is the use of quantum theory imperative to explain this high efficiency? Several theoretical studies suggest that the high efficiency can only be understood as a result of the interplay between the quantum coherent evolution of the photosynthetic system, and noise introduced by its surrounding environment. Notwithstanding, we show here that noise-assisted highly-efficient energy transport can be found as well in purely classical systems; therefore, we might conclude that high efficiency energy transfer in photosynthetic systems could also be anticipated by classical models, without the need to resorting to quantum effects. Strikingly, the wider scope of applicability of the...

León-Montiel, R de J

2013-01-01T23:59:59.000Z

407

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

408

Why Some Vehicles Are Not Listed / 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Guide Listings / 1 Understanding the Guide Listings / 1 * Why Some Vehicles Are Not Listed / 1 * Vehicle Classes Used in This Guide / 2 * Tax Incentives and Disincentives / 2 * Why Consider Fuel Economy / 2 * Fueling Options / 3 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 3 * Model Year 2011 Fuel Economy Leaders / 4 * 2011 Model Year Vehicles / 6 * Battery Electric Vehicles / 18 * Plug-in Hybrid Electric Vehicles / 19 * Hybrid Electric Vehicles / 20 * Compressed Natural Gas Vehicles / 22 * Diesel Vehicles / 22 * Ethanol Flexible Fuel Vehicles / 24 * Fuel Cell Vehicles / 28 * Index / 29 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most fuel-efficient vehicle that meets their

409

A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp  

SciTech Connect

High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

Siminovitch, M.; Gould, C.; Page, E.

1997-06-01T23:59:59.000Z

410

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents (OSTI)

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

411

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

412

Vehicle Technologies Office: 2006 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

413

New III-V cell design approaches for very high efficiency  

DOE Green Energy (OSTI)

This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

1993-04-01T23:59:59.000Z

414

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

the motor. In addition, hybrid vehicles will require ACDC converters to interconnect the high-voltage bus and the low-voltage bus for vehicle auxiliary loads. Technical issues to...

415

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

416

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

417

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

418

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

419

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

420

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15. 2013 | Singh April 15. 2013 | Singh * Thermal modeling will be conducted to establish the benefits of using a high thermal conducting graphite foams in conjunction with PCM and to develop a design for a laboratory scale prototype. * Variety of characterizations will be carried out to qualify the materials (PCMs, alloys, coatings) for the prototype construction. * Process to infiltrate selected PCM into the foam will be developed. * Using the appropriate brazing/joining techniques, prototype will be assembled. * Performance testing of the TES system prototype to ensure a full- scale system will meet the SunShot goals. * Complete cost analysis of the proposed TES system * Complete laboratory scale prototype design * Develop SiC coating using polycarbosilanes for graphite

422

Development of high efficiency collector plates. Final report  

DOE Green Energy (OSTI)

Composite metal technology was used to manufacture intermetallic compound (IC) absorption surfaces and to combine them integrally with composite metal tube-in-sheet collector plates. Five material systems in which Al was one component metal and Fe, Cr, or Ni and their alloy was the other pair, were evaluated. All intermetallic compounds had high solar absorptance ..cap alpha.. approx. = 0.9. The AlNi was most promising and ..cap alpha.. > or = 0.95 and epsilon approx. = 0.3 were obtained over a broad range of compounding conditions. After eight months exposure in a flat plate collector enclosure the characteristic properties of AlNi surfaces remained virtually unchanged. Only LCS/Cu composite metal tube-in-sheet collector plates could be manufactured successfully. The technical difficulties associated with integrating the intermetallic compound and tube-in-sheet technologies make the manufacturing of composite metal collector plates at the time being economically unfeasible.

Santala, T.; Sabol, R.

1976-02-01T23:59:59.000Z

423

Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications  

SciTech Connect

BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

2010-10-01T23:59:59.000Z

424

New approaches for high-efficiency solar cells. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities carried out in this subcontract. These activities cover, first the atomic layer epitaxy (ALE) growth of GaAs, AlGaAs and InGaP at fairly low growth temperatures. This was followed by using ALE to achieve high levels of doping both n-type and p-type required for tunnel junctions (Tj) in the cascade solar cell structures. Then the authors studied the properties of AlGaAs/InGaP and AlGaAs/GaAs tunnel junctions and their performances at different growth conditions. This is followed by the use of these tunnel junctions in stacked solar cell structures. The effect of these tunnel junctions on the performance of stacked solar cells was studied at different temperatures and different solar fluences. Finally, the authors studied the effect of different types of black surface fields (BSF), both p/n and n/p GaInP solar cell structures, and their potential for window layer applications. Parts of these activities were carried in close cooperation with Dr. Mike Timmons of the Research Triangle Institute.

Bedair, S.M.; El-Masry, N.A. [North Carolina State Univ., Raleigh, NC (United States)

1997-12-01T23:59:59.000Z

425

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

426

Kieffer Paper Mill's Recycled Fiber Mill and PSI Energy's High Efficiency Motors Plan  

E-Print Network (OSTI)

The needs of electricity consumers along with the utility industry are rapidly changing. Consumers want electricity to perform more functions, improve efficiencies and help lower the cost of production, all in an environmentally responsible manner. In 1991, PSI Energy developed a comprehensive Demand-Side Management program, called Energy Matters™, aimed at improving the overall end-use efficiency of its customers. Its goal is to reduce summer peak demand 120 megawatts by the summer of 1995. Kieffer Paper Mills in Brownstown, IN had a need to address the efficiency of its new, state-of-the-art pulp processing mill that it was building. With over 4,000 horsepower of process motors going into the new plant, even a modest improvement in motor efficiency would yield significant energy savings. PSI Energy was able to help Kieffer examine the economics of high efficiency motors, and through the PSI Energy High Efficiency Motors Plan encouraged Kieffer Paper Mills to purchase energy efficient motors by helping pay part of the cost differential between high efficiency and standard efficiency models.

Myers, J. A.

1993-03-01T23:59:59.000Z

427

Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003  

Science Conference Proceedings (OSTI)

Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000