Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: Materials for High-Efficiency Combustion...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

2

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and Positioning Tolerant Wireless...

3

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

4

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

5

Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The  

E-Print Network [OSTI]

Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle Overview The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The vehicle was designed to conform possible fuel efficiency. Finally, the team transported the vehicle to Houston, Texas and successfully

Demirel, Melik C.

6

Vehicle Technologies Office Merit Review 2014: High Temperature Materials for High Efficiency Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

7

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

8

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

9

Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

10

Vehicle Technologies Office Merit Review 2014: High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology  

Broader source: Energy.gov [DOE]

Presentation given by Envera LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency VCR engine...

11

Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines  

Broader source: Energy.gov [DOE]

A presentation given by the University of Michigan at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a university consortium to research efficient and clean high-pressure lean burn engines.

12

Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

13

Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

14

Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content  

SciTech Connect (OSTI)

REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

None

2012-01-01T23:59:59.000Z

15

Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

16

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

17

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

18

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Presentation from the U.S. DOE Office of Vehicle...

19

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect (OSTI)

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

20

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

22

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

23

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and...

24

Improving Vehicle Fuel Efficiency Through Tire Design, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

25

Improving efficiency of a vehicle HVAC system with comfort modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

26

US DRIVE Driving Research and Innovation for Vehicle Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy...

27

Vehicle Technologies Office Merit Review 2014: Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications  

Broader source: Energy.gov [DOE]

Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

28

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

29

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

30

Vehicle Technologies Office Merit Review 2014: Stretch Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Vehicle Technologies Office Merit Review 2014: Stretch...

31

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

32

Tailored Materials for High Efficiency CIDI Engines (Caterpillar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program...

33

Low-Temperature Combustion Demonstrator for High-Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

34

Vehicle Technologies Office: Directions in Engine-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference Vehicle Technologies Office: Directions in Engine-Efficiency and Emissions Research (DEER) Conference The...

35

Super-compound Engines Enable Multifuel Vehicles to Match Efficiency  

E-Print Network [OSTI]

Super-compound Engines Enable Multifuel Vehicles to Match Efficiency of Diesel-powered Vehicles in the last 25 years. Lightduty truck engines historically have poor efficiency, converting only 20 percent of gasoline into useful work. Multifuel compound engine technologies make it possible to increase efficiency

36

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

37

Vehicle Mass and Fuel Efficiency Impact Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

38

GATE: Energy Efficient Vehicles for Sustainable Mobility  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

39

Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications  

Broader source: Energy.gov [DOE]

Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

40

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric  

SciTech Connect (OSTI)

ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

None

2010-09-14T23:59:59.000Z

42

Thermal management concepts for higher efficiency heavy vehicles.  

SciTech Connect (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

43

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

44

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

45

High Efficiency Engine Systems Development and Evaluation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Engine Systems Development and Evaluation 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

46

Gasoline Ultra Fuel Efficient Vehicle Program Update  

Broader source: Energy.gov (indexed) [DOE]

1 Phase 2 2 3 HCCI MCE October 16, 2012 Slide 16 2011 Sonata 6MT, 2.0L GDi Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

47

Efficient routing algorithms for multiple vehicles with no explicit communications  

E-Print Network [OSTI]

1 Efficient routing algorithms for multiple vehicles with no explicit communications Alessandro Arsie Ketan Savla Emilio Frazzoli Abstract In this paper we consider a class of dynamic vehicle routing research area today addresses coordination of several mobile agents: groups of autonomous robots and large

Savla, Ketan

48

A study in hybrid vehicle architectures : comparing efficiency and performance  

E-Print Network [OSTI]

This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

Cotter, Gavin M

2009-01-01T23:59:59.000Z

49

A University Consortium on Efficient and Clean High-Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines 2010 DOE Vehicle Technologies and...

50

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Broader source: Energy.gov (indexed) [DOE]

energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

51

Vehicle Technologies Office Merit Review 2014: GATE: Energy Efficient Vehicles for Sustainable Mobility  

Broader source: Energy.gov [DOE]

Presentation given by Ohio State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE: energy efficient...

52

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

53

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

54

Vehicle Technologies Office Merit Review 2014: High Energy Density...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV's Based on Novel, High Voltage Cathode Material Systems Vehicle Technologies Office Merit...

55

Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems  

SciTech Connect (OSTI)

This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35 % fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials.

Peter J. Blau

2000-04-26T23:59:59.000Z

56

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

57

Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

58

Vehicle Technologies Office Merit Review 2014: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

59

Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel effects...

60

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

62

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

63

Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion  

SciTech Connect (OSTI)

The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

Confer, Keith

2014-09-30T23:59:59.000Z

64

Impact of Vehicle Efficiency Improvements on Powertrain Design  

Broader source: Energy.gov (indexed) [DOE]

19M) Volvo Group Truck Technology High Efficiency Combustion - Waste Heat Recovery - Turbo-Compound - Downspeeding - ... Advanced Driver Aids Rolling Resistance Reduction...

65

Explore Careers in Energy Efficient Vehicles | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive SummitEnergy Efficient Vehicles Explore

66

Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for...  

Broader source: Energy.gov (indexed) [DOE]

Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles are highly efficient so it is not surprising to see...

67

High Efficiency Integrated Package  

SciTech Connect (OSTI)

Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

Ibbetson, James

2013-09-15T23:59:59.000Z

68

Vehicle Technologies Office Merit Review 2014: Studies on High...  

Broader source: Energy.gov (indexed) [DOE]

Studies on High Capacity Cathodes for Advanced Lithium-ion Systems Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems...

69

Vehicle Technologies Office Merit Review 2014: High-Temperature...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

70

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

71

Vehicle Technologies Office Merit Review 2014: High Compression...  

Broader source: Energy.gov (indexed) [DOE]

High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine...

72

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines 2010 DOE Vehicle...

73

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

74

BetterBuildings Webinar Transcription- Financial Vehicles within an Integrated Energy Efficiency Program  

Broader source: Energy.gov [DOE]

"Financial Vehicles Within an Integrated Energy Efficiency Program," webinar transcript from the U.S. Department of Energy's Better Buildings program.

75

Efficient Techniques for Dynamic Vehicle Anna Petrovskaya and Sebastian Thrun  

E-Print Network [OSTI]

.stanford.edu Summary. Fast detection of moving vehicles is crucial for safe autonomous ur- ban driving. We present the vehicle detection algorithm developed for our entry in the Urban Grand Challenge, an autonomous driving.S. Government has organized a series of competitions for autonomous vehicles in order to encourage research

76

A Review of High Occupancy Vehicle (HOV) Lane Performance and...  

Open Energy Info (EERE)

Occupancy Vehicle (HOV) Lane Performance and Policy Options in the United States: Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Review of High Occupancy...

77

Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous Underwater Vehicle  

E-Print Network [OSTI]

Implementable Efficient Time and Energy Consumption Trajectories Design For an Autonomous efficient trajectories onto a test-bed autonomous underwater vehicle. The trajectories are losely connected, their autonomy has become a large research interest. Much research has gone into making autonomous vehicles

Smith, Ryan N.

78

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect (OSTI)

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

79

Drive Cycle Powertrain Efficiencies and Trends Derived From EPA Vehicle Dynamometer Results  

SciTech Connect (OSTI)

Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine as a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.

Thomas, John F [ORNL

2014-01-01T23:59:59.000Z

80

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

XAUV : modular high maneuverability autonomous underwater vehicle  

E-Print Network [OSTI]

The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

Walker, Daniel G. (Daniel George)

2009-01-01T23:59:59.000Z

82

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

83

Vehicle Technologies Office Merit Review 2014: High Energy, Long...  

Broader source: Energy.gov (indexed) [DOE]

High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV...

84

Vehicle Technologies Office Merit Review 2014: Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

85

Efficient control of an autonomous underwater vehicle while accounting for thruster failure  

E-Print Network [OSTI]

Efficient control of an autonomous underwater vehicle while accounting for thruster failure Thomas to both time and energy consumption. The main characteristic of our algorithm is that it produces the autonomous underwater vehicle is submerged. Such failures may or may not affect the controllability

Smith, Ryan N.

86

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Broader source: Energy.gov (indexed) [DOE]

428114 Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Daniel Flowers (PI), Salvador Aceves, Nicholas Killingsworth, Matthew McNenly, Thomas...

87

City-Car : optimizing vehicle and urban efficiencies through a shared adaptive platform  

E-Print Network [OSTI]

Research focused on developing an innovative, yet simple automobile platform that maximizes its efficiency through shared convenience. Work was initially put into studying both current vehicles and urban architecture, in ...

Lark, William, 1981-

2005-01-01T23:59:59.000Z

88

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network [OSTI]

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

89

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

1974-01-01T23:59:59.000Z

90

Financial Vehicles within an Integrated Energy Efficiency Program...  

Energy Savers [EERE]

1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency program depends on four functional pillars - Demand Creation - Workforce...

91

High Efficiency Engine Technologies Program  

SciTech Connect (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

92

Enabling High Efficiency Ethanol Engines  

SciTech Connect (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

93

Determination of the recombination efficiency of thermal control coatings for hypersonic vehicles  

SciTech Connect (OSTI)

A method is presented for determining the recombination efficiency of coatings for hypersonic vehicle applications. The approach uses experimental results from arc-jet tests with an analysis to determine the efficiency for the recombination of atomic species present in the boundary layer. The analysis employs analytical solutions to the laminar boundary-layer heat-transfer equations with experimental heating-rate, temperature, and pressure measurements. The authors discuss experimental difficulties in achieving reliable materials-performance data. The utility of the method is that it provides a rapid and efficient tool for use in qualitative screening and development of materials. The effects of second-order heat-transfer terms may be as high as 50% for low-catalysis surfaces. With the second-order terms included, the maximum uncertainty in recombination-efficiency data for low-catalysis surfaces is 45%. The discussions are based on experimental data and calculations for arc-jet tests of the titanium alloy Ti-14Al-21Nb with a borosilicate-like glass coating that has a recombination efficiency of about 0.006 to 0.01. 20 refs.

Clark, R.K.; Cunnington, G.R. Jr.; Wiedemann, K.E. [National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (United States)

1995-01-01T23:59:59.000Z

94

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect (OSTI)

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

95

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS | Department of...  

Broader source: Energy.gov (indexed) [DOE]

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

96

Evaluation of high-energy-efficiency powertrain approaches: the 1996 futurecar challenge  

SciTech Connect (OSTI)

Twelve colleges and universities were selected to design, build, and develop a mid-size vehicle that could achieve high energy economy while maintaining the performance characteristics of today`s mid-size vehicle. Many of the teams were able to increase the fuel economy of their vehicles, but most of these increases came at the expense of decreased performance or worsened emissions. This paper evaluates and summarizes the high-energy-efficiency powertrain technology approaches that were utilized in the 1996 FutureCar Challenge, which was the first evaluation of these vehicles in a two-year program. Of the 11 vehicles evaluated in the competition, nine utilized hybrid electric vehicle approaches. This paper discusses the design trade- offs made by the teams to achieve high efficiency while trying to maintain stock performance.

Sluder, S.; Duoba, M.; Larsen, R.

1997-02-01T23:59:59.000Z

97

Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates  

SciTech Connect (OSTI)

Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

Duleep, G.

2011-02-01T23:59:59.000Z

98

Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

99

High reduction transaxle for electric vehicle  

DOE Patents [OSTI]

A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

Kalns, Ilmars (Plymouth, MI)

1987-01-01T23:59:59.000Z

100

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Multi-Cylinder Engine High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: Impacts of Advanced Combustion...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE DOE/IG-480Vehicle

102

Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical EngineerEnergy Vehicle

103

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

104

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. ace012aceves2010o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

105

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network [OSTI]

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

Breedlove, C. W.

106

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation ace012aceves2011o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development...

107

Modular Lorentz force actuators for efficient biomimetic propulsion of Autonomous Underwater Vehicles  

E-Print Network [OSTI]

In this thesis, we developed a highly scalable design for modular Lorentz force actuators for use in segmented flexible-hull undersea vehicles such as the RoboTuna being developed at Franklin W, Olin College of Engineering. ...

Church, Joseph Christopher

2014-01-01T23:59:59.000Z

108

Highly Efficient Electric Motor Systems  

E-Print Network [OSTI]

engineering capabilities · Develop & launch products beyond fan & pump applications, i.e. · Electric vehicle performance for same cost Replaces or simplifies mechanical belts, pulleys and gearboxes Delivers 2X torque and Menlo Ventures Low-cost manufacturing automation developed POs received for early products Projected

109

Green Move: a platform for highly configurable, heterogeneous electric vehicle sharing  

E-Print Network [OSTI]

Green Move: a platform for highly configurable, heterogeneous electric vehicle sharing Andrea G the spreading of electric vehicles, in particular for what concerns the high upfront costs of the vehicles benefits. I. INTRODUCTION Electric vehicle sharing has the potential to provide a solution to many

Cugola, Gianpaolo

110

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Broader source: Energy.gov (indexed) [DOE]

- electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - Hardware in the Loop (HIL) techniques - power electronics - combustion - controls -...

111

Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles  

E-Print Network [OSTI]

-SVM scheme is the best candidate. Keywords--Electric vehicle, induction motor, efficiency, field oriented. In fact, the motor drive, comprising of the electric motor, power converter, and electronic controller by the driver. Many researches [2-3] have demonstrated the induction motor is one of the right electric motor

112

A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for  

E-Print Network [OSTI]

1 A Discrete Event Simulation Model for "Efficient Selection of Relay Vehicles for Broadcasting discrete event-driven simulation model for DIB and EDIB protocols on VANET. We define six types of events the ACK message to the sender. The following variables are used in the simulation model: · vehs stores

Lin, Jason Yi-Bing

113

Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober XX, 2009Aggressive

114

Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

115

Enabling High Efficiency Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

penalty associated with aftertreatment 3% improvement in open cycle efficiency (turbo, EGR system, etc.) 8 This presentation does not contain any proprietary or...

116

Enabling High Efficiency Ethanol Engines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen Program and Vehicle

117

Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructuresHighGoal

118

Penn State DOE GATE Center of Exellence for In-Vehicle, High...  

Energy Savers [EERE]

Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems...

119

High efficiency turbine blade coatings.  

SciTech Connect (OSTI)

The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

Youchison, Dennis L.; Gallis, Michail A.

2014-06-01T23:59:59.000Z

120

Enabling High Efficiency Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

for Efficiency Improvement Controls Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Phase 2 0 2 4 6 8 0 0.2 0.4...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

122

High Energy Efficiency Air Conditioning  

SciTech Connect (OSTI)

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

123

High Efficiency, High Performance Clothes Dryer  

SciTech Connect (OSTI)

This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.

Peter Pescatore; Phil Carbone

2005-03-31T23:59:59.000Z

124

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

125

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015.

126

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

127

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle  

E-Print Network [OSTI]

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle Haider N. Arafat-- A dynamic model is developed for a small, high- speed autonomous underwater vehicle. The vehicle has manner: 1) Wind angle and angle : From u = V cos , v = V sin sin , and w = V sin cos , we have tan

Virginia Tech

128

Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

129

Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack  

Broader source: Energy.gov [DOE]

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

130

Vehicle having hydraulic and power steering systems using a single high pressure pump  

DOE Patents [OSTI]

A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-06-22T23:59:59.000Z

131

High Efficiency Engine Systems Development and Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Engine system modeling (GT-Power) Bottoming cycle modeling (GT-Power, Matlab) Vehicle system modeling (GT-Drive, PSAT, Autonomie) 0 20 40 60 80 Vehicle Speed,...

132

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

133

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

134

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

135

Efficient high density train operations  

DOE Patents [OSTI]

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

136

Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

137

Technology Development for Light Duty High Efficient Diesel Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications...

138

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

139

Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City.  

E-Print Network [OSTI]

Page 1 of 6 Electric Vehicle Performance in a Highly Polluted City. Esteban J. Pino Eduardo P at peak hours. Experimental results from driving an electric vehicle in this particular environment's environment. Index Terms: electric vehicle performance, polluted cities, heavy traffic cities. I. INTRODUCTION

Catholic University of Chile (Universidad Católica de Chile)

140

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network [OSTI]

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

142

Vehicle Technologies Office 2013 Merit Review: A University Consortium...  

Broader source: Energy.gov (indexed) [DOE]

Review: A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines Vehicle Technologies Office 2013 Merit Review: A University Consortium on Efficient...

143

Very High Efficiency Solar Cell Modules  

SciTech Connect (OSTI)

The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

2009-01-01T23:59:59.000Z

144

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

145

Highly Efficient Solar Thermochemical Reaction Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

146

Multicolor, High Efficiency, Nanotextured LEDs  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Jung Han; Arto Nurmikko

2011-09-30T23:59:59.000Z

147

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

148

Laboratory testing of high energy density capacitors for electric vehicles  

SciTech Connect (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

149

Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

150

Plug-In Electric Vehicle R&D on High Energy Materials  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Electric Vehicle R&D on High Energy Materials Presented by John Vaughey Principal Investigator: Dennis Dees Chemical Sciences and Engineering Division Argonne National...

151

Vehicle Technologies Office Merit Review 2014: High Temperature Aluminum Alloys (Agreement ID:24034) Project ID:18518  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

152

Vehicle Technologies Office Merit Review 2014: High Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

153

Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

154

Vehicle Technologies Office Merit Review 2014: Nanostructured...  

Broader source: Energy.gov (indexed) [DOE]

2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

155

Vehicle Technologies Office Merit Review 2014: Enhanced High...  

Broader source: Energy.gov (indexed) [DOE]

Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enhanced...

156

Vehicle Technologies Office Merit Review 2014: High Speed Joining...  

Energy Savers [EERE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

157

Exhaust Valve Materials for High Efficiency Engines  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

158

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

159

Vehicle Technologies Office: Materials for High-Efficiency Combustion  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport |(GATE) | DepartmentEngines |

160

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated Solar Thermochemical Reaction System for High Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of...

162

High Efficiency GDI Engine Research, with Emphasis on Ignition...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency GDI Engine Research, with Emphasis on Ignition Systems High Efficiency GDI Engine Research, with Emphasis on Ignition Systems 2013 DOE Hydrogen and Fuel Cells...

163

Energy Efficiency Opportunities in Federal High Performance Computing...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

164

Los Alamos develops new technique for growing high-efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based...

165

Development of a High-Efficiency Zonal Thermoelectric HVAC System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

166

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

167

Challenging Conventional Wisdom: A Clean and Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston...

168

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

169

Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

170

Energy-Efficient Melting and Direct Delivery of High Quality...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

171

Highly Energy Efficient Directed Green Liquor Utilization (D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

172

Electrical and Thermal Transport Optimization of High Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

173

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous...

174

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

175

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

176

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

177

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

178

High-Efficiency Clean Combustion Engine Designs for Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Presentation from...

179

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

180

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Glass-like thermal conductivity in high efficiency thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

182

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect (OSTI)

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

183

High Efficiency Fuel Reactivity Controlled Compression Ignition...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Vehicle Technologies Office Merit...

184

Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

185

Analysis of road pricing, metering and the priority treatment of high occupancy vehicles using system dynamics. Master's thesis  

SciTech Connect (OSTI)

Transportation Systems Management (TSM) employs various techniques such as road pricing, metering and the priority treatment of high occupancy vehicles (HOVs) in an effort to make more efficient use of existing transportation facilities. Efficiency is improved in terms of moving more people through the facility while simultaneously reducing the number of vehicles using the facility. This report uses a hypothetical toll facility and examines four computer modeling approaches to determine which of the approaches are valid in terms of predicting the behavior of trip makers seeking to use the facility in response to various combinations of TSM techniques. Once an approach has been determined to be valid, seven different combination of TSM techniques, or strategies, are compared to a base strategy to determine what strategy or strategies are most affective in achieving the goals of TSM.

Castillo, W.

1992-01-01T23:59:59.000Z

186

High-efficiency silicon concentrator cell commercialization  

SciTech Connect (OSTI)

This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

Sinton, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (US)

1993-05-01T23:59:59.000Z

187

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing  

E-Print Network [OSTI]

Investigating the Mobility of Light Autonomous Tracked Vehicles Using a High Performance Computing limiting the scope and impact of high performance computing (HPC). This scenario is rapidly changing due

188

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

189

Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

190

Under Vehicle Perception for High Level Safety Measures Using A Catadioptric Camera System  

E-Print Network [OSTI]

cost. Moreover, displaying the under frames of the vehicles by typical perspective cameras that haveUnder Vehicle Perception for High Level Safety Measures Using A Catadioptric Camera System Caner Sahin and Mustafa Unel Faculty of Engineering and Natural Sciences Sabanci University Istanbul, Turkey

Yanikoglu, Berrin

191

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

192

High efficiency off-axis current drive by high frequency fast waves  

SciTech Connect (OSTI)

Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ?}, a result that can be understood from examination of the evolution of n{sub ?} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (?3) of n{sub ?} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ?} spectrum, which also helps avoid mode conversion.

Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

2014-02-12T23:59:59.000Z

193

High Efficiency Engine Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency

194

High Efficiency Colloidal Quantum Dot Phosphors  

SciTech Connect (OSTI)

The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

Kahen, Keith

2013-12-31T23:59:59.000Z

195

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

196

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

197

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

198

Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles  

SciTech Connect (OSTI)

The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

1995-11-01T23:59:59.000Z

199

Charge Trapping in High Efficiency Alternating Copolymers: Implication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

200

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-efficiency turquoise-blue electrophosphorescence from a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in phosphine oxide host. High-efficiency turquoise-blue electrophosphorescence from a...

202

High efficiency and low roll-off blue phosphorescent organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. High efficiency and low roll-off blue phosphorescent organic...

203

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

204

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

205

Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

206

Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor  

Broader source: Energy.gov [DOE]

Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

207

Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

208

Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

209

Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

210

Vehicle Technologies Office Merit Review 2013: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about simulating internal combustion engines using high performance computing.

211

Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit  

E-Print Network [OSTI]

Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a...

Best, Matthew Evans

1996-01-01T23:59:59.000Z

212

Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Binghamton University-SUNY at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about metal-based high...

213

Vehicle Technologies Office Merit Review 2014: High-Capacity Polyanion Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by The University of Texas at Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

214

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Energy Savers [EERE]

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salasoo.pdf More Documents & Publications Scalable, Low-Cost, High...

215

Collaborative multi-vehicle localization and mapping in high clutter environments  

E-Print Network [OSTI]

Among today's robotics applications, exploration missions in dynamic, high clutter and uncertain environmental conditions is quite common. Autonomous multi-vehicle systems come in handy for such exploration missions since ...

Moratuwage, M. D. P.

216

High Efficiency Low Emission Refrigeration System  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann GeorgeLogging| DepartmentScience EducationHeyHigh Efficiency

217

High Efficiency Cold Climate Heat Pump  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency Cold Climate

218

NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

Not Available

2014-06-01T23:59:59.000Z

219

Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

220

Vehicle Technologies Office Merit Review 2014: Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stretch...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office Merit Review 2014: Model Development and Analysis of Clean & Efficient Engine Combustion  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

222

High-efficiency concentrator silicon solar cells  

SciTech Connect (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

223

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

224

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

225

Design and Implementation of Time Efficient Trajectories for an Underwater Vehicle  

E-Print Network [OSTI]

: Autonomous Underwater Vehicles, Optimal Control, Numerical Algorithm, Trajectory Planning. 1 Introduction- trol strategies that govern their motions. Traditionally, autonomous underwa- ter vehicles (AUV's) have. This is a first step toward minimizing a combination of both time and energy consumption along a given trajectory

Smith, Ryan N.

226

A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08nevius.pdf More Documents & Publications Complex System...

227

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

228

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

229

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

230

High efficiency Brayton cycles using LNG  

DOE Patents [OSTI]

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

231

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical...

232

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

challenges and is currently focused on milestones associated with Vehicle Technologies efficiency and emissions objectives. Overview 11 *http:www1.eere.energy.gov...

233

High Efficiency Organic Light Emitting Devices for Lighting  

SciTech Connect (OSTI)

Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

So, Franky; Tansu, Nelson; Gilchrist, James

2013-06-30T23:59:59.000Z

234

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance...

235

High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines  

SciTech Connect (OSTI)

This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

None

2011-01-31T23:59:59.000Z

236

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network [OSTI]

) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

237

EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE  

SciTech Connect (OSTI)

This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

2009-06-30T23:59:59.000Z

238

White LED with High Package Extraction Efficiency  

SciTech Connect (OSTI)

The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

Yi Zheng; Matthew Stough

2008-09-30T23:59:59.000Z

239

Tailored Materials for High Efficiency CIDI Engines  

SciTech Connect (OSTI)

The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

Grant, G.J.; Jana, S.

2012-03-30T23:59:59.000Z

240

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- Graphene-Polypyrrole Nanocomposite as a Highly...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

242

High SO2 Removal Efficiency Testing  

SciTech Connect (OSTI)

This document provides a discussion of the technical progress on DOE/PETC project number DE-AC22-92PC91338, "High Efficiency SO2 Removal Testing", for the time period 1 January through 31 March 1997. The project involves testing at six full-scale utility flue gas desulfurization (FGD) systems, to evaluate low capital cost upgrades that may allow these systems to achieve up to 98% SO2 removal efficiency. The upgrades being evaluated mostly involve using performance additives in the FGD systems. The "base" project involved testing at the Tampa Electric Company?s Big Bend Station. All five potential options to the base program have been exercised by DOE, involving testing at Hoosier Energy?s Merom Station (Option I), Southwestern Electric Power Company?s Pirkey Station (Option II), PSI Energy?s Gibson Station (Option III), Duquesne Light?s Elrama Station (Option IV), and New York State Electric and Gas Corporation?s (NYSEG) Kintigh Station (Option V). The originally planned testing has been completed for all six sites. However, additional testing is planned at the Big Bend Station. The remainder of this document is divided into four sections. Section 2, Project Summary, provides a brief overview of the status of technical efforts on this project. Section 3, Results, summarizes the outcome from technical efforts during the quarter, or results from prior quarters that have not been previously reported. In Section 4, Plans for the Next Reporting Period, an overview is provided of the technical efforts that are anticipated for the second quarter of calendar year 1997. Section 5 contains a brief acknowledgement.

Gary Blythe

1997-04-23T23:59:59.000Z

243

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

244

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

245

High voltage bus and auxiliary heater control system for an electric or hybrid vehicle  

DOE Patents [OSTI]

A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

Murty, Balarama Vempaty (West Bloomfield, MI)

2000-01-01T23:59:59.000Z

246

MIXED PHASE COMPRESSION HIGH EFFICIENCY HEAT PUMP.  

E-Print Network [OSTI]

??The objective of this thesis is the design and realization of a higher efficiency air source heat pump. The improved pump???s operating cost must rival… (more)

Chan, WenYen

2014-01-01T23:59:59.000Z

247

High Efficiency Organic Multilayer Photodetectors based on Singlet Fission ....................................................................................................................................................................................  

E-Print Network [OSTI]

.........................................................................................................................PH.14 High-efficiency, Low-cost Photovoltaics using III-V on Silicon Tandem CellsPhotonics High Efficiency Organic Multilayer Photodetectors based on Singlet Fission.........................................................................................................................PH.2 Efficiently Coupling Light to Superconducting Nanowire Single-photon Detectors

Reif, Rafael

248

Design of high efficiency Mid IR QCL lasers  

E-Print Network [OSTI]

The proposed research is a study of designing high-efficiency Mid-IR quantum cascade lasers (QCL). This thesis explores "injector-less" designs for achieving lower voltage defects and improving wall plug efficiencies through ...

Hsu, Allen Long

2008-01-01T23:59:59.000Z

249

Case Studies of High Efficiency Electric Motor Applicability  

E-Print Network [OSTI]

Much has been written about the advantages and disadvantages of high efficiency electric motors. For a given motor application it is possible to find literature that enables a plant engineer to make an informed choice between a standard efficiency...

Wagner, J. R.

250

High efficiency pulse motor drive for robotic propulsion  

E-Print Network [OSTI]

The goal of this research is to improve the power efficiency of robotic locomotion through the use of series elastic actuation, with a focus on swimming motion. To achieve high efficiency, electromechanical drives need to ...

Sun, Zhen, M.S. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

251

Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

252

Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines  

Broader source: Energy.gov [DOE]

Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

253

Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials  

Broader source: Energy.gov [DOE]

Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

254

Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

255

High efficiency quasi-monochromatic infrared emitter  

SciTech Connect (OSTI)

Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

2014-02-24T23:59:59.000Z

256

Princeton -Weekly Bulletin 06/14/04 -Grants fund research on underwater vehicles, high-tech materials June 14, 2004  

E-Print Network [OSTI]

Princeton - Weekly Bulletin 06/14/04 - Grants fund research on underwater vehicles, high research on underwater vehicles, high- tech materials By Steven Schultz Princeton NJ -- University mobile unmanned networks of underwater sensors and to develop new high-tech materials. The Department

Aksay, Ilhan A.

257

Submesoscale Coastal Ocean Flows Detected By Very High Frequency Radar and Autonomous Underwater Vehicles  

E-Print Network [OSTI]

Submesoscale Coastal Ocean Flows Detected By Very High Frequency Radar and Autonomous Underwater, autonomous underwater vehicles (AUV), equipped with upward and downward- looking 1.2 MHz Acoustic Doppler and seven snapshots were subsequently time-averaged to form a mean profile from each experiment. In the down-wind

Shay, Lynn K. "Nick"

258

Recent Progress in the Development of High Efficiency Thermoelectrics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si...

259

Project Profile: Development and Productization of High-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells Project Profile: Development and Productization of High-Efficiency, Low-Cost...

260

Energy Savings Potential and Opportunities for High-Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

sponsored this assignment and provided comments on draft versions of the report. iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced CFD Models for High Efficiency Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf More Documents &...

262

advanced high efficiency: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to 100 devices, including memory and logic. Josephson junctions are widely used in superconduct- ing quantum Nadgorny, Boris 65 Design of Efficient Java Communications for High...

263

Field Demonstration of High Efficiency Ultra-Low-Temperature...  

Energy Savers [EERE]

Field Demonstration of High Efficiency Gas Heaters Comparison of Real World Energy Consumption to Models and DOE Test Procedures Building Science "Power Words"...

264

Evaluation of High Efficiency Clean Combustion (HECC) Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

265

Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile  

E-Print Network [OSTI]

recommendations for the United States and China: rework minimum fuel efficiency standards, raise the gasoline tax situation in the United States is largely defined by the Energy Policy and Conservation Act, whichAchieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political

Mauzerall, Denise

266

High Efficiency Fuel Reactivity Controlled Compression Ignition...  

Broader source: Energy.gov (indexed) [DOE]

0.1 0.2 0.3 0.4 0.5 0.6 PM gbhp-hr NOx gbhp-hr 1988 1991 2004 2007 2010 * SI gasoline engine with 3-Way Catalyst: Thermal Efficiency 30% * Diesel engines are the most...

267

Ultra high temperature ceramics for hypersonic vehicle applications.  

SciTech Connect (OSTI)

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.

Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.; Loehman, Ronald E.; Kotula, Paul Gabriel

2006-01-01T23:59:59.000Z

268

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

SciTech Connect (OSTI)

The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.

Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik

2014-09-29T23:59:59.000Z

269

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

270

Experimental study of a high efficiency gyrotron oscillator  

E-Print Network [OSTI]

High power, high frequency gyrotrons used in plasma heating must achieve the highest possible efficiency in order to reduce system size and cost and to minimize thermal and mechanical problems. This thesis presents an ...

Choi, Eunmi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

271

Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7. U.S.8....

272

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Batteryof Energy Developing a New Primer

273

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Hsu, J.S.; Staunton, M.R.; Starke, M.R.

2006-09-30T23:59:59.000Z

274

Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from test data at 900 rpm. They are approximately 15 kW with 103 C coolant and 20 kW with 50 C coolant. To avoid this 25% drop1 in continuous power, design changes for improved heat dissipation and carefully managed changes in allowable thermal limits would be required in the hybrid subsystems. This study is designed to identify the technical barriers that potentially exist in moving to a high-temperature cooling loop prior to addressing the actual detailed design. For operation at a significantly higher coolant temperature, there were component-level issues that had to be addressed in this study. These issues generally pertained to the cost and reliability of existing or near-term components that would be suitable for use with the 105 C coolant. The assessed components include power electronic devices/modules such as diodes and insulated-gate bipolar transistors (IGBTs), inverter-grade high-temperature capacitors, permanent magnets (PM), and motor-grade wire insulation. The need for potentially modifying/resizing subassemblies such as inverters, motors, and heat exchangers was also addressed in the study. In order to obtain pertinent information to assist ORNL researchers address the thermal issues at the component, module, subassembly, and system levels, pre-existing laboratory test data conducted at varying temperatures was analyzed in conjunction with information obtained from technical literature searches and industry sources.

Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

2006-09-01T23:59:59.000Z

275

User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package  

SciTech Connect (OSTI)

EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

Marr, W.W.

1995-01-01T23:59:59.000Z

276

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

277

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double  

E-Print Network [OSTI]

Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites, Harbin 150080, P. R. China ABSTRACT: High-density polyethylene (HDPE) polymer nanocomposites containing. INTRODUCTION High density polyethylene (HDPE) has good electrical proper- ties, high stiffness, and tensile

Guo, John Zhanhu

278

A hybrid vehicle evaluation code and its application to vehicle design  

SciTech Connect (OSTI)

This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

Aceves, S.M.; Smith, J.R.

1994-07-15T23:59:59.000Z

279

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

280

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network [OSTI]

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

282

Low Cost, High Efficiency Reversible Fuel Cell Systems  

E-Print Network [OSTI]

Low Cost, High Efficiency Reversible Fuel Cell Systems DE-FC36-99GO-10455 POC: Doug Hooker Dr Approach: System Concept Fuel Cell Subsystem Battery Subsystem Converter Electrolyzer Subsystem Inverter, -- (216) 541(216) 541--10001000 Slide 5 Approach: Challenges ·Electrolyzer Subsystem Efficiency ·Fuel Cell

283

Design Strategies for Ultra-high Efficiency Photovoltaics  

E-Print Network [OSTI]

Design Strategies for Ultra-high Efficiency Photovoltaics Thesis by Emily Cathryn Warmann, who reminds me that this is fun and interesting. iv #12;Abstract While concentrator photovoltaic cells, the over all module efficiency drops to only 34 to 36%. T

Winfree, Erik

284

DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER  

E-Print Network [OSTI]

#12;DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER Richard F. Topping-efficient refrigerator- freezer prototype involving the Department of Energy's Oak Ridge National Laboratory, Arthur D refrigerator-freezers. The resulting 16 cubic foot prototype uses significantly less energy than the most

Oak Ridge National Laboratory

285

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

286

Vehicle Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

287

Blog Feed: Vehicles | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Automotive Accessibility and Efficiency Meet in the Innovative MV-1 A...

288

High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency  

E-Print Network [OSTI]

Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

Rogers, W. T.

1980-01-01T23:59:59.000Z

289

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

290

Study of Highly Selective and Efficient Thiol Derivatization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

derived from living cells by MS method. Citation: Xu K, YW Zhang, B Tang, J Laskin, PJ Roach, and H Chen.2010."Study of Highly Selective and Efficient Thiol Derivatization using...

291

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

292

Compact and highly efficient laser pump cavity  

DOE Patents [OSTI]

A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

1999-01-01T23:59:59.000Z

293

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

294

Vehicle Technologies Office Merit Review 2014: High-Dilution Stoichiometric Gasoline Direct-Injection (SGDI) Combustion Control Development  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-dilution...

295

Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

296

Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications  

Broader source: Energy.gov [DOE]

Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

297

Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

298

Performance Analysis and Comparison of Three IPMSM with High Homopolar Inductance for Electric Vehicle Applications  

E-Print Network [OSTI]

Synchronous Motor, Zero-Sequence Inductance, Electric Vehicle, Ripple Torque, Fast evaluation, Harmonics three topologies of PMSM according to the specifications of an electric vehicle (EV) with severe and especially for hybrid electric vehicle (HEV) and electric vehicle (EV). Moreover, interior permanent magnet

Boyer, Edmond

299

New US Ultra High Efficiency R&D Programme  

E-Print Network [OSTI]

Very high efficiency is an important characteristic of the value proposition for solar to electric conversion. High efficiency is the shortest path to cost-effective commercial applications and leads to new high value applications such as portable battery charging. The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications1,2 that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

Allen Barnett Douglas Kirkpatrick

300

High-Efficiency Nitride-Based Photonic Crystal Light Sources  

Broader source: Energy.gov [DOE]

The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

302

Evaluating the potential for high thermoelectric efficiency of silver selenide  

E-Print Network [OSTI]

to the exceptionally high mobility, higher than other optimized thermoelectric materials. Although zT decreases at high refrigerants.1 Increasing the efficiency of a thermoelectric material necessitates increasing the gure of merit contribution and an electronic contribution. Thermoelectric materials used in practice have zT near 1. One

Martin, Alain

303

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

SciTech Connect (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

304

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network [OSTI]

HIGH EFFICIENCY GAS TlJR1HNES OVERCOME COGENFRATION PROJECT FEASIBILITY HURDLES JIM KING Gas Turbine Perfonumce Engineer STEVART &: STEVENSON SERVICES. INC. Houston. TelUlS ABSTRACT Cogeneration project feasibility sometimes fails... during early planning stages due to an electrical cycle efficiency which could be improved through the use of aeroderivative gas turbine engines. The aeroderivative engine offers greater degrees of freedom in terms of power augmentation through...

King, J.

305

Kieffer Paper Mill's Recycled Fiber Mill and PSI Energy's High Efficiency Motors Plan  

E-Print Network [OSTI]

efficiency would yield significant energy savings. PSI Energy was able to help Kieffer examine the economics of high efficiency motors, and through the PSI Energy High Efficiency Motors Plan encouraged Kieffer Paper Mills to purchase energy efficient motors...

Myers, J. A.

306

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network [OSTI]

. Figure 3-1 IV curve of a UT fabricated triple cell, showing 12.7% initial, active-area efficiency. Figure1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High

Deng, Xunming

307

High Efficiency GDI Engine Research, with Emphasis on Ignition Systems  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

308

Technology and System Level Demonstration of Highly Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Engine Speed) - Powertrain Components - VibrationCustomer Acceptance * Trailer Aerodynamic Devices that Meet Operational Requirements * Vehicle and Powertrain Communication...

309

Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation  

SciTech Connect (OSTI)

Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

Wood, E.; Burton, E.; Duran, A.; Gonder, J.

2014-06-01T23:59:59.000Z

310

High efficiency III-nitride light-emitting diodes  

DOE Patents [OSTI]

Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

2013-05-28T23:59:59.000Z

311

Vehicle Technologies Office Merit Review 2014: Lubricant Formulations to Enhance Engine Efficiency (LFEEE) in Modern Internal Combustion Engines  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

312

High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers  

SciTech Connect (OSTI)

BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

None

2010-10-01T23:59:59.000Z

313

Vehicle Technologies Office Merit Review 2014: High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems  

Broader source: Energy.gov [DOE]

Presentation given by Farasis Energy, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density Li...

314

Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells  

SciTech Connect (OSTI)

This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

2005-08-01T23:59:59.000Z

315

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency...

316

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network [OSTI]

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

317

Basic studies of 3-5 high efficiency cell components  

SciTech Connect (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

318

LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

common hydrocarbon fuels (e.g., natural gas, propane, and bio-derived fuel) as well as hydrogenLOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS Dr. Christopher E. Milliken, Materials Group Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE

319

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

SciTech Connect (OSTI)

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

320

Ultra-Compact High-Efficiency Luminaire for General Illumination  

SciTech Connect (OSTI)

Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in todayâ??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of â?¥ 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

Ted Lowes

2012-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect (OSTI)

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

322

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

323

NREL: Vehicles and Fuels Research - Systems Analysis and Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of vehicles-conventional vehicles, hybrid electric vehicles,...

324

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

325

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

326

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

327

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network [OSTI]

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

328

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

329

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

330

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

331

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect (OSTI)

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

332

High Quality Down Lighting Luminaire with 73% Overall System Efficiency  

SciTech Connect (OSTI)

This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

2010-08-31T23:59:59.000Z

333

A Perspective on the Future of High Efficiency Engines  

SciTech Connect (OSTI)

New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

Wagner, Robert M [ORNL] [ORNL; Curran, Scott [ORNL] [ORNL; Green Jr, Johney Boyd [ORNL] [ORNL

2013-01-01T23:59:59.000Z

334

A University Consortium on Efficient and Clean High-Pressure...  

Broader source: Energy.gov (indexed) [DOE]

between advanced combustion modes and potential vehicle FE gains with GT-power and Matlab simulations (UM) * Task 2: Stratification as a means to control combustion - Carry out...

335

2008 Annual Merit Review Results Summary - 8. High Efficiency...  

Energy Savers [EERE]

More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and...

336

Development of High-Efficiency Clean Combustion Engines Designs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 --...

337

Low-Temperature Combustion Demonstrator for High-Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

power density - Improved vehicle cooling system (low temperature radiator) - Two stage turbo system - Increased cylinder pressure capability Transient response - Two stage turbo -...

338

Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric Vehicles.  

E-Print Network [OSTI]

??This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated… (more)

Moshirvaziri, Mazhar

2012-01-01T23:59:59.000Z

339

Advanced Klystrons for High Efficiency Accelerator Systems - Final Report  

SciTech Connect (OSTI)

This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

Read, Michael; Ives, Robert Lawrence

2014-03-26T23:59:59.000Z

340

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Test Program for High Efficiency Gas Turbine Exhaust Diffuser  

SciTech Connect (OSTI)

This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

Norris, Thomas R.

2009-12-31T23:59:59.000Z

342

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

343

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

344

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

345

Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

346

Vehicle Technologies Office Merit Review 2014: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

Presentation given by Chrysler at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a multiair/multifuel approach to...

347

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

SciTech Connect (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

348

Chemical beam epitaxy for high efficiency photovoltaic devices  

SciTech Connect (OSTI)

InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

1994-09-01T23:59:59.000Z

349

OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement  

Broader source: Energy.gov [DOE]

With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

350

Low-Temperature Combustion Demonstrator for High-Efficiency Clean  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion Demonstrator for High-Efficiency Clean

351

High Efficiency Combustion and Controls | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency Cold

352

High Efficiency Full Expansion (FEx) Engine for Automotive Applications |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department

353

High Efficiency Microturbine with Integral Heat Recovery - Presentation by  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency|

354

High Efficiency and Stable White OLED Using a Single Emitter  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| - ADVANCEDJian

355

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

operation with energy efficiency in building systems. X X Xoperation with energy efficiency in building systems. 10.3.energy efficiency improvements in healthcare buildings. A

Singer, Brett C.

2010-01-01T23:59:59.000Z

356

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

consensus on energy efficient designs by climate and inestimates for an energy efficient alternative design can behighly energy efficient hospitals while the design community

Singer, Brett C.

2010-01-01T23:59:59.000Z

357

Penn State DOE GATE Center of Exellence for In-Vehicle, High...  

Broader source: Energy.gov (indexed) [DOE]

Vehicles * ANL donated licenses for Powertrain Systems Analysis Toolkit (PSAT) * Matlab Sponsored software and hardware * Supporting EcoCAR proposal * Energy storage focus -...

358

Vehicle Technologies Office Merit Review 2014: Optimization of Ion Transport in High Energy Composite Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by University of California San Diego at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

359

Vehicle Technologies Office Merit Review 2014: Development of High Energy Density Lithium-Sulfur Cells  

Broader source: Energy.gov [DOE]

Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

360

Vehicle Technologies Office Merit Review 2014: Development of High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office Merit Review 2014: Design and Scalable Assembly of High Density Low Tortuosity Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by Massachusetts Institute of Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

362

Vehicle Technologies Office Merit Review 2014: Design and Synthesis of Advanced High-Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

363

Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

364

Vehicle Technologies Office Merit Review 2014: Alloy Development for High-Performance Cast Crankshafts  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied alloy...

365

Vehicle Technologies Office Merit Review 2014: Non-Rare Earth High-Performance Wrought Magnesium Alloys  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non...

366

Vehicle Technologies Office Merit Review 2014: Development of Silicon-based High Capacity Anodes  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

367

Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design and...

368

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

369

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

370

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

371

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

372

In-Plant Testing of High-Efficiency Hydraulic Separators  

SciTech Connect (OSTI)

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

2006-06-30T23:59:59.000Z

373

IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS  

SciTech Connect (OSTI)

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

2006-05-22T23:59:59.000Z

374

A hybrid vehicle evaluation code and its application to vehicle design. Revision 2  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

Aceves, S.M.; Smith, J.R.

1994-12-13T23:59:59.000Z

375

A hybrid vehicle evaluation code and its application to vehicle design. Revision 1  

SciTech Connect (OSTI)

This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

Aceves, S.M.; Smith, J.R.

1994-09-15T23:59:59.000Z

376

Control method for high-pressure hydrogen vehicle fueling station dispensers  

DOE Patents [OSTI]

A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.

Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.

2006-06-13T23:59:59.000Z

377

High efficiency rare-earth emitter for thermophotovoltaic applications  

SciTech Connect (OSTI)

In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573?K (1300?°C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

Sakr, E. S.; Zhou, Z.; Bermel, P., E-mail: pbermel@purdue.edu [Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907 (United States)

2014-09-15T23:59:59.000Z

378

High efficiency silicon nanohole/organic heterojunction hybrid solar cell  

SciTech Connect (OSTI)

High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1??m. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

Hong, Lei [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Singapore Institute of Manufacturing Technology, A-STAR (Agency for Science, Technology and Research), 71 Nanyang Drive, Singapore 638075 (Singapore); Wang, Xincai; Zheng, Hongyu [Singapore Institute of Manufacturing Technology, A-STAR (Agency for Science, Technology and Research), 71 Nanyang Drive, Singapore 638075 (Singapore); He, Lining; Wang, Hao; Rusli, E-mail: yu.hy@sustc.edu.cn, E-mail: erusli@ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu, Hongyu, E-mail: yu.hy@sustc.edu.cn, E-mail: erusli@ntu.edu.sg [South University of Science and Technology of China, Shenzhen (China)

2014-02-03T23:59:59.000Z

379

Energy-efficient wireless communication In this chapter we present an energy-efficient highly adaptive network  

E-Print Network [OSTI]

delay. This chapter addresses the additional goal of efficient energy usage of the mobilesEnergy-efficient wireless communication In this chapter we present an energy-efficient highly of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy

Havinga, Paul J.M.

380

Fact #750: October 22, 2012 Electric Vehicle Energy Requirements...  

Broader source: Energy.gov (indexed) [DOE]

efficiencies of electric vehicles can vary significantly; however, compared with conventional vehicles, they are very efficient-converting about 60% of the energy from the grid to...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Enabling and Expanding HCCI in PFI Gasoline Engines with High...  

Broader source: Energy.gov (indexed) [DOE]

of High Efficiency Engines Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing Ignition Control for HCCI...

382

The Importance of Domain Size and Purity in High-Efficiency Organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs...

383

Highly Efficient Quantum Key Distribution Immune to All Detector Attacks  

E-Print Network [OSTI]

Vulnerabilities and imperfections of single-photon detectors have been shown to compromise security for quantum key distribution (QKD). The measurement-device-independent QKD (MDI-QKD) appears to be the most appealing solution to solve the issues. However, in practice one faces severe obstacles of having significantly lower key generation rate, difficult two photon interferences, and remote synchronization etc. In this letter, we propose a highly efficient and simple quantum key distribution scheme to remove all of these drawbacks. Our proposal can be implemented with only small modifications over the standard decoy BB84 system. Remarkably it enjoys both the advantages of high key generation rate (being almost two orders of magnitude higher than that based on conventional MDI-QKD) comparable to the normal decoy system, and security against any detector side channel attacks. Most favorably one can achieve complete Bell state measurements with resort to single photon interference, which reduces significantly experimental costs. Our approach enables utilization of high speed and efficient secure communication, particularly in real-life scenario of both metropolitan and intercity QKD network, with an attack free fashion from arbitrary detector side channels.

Wen-Fei Cao; Yi-Zheng Zhen; Yu-Lin Zheng; Zeng-Bing Chen; Nai-Le Liu; Kai Chen; Jian-Wei Pan

2014-10-10T23:59:59.000Z

384

High Efficiency Engine Systems Development and Evaluation | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency ColdEnergy 2

385

High Efficiency Engine Systems Development and Evaluation | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency ColdEnergy

386

High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department of

387

High Engine Efficiency at 2010 Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| -4Novel

388

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

SciTech Connect (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

389

Analysis of highly-efficient electric residential HPWHs  

SciTech Connect (OSTI)

A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

Baxter, Van D [ORNL; Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL

2011-09-01T23:59:59.000Z

390

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

391

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

SciTech Connect (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

392

High-Efficiency Nitride-Base Photonic Crystal Light Sources  

SciTech Connect (OSTI)

The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident light into the active region of solar cells; increasing the efficiency of the phosphorous light conversion in white light LEDs etc. In addition to the technology of embedded PhC LEDs, we demonstrate a technique for improvement of the light extraction and emission directionality for existing flip-chip microcavity (thin) LEDs by introducing PhC grating into the top n-contact. Although, the performances of these devices in terms of increase of the extraction efficiency are not significantly superior compared to those obtained by other techniques like surface roughening, the use of PhC offers some significant advantages such as improved and controllable emission directionality and a process that is directly applicable to any material system. The PhC microcavity LEDs have also potential for industrial implementation as the fabrication process has only minor differences to that already used for flip-chip thin LEDs. Finally, we have demonstrated that achieving good electrical properties and high fabrication yield for these devices is straightforward.

James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

2010-01-31T23:59:59.000Z

393

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

394

Optimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application  

E-Print Network [OSTI]

Coefficient 0.6 same none eq Fluid Bulk Modulus 3.7 x 108 1.2 x 109 Pa Pc Check Valve Cracking Pressure 3.2 NOptimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application Michael of Minnesota, Minneapolis, MN, USA ABSTRACT Control of hydraulic systems using high-speed on/off valves has

Li, Perry Y.

395

High Efficiency Microturbine with Integral Heat Recovery - Fact...  

Broader source: Energy.gov (indexed) [DOE]

Research Center, is developing a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology will...

396

Holography as a highly efficient RG flow : Part 1  

E-Print Network [OSTI]

We investigate how the holographic correspondence can be reconstructed as a special RG flow in a strongly interacting large $N$ field theory. We firstly define a "highly efficient RG flow" as one in which the cut-off in momentum space can be adjusted as a functional of the elementary fields, and of the external sources and of the background metric in order to be compatible with the following requirement: the Ward identities for single-trace operators involving conservation of energy, momentum and global charges must preserve the same form at every scale. In order to absorb the contributions of the multi-trace operators to these effective Ward identities, the external sources and the background metric need to be redefined at each scale, and thus they become dynamical as in the dual gravity equations. We give a schematic construction of such highly efficient RG flows using appropriate collective variables, leaving a more explicit construction in certain limits to the second part of this work. We find that all h...

Behr, Nicolas; Mukhopadhyay, Ayan

2015-01-01T23:59:59.000Z

397

Hybrid and Plug-In Electric Vehicles (Brochure)  

SciTech Connect (OSTI)

Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

Not Available

2014-05-01T23:59:59.000Z

398

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems  

SciTech Connect (OSTI)

Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

Clifton B. Higdon III

2011-01-07T23:59:59.000Z

399

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte  

Broader source: Energy.gov [DOE]

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

400

High performance path following for marine vehicles using azimuthing podded propulsion  

E-Print Network [OSTI]

Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

Greytak, Matthew B. (Matthew Bardeen)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect (OSTI)

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

402

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

403

Highly Efficient Small Form Factor LED Retrofit Lamp  

SciTech Connect (OSTI)

This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

Steven Allen; Fred Palmer; Ming Li

2011-09-11T23:59:59.000Z

404

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

405

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

406

High Efficiency Energy Conversion Systems for Liquid Nitrogen Automobiles  

E-Print Network [OSTI]

replacements over the lifetime of the vehicle raises the specter of increased heavy metal pollution, were lead environmental burden and, in particular, would avoid the issues of heavy metals pollution associated with Pb energy storage, particularly lead-acid and Ni-Cd batteries. These heavy metal energy storage systems

Laughlin, Robert B.

407

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect (OSTI)

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

408

Screw pumps provide high efficiency in transport of Orinoco bitumen  

SciTech Connect (OSTI)

One of the world`s largest known deposits of extra natural bitumen is located in the Orinoco River basin of eastern Venezuela. Production and transportation of an emulsion of bitumen and water is one of the major projects being directed by Petroleos de Venezuela S.A. This paper reviews the pump selection options considered in transporting this bitumen to a viable processing facility. The three pump types evaluated were centrifugal, reciprocating, or rotary screw. Performance and cost parameters are evaluated and the screw pump was determined to be the most economical, high performance choice. The paper goes on to describe the installation of the main transport lines and efficiency of these new pumps.

Brennan, J.R. [IMO Industries, Inc., Monroe, NC (United States)

1995-03-01T23:59:59.000Z

409

Performance of a high efficiency advanced coal combustor  

SciTech Connect (OSTI)

Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

1989-12-01T23:59:59.000Z

410

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel...

411

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Office of Environmental Management (EM)

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2...

412

Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Presentation given at DEER...

413

frequency high efficiency two-stage approach for future microprocessors  

E-Print Network [OSTI]

It is perceived that Moore’s Law will prevail at least for the next decade, with continuous advancements of processing technologies for very-large-scale integrated (VLSI) circuits. Nano technology is driving VLSI circuits in a path of greater transistor integration, faster clock frequency, and lower operation voltage. This has imposed a new challenge for delivering highquality power to modern processors. Power management technology is critical for transferring the required high current in a highly efficient way, and accurately regulating the sub-1V voltage in very fast dynamic transient response conditions. Furthermore, the VRs are limited in a given area and the power density is important to save the precious real estate of the motherboard. Based on the power delivery path model, the analysis results show that as long as the bandwidth can reach around 350 kHz, the bulk capacitor of the VR can be completely eliminated, which means significant savings in cost and real estate. Analysis also indicates that 650kHz bandwidth can reduce the number of the decoupling capacitor from 230 to 50 for future microprocessor case. Beyond 650kHz, the reduction is not obvious any more due to the parasitic components along the power delivery path. Following the vision of high bandwidth, the VRs need to operate at much higher frequency

Yuancheng Ren; Dusan Boroyevich; Daan Wyk; Guo Quan; Lu Douglas; K. Lindner; Yuancheng Ren

414

Vehicle Technologies Office Merit Review 2014: High Efficiency, Low EMI and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLab Benchmarking - Level 1Positioning

415

Optimization of a CNG series hybrid concept vehicle  

SciTech Connect (OSTI)

Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

1995-09-22T23:59:59.000Z

416

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

Efficiency 11-Sept-2009 9. Economic and Organizationaland Organizational Issues 9.1. Strategies to overcome structural challenges to energy efficiencyorganizational scheme to facilitate discussion of challenges to improving energy efficiency

Singer, Brett C.

2010-01-01T23:59:59.000Z

417

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network [OSTI]

- thermophotovoltaic (TPV) generator. The approach is predicted to be capable of up to 32% efficient heat system that was built and tested comprises a silicon propane microcombustor, an inte- grated high, generating 344 mW of electric power over a 1-cm2 area. catalytic combustion | micro generator | thermal

Soljaèiæ, Marin

418

High Efficiency of Gamma-Ray Bursts Revisited  

E-Print Network [OSTI]

efficiency of gamma-ray bursts by assuming that the ejecta from the central engine are equally massive and

Y. C. Zou A; Z. G. Dai B

2007-01-01T23:59:59.000Z

419

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

for Efficiency Improvement Controls Variable Valve Actuation Variable Intake Swirl Turbo Technology Electrically Driven Components Aftertreatment Integration of Cummins...

420

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

SciTech Connect (OSTI)

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

422

High-efficiency photovoltaics based on semiconductor nanostructures  

SciTech Connect (OSTI)

The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

Yu, Paul K.L. [University of California, San Diego; Yu, Edward T. [University of Texas at Austin; Wang, Deli [University of California, San Diego

2011-10-31T23:59:59.000Z

423

Gaz de France ordering high-efficiency drivers  

SciTech Connect (OSTI)

For natural gas transmission, distribution, and storage operations, Gaz de France is installing Creusot-Loire's new line of high-efficiency gas-turbine packages, powered by Allison 501 and 570 generators for compressor speeds exceeding 10,000 rpm. The Type CA.3 driver comprises a 501 generator coupled to a two-stage power turbine; the ISO base rating is 3265 kW on gas fuel with a heat rate of 12,050 Btu/kWhr. The CA.5 driver with the stronger 570 gas-turbine engine is base-rated at 4805 kW with a heat rate of 11,360 Btu/kWhr. Designed for direct-drive, with no intermediary gearing, the high-speed compressor operates on the 13,820-rpm output shaft speed of the CA.3 for baseload requirements or on 11,500 rpm for the more powerful CA.5 set. These compressor packages will serve as boosters for the transmission and storage of regasified LNG from Algeria and natural gas from the North Sea, USSR, and France's own Lacq fields.

de Biasi, V.

1980-11-01T23:59:59.000Z

424

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

SciTech Connect (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

425

Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects  

SciTech Connect (OSTI)

High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI. Engine-out data for several MSAT species (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, naphthalene, PAHs, diesel PM) as well as other HC species are presented and compared when possible with conventional operation. In addition, catalyst-out values were measured to assess the destruction of individual MSATs over the catalyst. At low engine loads, MSATs were higher and catalyst performance was poorer. Particle sizing results identify large differences between PM from conventional and HECC operation.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL; Barone, Teresa L [ORNL; Prikhodko, Vitaly Y [ORNL

2008-01-01T23:59:59.000Z

426

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect (OSTI)

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

427

Title of Project: Ramp High Occupancy Vehicle (HOV) Sponsors: Chicago Metropolitan Agency for Planning  

E-Print Network [OSTI]

: reduced travel delay, value of travel time saved, fuel volume savings, fuel cost savings, reduced vehicle the scope of work: 1. Determine appropriate set of parallel streets to be modeled as alternative routes using planning agency data 7. Input traffic data to the FREQ traffic simulation model for the 2030

Illinois at Chicago, University of

428

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect (OSTI)

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

429

2011 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

430

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment and with minimized soot Target today's Diesel fuel - Improve break thermal efficiency to 5% over current production - The technology generated in project to...

431

Laclede Gas Company- Residential High Efficiency Heating Rebate Program  

Broader source: Energy.gov [DOE]

Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

432

Southwest Gas Corporation- Commercial High-Efficiency Equipment Rebate Program  

Broader source: Energy.gov [DOE]

Southwest Gas Corporation (SWG) offers rebates to commercial customers in Arizona who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless...

433

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-04-30T23:59:59.000Z

434

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect (OSTI)

In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

Dr. Paul T. Fini; Prof. Shuji Nakamura

2002-09-01T23:59:59.000Z

435

High efficiency proportional neutron detector with solid liner internal structures  

DOE Patents [OSTI]

A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

2014-08-05T23:59:59.000Z

436

Vehicle Technologies Office Merit Review 2014: Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems  

Broader source: Energy.gov [DOE]

Presentation given by Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

437

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells Brian E, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3 be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly

McGehee, Michael

438

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS  

E-Print Network [OSTI]

ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS Except where School Engineering #12;ENERGY-EFFICIENT RESOURCE MANAGEMENT FOR HIGH-PERFORMANCE COMPUTING PLATFORMS of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 9, 2008 #12;iii ENERGY-EFFICIENT

Qin, Xiao

439

Advanced Nanomaterials for High-Efficiency Solar Cells  

SciTech Connect (OSTI)

Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

Chen, Junhong [University of Wisconsin-Milwaukee] [University of Wisconsin-Milwaukee

2013-11-29T23:59:59.000Z

440

Enabling High Efficiency Clean Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen Program and Vehicle Technologies

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Passivity Analysis and Design of Passivity-Based Controllers for Trajectory Tracking at High Speed of Autonomous Vehicles  

E-Print Network [OSTI]

of Autonomous Vehicles Gilles Tagne, Reine Talj and Ali Charara Abstract-- Autonomous intelligent vehicles of intelligent vehicles, with the aim of minimizing the lateral displacement of the autonomous vehicle competitions have been organized all around the world to favor the development of autonomous intelligent ve

Paris-Sud XI, Université de

442

Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by  

E-Print Network [OSTI]

: Three of central challenges in solar cells are high light coupling into solar cell, high light trappingUltrathin, high-efficiency, broad-band, omni- acceptance, organic solar cells enhanced by plasmonic and demonstration of a new ultra-thin high- efficiency organic solar cell (SC), termed "plasmonic cavity

443

High-Efficiency and Stable White Organic Light-Emitting Diode...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter Presenter: Jian...

444

Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting  

Broader source: Energy.gov [DOE]

The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

445

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines 2012 DOE Hydrogen and Fuel Cells Program and...

446

Design and global optimization of high-efficiency thermophotovoltaic systems  

E-Print Network [OSTI]

Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of ...

Bermel, Peter A.

447

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...  

Broader source: Energy.gov (indexed) [DOE]

that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to...

448

Materials-Enabled High-Efficiency Diesel Engines (CRADA with...  

Broader source: Energy.gov (indexed) [DOE]

UT-Battelle for the U.S. Department of Energy Overview Timeline * Develop supporting materials technology to enable Heavy-Duty diesel efficiency of 55%, while meeting prevailing...

449

High Efficiency Full Expansion (FEx) Engine for Automotive Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Frontier in Engine Efficiency Two-Stroke Uniflow Turbo-Compound IC Engine The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions Results in a Medium-Duty...

450

Transportation Efficiency Resources  

Broader source: Energy.gov [DOE]

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

451

Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle  

E-Print Network [OSTI]

Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle M a high efficiency energy management control strategy for a hybrid fuel cell vehicle. The proposed the model of a real hybrid car, "Smile" developed by FAAM, using a stack of fuel cells as the primary power

452

Testing and Validation of Vehicle to Grid Communication Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Greenpower Trap Mufflerl System Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Vehicles Home About Vehicle Technologies Office Plug-in...

453

Electric Drive Vehicle Level Control Development Under Various...  

Broader source: Energy.gov (indexed) [DOE]

3 The objective is to develop the entire vehicle thermal management system for two electric drive vehicles (HEVs, PHEVs). Limited battery power and low engine efficiency at...

454

DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER  

E-Print Network [OSTI]

#12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 icense in and to any copyright covering the drticle. This paper describes a high-efficiency water heater which uses a design approach quite different from the conventional center-flue water heater. While high

Oak Ridge National Laboratory

455

High-efficiency He-3 proportional counter for the detection of delayed neutrons  

SciTech Connect (OSTI)

The present work examines a high-neutron efficiency detector used to measure delayed neutron techniques. The measurement of delayed neutrons requires a detector system that has high neutron efficiency and a low dead- time. The detection system must also have low gamma-ray sensitivity, and in addition must be insensitive to small sample displacement. The operating characteristics of the high-efficiency He-3 proportional counter used for the measurement of {beta}{sub i}-delayed neutrons is reported here.

Loaiza, D.J.

1998-03-01T23:59:59.000Z

456

Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting  

E-Print Network [OSTI]

In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

2014-01-01T23:59:59.000Z

457

Broadband Quantum Efficiency Enhancement in High Index Nanowires Resonators  

E-Print Network [OSTI]

Light trapping in sub-wavelength semiconductor nanowires (NWs) offers a promising approach to simultaneously reducing material consumption and enhancing photovoltaic performance. Nevertheless, the absorption efficiency of a NW, defined by the ratio of optical absorption cross section to the NW diameter, lingers around 1 in existing NW photonic devices, and the absorption enhancement suffers from a narrow spectral width. Here, we show that the absorption efficiency can be significantly improved in NWs with higher refractive indices, by an experimental observation of up to 350% external quantum efficiency (EQE) in lead sulfide (PbS) NW resonators, a 3-fold increase compared to Si NWs. Furthermore, broadband absorption enhancement is achieved in single tapered NWs, where light of various wavelengths is absorbed at segments with different diameters analogous to a tandem solar cell. Overall, the single NW Schottky junction solar cells benefit from optical resonance, near bandgap open circuit voltage, and long mino...

Yang, Yiming; Hyatt, Steven; Yu, Dong

2015-01-01T23:59:59.000Z

458

Development of high efficiency ball-bearing turbocharger  

SciTech Connect (OSTI)

Turbochargers have become very popular on passenger cars since the first mass-produced turbocharged passenger cars were put on market in Japan in 1979. Turbo lag is one of the most serious problem since the first mass-production started. Several new technologies such as a variable geometry turbocharger, ceramic turbocharger, etc. have been introduced to improve acceleration performance. A variable geometry turbocharger changes the area of gas flow passage and increases exhaust gas speed at low engine speed. A ceramic turbocharger reduces inertia moment of a turbine wheel and shaft. Turbocharger mechanical efficiency has equal importance as compressor efficiency and turbine efficiency. This paper describes the test results of ball bearing turbochargers.

Miyashita, K.; Kurasawa, M.; Matsuoka, H.; Ikeya, N.

1987-01-01T23:59:59.000Z

459

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network [OSTI]

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

460

NASA's Marshall Space Flight Center Saves Water With High-Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study 6 - Toilets and Urinals (Fact Sheet), Federal...

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A High-Efficiency Grid-Tie Battery Energy Storage System.  

E-Print Network [OSTI]

??Lithium-ion based battery energy storage system has become one of the most popular forms of energy storage system for its high charge and discharge efficiency… (more)

Qian, Hao

2011-01-01T23:59:59.000Z

462

High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array  

E-Print Network [OSTI]

9295-7 High efficient electrical stimulation of hippocampalE. D. de Asis Jr. Departments of Electrical Engineering andaligned carbon nanofiber . Electrical stimulation . Neural

2009-01-01T23:59:59.000Z

463

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

SciTech Connect (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

464

High efficiency resonant dc/dc converter for solar power applications .  

E-Print Network [OSTI]

??This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage… (more)

Inam, Wardah

2013-01-01T23:59:59.000Z

465

High-Efficiency Solar Cells for Large-Scale Electricity Generation  

SciTech Connect (OSTI)

One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

2008-09-26T23:59:59.000Z

466

Exploring MapReduce Efficiency with Highly-Distributed Data  

E-Print Network [OSTI]

is also distributed, e.g. data is collected in separate data center loca- tions, the most efficient-performance computing over large data sets in large-scale platforms. Fueling this growth is the emergence of cloud several distributed data sources, i.e., large-scale data could be collected in separate data center

Chandra, Abhishek

467

Design and global optimization of high-efficiency thermophotovoltaic  

E-Print Network [OSTI]

). © 2010 Optical Society of America OCIS codes: (230.5298) Photonic crystals; (350.6050) Solar energy, PhC-based designs present a set of non-convex optimization problems requiring efficient objective micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold

468

High efficiency thin-film multiple-gap photovoltaic device  

DOE Patents [OSTI]

A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

Dalal, Vikram L. (Newark, DE)

1983-01-01T23:59:59.000Z

469

Small core axial compressors for high efficiency jet aircraft  

E-Print Network [OSTI]

This thesis quantifies mechanisms that limit efficiency in small core axial compressors, defined here as compressor exit corrected flow between 1.5 and 3.0 lbm/s. The first part of the thesis describes why a small engine ...

DiOrio, Austin Graf

2012-01-01T23:59:59.000Z

470

Highly efficient 6-stroke engine cycle with water injection  

DOE Patents [OSTI]

A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

Szybist, James P; Conklin, James C

2012-10-23T23:59:59.000Z

471

Efficient Techniques for High-Speed Elliptic Curve Cryptography  

E-Print Network [OSTI]

Gebotys Department of Electrical and Computer Engineering, University of Waterloo, Canada, {plonga] is an integer, is the central and most time-consuming operation in Elliptic Curve Cryptography (ECC). Hence, its gained increasing importance in recent years. In this work, we combine several efficient techniques

472

Design of high efficiency blowers for future aerosol applications  

E-Print Network [OSTI]

Blower performance measurement test-rig. ....................................................47 xii Page Figure 20 Pressure recovery for different venturi types (FLOW-DYNE Engineering... consumption curves for final-prototype. ........87 Figure 45 Experimental efficiency( )EXP values for final-prototype 70xz_28y. ............88 Figure A-1 Venturi calibration chart...

Chadha, Raman

2007-04-25T23:59:59.000Z

473

High-efficiency large-area CdTe panels  

SciTech Connect (OSTI)

The objective of this three year effort has been to develop an improved materials technology and fabrication process for limited volume production of 1 ft{sup 2} and 4 ft{sup 2} CdS/CdTe photovoltaic modules. The module stability objective by the end of this three year subcontract was to develop techniques to provide ten year life exploration with no greater than 10% degradation. In order to achieve these efficiency and stability objectives, the research program has been separated into tasks including: (1) analysis and characterization of CdS/CdTe Devices; (2) performance optimization on small cells; (3) encapsulation and stability testing; and (4) module efficiency optimization. 27 refs., 18 figs., 3 tabs.

Albright, S.P.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (USA))

1990-11-01T23:59:59.000Z

474

High efficiency waste to energy facility -- Pilot plant design  

SciTech Connect (OSTI)

Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

1998-07-01T23:59:59.000Z

475

Development of Enabling Technologies for High Efficiency, Low Emissions  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartment ofEfficiency |Homogeneous

476

Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation  

SciTech Connect (OSTI)

Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

2005-01-01T23:59:59.000Z

477

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

high BMEP * Robust combustion control - Transient control of HCCI - Combustion feedback sensors - Combustion mode switching Gap Analysis * Evaluate Production readiness *...

478

Energy Information Administration - Energy Efficiency, energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

479

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

480

Department of Mechanical Engineering Spring 2013 Improving Vehicle Efficiency for Shell Eco-marathon Competition (Team 2)  

E-Print Network [OSTI]

131 competing teams. Objectives Select a new high speed electric hub motor to implement a new "coast Electric Hub Motor o Identified customer needs o Researched and selected motor based on specifications o the coast and burn technique Proved that the coast and burn technique can apply to electrical motors

Demirel, Melik C.

Note: This page contains sample records for the topic "high efficiency vehicles" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy-Efficient Pipeline Templates for High-Performance Asynchronous Circuits  

E-Print Network [OSTI]

A Energy-Efficient Pipeline Templates for High-Performance Asynchronous Circuits Basit Riaz Sheikh and Rajit Manohar, Cornell University We present two novel energy-efficient pipeline templates for high is presented, which results in significant latency and energy savings especially as the number of outputs

Manohar, Rajit

482

Silicon Photodiodes for High-Efficiency Low-Energy Electron Detection  

E-Print Network [OSTI]

Silicon Photodiodes for High-Efficiency Low-Energy Electron Detection Agata Saki, Lis K. Nanver, T--Solid-state electron detectors have been fabricated using a p+ n silicon photodiode where the p+ region is created near theoretical efficiency at high electron energies. The photodiodes have outstanding performance

Technische Universiteit Delft

483

High throughput energy efficient multi-FFT architecture on FPGAs (Draft)  

E-Print Network [OSTI]

computing, High throughput FFT, Energy efficient design I. INTRODUCTION As FPGAs are programmed specifically in spread spec- trum receiver [4]. In the design of high throughput FFT architectures, energy-efficient design techniques can be used to maximize performance under power dissipation constraints. The power

Prasanna, Viktor K.

484

NANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1  

E-Print Network [OSTI]

for solar energy conversion. NANOSTRUCTURED SOLAR CELLS Nanostructured solar cells offer several advantages to contribute to high efficiency devices NEW CONCEPTS FOR SOLAR CELLS An important advantage for nanostructuredNANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1 , Allen M

Honsberg, Christiana

485

Energy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems  

E-Print Network [OSTI]

hybrid system using a commodity DRAM cache. Keywords-Memory Controller, DRAM, PCM, Energy I. INTRODUCTIONEnergy Efficient Phase Change Memory Based Main Memory for Future High Performance Systems Abstract system of similar storage size. Our proposed system is highly energy efficient and provides 35

Conte, Thomas M.

486

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

487

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

488

High Fidelity Radiative Thermal Transport Simulations of a Scramjet Propulsion System.  

E-Print Network [OSTI]

??Scramjets are a type of air breathing propulsion system that have the potential to efficiently provide thrust for atmospheric vehicles at high speeds. Defining the… (more)

Irvine, Adam Glenn

2013-01-01T23:59:59.000Z

489

Current-matched high-efficiency, multijunction monolithic solar cells  

DOE Patents [OSTI]

The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1993-01-01T23:59:59.000Z

490

Achieving High Efficiency at 2010 Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract andthe LosUsing CFDHigh Efficiency

491

Enabling the Next Generation of High Efficiency Engines  

Broader source: Energy.gov (indexed) [DOE]

optimization methods, and reduced models for on-board controls 15 Leadership High Performance Computing* (HPC) has potential to accelerate design and development at an...

492

High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries  

SciTech Connect (OSTI)

In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

2005-11-15T23:59:59.000Z

493

Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms  

SciTech Connect (OSTI)

PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

None

2012-01-01T23:59:59.000Z

494

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Automotive and other vehicle bodies are generally formed out of sheet steel, although there is a trend toward more plastic and aluminum

Galitsky, Christina

2008-01-01T23:59:59.000Z

495

Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform  

SciTech Connect (OSTI)

We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

2014-04-28T23:59:59.000Z

496

A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp  

SciTech Connect (OSTI)

High-lumen light sources represent unique challenges and opportunities for the design of practical and efficient interior lighting systems. High-output sources require a means of large-scale distribution and avoidance of high-luminance glare while providing efficient delivery. An indirect lighting system has been developed for use with a 1,000 Watt sulfur lamp that efficiently utilizes the high-output source to provide quality interior lighting. This paper briefly describes the design and initial testing of this new system.

Siminovitch, M.; Gould, C.; Page, E.

1997-06-01T23:59:59.000Z

497

High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH PERFORMANCE andHigh Risk PlanD D eHigh

498

Twin-screw tanker designed for high efficiency  

SciTech Connect (OSTI)

In late 1994, the Ching Fu shipyard in Taiwan delivered a chemical tanker to Fram Shipping, for operations around Northern Europe for Norsk Hydro. The 13000 dwt tanker design is optimized to have the lowest possible operational cost for the given dead-weight capacity. Waertsilae Propulsion has from an early stage contributed to the development of the propulsion system. The company proposed the Waertsilae Propac concept, including the hydrodynamic design and the supply of the main components. The propeller was designed using in-house computer programs, and the results confirmed by model tests, both at Danish Maritime Institute (DMI) in Copenhagen, and at SSPA Maritime Consulting in Gothenburg. The hull form for the tanker was optimized by a special bulb design to reduce the wave resistance. The vessel is also designed with a special twin skeg arrangement in the stern. This solution allows for two large and efficient propellers to be installed.

NONE

1995-11-01T23:59:59.000Z

499

High-efficiency neutron detectors and methods of making same  

DOE Patents [OSTI]

Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

McGregor, Douglas S.; Klann, Raymond

2007-01-16T23:59:59.000Z

500

High-efficiency spectral purity filter for EUV lithography  

DOE Patents [OSTI]

An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

Chapman, Henry N. (Livermore, CA)

2006-05-23T23:59:59.000Z