National Library of Energy BETA

Sample records for high efficiency solar

  1. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. ...andfuelcells.energy.gov HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S ...

  2. Webinar: Highly Efficient Solar Thermochemical Reaction Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Efficient Solar Thermochemical Reaction Systems Webinar: Highly Efficient Solar Thermochemical Reaction Systems Below is the text version of the webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: Hello, everyone, and thanks for joining today's webinar. Today's webinar is being recorded, so

  3. Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Highly Efficient Solar Thermochemical Reaction Systems" held on January 13, 2015.

  4. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  5. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of ...

  6. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  7. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  8. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy ... Return to Search Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs ... gaps will lead to efficient power conversion. ...

  9. High Efficiency Multiple-Junction Solar Cells

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-19

    Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking semiconductor p-n junction layers to capture energy from all spectral regions. ...

  10. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  11. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  12. Webinar January 13: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  13. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    SciTech Connect (OSTI)

    Randy C. Gee

    2004-11-15

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  14. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Cogeneration with TPV & Fiber-Optic Daylighting More Documents & Publications 2015 Building Technologies Office Program Peer Review Report Low Capital Photovoltaic Panel ...

  15. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar

    Office of Scientific and Technical Information (OSTI)

    Cells based on Transparent Conducting Oxides (Journal Article) | SciTech Connect Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides Citation Details In-Document Search Title: Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting

  16. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  17. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  18. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  19. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.

  20. High-efficiency silicon heterojunction solar cells: Status and perspectives

    SciTech Connect (OSTI)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.

  1. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  2. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  3. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  4. Webinar January 13: Highly Efficient Solar Thermochemical Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency, converting methane and water into syngas-a mix of hydrogen and carbon monoxide-and the technology received an R&D 100 Award in 2014. As the solar energy is stored...

  5. High-Efficiency Solar Thermochemical Reactor for Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Solar Thermochemical Reactor for Hydrogen Production - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  6. High-Efficiency, Commercial Ready CdTe Solar Cells

    SciTech Connect (OSTI)

    Sites, James R.

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  7. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  8. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  9. Approach towards high efficiency polycrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Chen, Z.; Salami, J. )

    1992-12-01

    A combination of theoretical modelling, gettering and passivation, and cell fabrication is presented in this paper to provide guidelines for improving efficiency of polycrystalline solar cells. Theoretical modelling was performed to show that grain boundary barrier height decreases and carrier diffusion length increases with illumination level ([le]50 suns) in those polycrystalline materials where grain boundary dominates the recombination. Model calculations show that the efficiency spread due to grain boundary defect density ([ital N][sub [ital st

  10. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  11. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  12. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - ...

  13. High-efficiency solar cells using HEM silicon

    SciTech Connect (OSTI)

    Khattak, C.P.; Schmid, F.; Schubert, W.K.

    1994-12-31

    Developments in Heat Exchanger Method (HEM) technology for production of multicrystalline silicon ingot production have led to growth of larger ingots (55 cm square cross section) with lower costs and reliability in production. A single reusable crucible has been used to produce 18 multicrystalline 33 cm square cross section 40 kg ingots, and capability to produce 44 cm ingots has been demonstrated. Large area solar cells of 16.3% (42 cm{sup 2}) and 15.3% (100 cm{sup 2}) efficiency have been produced without optimization of the material production and the solar cell processing.

  14. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights...

    Office of Scientific and Technical Information (OSTI)

    High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges Acknowledgement: Work performed at NREL for US DOE under contract No....

  15. Final Report - High efficiency heterojunction solar cell on 30μm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    c-Si substrates using novel exfoliation technology Final Report - High efficiency heterojunction solar cell on 30m thin c-Si substrates using novel exfoliation technology ...

  16. Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

  17. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very

  18. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Capstone Turbine Corporation, in collaboration with Oak Ridge National Laboratory and NASA Glenn Research Center, is developing a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels. PDF icon High Efficiency Microturbine with Integral Heat Recovery More Documents & Publications High Efficiency Microturbine

  19. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  20. New approaches for high-efficiency solar cells. Final report

    SciTech Connect (OSTI)

    Bedair, S.M.; El-Masry, N.A.

    1997-12-01

    This report summarizes the activities carried out in this subcontract. These activities cover, first the atomic layer epitaxy (ALE) growth of GaAs, AlGaAs and InGaP at fairly low growth temperatures. This was followed by using ALE to achieve high levels of doping both n-type and p-type required for tunnel junctions (Tj) in the cascade solar cell structures. Then the authors studied the properties of AlGaAs/InGaP and AlGaAs/GaAs tunnel junctions and their performances at different growth conditions. This is followed by the use of these tunnel junctions in stacked solar cell structures. The effect of these tunnel junctions on the performance of stacked solar cells was studied at different temperatures and different solar fluences. Finally, the authors studied the effect of different types of black surface fields (BSF), both p/n and n/p GaInP solar cell structures, and their potential for window layer applications. Parts of these activities were carried in close cooperation with Dr. Mike Timmons of the Research Triangle Institute.

  1. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R.; Hale, Robert R.

    1984-01-01

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  2. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2

    Broader source: Energy.gov (indexed) [DOE]

    Recompression Cycle | Department of Energy 313_sullivan.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY13 Q3 Final Report - High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

  3. Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation

    SciTech Connect (OSTI)

    Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

    2005-01-01

    Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

  4. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    SciTech Connect (OSTI)

    Uzu, Hisashi E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi; Nakano, Kunihiro; Meguro, Tomomi; Yamamoto, Kenji; Hernández, José Luis; Kim, Hui-Seon; Park, Nam-Gyu E-mail: npark@skku.edu

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

  5. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.

  6. NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sites in Colorado and Yokohama, Japan - News Releases | NREL and Partners to Compare High-Efficiency Solar Cells from Three Nations at Sites in Colorado and Yokohama, Japan April 4, 2011 Golden, Colo., April 4, 2011 - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is partnering with major international industrial technology and solar research organizations to test how solar cells from three manufacturers perform in two geographic locations with different

  7. Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

    2011-04-01

    Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

  8. High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting | Department of Energy Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with Thermophotovoltaic & Fiber-Optic Daylighting Credit: Creative Light Source, Inc. Credit: Creative Light Source, Inc. Lead Performer: Creative Light Source, Inc. DOE Funding: $1,724,521 (total for SBIR Phases I and 2) Cost Share: N/A Project Term: 7/28/14 - 7/28/16 Funding Opportunity Announcement: 2013 - Small Business Innovation

  9. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  10. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  11. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiencysel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  12. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print Wednesday, 27 March 2013 00:00 The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the

  13. CdTe portfolio offers commercial ready high efficiency solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The combination of low cost and increasing efficiencies have ... both by radio frequency sputtering at ambient temperature. ... telluride, and heat treatment to convert the cadmium ...

  14. Design for the fabrication of high efficiency solar cells

    DOE Patents [OSTI]

    Simmons, Joseph H.

    1998-01-01

    A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

  15. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  16. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect (OSTI)

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  17. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells

    SciTech Connect (OSTI)

    Liu, Feng; Zhu, Jun E-mail: sydai@ipp.ac.cn; Wei, Junfeng; Li, Yi; Lv, Mei; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi; Dai, Songyuan E-mail: sydai@ipp.ac.cn

    2014-06-23

    Organo-metal halide perovskite solar cells based on planar architecture have been reported to achieve remarkably high power conversion efficiency (PCE, >16%), rendering them highly competitive to the conventional silicon based solar cells. A thorough understanding of the role of each component in solar cells and their effects as a whole is still required for further improvement in PCE. In this work, the planar heterojunction-based perovskite solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a great dependence of PCE on the thickness and defect density of the perovskite layer. Meanwhile, parameters including the work function of the back contact as well as the hole mobility and acceptor density in hole transport materials were identified to significantly influence the performance of the device. Strikingly, an efficiency over 20% was obtained under the moderate simulation conditions.

  18. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  19. Fabrication and analysis of high efficiency multicrystalline silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Sana, P.; Cai, L.; Doolittle, W.A.; Kamra, S.; Doshi, P.; Krygowski, T.; Crotty, G.

    1996-01-01

    A detailed investigation of quality enhancement techniques, such as plasma enhanced chemical vapor deposition (PECVD) of SiO{sub 2}/SiN coating, forming gas anneal (FGA) and Al gettering was conducted to improve the performance of cells fabricated on several promising multicrystalline silicon (mcs) materials. A large amount of hydrogen and positive charge in the PECVD SiN antireflection (AR) coating play an important role in passivating surface and bulk defects in silicon. Appropriate post-PECVD deposition anneal was found to be important in maximizing the benefit from PECVD AR coating. Low temperature anneal at 350{degree}C/20 min improves the short wavelength response due to surface passivation along with some increase in the long wavelength response due to bulk defect passivation in certain mcs materials. Post-PECVD rapid thermal anneals (RTA) in the range of 350 to 750{degree}C significantly improve the long wavelength response of certain materials such as EFG silicon. However, this comes at the expense of short wavelength response due to increased absorption in the SiN film. Electron beam induced current (EBIC) measurements revealed significant increase in the intragrain response of these cells after post-PECVD anneal. Al gettering of mcs showed a significant improvement in bulk lifetime and cell efficiency. Forming gas anneal, after phosphorus and Al diffusions, resulted in additional improvements in bulk lifetime in certain materials due to hydrogen passivation. Cells fabricated on cast mcs from Osaka Titanium Corporation (OTC) and Crystal Systems gave cell efficiencies in the range of 17 to 18{percent}. Without the appropriate gettering and passivation techniques these materials give cell efficiencies in the range of 14.5 to 15.5{percent}. {copyright} {ital 1996 American Institute of Physics.}

  20. Current-matched high-efficiency, multijunction monolithic solar cells

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  1. New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells

    SciTech Connect (OSTI)

    Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M. )

    1993-01-01

    This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

  2. Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.; Itoh, Y.

    1989-07-15

    This paper describes some recent developments in GaAs thin-film solar cells fabricated on Si substrates by metalorganic chemical vapor deposition and numerically analyzes them.GaAs solar cells with efficiency of more than 18% are successfully fabricated on Si substrates by reducing the dislocation density. Photovoltaic properties of GaAs/Si cells are analyzed by considering the effect of nonuniform dislocation distribution on recombination properties of GaAs thin films on Si substrates. Numerical analysis shows that the effect of majority-carrier trapping must be considered. High efficiency GaAs solar cells with total-area efficiency of over 20% on Si substrates can be realized if dislocation density can be reduced to less than 5/times/10/sup 5/ cm/sup /minus/2/.

  3. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  4. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  5. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  6. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  7. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  8. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  9. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  10. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  11. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  12. High-Efficiency GaInP/GaAs Tandem Solar Cells

    SciTech Connect (OSTI)

    Bertness, K. A.; Friedman, D. J.; Kurtz, S. R.; Kibbler, A. E.; Cramer, C.; Olson, J. M.

    1996-09-01

    GaInP/GaAs tandem solar cells have achieved efficiencies between 25.7-30.2%, depending on illumination conditions. The efficiencies are the highest confirmed two-terminal values measured for any solar cell within each standard illumination category. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance.

  13. High-efficiency GaInP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Bertness, K.A.; Friedman, D.J.; Kurtz, S.R.; Kibbler, A.E.; Kramer, C.; Olson, J.M.

    1994-12-01

    GaInP/GaAs tandem solar cells have achieved new record efficiencies, specifically 25.7% under air-mass 0 (AM0) illumination, 29.5% under AM 1.5 global (AM1.5G) illumination, and 30.2% at 140-180x concentration under AM 1.5 direct (AM1.5D) illumination. These values are the highest two-terminal efficiencies achieved by any solar cell under these illumination conditions. The monolithic, series-connected design of the tandem cells allows them to be substituted for silicon or gallium arsenide cells in photovoltaic panel systems with minimal design changes. The advantages of using GaInP/GaAs tandem solar cells in space and terrestrial applications are discussed primarily in terms of the reduction in balance-of-system costs that accrues when using a higher efficiency cell. The new efficiency values represent a significant improvement over previous efficiencies for this materials system, and we identify grid design, back interface passivation, and top interface passivation as the three key factors leading to this improvement. In producing the high-efficiency cells, we have addressed nondestructive diagnostics and materials growth reproducibility as well as peak cell performance. 31 refs.

  14. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    SciTech Connect (OSTI)

    Yan, Wensheng Gu, Min; Tao, Zhikuo; Ong, Thiam Min Brian

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  15. Solar Performance and Efficiency

    Broader source: Energy.gov [DOE]

    The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into usable electricity. Improving this conversion efficiency is a key goal of research and helps make PV technologies cost-competitive with conventional sources of energy.

  16. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect (OSTI)

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  17. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect (OSTI)

    Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M.; Meysing, D. M.; Wolden, C. A.; Li, J.; Beach, J. D.; Garner, S.

    2015-03-30

    Flexible, high-efficiency, low-cost solar cells can enable applications that take advantage of high specific power, flexible form factors, lower installation and transportation costs. Here, we report a certified record efficiency of 16.4% for a flexible CdTe solar cell that is a marked improvement over the previous standard (14.05%). The improvement was achieved by replacing chemical-bath-deposited CdS with sputtered CdS:O and also replacing the high-temperature sputtered ZnTe:Cu back contact layer with co-evaporated and rapidly annealed ZnTe:Cu. We use quantum efficiency and capacitance-voltage measurements combined with device simulations to identify the reasons for the increase in efficiency. Both device simulations and experimental results show that higher carrier density can quantitatively account for the increased open circuit voltage (V{sub OC}) and Fill Factor (FF), and likewise, the increase in short circuit current density (J{sub SC}) can be attributed to the more transparent CdS:O.

  18. High Efficiency Solar-based Catalytic Structure for CO{sub 2} Reforming

    SciTech Connect (OSTI)

    Menkara, Hisham

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO{sub 2} reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO{sub 2} reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO{sub 2} into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  19. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect (OSTI)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10{sup {minus}5} torr) was beneficial for growing high-quality films from ITO targets.

  20. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect (OSTI)

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  1. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  2. High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells

    DOE Patents [OSTI]

    Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

    2014-08-19

    Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

  3. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  4. EE Solar Energy Efficiency Solar | Open Energy Information

    Open Energy Info (EERE)

    EE Solar Energy Efficiency Solar Jump to: navigation, search Name: EE Solar (Energy Efficiency Solar) Place: Ponoma, California Zip: 91768 Product: PV systems installer based in...

  5. NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

  6. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    SciTech Connect (OSTI)

    Lumb, Matthew P.; Steiner, Myles A.; Geisz, John F.; Walters, Robert J.

    2014-11-21

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

  7. Development of Highly-Efficient GaInP/Si Tandem Solar Cells

    SciTech Connect (OSTI)

    Essig, Stephanie; Geisz, John F.; Steiner, Myles A.; Merkle, Agnes; Peibst, Robby; Schmidt, Jan; Brendel, Rolf; Ward, Scott; Friedman, Daniel J.; Stradins, Paul; Young, David L.

    2015-06-14

    Dual-junction solar cells consisting of rear-heterojunction GaInP top cells and back-junction, back-contacted crystalline Si bottom cells were fabricated and characterized. Our calculations show that theoretical efficiencies up to 38.9% can be achieved with Si-based tandem devices. In our experiments, the two subcells were fabricated separately and stacked with an index matching fluid. In contrast to conventional mechanically stacked solar cells, that contain two metal grids at the interface, our concept includes a fully back contacted bottom cell which reduces the shadow losses in the device. A 1-sun AM1.5g cumulative efficiency of (26.2 +/- 0.6)% has been achieved with this novel GaInP/Si 4-terminal tandem solar cell.

  8. Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells

    SciTech Connect (OSTI)

    Wagner, H.; Hofstetter, J.; Mitchell, B.; Altermatt, P.; Buonassisi, T.

    2015-03-23

    We present a numerical simulation study of different multicrystalline silicon materials and solar cell architectures to understand today's efficiency limitations and future efficiency possibilities. We compare conventional full-area BSF and PERC solar cells to future cell designs with a gallium phosphide heteroemitter. For all designs, mc-Si materials with different excess carrier lifetime distributions are used as simulation input parameters to capture a broad range of materials. The results show that conventional solar cell designs are sufficient for generalized mean lifetimes between 40 – 90 μs, but do not give a clear advantage in terms of efficiency for higher mean lifetime mc-Si material because they are often limited by recombination in the phosphorus diffused emitter region. Heteroemitter designs instead increase in cell efficiency considerable up to generalized mean lifetimes of 380 μs because they are significantly less limited by recombination in the emitter and the bulk lifetime becomes more important. In conclusion, to benefit from increasing mc-Si lifetime, new cell designs, especially heteroemitter, are desirable.

  9. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  10. High efficiency thermal storage system for solar plants (HELSOLAR). Final report

    SciTech Connect (OSTI)

    Villarroel, Eduardo; Fernandez-Pello, Carlos; Lenartz, Jeff; Parysek, Karen

    2013-02-27

    The project objective was to develop a high temperature Thermal Storage System (TES) based on graphite and able to provide both economical and technical advantages with respect to existing solutions contributing to increase the share of Concentrated Solar Plants (CSP). One of the main disadvantages of most of the renewable energy systems is their dependence to instantaneous irradiation and, thus, lack of predictability. CSP plants with thermal storage have proved to offer a good solution to this problem although still at an elevated price. The identification of alternative concepts able to work more efficiently would help to speed up the convergence of CSP towards grid parity. One way to reduce costs is to work in a range of temperatures higher than those allowed by the actual molten salt systems, currently the benchmark for TES in CSP. This requires the use of alternative energy storage materials such as graphite, as well as the utilization of Heat Transfer Fluids (HTF) other than molten salts or organic oils. The main technical challenges identified are derived from the high temperatures and significant high pressures, which pose risks such as potential graphite and insulation oxidation, creep, fatigue, corrosion and stress-corrosion in the pipes, leakages in the joints, high blower drivers’ electrical power consumption, thermal compatibility or relative deformations of the different materials. At the end, the main challenge of the project, is to identify a technical solution able to overcome all these problems but still at a competitive cost when compared to already existing thermal storage solutions. Special attention is given to all these issues during this project.

  11. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect (OSTI)

    Meerheim, Rico Krner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  12. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect (OSTI)

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial, lattice-mismatched growth of a GaAs segment that extrude out of a Si wire via a self-aligned SiO2 hollow cylindrical mask. With this growth strategy, misfit dislocations that would normally form at the GaAs/Si interface during thin film epitaxy may bend over to and thus terminate at the sidewall of the SiO2 tube. A reactive-ion etching technique was employed 1) to remove Si to form a hollow, self-aligned SiO2 cylindrical tube as a growth template for GaAs epitaxy using a vertical, showerhead, low-pressure metal-organic chemical-vapor deposition reactor that was operated at 0.1 atm. Successful epitaxy of axial GaAs wires on non-polar, <111>-oriented Si wire substrates was found at temperatures of ~850C. This and the other III-V/Si heterojunction wire synthesis strategies described here are promising approaches to realize future III-V/Si tandem solar cell designs.

  13. High efficiency epitaxial optical reflector solar cells. Final subcontract report, 1 January 1990--31 October 1992

    SciTech Connect (OSTI)

    Dapkus, P.D.; Hummel, S.G.

    1993-08-01

    This report describes work to test the feasibility of a new solar cell concept -- the epitaxial optical reflector (EOR) solar cell. This cell concept alters current designs for high efficiency cells by changing the optical absorption efficiency of single cells. The change is introduced by the use an epitaxial multilayer reflector as an integral part of the cell to increase the optical path length of certain wavelengths of light in the cell. These changes are expected to increase the open circuit voltage at which power is extracted from the cell. The program is designed to test the feasibility of the use of a broad band epitaxial multilayer reflector grown as an integral part of the device structure to reflect the near-band-edge light back through the device for a second absorption pass. This second pass allows the design of a solar cell with a thinner base, and the use of the epitaxial reflector as a heterojunction carrier-reflecting barrier at the rear of the device. The thinner cell design and altered carrier profile that results from the light- and carrier-reflecting barrier will decrease the carrier concentration gradient and increase the open circuit voltage. The program is structured to have three tasks: (1) Solar Cell and Reflector Modeling, (2) Materials Growth and Optimization, and (3) Solar Cell Fabrication and Characterization.

  14. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  15. The operation mechanism of poly(9,9-dioctylfluorenyl-2,7-diyl) dots in high efficiency polymer solar cells

    SciTech Connect (OSTI)

    Liu, Chunyu; He, Yeyuan; Zhang, Xinyuan; Li, Zhiqi; Li, Jinfeng; Zhang, Zhihui; Guo, Wenbin Ruan, Shengping; Shen, Liang

    2015-05-11

    The highly efficient polymer solar cells were realized by doping poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots into active layer. The dependence of doping amount on devices performance was investigated and a high efficiency of 7.15% was obtained at an optimal concentration, accounting for a 22.4% enhancement. The incorporation of PFO dots (Pdots) is conducted to the improvement of J{sub sc} and fill factor mainly due to the enhancement of light absorption and charge transport property. Pdots blended in active layer provides an interface for charge transfer and enables the formation of percolation pathways for electron transport. The introduction of Pdots was proven an effective way to improve optical and electrical properties of solar cells.

  16. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  17. Improved power efficiency for very-high-temperature solar-thermal-cavity receivers

    DOE Patents [OSTI]

    McDougal, A.R.; Hale, R.R.

    1982-04-14

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

  18. Project Profile: High-Efficiency Thermal Storage System for Solar Plants

    Broader source: Energy.gov [DOE]

    SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

  19. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  20. Final Report: Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect (OSTI)

    Bedair, Salah M.; Hauser, John R.; Elmasry, Nadia; Colter, Peter C.; Bradshaw, G.; Carlin, C. Z.; Samberg, J.; Edmonson, Kenneth

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  1. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin ... networks with sharp interfaces in order to produce high-efficiency devices. ...

  2. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Structure of All-Polymer Solar Cells Impedes ... networks with sharp interfaces in order to produce high-efficiency devices. ...

  3. High Efficiency Amorphous and Microcrystalline Silicon Based Double-Junction Solar Cells made with Very-High-Frequency Glow Discharge

    SciTech Connect (OSTI)

    Banerjee, Arindam

    2004-10-20

    We have achieved a total-area initial efficiency of 11.47% (active-area efficiency of 12.33%) on a-Si:H/?c-Si:H double-junction structure, where the intrinsic layer bottom cell was made in 50 minutes. On another device in which the bottom cell was made in 30 min, we achieved initial total-area efficiency of 10.58% (active-efficiency of 11.35%). We have shown that the phenomenon of ambient degradation of both ?c-Si:H single-junction and a-Si:H/?c-Si:H double-junction cells can be attributed to impurity diffusion after deposition. Optimization of the plasma parameters led to alleviation of the ambient degradation. Appropriate current matching between the top and bottom component cells has resulted in a stable total-area efficiency of 9.7% (active-area efficiency of 10.42%) on an a-Si:H/?c-Si:H double-junction solar cell in which the deposition time for the ?c-Si:H intrinsic layer deposition was of 30 min.

  4. Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013

    SciTech Connect (OSTI)

    Ravi, T. S.

    2013-05-01

    Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

  5. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  6. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engineering New Thermochemical Storage | Department of Energy Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for

  7. High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005

    SciTech Connect (OSTI)

    Deng, X.

    2006-01-01

    The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

  8. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    SciTech Connect (OSTI)

    Fortmann, C.M.; Hegedus, S.S. )

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  9. Silicon Ink for High-Efficiency Solar Cells Captures a Share of the Market (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner Silicon Ink. Liquid silicon has arrived, and with it comes a power boost for solar cells and dramatic cost savings for cell manufacturers.

  10. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  11. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specificmore » contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.« less

  12. III-V-N materials for super high-efficiency multijunction solar cells

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio

    2012-10-06

    We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R and D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.

  13. Silicon sheet with molecular beam epitaxy for high efficiency solar cells. Final technical report, March 22, 1982-April 30, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    A two-year program has been carried out for the Jet Propulsion Laboratory in which the UCLA silicon MBE facility has been used to attempt to grow silicon solar cells of high efficiency. MBE ofers the potential of growing complex and arbitrary doping profiles with 10 A depth resolution. It is the only technique taht can readily grow built-in front and back surface fields of any desired depth and value in silicon solar cells, or the more complicated profiles needed for a double junction cascade cell, all in silicon, connected in series by a tunnel junction. Although the dopant control required for such structures has been demonstrated in silicon by UCLA, crystal quality at the p-n junctions is still too poor to allow the other advantages to be exploited. Results from other laboratories indicate that this problem will soon be overcome. A computer analysis of the double cascade all in silicon shows that efficiencies can be raised over that of any single silicon cell by 1 or 2%, and that open circuit voltage of almost twice that of a single cell should be possible.

  14. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect (OSTI)

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  15. Development of Low-Cost High Efficiency Commercial Ready Advanced Silicon Solar Cells

    SciTech Connect (OSTI)

    Rohatgi, Ajeet; Zimbardi, Francesco

    2015-01-30

    As a result of the work within this project manufacturing ready devices were developed using 4 different promising Si material technologies with final efficiencies between 20.1% and 21.2%. The starting efficiencies for the FPACE I project were based on best manufactured p-type and n-type cells at the start of the project in 2011. Target efficiencies proposed for the project were 21% for p-type CZ, 20% for p-type cast Si, 21% for n-type and 20% for epi. All Target efficiencies were met or exceeded by the end of the project in 2014. The figure below list displays the 4 highest performing structures for each material with corresponding achieved efficiencies.

  16. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Jäger, Timo Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Tiwari, Ayodhya N.; Döbeli, Max

    2015-05-28

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Hydrogen doping of In{sub 2}O{sub 3} thin films is achieved by injection of H{sub 2}O water vapor or H{sub 2} gas during the sputter process. As-deposited amorphous In{sub 2}O{sub 3}:H films exhibit a high electron mobility of ∼50 cm{sup 2}/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized H{sub 2}O and H{sub 2}-processed films, although the H{sub 2}O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (V{sub OC}) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H{sub 2}O case or slightly decrease for H{sub 2}. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H{sub 2}O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  17. High Efficiency Organic Solar Cells: December 16, 2009 - February 2, 2011

    SciTech Connect (OSTI)

    Walker, K.; Joslin, S.

    2011-05-01

    Details on the development of novel organic solar cells incorporating Trimetasphere based acceptors are presented including: baseline performance for Lu-PCBEH acceptor blended with P3HT demonstrated at 4.89% PCE exceeding the 4.5% PCE goal; an increase of over 250mV in Voc was demonstrated for Lu-PCBEH blended with low band gap polymers compared to a comparable C60-PCBM device. The actual Voc was certified at 260mV higher for a low band gap polymer device using the Lu-PCBEH acceptor; and the majority of the effort was focused on development of a device with over 7% PCE. While low current and fill factors suppressed overall device performance for the low band gap polymers tested, significant discoveries were made that point the way for future development of these novel acceptor materials.

  18. Solar wind conditions leading to efficient radiation belt electron...

    Office of Scientific and Technical Information (OSTI)

    By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for ...

  19. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Annual technical progress report, October 1995--October 1996

    SciTech Connect (OSTI)

    Deng, X.; Izu, M.; Jones, S.J.; Kopf, R.

    1997-04-01

    The overall objective of this amorphous silicon research program is to develop high efficiency a-Si solar cells and to develop and improve processes for large area deposition of a-Si solar cells and modules. The knowledge obtained and technologies demonstrated in this program will be incorporated into ECD`s continuous roll-to-roll deposition process to further enhance its photovoltaic manufacturing technology.

  20. Efficient Polymer Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Efficient Polymer Solar Cells Ames Laboratory Contact ... Ames Laboratory researchers have developed a process for producing more efficient polymer ...

  1. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    SciTech Connect (OSTI)

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

  2. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level inmore » OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.« less

  3. High-Efficiency CdTe and CIGS Thin-Film Solar Cells: Highlights and Challenges; Preprint

    SciTech Connect (OSTI)

    Noufi, R.; Zweibel, K.

    2006-05-01

    Thin-film photovoltaic (PV) modules of CdTe and Cu(In,Ga)Se2 (CIGS) have the potential to reach cost-effective PV-generated electricity. These technologies have transitioned from the laboratory to the market place. Pilot production and first-time manufacturing are ramping up to higher capacity and enjoying a flood of venture-capital funding. CIGS solar cells and modules have achieved 19.5% and 13% efficiencies, respectively. Likewise, CdTe cells and modules have reached 16.5% and 10.2% efficiencies, respectively. Even higher efficiencies from the laboratory and from the manufacturing line are only a matter of time. Manufacturing-line yield continues to improve and is surpassing 85%. Long-term stability has been demonstrated for both technologies; however, some failures in the field have also been observed, emphasizing the critical need for understanding degradation mechanisms and packaging options. The long-term potential of the two technologies require R&D emphasis on science and engineering-based challenges to find solutions to achieve targeted cost-effective module performance, and in-field durability. Some of the challenges are common to both, e.g., in-situ process control and diagnostics, thinner absorber, understanding degradation mechanisms, protection from water vapor, and innovation in high-speed processing and module design. Other topics are specific to the technology, such as lower-cost and fast-deposition processes for CIGS, and improved back contact and voltage for CdTe devices.

  4. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  5. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  6. New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells. Subcontract report, 1 June 1987--31 January 1990

    SciTech Connect (OSTI)

    Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M.

    1993-01-01

    This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

  7. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  8. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  9. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  10. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques

  11. InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices

    SciTech Connect (OSTI)

    Allerman, Andrew A.; Follstaedt, David M.; Gee, James M.; Jones, Eric D.; Kurtz, Steven R.; Modine, Norman A.

    1999-07-01

    This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies >70% are obtained. Optical studies indicate that defects or impurities, from doping and nitrogen incorporation, limit cell performance.

  12. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; et al

    2015-01-01

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. Wemore » have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less

  13. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells to Nanoscale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; et al

    2015-07-16

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. Wemorehave also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.less

  14. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  15. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  16. Solar, Wind, and Energy Efficiency Easements and Rights Laws...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, and Energy Efficiency Easements and Rights Laws Solar, Wind, and Energy Efficiency Easements and Rights Laws < Back Eligibility Residential Savings Category Solar -...

  17. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    SciTech Connect (OSTI)

    Bozzola, A. Kowalczewski, P.; Andreani, L. C.

    2014-03-07

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 1080??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  18. Ames Lab 101: Improving Solar Cell Efficiency

    ScienceCinema (OSTI)

    Biswas, Rana

    2012-08-29

    Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

  19. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News ...

  20. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  1. High-Efficiency Amorphous Silicon and Nanocrystalline Silicon Based Solar Cells and Modules: Annual Technical Progress Report, 30 January 2006 - 29 January 29, 2007

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.

    2007-07-01

    United Solar used a-Si:H/a-SiGe:H/a-SiGe:H in two manufacturing plants and improved solar efficiency and reduced manufacturing cost by new deposition methods, optimized deposition parameters, and new materials and cell structures.

  2. An easy-to-fabricate low-temperature TiO{sub 2} electron collection layer for high efficiency planar heterojunction perovskite solar cells

    SciTech Connect (OSTI)

    Conings, B.; Baeten, L.; Jacobs, T.; Dera, R.; D’Haen, J.; Manca, J.; Boyen, H.-G.

    2014-08-01

    Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO{sub 2} electron collection layer that requires a high temperature treatment (>450 °C), which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO{sub 2} layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO{sub 2} layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO{sub 2}/CH{sub 3}NH{sub 3}PbI{sub 3-x}Cl{sub x}poly(3-hexylthiophene)/Ag architecture.

  3. High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL researchers create a solution-processable "ink" to produce high-efficiency solar cells using low temperature and simple processing. Colloidal nanocrystals (NCs) provide a route toward simplified manufacturing of electronic devices compared to vacuum-based technology. Scientists from the National Renewable Energy Laboratory (NREL) collaborated with researchers at the University of Chicago on the colloidal synthesis of 5-10-nm crystals by using the solution as an ink to form large

  4. Band Alignment Engineering in Highly Efficient Planar Perovskite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band Alignment Engineering in Highly Efficient Planar Perovskite Solar Cells* September ... In this study, I show a low-temperature process for producing highly efficient planar ...

  5. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique for growing high-efficiency perovskite ... growth of highly efficient and reproducible solar cells from large-area ... clean global energy solutions for the ...

  6. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  7. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment K. Moriarty National Renewable Energy Laboratory M. Kass and T. Theiss Oak Ridge National Laboratory Technical Report NREL/TP-5400-61684 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  8. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  9. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect (OSTI)

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  10. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    SciTech Connect (OSTI)

    Alonso-lvarez, D.; Thomas, T.; Fhrer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-25

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6 misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1??s, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  11. Remnant PbI{sub 2}, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?

    SciTech Connect (OSTI)

    Cao, Duyen H.; Stoumpos, Constantinos C.; Malliakas, Christos D.; Katz, Michael J.; Hupp, Joseph T. E-mail: m-kanatzidis@northwestern.edu; Kanatzidis, Mercouri G. E-mail: m-kanatzidis@northwestern.edu; Farha, Omar K.

    2014-09-01

    Perovskite-containing solar cells were fabricated in a two-step procedure in which PbI{sub 2} is deposited via spin-coating and subsequently converted to the CH{sub 3}NH{sub 3}PbI{sub 3} perovskite by dipping in a solution of CH{sub 3}NH{sub 3}I. By varying the dipping time from 5 s to 2 h, we observe that the device performance shows an unexpectedly remarkable trend. At dipping times below 15 min the current density and voltage of the device are enhanced from 10.1 mA/cm{sup 2} and 933 mV (5 s) to 15.1 mA/cm{sup 2} and 1036 mV (15 min). However, upon further conversion, the current density decreases to 9.7 mA/cm{sup 2} and 846 mV after 2 h. Based on X-ray diffraction data, we determined that remnant PbI{sub 2} is always present in these devices. Work function and dark current measurements showed that the remnant PbI{sub 2} has a beneficial effect and acts as a blocking layer between the TiO{sub 2} semiconductor and the perovskite itself reducing the probability of back electron transfer (charge recombination). Furthermore, we find that increased dipping time leads to an increase in the size of perovskite crystals at the perovskite-hole-transporting material interface. Overall, approximately 15 min dipping time (?2% unconverted PbI{sub 2}) is necessary for achieving optimal device efficiency.

  12. Final Report - Efficient Solar Market Partners of Northern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successes | Department of Energy Efficient Solar Market Partners of Northern California Successes Final Report - Efficient Solar Market Partners of Northern California Successes Awardee: SolarTech Location: San Jose, CA Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The SolarTech Efficient Solar Market Partners of Northern CaliforniaRSC 1 program and team comprised of Solar Sonoma County, East Bay Green Corridor, Clean Coalition and the City and County of San Francisco

  13. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  14. Final Report- High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

    Broader source: Energy.gov [DOE]

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020.

  15. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic...

  16. High-efficiency, thin-film solar cells. Annual subcontractor report, 1 July 1991--30 June 1992

    SciTech Connect (OSTI)

    Gale, R.P.

    1994-01-01

    This report describes work on a 3-year research program to investigate thin-film GaAs/GaInP cells using the cleavage of lateral epitaxial film for transfer (CLEFT) technique, and to determine the process to enable overgrowth of GaAs films using organometallic chemistry. Application of the CLEFT thin-film technique to GaInP/GaAs solar cells and organometallic overgrowth was investigated. A problem of alloy contamination was identified and controlled, leading to higher quality layers. Solar cell structures were grown and fabricated using previously determined growth parameters for GaAs and GaInP. With the improved materials developed significant improvements were made in solar cell performance. Conditions for in-situ overgrowth by organometallic chemical vapor deposition (OMCVD) were determined and continuous GaAs layers were grown over a separation mask layer. The layers were successfully separated from their substrate using the CLEFT process, demonstrating the application of overgrowth using OM chemistry with HCl.

  17. Los Alamos Discovers Super Efficient Solar Using Perovskite Crystals

    SciTech Connect (OSTI)

    Mohite, Aditya; Nie, Wanyi

    2015-01-29

    State-of-the-art photovoltaics using high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high temperature crystal-growth processes offer promising routes for developing low-cost, solar-based clean global energy solutions for the future. Solar cells composed of the recently discovered material organic-inorganic perovskites offer the efficiency of silicon, yet suffer from a variety of deficiencies limiting the commercial viability of perovskite photovoltaic technology. In research to appear in Science, Los Alamos National Laboratory researchers reveal a new solution-based hot-casting technique that eliminates these limitations, one that allows for the growth of high-quality, large-area, millimeter-scale perovskite crystals and demonstrates that highly efficient and reproducible solar cells with reduced trap assisted recombination can be realized.

  18. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  19. Module greenhouse with high efficiency of transformation of solar energy, utilizing active and passive glass optical rasters

    SciTech Connect (OSTI)

    Korecko, J.; Jirka, V.; Sourek, B.; Cerveny, J.

    2010-10-15

    Since the eighties of the 20th century, various types of linear glass rasters for architectural usage have been developed in the Czech Republic made by the continuous melting technology. The development was focused on two main groups of rasters - active rasters with linear Fresnel lenses in fixed installation and with movable photo-thermal and/or photo-thermal/photo-voltaic absorbers. The second group are passive rasters based on total reflection of rays on an optical prism. During the last years we have been working on their standardization, exact measuring of their optical and thermal-technical characteristics and on creation of a final product that could be applied in solar architecture. With the project supported by the Ministry of Environment of the Czech Republic we were able to build an experimental greenhouse using these active and passive optical glass rasters. The project followed the growing number of technical objectives. The concept of the greenhouse consisted of interdependence construction - structural design of the greenhouse with its technological equipment securing the required temperature and humidity conditions in the interior of the greenhouse. This article aims to show the merits of the proposed scheme and presents the results of the mathematical model in the TRNSYS environment through which we could predict the future energy balance carried out similar works, thus optimizing the investment and operating costs. In this article description of various technology applications for passive and active utilization of solar radiation is presented, as well as some results of short-term and long-term experiments, including evaluation of 1-year operation of the greenhouse from the energy and interior temperature viewpoints. A comparison of the calculated energy flows in the greenhouse to real measured values, for verification of the installed model is also involved. (author)

  20. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  1. Solar and Energy Efficiency Justice | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Efficiency Justice Solar and Energy Efficiency Justice June 24, 2010 - 3:00pm Addthis The roof of the justice center where a solar panel array will be installed to power ...

  2. Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fan at Berkeley Lab have invented a method for growing highly regular, single-crystalline nanopillar arrays of optically active semiconductors to produce efficient, 3D solar...

  3. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 ...

  4. A Path to High-Concentration Luminescent Solar Concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significance and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells, and our work predicts unprecendented ...

  5. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  6. Process for Fabrication of Efficient Solar Cells - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process for Fabrication of Efficient Solar Cells Ames Laboratory Contact AMES About This ... Benefits 1. Efficient (improves light absorption and power conversion); 2. Economical (can ...

  7. High Penetration Solar Deployment Funding Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly ...

  8. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  9. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    SciTech Connect (OSTI)

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

  10. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.

  11. Unleashing Rooftop Solar Energy through More Efficient Government |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Unleashing Rooftop Solar Energy through More Efficient Government Unleashing Rooftop Solar Energy through More Efficient Government June 1, 2011 - 11:45am Addthis Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies

  12. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin; Ruslan, Mohd Hafidz

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  13. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  14. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  15. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-07-01

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  16. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se{sub 2} thin-film solar cell absorbers

    SciTech Connect (OSTI)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Br, Marcus; Sadewasser, Sascha

    2014-12-21

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for realistic surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x?=?[Ga]/([In]?+?[Ga])?=?0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is apart from a slight change in surface composition identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  17. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures

    SciTech Connect (OSTI)

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; Rondinone, Adam J.; Joshi, Pooran C.; Geohegan, David B.; Xiao, Kai

    2015-07-16

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.

  18. High Penetration Solar Deployment

    Broader source: Energy.gov [DOE]

    In October 2009, DOE announced $24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the...

  19. Efficiency of silicon solar cells containing chromium

    DOE Patents [OSTI]

    Frosch, Robert A. Administrator of the National Aeronautics and Space; Salama, Amal M.

    1982-01-01

    Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

  20. High efficiency diamond solar cells

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  1. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  2. High-efficiency CARM

    SciTech Connect (OSTI)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B.

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  3. Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)

    SciTech Connect (OSTI)

    Widiyandari, Hendri Gunawan, S. K.V.; Suseno, Jatmiko Endro; Purwanto, Agus; Diharjo, Kuncoro

    2014-02-24

    Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

  4. Polycrystalline silicon passivated tunneling contacts for high efficiency

    Office of Scientific and Technical Information (OSTI)

    silicon solar cells (Journal Article) | SciTech Connect Journal Article: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Citation Details In-Document Search Title: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Authors: Nemeth, Bill ; Young, David L. ; Page, Matthew R. ; LaSalvia, Vincenzo ; Johnston, Steve ; Reedy, Robert ; Stradins, Paul Publication Date: 2016-03-01 OSTI Identifier: 1247961 Report

  5. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  6. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ≥ 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  7. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion ...

  8. GaInNAs Structures Grown by MBE for High-Efficiency Solar Cells: Final Report; 25 June 1999--24 August 2002

    SciTech Connect (OSTI)

    Tu, C. W.

    2003-08-01

    The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAs quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.

  9. You Are My Sunshine - Integrating Residential Solar and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (301) | Department of Energy You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301) Better Buildings Residential Network Peer Exchange Call Series: You Are My Sunshine - Integrating Residential Solar and Energy Efficiency (301), October 15, 2015, call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings Network View

  10. Solar wind conditions leading to efficient radiation belt electron

    Office of Scientific and Technical Information (OSTI)

    acceleration: A superposed epoch analysis (Journal Article) | SciTech Connect Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis Citation Details In-Document Search This content will become publicly available on September 7, 2016 Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis In this study by determining preferential solar wind conditions leading to efficient

  11. Interface engineering for efficient fullerene-free organic solar cells

    SciTech Connect (OSTI)

    Shivanna, Ravichandran; Narayan, K. S. E-mail: narayan@jncasr.ac.in; Rajaram, Sridhar E-mail: narayan@jncasr.ac.in

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  12. Los Alamos develops new technique for growing high-efficiency perovskite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar cells Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new solution-based hot-casting technique that allows growth of highly efficient and reproducible solar cells from large-area perovskite crystals. January 29, 2015 Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells at Los Alamos

  13. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  14. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  15. High Efficiency Recoil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Recoil Spectrometer for Superheavy Element Factory Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 G. Chubarian T exas A &M U niversity, C yclotron I ns7tute Signal / Noise Efficiency Super H eavy N uclei 2 015, C ollege S ta8on, T exas, M arch 3 1 - A pril 0 2, 2 015 Peter J . T win a nd F rancis B eck --- Eurogam P roject (late 8 0's) Signal Number of Events Energy Resolution Time Resolution Space Resolution etc. Noise Background Counts and

  16. Annual average efficiency of a solar thermochemical reactor. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not provided. Authors: Ermanoski, Ivan ; Siegel, Nathan Phillip Publication Date: 2013-06-01 OSTI Identifier: 1143854 Report Number(s): SAND2013-5257C 456746

  17. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Structure of All-Polymer Solar Cells Impedes Efficiency Print Wednesday, 27 October 2010 00:00 Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same

  18. Solar Tracing Sensors for Maximum Solar Concentrator Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Market Sheet (1,222 KB) Technology Marketing SummaryConcentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful...

  19. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M.

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  20. Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

  1. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Broader source: Energy.gov [DOE]

    This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more than 50%. This high conversion efficiency drives down the cost of the supporting solar field, tower, and thermal storage systems, which could significantly reduce the lifetime costs of a CSP system to achieve the SunShot goal.

  2. Holographic technology could increase solar efficiency

    Broader source: Energy.gov [DOE]

    The Torrance, Calif.-based company is working on a product that could help solar energy producers get both kinds of energy out of the same sunlight -- potentially increasing a system’s return. Using holographic thin-film, Luminit is working on a solar cogeneration system that also tracks sunlight across the sky without movable parts.

  3. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012. progressreportsunshotbraytonfy12q4.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1...

  4. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    SciTech Connect (OSTI)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-04-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cellsgrown by NH3 -based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorptionmeasurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  5. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  6. Advanced processing technology for high-efficiency, thin-film CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, 1 March 1993--28 February 1994

    SciTech Connect (OSTI)

    Morel, D.L.; Ferekides, C.S.

    1994-07-01

    This annual report details activities in research on advanced processing technology for high-effiency, thin-film solar cells.

  7. Recent progress in enhancing solar-to-hydrogen efficiency

    SciTech Connect (OSTI)

    Chen, Jianqing; Yang, Donghui; Song, Dan; Jiang, Jinghua; Ma, Aibin; Hu, Michael Z.; Ni, Chaoying

    2015-01-01

    Solar water splitting is a promising and ideal route for renewable production of hydrogen by using the most abundant resources of solar light and water. Focusing on the working principal of solar water splitting, including photon absorption and exciton generation in semiconductor, exciton separation and transfer to the surface of semiconductor, and respective electron and hole reactions with absorbed surface species to generate hydrogen and oxygen, this review covers the comprehensive efforts and findings made in recent years on the improvement for the solar-to-hydrogen efficiency (STH) determined by a combination of light absorption process, charge separation and migration, and catalytic reduction and oxidation reactions. Critical evaluation is attempted on the strategies for improving solar light harvesting efficiency, enhancing charge separation and migration, and improving surface reactions. Towards the end, new and emerging technologies for boosting the STH efficiency are discussed on multiple exciton generation, up-conversion, multi-strategy modifications and the potentials of organometal hybrid perovskite materials.

  8. Solar Decathlon: How Do WE Do Efficiency?

    Broader source: Energy.gov [DOE]

    The weather is cooling off, the trees look gorgeous and (every other year) the National Mall turns into a beehive of activity when the Solar Decathlon comes to town.

  9. New Multijunction Design Leads to Ultra-Efficient Solar Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Four-junction III-V multijunction cell uses buffer layers and other innovations to reach 45.6% efficiency at 690 suns NREL scientists have shown that four-junction solar cells ...

  10. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Broader source: Energy.gov (indexed) [DOE]

    Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit...

  11. The Importance of Domain Size and Purity in High-Efficiency Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Importance of Domain Size and Purity in High-Effi... Why are efficient and affordable solar cells so highly coveted? Volume. The amount of solar energy lighting up ...

  12. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  13. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  14. Solar Junction | Open Energy Information

    Open Energy Info (EERE)

    Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

  15. Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells

    Broader source: Energy.gov [DOE]

    The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

  16. Estimating the Cost and Energy Efficiency of a Solar Water Heater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater March 2, 2015 - 3:09pm Addthis Solar water...

  17. Estimating the Cost and Energy Efficiency of a Solar Water Heater |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can usually save you

  18. NREL Researchers Demonstrate External Quantum Efficiency Surpassing 100% in a Quantum Dot Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    A new device that produces and collects multiple electrons per photon could yield inexpensive, high-efficiency photovoltaics. A new device developed through research at the National Renewable Energy Laboratory (NREL) reduces conventional losses in photovoltaic (PV) solar cells, potentially increasing the power conversion efficiency-but not the cost-of the solar cells. Solar cells convert optical energy from the sun into usable electricity; however, almost 50% of the incident energy is lost as heat with present-day technologies. High-efficiency, multi-junction cells reduce this heat loss, but their cost is significantly higher. NREL's new device uses excess energy in solar photons to create extra charges rather than heat. This was achieved using 5-nanometer-diameter quantum dots of lead selenide (PbSe) tightly packed into a film. The researchers chemically treated the film, and then fabricated a device that yielded an external quantum efficiency (number of electrons produced per incident photon) exceeding 100%, a value beyond that of all current solar cells for any incident photon. Quantum dots are known to efficiently generate multiple excitons (a bound electron-hole pair) per absorbed high-energy photon, and this device definitively demonstrates the collection of multiple electrons per photon in a PV cell. The internal quantum efficiency corrects for photons that are not absorbed in the photoactive layer and shows that the PbSe film generates 30% to 40% more electrons in the high-energy spectral region than is possible with a conventional solar cell. While the unoptimized overall power conversion efficiency is still low (less than 5%), the results have important implications for PV because such high quantum efficiency can lead to more electrical current produced than possible using present technologies. Furthermore, this fabrication is also amenable to inexpensive, high-throughput roll-to-roll manufacturing.

  19. NREL Licenses Technology to Increase Solar Cell Efficiency - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Licenses Technology to Increase Solar Cell Efficiency Natcore to develop 'black silicon' solar cells based on award-winning innovation December 20, 2011 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that Natcore Technology Inc. has been granted a patent license agreement to develop a line of black silicon products. Natcore and NREL also will enter a Cooperative Research and Development Agreement (CRADA) to develop commercial

  20. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  1. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  2. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  3. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  4. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  5. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  6. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  7. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  8. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material

  9. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  10. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect (OSTI)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  11. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  12. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  13. High-Efficiency Amorphous Silicon and Nanocrystalline Silicon-Based Solar Cells and Modules: Final Technical Progress Report, 30 January 2006 - 29 January 2008

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.

    2008-05-01

    United Solar Ovonic successfully used its spectrum-splitting a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure in their manufacturing plants, achieving a manufacturing capacity of 118 MW in 2007, and set up a very aggressive expansion plan to achieve grid parity.

  14. Multi-scale framework for the accelerated design of high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale framework for the accelerated design of high-efficiency organic photovoltaic cells Organic and hybrid organicinorganic solar cells (OSC) offer a promising low-cost...

  15. Sunshot Initiative High Penetration Solar Portal

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

  16. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace012_flowers_2012_o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

  17. High-energy solar astrophysics: solar gamma-ray astronomy (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-energy solar astrophysics: solar gamma-ray astronomy Citation Details In-Document Search Title: High-energy solar astrophysics: solar gamma-ray astronomy ...

  18. High-energy solar astrophysics: solar gamma-ray astronomy (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-energy solar astrophysics: solar gamma-ray astronomy Citation Details In-Document Search Title: High-energy solar astrophysics: solar gamma-ray astronomy...

  19. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  20. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Office of Environmental Management (EM)

    energy at high densities in the form of chemical bonds for use in utility-scale ... project will explore how changing the chemical make-up of sand-like particles called ...

  1. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have...

  2. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  3. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  4. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledynes liquid prism panel has no bulky and heavy supporting partsinstead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  5. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    SciTech Connect (OSTI)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli; Zhou, Lingyu; Zhang, Jian

    2015-02-23

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a useful approach to improve the performance of inverted polymer solar cells.

  6. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  7. Final Report- High efficiency heterojunction solar cell on 30μm thin c-Si substrates using novel exfoliation technology

    Broader source: Energy.gov [DOE]

    To achieve grid parity, photovoltaic (PV) technologies must reduce the production cost of PV modules to well below $0.50/Wp (peak Watt of power produced). In crystalline Si PV modules, which account for over 80% of all the PV modules in production world-wide, the cost of raw Si wafers is over 40% of the module cost. Therefore, there is an industry wide effort to reduce crystalline Si wafer thickness and improve efficiency. However, conventional wafer sawing technologies suffer from significant kerf losses and also are limited due to constraints on handling of free standing wafers that are thinner than 150μm.

  8. Scientists at ALS Find New Path to More Efficient Organic Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists at ALS Find New Path to More Efficient Organic Solar Cells Scientists at ALS Find New Path to More Efficient Organic Solar Cells Print Monday, 07 January 2013 00:00 ...

  9. Non-tracking solar concentrator with a high concentration ratio

    DOE Patents [OSTI]

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  10. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  11. High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint

    SciTech Connect (OSTI)

    Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

    2002-05-01

    In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

  12. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  13. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  14. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  15. Limiting efficiency calculation of silicon single-nanowire solar cells with considering Auger recombination

    SciTech Connect (OSTI)

    Zhai, Xiongfei; Wu, Shaolong; Shang, Aixue; Li, Xiaofeng

    2015-02-09

    Single-nanowire solar cells (SNSCs) have attracted considerable attention due to their unique light-harvesting capability mediated by the optical antenna effect and the high photoconversion efficiency due to the orthogonalization of the carrier collection to the photon incidence. We present a detailed prediction of the light-conversion efficiency of Si SNSCs based on finite-element simulation and thermodynamic balance analysis, with especially focusing on the comparison between SNSCs and film systems. Carrier losses due to radiative and Auger recombinations are introduced in the analysis of the limiting efficiency, which show that the Auger recombination plays a key role in accurately predicting the efficiency of Si SNSCs, otherwise, the device performance would be strongly overestimated. The study paves a more realistic way to evaluate the nanostructured solar cells based on indirect-band photoactive materials.

  16. Final Report - Efficient Solar Market Partners of Northern California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon SolarTech RSC 5685.pdf More Documents & Publications SunShot Rooftop Challenge Awardees Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy ...

  17. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  18. High-Temperatuer Solar Selective Coating Development for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was ...

  19. High-flux solar photon processes

    SciTech Connect (OSTI)

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  20. TJ Solar Cell (GaInP/GaAs/Ge Ultrahigh-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Friedman, Daniel

    2002-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  1. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  2. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

  3. Gwich'in Solar and Energy Efficiency in the Arctic

    Energy Savers [EERE]

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO May 7 th 2015 Tony Peter - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in Tribal

  4. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  5. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  6. Efficiency of a solar collector with internal boiling

    SciTech Connect (OSTI)

    Neeper, D.A.

    1986-01-01

    The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

  7. High Bandgap III-V Alloys for High Efficiency Optoelectronics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 221326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search High Bandgap III-V

  8. NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell New design for ultra-efficient III-V multijunction cell pushes the limits of solar conversion December 16, 2014 The Energy Department's National Renewable Energy Laboratory has announced the demonstration of a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types

  9. Center for Advanced Solar Photophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solution-processed solar cells The goal of this center ... to boost the efficiency of solar energy conversion through ... light-harvesting and high-efficiency coupling ...

  10. High Flux Microchannel Solar Receiver Development with Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flux Microchannel Solar Receiver Development with Adaptive Flow Control High Flux Microchannel Solar Receiver Development with Adaptive Flow Control This presentation was delivered ...

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; ...

  12. High Plains Ranch Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858,...

  13. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National ...

  14. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  15. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes ...

  16. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect (OSTI)

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  17. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect (OSTI)

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  18. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  19. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bi, Cheng; Yuan, Yongbo; Fang, Yanjun; Huang, Jinsong

    2014-11-25

    A mixed halide perovskite solar cell with a 1.72 eV bandgap is developed by incorporating Br into perovskite through a low-temperature solution process. A high efficiency of 13.1% is achieved by carefully tuning the thickness, morphology, and surface passivation of the perovskite layers. Furthermore, the fabrication techniques and conditions are compatible with future perovskite/Si tandem cell studies.

  20. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  1. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data Dan Getman, Anthony Lopez, Trieu Mai, and Mark Dyson National Renewable Energy Laboratory Technical Report NREL/TP-6A20-63148 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  2. Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost

    Broader source: Energy.gov [DOE]

    EERE supported the development of the first liquid silicon on the market that offers a novel path to producing more efficient solar cells at lower cost.

  3. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  4. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  5. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  6. Carrier Selective, Passivated Contacts for High Efficiency Silicon...

    Office of Scientific and Technical Information (OSTI)

    ... Research Org: National Renewable Energy Lab. (NREL), Golden, CO (United States) Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies ...

  7. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  8. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  9. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediateband

    SciTech Connect (OSTI)

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using widegap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediateband solar cells (IBSCs) with twostep photonabsorption. The planewave expanded BurtForeman operator ordered 8band kp theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of twostep photonabsorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is latticematched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of twostep photonabsorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  10. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect (OSTI)

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  11. Material and Device Analysis for Efficiency Improvement in Epitaxial Crystalline Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-11-433

    SciTech Connect (OSTI)

    Sopori, B.

    2014-01-01

    Crystal Solar has a novel approach for producing low-cost, monocrystalline silicon wafers that are capable of yielding high-efficiency solar cells. The approach involves epitaxial growth of the substrate and a proprietary lift-off technology. Crystal Solar will send selected wafers and cells to NREL for characterization and analyses. NREL will apply a variety of techniques to help identify mechanism(s) that limit the cell efficiency and suggest suitable approaches for mitigation.

  12. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

  13. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  14. Materials en Multi-junction Solar Cells to Push CPV Efficiencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ceem.ucsb.edurss News and Events - Center for Energy Efficient Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% http:www.compoundsemiconductor.net...

  15. EECBG Success Story: Solar and Energy Efficiency Justice | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tennessee. The roof of ...

  16. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFD Models for High Efficiency Compression Ignition Engines Advanced CFD Models for High Efficiency Compression Ignition Engines Advanced CFD models for high efficiency ...

  17. Record Makes Thin-Film Solar Cell Competitive with Silicon Efficiency -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Record Makes Thin-Film Solar Cell Competitive with Silicon Efficiency March 24, 2008 Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory have moved closer to creating a thin-film solar cell that can compete with the efficiency of the more common silicon-based solar cell. The copper indium gallium diselenide (CIGS) thin-film solar cell recently reached 19.9 percent efficiency, setting a new world record for this type of cell.

  18. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    SciTech Connect (OSTI)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young; Lee, Ga Rick; Alstone, Peter; Khare, Amit

    2015-04-01

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africa and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.

  19. NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency Breakthrough should eliminate need for anti-reflection layer, cutting costs October 12, 2012 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have produced solar cells using nanotechnology techniques at an efficiency - 18.2% -- that is competitive. The breakthrough should be a major step toward helping lower the cost of solar energy. NREL tailored a nanostructured surface while ensuring

  20. Scientists at ALS Find New Path to More Efficient Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists at ALS Find New Path to More Efficient Organic Solar Cells Scientists at ALS Find New Path to More Efficient Organic Solar Cells Print Monday, 07 January 2013 00:00 Harald Ade, a physicist at North Carolina State University, led a study at the Advanced Light Source that revealed a second pathway to improved performances of polymer/organic solar cells. Whereas the first pathway demands crystals of ultrapure domains, the new pathway shows that impure domains if sufficiently small can

  1. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect (OSTI)

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

  2. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - ...

  3. Potential Role of Concentrating Solar Power in Enabling High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the ... DE-AC36-08GO28308 The Potential Role of Concentrating Solar Power in Enabling High ...

  4. CIGS Thin-Film Solar Cell Research at NREL: FY04 Results and...

    Office of Scientific and Technical Information (OSTI)

    Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; BUFFERS; PERFORMANCE; SOLAR CELLS; SOLAR ENERGY; THIN FILMS PV; HIGH-EFFICIENCY; SOLAR CELLS; BUFFER LAYERS; POLYCRYSTALLINE; THIN ...

  5. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect (OSTI)

    Ip, Alexander H.; Labelle, Andr J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  6. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace012_aceves_2011_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC Improved Solvers for Advanced Engine Combustion Simulation

  7. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  8. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; et al

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  9. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect (OSTI)

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  10. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  11. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  12. Picture of the Week: Perovskite solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystals that exhibit solar conversion efficiencies ... This image shows the kind of high-efficiency perovskite crystals ... to form crystalline solar cells that are easy to work ...

  13. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qi; Bi, Cheng; Huang, Jinsong

    2015-05-06

    We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.

  14. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  15. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  16. Efficiency enhancement of InGaN/GaN solar cells with nanostructures

    SciTech Connect (OSTI)

    Bai, J.; Yang, C. C.; Athanasiou, M.; Wang, T.

    2014-02-03

    We demonstrate InGaN/GaN multi-quantum-well solar cells with nanostructures operating at a wavelength of 520?nm. Nanostructures with a periodic nanorod or nanohole array are fabricated by means of modified nanosphere lithography. Under 1 sun air-mass 1.5 global spectrum illumination, a fill factor of 50 and an open circuit voltage of 1.9?V are achieved in spite of very high indium content in InGaN alloys usually causing degradation of crystal quality. Both the nanorod array and the nanohole array significantly improve the performance of solar cells, while a larger enhancement is observed for the nanohole array, where the conversion efficiency is enhanced by 51%.

  17. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  18. NREL, UCLA Certify World Record for Polymer Solar Cell Efficiency - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, UCLA Certify World Record for Polymer Solar Cell Efficiency At 8.6% efficiency, cells clear path for devices that can harvest a broader spectrum of the sun's radiation February 29, 2012 Scientists boosted the significance of tandem polymer solar cells by successfully testing cells with low-bandgap polymers that achieved certified conversion efficiencies of 8.62 ± 0.3% with respect to standard terrestrial reporting conditions. That's the highest independently measured

  19. NREL Reports 31.1% Efficiency for III-V Solar Cell - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports 31.1% Efficiency for III-V Solar Cell Conversion-efficiency mark is a world record for a two-junction solar cell measured under one-sun illumination June 24, 2013 The Energy Department's National Renewable Energy Lab has announced a world record of 31.1% conversion efficiency for a two-junction solar cell under one sun of illumination. NREL Scientist Myles Steiner announced the new record June 19 at the 39th IEEE Photovoltaic Specialists Conference in Tampa, Fla. The previous record of

  20. NREL Solar Cell Sets World Efficiency Record at 40.8 Percent - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Solar Cell Sets World Efficiency Record at 40.8 Percent August 13, 2008 Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have set a world record in solar cell efficiency with a photovoltaic device that converts 40.8 percent of the light that hits it into electricity. This is the highest confirmed efficiency of any photovoltaic device to date. The inverted metamorphic triple-junction solar cell was designed, fabricated and

  1. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    SciTech Connect (OSTI)

    Ermanoski, I.

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. Herein, the material and energy requirements in two-step solar-thermochemical cyclesare considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  2. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles

    SciTech Connect (OSTI)

    Liu, X.; Zhang, X. W. Yin, Z. G.; Meng, J. H.; Gao, H. L.; Zhang, L. Q.; Zhao, Y. J.; Wang, H. L.

    2014-11-03

    We have reported a method to enhance the performance of graphene-Si (Gr/Si) Schottky junction solar cells by introducing Au nanoparticles (NPs) onto the monolayer graphene and few-layer graphene. The electron transfer between Au NPs and graphene leads to the increased work function and enhanced electrical conductivity of graphene, resulting in a remarkable improvement of device efficiency. By optimizing the initial thickness of Au layers, the power conversion efficiency of Gr/Si solar cells can be increased by more than three times, with a maximum value of 7.34%. These results show a route for fabricating efficient and stable Gr/Si solar cells.

  3. Electron Transfer Dynamics in Efficient Molecular Solar Cells

    SciTech Connect (OSTI)

    Meyer, Gerald John

    2014-10-01

    This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

  4. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  5. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  6. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect (OSTI)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  7. Silicon Ink Technology Offers Path to Higher Efficiency Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Since 2007, EERE's SunShot Incubator program has invested 92 million in 54 solar startups that have attracted more than 1.7 billion in venture capital and private equity ...

  8. Solar Successes: The Best of Today's Energy Efficient Homes

    SciTech Connect (OSTI)

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  9. Structure of All-Polymer Solar Cells Impedes Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology that will help realize the intrinsic potential of these materials. Solar Panels To Go Photovoltaic cells are a key component of most visions of a clean-energy...

  10. New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    Synthetic fabrication strategy optimizes the illumination geometry and transport properties of dye-sensitized solar cells. Using oriented titanium oxide (TiO{sub 2}) nanotube (NT) arrays has shown promise for dye-sensitized solar cells (DSSCs). High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, for NT-based DSSCs, the light normally enters the cell through the counter electrode because a nontransparent titanium foil is typically used as the substrate for forming the aligned NTs and for making electrical contact with them. It has been synthetically challenging to prepare transparent TiO{sub 2} NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because it is difficult to control the synthetic conditions. National Renewable Energy Laboratory (NREL) researchers have developed a general synthetic strategy for fabricating transparent TiO{sub 2} NT films on TCO substrates. With the aid of a conducting Nb-doped TiO{sub 2} (NTO) layer between the Ti film and TCO substrate, the Ti film can be anodized completely without degrading the TCO. The NTO layer protects the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. NREL researchers found that the illumination direction and wavelength of the light incident on the DSSCs strongly influenced the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film thickness on the properties and performance of DSSCs and found that illuminating the cell from the photoelectrode side substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side. This method solves a key challenge in fabricating NT-based DSSCs and determines an optimal illumination direction to use in these cells. The synthetic fabrication strategy will improve the economics and conversion efficiency of DSSCs.

  11. New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Trucks | Department of Energy Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - 12:00am Addthis WASHINGTON D.C. --- U.S. Energy Secretary Steven Chu today announced more than $300 million worth of investments that will boost a range of clean energy technologies - including carbon capture from coal, solar power, and high efficiency cars and trucks. The move reflects

  12. Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L.; Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-03-24

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  13. Comment on “Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations” [J. Appl. Phys. 115, 094501 (2014)

    SciTech Connect (OSTI)

    Abenante, L.

    2015-01-14

    In the above paper, an analytical approach including a new solution to the differential diffusion equation in illuminated quasi-neutral regions (QNR) is exploited to calculate the short-circuit current density (J{sub sc}), open-circuit voltage (V{sub oc}), fill factor (FF), and efficiency (η) of light-trapping (LT) c-Si solar cells with a given structure. Comparisons with numerical results calculated by the Silvaco ATLAS device simulator in the same LT cells show that the analytical results are systematically overestimated. According to the authors, the inaccuracies in J{sub sc}, V{sub oc}, and η are due to the fact that assuming ideal collection from space-charge region (SCR) and using the superposition approximation introduce systematic errors into analytical models. In this comment, an analytical approach using reported solutions to the transport equations in QNR and SCR, where ideal collection from SCR is assumed and the superposition approximation is used, is shown to agree with both the Silvaco and PC1d numerical approaches in calculating J{sub sc}, V{sub oc}, and η, in the same LT devices as considered in the commented paper. Reasons for the inaccuracies detected in the commented paper are suggested.

  14. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical feasibility of generating power with PV arrays. PDF icon 47956.pdf More Documents & Publications Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island

  15. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  16. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  17. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  18. President Obama Announces Commitments and Executive Actions to Advance Solar Deployment and Energy Efficiency

    Broader source: Energy.gov [DOE]

    On May 9, 2014, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency.

  19. Enhanced conversion efficiency in wide-bandgap GaNP solar cells...

    Office of Scientific and Technical Information (OSTI)

    Enhanced conversion efficiency in wide-bandgap GaNP solar cells Citation Details In-Document Search This content will become publicly available on October 12, 2016 Title: Enhanced...

  20. Impact of High Solar Penetration in the Western Interconnection

    SciTech Connect (OSTI)

    Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

    2010-12-01

    This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

  1. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Modules | Energy Frontier Research Centers Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007 Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this

  2. High voltage series connected tandem junction solar battery

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  3. New Solar Cell Is More Efficient, Less Costly - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Solar Cell Is More Efficient, Less Costly November 8, 2013 In this photo, a researcher in glasses holds a solar wafer about the size of a CD case. In the background are two computer screens displaying graphs of the performance of similar wafers. Enlarge image NREL Principal Scientist Mowafak Al-Jassim holds a TetraSun PV cell in the cathodoluminescence lab at NREL. The TetraSun cell combines increased efficiency and low cost, breaking the usual rules for solar cells. Credit: Dennis Schroeder

  4. NREL, CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell

    SciTech Connect (OSTI)

    2016-01-01

    Scientists set a new world record for converting non-concentrated sunlight into electricity using a dual-junction III-V/Si solar cell. National Renewable Energy Laboratory (NREL) and Swiss Center for Electronics and Microtechnology (CSEM) scientists have collaborated to create a novel tandem solar cell that operates at 29.8% conversion efficiency under non-concentrator (1-sun) conditions. In comparison, the 1-sun efficiency of a silicon (Si) single-junction solar cell is probably still a few years away from converging on its practical limit of about 26%.

  5. Claims for Solar Cell Efficiency Put to Test at NREL - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Claims for Solar Cell Efficiency Put to Test at NREL February 4, 2016 A scientist sits in a laboratory at NREL, between a solar simulator and a computer. Keith Emery, a principal engineer at NREL, has made the Colorado laboratory a major presence in the field of measuring the efficiency of solar cells. Photo by Dennis Schroeder The sheet of paper taped to the door of Keith Emery's office tells the story. On the paper is a simple fever chart showing the improvements made in increasing the

  6. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  7. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Penetration Solar Distributed Generation Study on Oahu In 2008, the Hawaii Clean Energy Initiative (HCEI) set a ... to understand the impact on the entire electric power system. ...

  8. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  9. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect (OSTI)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  10. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  11. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  12. Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  13. Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  14. Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  15. Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  16. Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  18. Sacramento, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  19. Salt Lake City, Utah: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  20. Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  9. Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  10. Pittsburgh, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. High School Students Compete in Solar-Powered Bike Race

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compete in Solar-Powered Bike Race For more information contact: e:mail: Public Affairs Golden, Colo., April 23, 1998 — Photo opportunity: Media are invited to cover the workshop and solar-powered bicycle race designed to give students hands-on learning experiences with renewable energy technologies. What: The Colorado Solar BikeRayce is a competition for high school students to race solar-powered bikes that they design and build. The event will prepare the teams for the national Solar

  12. Sandia Labs high-flux solar simulator with one-of-a-kind capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-flux solar simulator with one-of-a-kind capability - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  13. "Increasing Solar Panel Efficiency And Reliability By Evaporative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks The efficiency and reliability of ...

  14. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on ...

  15. Department of Energy Lauds Highly Efficient Industrial Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year ...

  16. Technology and System Level Demonstration of Highly Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean, ...

  17. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA ... More Documents & Publications Materials-Enabled High-Efficiency Diesel Engines ...

  18. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  19. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  20. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design ...

  1. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  2. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  3. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  4. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  5. White LED with High Package Extraction Efficiency (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: White LED with High Package Extraction Efficiency Citation Details In-Document Search Title: White LED with High Package Extraction Efficiency The goal of this ...

  6. Challenging Conventional Wisdom: A Clean and Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston ...

  7. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  8. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  9. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects ...

  10. 2008 Annual Merit Review Results Summary - 8. High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle...

  11. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  12. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  13. Developments in High Efficiency Engine Technologies and an Introductio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to...

  14. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes...

  15. High-Temperature Solar Thermoelectric Generators (STEG)

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect (OSTI)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

  17. Analysis of the efficiency of intermediate band solar cells based on quantum dot supercrystals

    SciTech Connect (OSTI)

    Heshmati, S; Golmohammadi, S; Abedi, K; Taleb, H

    2014-03-28

    We have studied the influence of the quantum-dot (QD) width and the quantum-dot conduction band (QD-CB) offset on the efficiency of quantum-dot intermediate band solar cells (QD-IBSCs). Simulation results demonstrate that with increasing QD-CB offset and decreasing QD width, the maximum efficiency is achieved. (laser applications and other topics in quantum electronics)

  18. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to occur with high quantum efficiency and with minimal losses in energy. Presently, the best polymer solar cells reach power ... polymers for efficient (>5%) solar cells ...

  19. Progress towards a 30% efficient GaInP/Si tandem solar cells

    SciTech Connect (OSTI)

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; Friedman, Daniel J.; Geisz, John F.; Stradins, Paul; Young, David L.

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved by using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.

  20. Progress towards a 30% efficient GaInP/Si tandem solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; Friedman, Daniel J.; Geisz, John F.; Stradins, Paul; Young, David L.

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less

  1. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Broader source: Energy.gov [DOE]

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  2. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    SciTech Connect (OSTI)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

  3. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than othermore » solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  4. Comparison of Theoretical Efficiencies of Multi-junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Kurtz, S.; Myers, D.; McMahon, W. E.; Geisz, J.; Steiner, M.

    2008-01-01

    Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about the theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side-by-side comparison of theoretical efficiencies of multi-junction solar cells calculated with the detailed balance approach and a common one-dimensional-transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies.

  5. Ultrahigh Efficiency Multiband Solar Cells Final Report forDirector's Innovation Initiative Project DII-2005-1221

    SciTech Connect (OSTI)

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-03-29

    The unique properties of the semiconductor ZnTeO were explored and developed to make multiband solar cells. Like a multijunction cell, multiband solar cells use different energy gaps to convert the majority of the solar spectrum to electrical current while minimizing losses due to heating. Unlike a multijunction cell, this is accomplished within a single material in a multiband cell. ZnTe{sub 1-x}O{sub x} films with x up to 2% were synthesized and shown to have the requisite unique band structure (2 conduction bands) for multiband function. Prototype solar cells based on an n-type ZnTe{sub 1-x}O{sub x} multiband top layer and a p-type ZnTe substrate were fabricated. Contacts to the cell and the series resistance of the substrate were identified as challenges for good electrical performance. Both photovoltage and small photocurrents were demonstrated under AMO illumination. A second semiconductor system, GaN{sub x}As{sub 1-y-x}P{sub y}, was shown to have multiband function. This alloy system may have the greatest potential to realize the promise of high efficiency multiband solar cells because of the relatively advanced technology base that exists for the manufacturing of III-V-alloy-based IC and opto-electronic devices (including multijunction solar cells).

  6. Solar Foundational Program to Advance Cell Efficiency Round 1

    Broader source: Energy.gov [DOE]

    The first round of the Foundational Program to Advance Cell Efficiency (F-PACE) program supported 18 projects working to create the technical foundation for significant increases in photovoltaic ...

  7. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  8. Efficiency calculations of thin-film GaAs solar cells on Si substrates

    SciTech Connect (OSTI)

    Yamaguchi, M.; Amano, C.

    1985-11-01

    Dislocation effect upon the efficiency of single-crystal thin-film AlGaAs-GaAs heteroface solar cells on Si substrates is analyzed. Solar-cell properties are calculated based on a simple model; in the model, dislocations act as recombination centers to reduce the minority-carrier diffusion length in each layer and increase the space-charge layer recombination current. Numerical analysis is also carried out to optimize thin-film AlGaAs-GaAs heteroface solar-cell structures. The fabrication of thin-film AlGaAs-GaAs heteroface solar cells with a practical efficiency larger than 18% on Si substrates appears possible if the dislocation density in the thin-film GaAs layer is less than 10/sup 6/ cm/sup -2/.

  9. Efficiency considerations for polycrystalline GaAs thin-film solar cells

    SciTech Connect (OSTI)

    Yamaguchi, M.; Itoh, Y.

    1986-07-01

    The effect of grain boundaries upon the efficiency of polycrystalline GaAs thin-film solar cells is analyzed. Solar-cell properties are calculated on a simple model where grain boundaries act as recombination centers to reduce the minority-carrier diffusion length in the solar cell's active layer and increase the space-charge layer recombination current. An effective diffusion length is expressed in terms of grain size, allowing the calculation of short-circuit current density and open-circuit voltage. Excellent agreement is obtained between theory and experiment. The fabrication of thin-film GaAs solar cells with an efficiency greater than 18% appears to be possible if the grain size in the thin-film GaAs layer with thickness of 3 ..mu..m is larger than 1000 ..mu..m.

  10. White LED with High Package Extraction Efficiency

    Office of Scientific and Technical Information (OSTI)

    WHITE LED WITH HIGH PACKAGE EXTRACTION EFFICIENCY Final Report Report Period Start Date: 10/01/2006 Report Period End Date: 09/30/2008 Authors: Yi Zheng and Matthew Stough Report Submission Date: November 2008 DOE Award Number: DE-FC26-06NT42935 Project Manager: Ryan Egidi OSRAM SYLVANIA Product Inc Central Research and Service Laboratory 71 Cherry Hill Dr., Beverly, MA 01915 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

  11. High Efficiency Microturbine with Integral Heat Recovery

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency.

  12. Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters

    SciTech Connect (OSTI)

    2012-02-13

    Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

  13. Thermal Strategies for High Efficiency Thermoelectric Power Generation

    Broader source: Energy.gov [DOE]

    Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

  14. Charge Trapping in High Efficiency Alternating Copolymers: Implications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaic Device Efficiency | ANSER Center | Argonne-Northwestern National Laboratory Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency

  15. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  16. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  17. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell - News Releases | NREL NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set using a

  18. NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell | Awards and Honors | NREL NREL and CSEM Jointly Set New Efficiency Record with Dual-Junction Solar Cell January 5, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and at the Swiss Center for Electronics and Microtechnology (CSEM) have jointly set a new world record for converting non-concentrated (1-sun) sunlight into electricity using a dual-junction III-V/Si solar cell. The newly certified record conversion efficiency of 29.8 percent was set

  19. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    SciTech Connect (OSTI)

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80250 ?m in 1.52 ?m thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 ?m which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

  20. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE FACT SHEET: Transition to High Efficiency Space Heating Overview The City of Seattle ... in spring of 2015 of advanced efficient space heating options available for commercial ...

  1. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  2. High-Efficiency Multijunction Photovoltaics | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient ... design of multijunction cells, yielding a very rich ...

  3. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  4. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells

    SciTech Connect (OSTI)

    Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Yuan, Yongbo; Huang, Jinsong

    2015-06-25

    The efficiency of organometal trihalide perovskites (OTP) solar cells have reached that parity of single crystal silicon, and its nature abundant raw material and solution-process capability promise a bright future for commercialization. However, the vacuum based techniques for metal electrode deposition and additional encapsulation layer increase the cost of the perovskite solar cells dramatically and impede their commercialization process. Here, we report a vacuum-free low temperature lamination technique to fabricate the top electrode by commercial conductive tapes (C-tape). The simple fabrication method yields good quality contact and high efficiency device of 12.7%. The C-tapes also encapsulated the devices effectively, resulting in greatly improved device stability. As a result, the combination of lamination of electrodes and encapsulation layers into a single step significantly reduce the cost of device fabrication.

  5. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Yuan, Yongbo; Huang, Jinsong

    2015-06-25

    The efficiency of organometal trihalide perovskites (OTP) solar cells have reached that parity of single crystal silicon, and its nature abundant raw material and solution-process capability promise a bright future for commercialization. However, the vacuum based techniques for metal electrode deposition and additional encapsulation layer increase the cost of the perovskite solar cells dramatically and impede their commercialization process. Here, we report a vacuum-free low temperature lamination technique to fabricate the top electrode by commercial conductive tapes (C-tape). The simple fabrication method yields good quality contact and high efficiency device of 12.7%. The C-tapes also encapsulated the devices effectively, resultingmore » in greatly improved device stability. As a result, the combination of lamination of electrodes and encapsulation layers into a single step significantly reduce the cost of device fabrication.« less

  6. Means of increasing efficiency of CPC solar energy collector

    DOE Patents [OSTI]

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  7. Means of increasing efficiency of CPC solar energy collector

    DOE Patents [OSTI]

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  8. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  9. Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011

    SciTech Connect (OSTI)

    Kurtin, J.

    2011-05-01

    This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

  10. High throughput solar cell ablation system

    DOE Patents [OSTI]

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2014-10-14

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  11. High throughput solar cell ablation system

    DOE Patents [OSTI]

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2012-09-11

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  12. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  13. Finite element strategies for the efficient analysis and evaluation of solar collector structures

    SciTech Connect (OSTI)

    Koteras, J. R.

    1980-01-01

    Concentrating or reflecting structures for solar energy systems must be evaluated as to their structural integrity and optical performance. Computer studies can be used as an integral part of these evaluations. The computer studies make use of finite element structural codes coupled with post-processors that calculate optical data. If the analysis of a solar structure is to be carried out in an efficient manner, these computer codes must have certain capabilities. A number of solar energy projects at Sandia National Laboratories have made extensive use of finite element analyses. The analyses have been useful in evaluating design concepts which hold promise for large scale use in solar energy projects. Analysis procedures have been developed for some structures so that evaluations can be carried out in a straightforward manner.

  14. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  15. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  16. Full-Spectrum Semiconducting Material for Affordable, Highly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affordable, Highly Efficient Solar Cells Lawrence ... the fabrication of high efficiency solar cells at a fraction of the ... and high-energy photons into electric current. ...

  17. High efficiency thin-film multiple-gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  18. New III-V cell design approaches for very high efficiency

    SciTech Connect (OSTI)

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. )

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  19. The efficiency limit of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    SciTech Connect (OSTI)

    Sha, Wei E. I.; Ren, Xingang; Chen, Luzhou; Choy, Wallace C. H.

    2015-06-01

    With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

  20. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  1. Development of a Long-Life-Cycle, Highly Water-Resistant Solar...

    Office of Scientific and Technical Information (OSTI)

    Highly Water-Resistant Solar Reflective Retrofit Roof Coating Citation Details In-Document Search Title: Development of a Long-Life-Cycle, Highly Water-Resistant Solar ...

  2. Lanai high-density irradiance sensor network for characterizing solar

    Office of Scientific and Technical Information (OSTI)

    resource variability of MW-scale PV system. (Conference) | SciTech Connect Conference: Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system. Citation Details In-Document Search Title: Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system. Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance

  3. Development of efficient photoreactors for solar hydrogen production

    SciTech Connect (OSTI)

    Huang, Cunping; Yao, Weifeng; T-Raissi, Ali; Muradov, Nazim

    2011-01-15

    The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar trademark polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates. (author)

  4. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies. This makes them attractive candidates for producing green chemical feedstocks and biofuels, particularly oil-based aviation fuels. However, there...

  5. High-Efficiency Engine Technologies Session Introduction

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. Excitons in Highly Efficient Organic Devices | MIT-Harvard Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excitons in Highly Efficient Organic Devices November 29, 2012 at 3pm36-428 Karl Leo ... In this talk, I will discuss some of the recent progress on highly efficient OLED and ...

  7. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  8. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to demonstrate a high-efficiency compressor design that is critical to enabling low direct-GWP high-efficiency small-commercial rooftop and residential systems (1.5 TR to 10 TR). ...

  9. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  10. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    SciTech Connect (OSTI)

    Nalwa, Kanwar

    2012-11-03

    Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 μm), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  11. Energy Efficiency Opportunities in Federal High Performance Computing Data Centers

    Broader source: Energy.gov [DOE]

    Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers.

  12. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  13. High Volume Method of Making Low Cost, Lightweight Solar Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Volume Method of Making Low Cost, Lightweight Solar Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA critical challenge for solar energy is the high cost (>$1/W) of quality solar materials. Researchers at ORNL have invented an approach for producing large volumes of solar cell material at a fraction of the cost of today's solar cells.

  14. Process Development for High Voc CdTe Solar Cells

    SciTech Connect (OSTI)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  15. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  16. High Engine Efficiency at 2010 Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Achieving High Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Technology Development for High ...

  17. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect (OSTI)

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  18. Graphene Oxide Interlayers for Robust, High-Efficiency Organic Photovoltaics

    SciTech Connect (OSTI)

    Murray, Ian P.; Lou, Sylvia J.; Cote, Laura J.; Loser, Stephen; Kadleck, Cameron J.; Xu, Tao; Szarko, Jodi M.; Rolczynski, Brian S.; Johns, James E.; Huang, Jiaxing; Yu, Luping; Chen, Lin X.; Marks, Tobin J.; Hersam, Mark C.

    2012-02-07

    Organic photovoltaic (OPV) materials have recently garnered significant attention as enablers of high power conversion efficiency (PCE), low-cost, mechanically flexible solar cells. Nevertheless, further understanding-based materials developments will be required to achieve full commercial viability. In particular, the performance and durability of many current generation OPVs are limited by poorly understood interfacial phenomena. Careful analysis of typical OPV architectures reveals that the standard electron-blocking layer, poly-3,4-ethylenedioxy-thiophene:poly(styrene sulfonate) (PEDOT:PSS), is likely a major factor limiting the device durability and possibly performance. Here we report that a single layer of electronically tuned graphene oxide is an effective replacement for PEDOT:PSS and that it significantly enhances device durability while concurrently templating a performance-optimal active layer {pi}-stacked face-on microstructure. Such OPVs based on graphene oxide exhibit PCEs as high as 7.5% while providing a 5x enhancement in thermal aging lifetime and a 20x enhancement in humid ambient lifetime versus analogous PEDOT:PSS-based devices.

  19. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperaturemore » to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.« less

  20. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

    SciTech Connect (OSTI)

    Deng, Yehao; Peng, Edwin; Shao, Yuchuan; Xiao, Zhengguo; Dong, Qingfeng; Huang, Jinsong

    2015-03-25

    Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4'-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Furthermore, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

  1. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  2. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in

  3. The Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar Aaron Bloom, Aaron Townsend, and David Palchak The National Renewable Energy Laboratory 1 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/PR-6A20-64795 IEEE PES General Meeting Denver, Colorado July 26-30, 2015 2 Simulated dispatch for high solar period in FRCC Simulated

  4. Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

  5. Technology Development for High Efficiency Clean Diesel Engines and a

    Broader source: Energy.gov (indexed) [DOE]

    Pathway to 50% Thermal Efficiency | Department of Energy Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. PDF icon deer09_stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency Clean Combustion

  6. Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    In the search for a third generation of solar-cell technologies, a leading candidate is the use of 'quantum dots' -- tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots have the potential to dramatically increase the efficiency of converting sunlight into energy -- perhaps even doubling it in some devices -- because of their ability to generate more than one bound electron-hole pair, or exciton, per incoming photon. NREL has produced quantum dots using colloidal suspensions; then, using molecular self-assembly, they have been fabricated into the first-ever quantum-dot solar cells. While these devices operate with only 4.4% efficiency, they demonstrate the capability for low-cost manufacturing.

  7. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW ...

  8. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  9. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS

    SciTech Connect (OSTI)

    Tobin J. Marks; R.P.H. Chang; Tom Mason; Ken Poeppelmeier; Arthur J. Freeman

    2008-11-13

    Organic photovoltaic (OPV) cells offer the ultimate promise of low cost, readily manufacturable, and durable solar power. While recent advances have led to cells with impressive performance levels, OPV cells have yet to break the double-digit efficiency barrier. Further gains in efficiency and durability, to that competitive with high-performance inorganic photovoltaics will require breakthroughs in transparent electrode and interfacial materials science and engineering. This project involved an integrated basic research effort carried out by an experienced and highly collaborative interdisciplinary team to address in unconventional ways, critical electrode-interfacial issues underlying OPV performance--controlling band offsets between transparent electrodes and organics, addressing current loss/leakage problems at interfaces, enhancing adhesion, interfacial stability, and device durability while minimizing cost. It synergistically combined materials and interfacial reagent synthesis, nanostructural and photovoltaic characterization, and high level quantum theory. The research foci were: 1) understanding of/development of superior transparent electrode materials and materials morphologies--i.e., better matched electronically and chemically to organic active layers, 2) understanding-based development of inorganic interfacial current-collecting/charge-blocking layers, and 3) understanding-based development of self-assembled adhesion/current-collecting/charge-blocking/cross-linking layers for high-efficiency OPV interfaces. Pursing the goal of developing the fundamental scientific understanding needed to design, fabricate, prototype and ultimately test high-efficiency OPV cells incorporating these new concepts, we achieved a record power conversion efficiency of 5.2% for an organic bulk-heterjunction solar cell.

  10. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  11. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum Efficiency

    SciTech Connect (OSTI)

    Fuke, Nobuhiro; Hoch, Laura B.; Koposov, Alexey Y.; Manner, Virginia W.; Werder, Donald J.; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-10-20

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve ~100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  14. Community-Scale High-Performance with Solar: Pulte Homes, Tucson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes. ...

  15. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  16. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  17. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  18. Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint

    SciTech Connect (OSTI)

    Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

    2012-04-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

  19. High Temperature Electrolysis for Efficient Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Electrolysis Project History and Background * INL served as the lead ... technology for continued development toward early deployment (based on the ...

  20. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination...

  1. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  2. New methods for tightly regulated gene expression and highly efficient

    Office of Scientific and Technical Information (OSTI)

    chromosomal integration of cloned genes for Methanosarcina species (Journal Article) | SciTech Connect New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species Citation Details In-Document Search Title: New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species A highly efficient method for chromosomal integration of cloned DNA into

  3. High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) DOE-STD-3020-2015 Specification for HEPA Filters Used by DOE Contractors The purpose of this standard is to establish specifications and quality assurance (QA) requirements for the procurement, packaging, shipping and storage of high efficiency particulate air (HEPA) filters. DOE-STD-3025-2007 Quality Assurance Inspection and Testing of HEPA

  4. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_12_wagner.pdf More Documents & Publications Ignition Control for HCCI High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines Expanding Robust HCCI Operation (Delphi CRADA)

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin; Davenport, Roger; Talbot, Jan; Herz, Richard; Genders, David; Symons, Peter; Brown, Lloyd

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.

  6. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  7. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting arravt081vssnewhouse2012o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  8. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, ...

  9. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  10. Development of Enabling Technologies for High Efficiency, Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  11. High Efficiency Combustion and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Controls High Efficiency Combustion and Controls 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

  12. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Presentation given at DEER 2006, August 20-24, 2006, ...

  13. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 Presentation on ...

  14. Achieving High Efficiency at 2010 Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2006deernelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Exhaust ...

  15. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Broader source: Energy.gov (indexed) [DOE]

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance PDF icon ...

  16. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion Multicylinder Diesel Engine Design for ...

  17. High-Efficiency Commercial Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Commercial Cold Climate Heat Pump 2014 Building Technologies Office Peer ... performance cold climate commercial heat pump system 2) Execute a Technology Readiness ...

  18. Enabling High Efficiency Clean Combustion with Micro-Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel ...

  19. High-Efficiency Rooftop Air Conditioners: Innovative Procurement...

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. ...

  20. Greensburg Implements High-Efficiency Building Codes to Achieve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings ... would sustain the local economy for the long term, the city began working with ...