Powered by Deep Web Technologies
Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015.

2

Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Highly Efficient Solar Thermochemical Reaction Systems" held on January 13, 2015.

3

Very High Efficiency Solar Cell Modules  

SciTech Connect (OSTI)

The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

2009-01-01T23:59:59.000Z

4

Webinar: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

5

High Efficiency Silicon Solar Cells  

Science Journals Connector (OSTI)

Conversion efficiency has emerged as an important contributor to further reducing photovoltaic system cost. This presentation will discuss the various improvements that have increased...

Swanson, Richard

6

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect (OSTI)

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

7

High-efficiency concentrator silicon solar cells  

SciTech Connect (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

8

A High Efficiency Silicon Solar Cell Production Technology  

Science Journals Connector (OSTI)

BP Solar have developed a cost-effective production technology for the manufacture of high efficiency laser grooved buried grid (LGBG) crystalline silicon solar cells. The process has demonstrated 17–18% ... a ne...

N. B. Mason; D. Jordan; J. G. Summers

1991-01-01T23:59:59.000Z

9

Webinar January 13: Highly Efficient Solar Thermochemical Reaction Systems  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar entitled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

10

Requisites for Highly Efficient Hot-Carrier Solar Cells  

Science Journals Connector (OSTI)

We have constructed new models based on detailed balance of particle and energy fluxes to clarify the operating principle of hot-carrier solar cells (HC-SCs) and find the requisites for high conversion efficiency...

Yasuhiko Takeda

2014-01-01T23:59:59.000Z

11

High-Efficiency, Self-Concentrating Nanoscale Solar Cell - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provided the right combination of high-efficiency and low-cost. For example, conventional solar cells are designed to absorb light through an antireflective layer, and through a...

12

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

13

High Efficiency Solar Fuels Reactor Concept  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

14

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

SciTech Connect (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

15

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

SciTech Connect (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

16

Highly Efficient Monolithic Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

These advantages make DSSCs an attractive renewable power source in the near future. ... First, we analyzed the disadvantages of M-DSSCs: (1) The carbon-based counter electrode is too thick to attain adequate conversion efficiency and it is also not suitable for flexible type DSSCs. ... The device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to elec. ...

Jeong Kwon; Nam-Gyu Park; Jun Young Lee; Min Jae Ko; Jong Hyeok Park

2013-02-22T23:59:59.000Z

17

Sandia National Laboratories: high-efficiency solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cells Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic,...

18

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

19

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

20

Polyhedral Specular Reflector Design for Ultra-High Spectrum Splitting Solar Module Efficiencies (>50%)  

E-Print Network [OSTI]

Polyhedral Specular Reflector Design for Ultra-High Spectrum Splitting Solar Module Efficiencies., Pasadena, CA, USA 95555-0345 ABSTRACT One pathway to achieving ultra-high solar efficiencies (>50, multijunction solar cell, solar concentrator 1. INTRODUCTION Solar cell efficiency is increased through

Atwater, Harry

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

22

NANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1  

E-Print Network [OSTI]

for solar energy conversion. NANOSTRUCTURED SOLAR CELLS Nanostructured solar cells offer several advantages to contribute to high efficiency devices NEW CONCEPTS FOR SOLAR CELLS An important advantage for nanostructuredNANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1 , Allen M

Honsberg, Christiana

23

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network [OSTI]

. Figure 3-1 IV curve of a UT fabricated triple cell, showing 12.7% initial, active-area efficiency. Figure1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High

Deng, Xunming

24

Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by  

E-Print Network [OSTI]

: Three of central challenges in solar cells are high light coupling into solar cell, high light trappingUltrathin, high-efficiency, broad-band, omni- acceptance, organic solar cells enhanced by plasmonic and demonstration of a new ultra-thin high- efficiency organic solar cell (SC), termed "plasmonic cavity

25

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network [OSTI]

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

26

High-efficiency third-generation silicon solar cells  

Science Journals Connector (OSTI)

The results of investigating third-generation matrix silicon solar cells with an efficiency of more than 25% during conversion of concentrated solar radiation are given. Electrical and optical characteristics ......

D. S. Strebkov; V. I. Polyakov

2011-08-01T23:59:59.000Z

27

High efficiency silicon nanohole/organic heterojunction hybrid solar cell  

SciTech Connect (OSTI)

High efficiency hybrid solar cells are fabricated based on silicon with a nanohole (SiNH) structure and poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The SiNH structure is fabricated using electroless chemical etching with silver catalyst, and the heterojunction is formed by spin coating of PEDOT on the SiNH. The hybrid cells are optimized by varying the hole depth, and a maximum power conversion efficiency of 8.3% is achieved with a hole depth of 1??m. The SiNH hybrid solar cell exhibits a strong antireflection and light trapping property attributed to the sub-wavelength dimension of the SiNH structure.

Hong, Lei [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Singapore Institute of Manufacturing Technology, A-STAR (Agency for Science, Technology and Research), 71 Nanyang Drive, Singapore 638075 (Singapore); Wang, Xincai; Zheng, Hongyu [Singapore Institute of Manufacturing Technology, A-STAR (Agency for Science, Technology and Research), 71 Nanyang Drive, Singapore 638075 (Singapore); He, Lining; Wang, Hao; Rusli, E-mail: yu.hy@sustc.edu.cn, E-mail: erusli@ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu, Hongyu, E-mail: yu.hy@sustc.edu.cn, E-mail: erusli@ntu.edu.sg [South University of Science and Technology of China, Shenzhen (China)

2014-02-03T23:59:59.000Z

28

Characterization and Performance Analysis of High Efficiency Solar Cells and Concentrating Photovoltaic Systems .  

E-Print Network [OSTI]

??As part of the SUNRISE project (Semiconductors Using Nanostructures for Record Increases in Solar-cell Efficiency), high efficiency, III-V semiconductor, quantum-dot-enhanced, triple-junction solar cells designed and… (more)

Yandt, Mark

2012-01-01T23:59:59.000Z

29

High-efficiency solar dynamic space power generation system  

SciTech Connect (OSTI)

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

30

Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting  

E-Print Network [OSTI]

In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

2014-01-01T23:59:59.000Z

31

ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission  

E-Print Network [OSTI]

ORIGINAL ARTICLE Highly efficient GaAs solar cells by limiting light emission angle Emily D Kosten1 solar cell under direct sunlight, light is received from the solar disk, but is re-emitted isotropically.1038/lsa.2013.1; published online 4 January 2013 Keywords: detailed balance; GaAs solar cell; light

Atwater, Harry

32

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

SciTech Connect (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

33

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

34

High-Efficiency Solar Cells for Large-Scale Electricity Generation  

SciTech Connect (OSTI)

One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

2008-09-26T23:59:59.000Z

35

Plasmonic and High Index Nanostructures for Efficient Solar Energy Conversion  

Science Journals Connector (OSTI)

I will discuss the use of nanometallic and high-index dielectric nanostructures in boosting the energy conversion efficiency of photovoltaic and photo-electrochemical cells.

Brongersma, Mark L

36

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect (OSTI)

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

37

Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films  

E-Print Network [OSTI]

1 Air-Stable High-Efficiency Solar Cells Using Improved Single-Walled Carbon Nanotube Films Kehang-3-5800-6983. #12;2 ABSTRACT We present the single-walled carbon nanotube/silicon (SWNT/Si) solar cells approaching, the PCEs of the fabricated solar cells slightly increased after six-month exposure in air without any

Maruyama, Shigeo

38

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

39

Power efficiency for very high temperature solar thermal cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

1984-01-01T23:59:59.000Z

40

A High-temperature, High-efficiency Solar Thermoelectric Generator Prototype  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric generators (STEGs) have the potential to convert solar energy at greater than 15% efficiency. This project investigates the system design, the necessary thermoelectric and optical technologies, and the economic feasibility of the STEG approach. A STEG is a solid-state heat engine that converts sunlight directly into DC electricity through the thermoelectric effect. \\{STEGs\\} consist of three subsystems: the solar absorber, the thermoelectric generator (TEG), and the heat management system (insulation, heat exchanger, vacuum enclosure, etc.). This project will integrate several state-of-the-art technologies to achieve high efficiency, including next- generation materials for TEGs, high-temperature solar-selective absorbers, and thermal cavities. We will test \\{STEGs\\} at NREL's high flux solar furnace (HFSF) and perform analysis of parasitic losses and lifetime analysis to optimize prototype operation. Equally important for this technology is the development of a cost model to determine the economic competitiveness and possible application niches for STEG technologies. We report on first-order economic analysis to identify the most promising pathways for advancing the technology.

M.L. Olsen; E.L. Warren; P.A. Parilla; E.S. Toberer; C.E. Kennedy; G.J. Snyder; S.A. Firdosy; B. Nesmith; A. Zakutayev; A. Goodrich; C.S. Turchi; J. Netter; M.H. Gray; P.F. Ndione; R. Tirawat; L.L. Baranowski; A. Gray; D.S. Ginley

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quantum Dot Solar Cells: High Efficiency through Multiple Exciton Generation  

SciTech Connect (OSTI)

Impact ionization is a process in which absorbed photons in semiconductors that are at least twice the bandgap can produce multiple electron-hole pairs. For single-bandgap photovoltaic devices, this effect produces greatly enhanced theoretical thermodynamic conversion efficiencies that range from 45-85%, depending upon solar concentration, the cell temperature, and the number of electron-hole pairs produced per photon. For quantum dots (QDs), electron-hole pairs exist as excitons. We have observed astoundingly efficient multiple exciton generation (MEG) in QDs of PbSe (bulk Eg = 0.28 eV), ranging in diameter from 3.9 to 5.7nm (Eg = 0.73, 0.82, and 0.91 eV, respectively). The effective masses of electron and holes are about equal in PbSe, and the onset for efficient MEG occurs at about three times the QD HOMO-LUMO transition (its ''bandgap''). The quantum yield rises quickly after the onset and reaches 300% at 4 x Eg (3.64 eV) for the smallest QD; this means that every QD in the sample produces three electron-hole pairs/photon.

Hanna, M. C.; Ellingson, R. J.; Beard, M.; Yu, P.; Micic, O. I.; Nozik, A. J.; c.

2005-01-01T23:59:59.000Z

42

Novel Materials and Structures for Super High Efficiency Multi-Junction Solar Cells  

Science Journals Connector (OSTI)

III–V compound multi-junction solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior ... bottom cell, we have demonstrate...

Masafumi Yamaguchi; Hidetoshi Suzuki…

2009-01-01T23:59:59.000Z

43

Two-Dimensional Numerical Simulations of High Efficiency Silicon Solar Cells  

Science Journals Connector (OSTI)

This paper presents for the first time the use of two-dimensional (2D) device simulation for optimising design parameters of high-efficiency silicon solar cells of practical dimensions. We examine the...

G. Heiser; A. G. Aberle; S. R. Wenham…

1993-01-01T23:59:59.000Z

44

Approaches to fabricating high-efficiency ultra-thin CdTe solar cells.  

E-Print Network [OSTI]

??This thesis is an investigation of the fabrication, characterization and performance of high-efficiency and ultra-thin CdTe solar cells with an aim of reducing the material… (more)

Xia, Wei (1981 - )

2013-01-01T23:59:59.000Z

45

High Efficiency CdTe Ink-Based Solar Cells Using Nanocrystals (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Highlight is being developed for the 2015 February Alliance S&T Board meeting and describes a solution-processable ink to produce high-efficiency solar cells using low temperature and simple processing.

Not Available

2015-01-01T23:59:59.000Z

46

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPVDesign and global optimization of high-efficiency solar thermal systems with tungsten cermets DavidDepartment of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts

Soljaèiæ, Marin

47

Hybrid Carbon Nanotubes-TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

Hybrid Carbon Nanotubes-TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells Kadiatou-Boulet, Varennes, Quebec J3X 1S2, Canada Department of Chemical Sciences and Technology & NAST Center, University, 25133 Brescia, Italy Solar Cells Laboratory, Institute of Materials Science and Technology (IMRE

48

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

SciTech Connect (OSTI)

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

49

Sandia National Laboratories: High-Efficiency Solar Thermochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

50

Sandia National Laboratories: high-efficiency solar thermochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

51

INITIAL TEST BED FOR VERY HIGH EFFICIENCY SOLAR CELLS Allen Barnett  

E-Print Network [OSTI]

multiple benefits, including increased theoretical efficiency, new architectures that circumvent material/cost choices. An integrated optical/solar cell allows efficiency improvements while retaining low area costs, multiple-junction III-Vs for the high and low energy photons while circumventing existing cost drivers

Honsberg, Christiana

52

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

SciTech Connect (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

53

ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design  

E-Print Network [OSTI]

in the earth's crust. Their nano-solar cell technology is scalable to ultra-high volumes and may help speed up to solar cell design are applicable to other solar cell technologies as well, including thin-film CuInSe2ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

Polman, Albert

54

High Efficiency Solar Cells for Large-Scale Electricity Generation  

Science Journals Connector (OSTI)

The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%....

Kurtz, Sarah

55

Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells.  

E-Print Network [OSTI]

??Abundant, scalable, environmentally-friendly organic photovoltaic (OPV) technology is increasingly promising in recent years. The power conversion efficiency (PCE) of OPVs has been raised to around… (more)

Yang, Bin

2013-01-01T23:59:59.000Z

56

Design for the fabrication of high efficiency solar cells  

DOE Patents [OSTI]

A method and apparatus for a photo-active region for generation of free carriers when a first surface is exposed to optical radiation. The photo-active region includes a conducting transparent matrix and clusters of semiconductor materials embedded within the conducting transparent matrix. The clusters are arranged in the matrix material so as to define at least a first distribution of cluster sizes ranging from those with the highest bandgap energy near a light incident surface of the photo-active region to those with the smallest bandgap energy near an opposite second surface of the photo-active region. Also disclosed is a method and apparatus for a solar cell. The solar cell includes a photo-active region containing a plurality of semiconductor clusters of varying sizes as described.

Simmons, Joseph H. (Gainesville, FL)

1998-01-01T23:59:59.000Z

57

Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells  

SciTech Connect (OSTI)

Organo-metal halide perovskite solar cells based on planar architecture have been reported to achieve remarkably high power conversion efficiency (PCE, >16%), rendering them highly competitive to the conventional silicon based solar cells. A thorough understanding of the role of each component in solar cells and their effects as a whole is still required for further improvement in PCE. In this work, the planar heterojunction-based perovskite solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D. Simulation results revealed a great dependence of PCE on the thickness and defect density of the perovskite layer. Meanwhile, parameters including the work function of the back contact as well as the hole mobility and acceptor density in hole transport materials were identified to significantly influence the performance of the device. Strikingly, an efficiency over 20% was obtained under the moderate simulation conditions.

Liu, Feng; Zhu, Jun, E-mail: zhujzhu@gmail.com, E-mail: sydai@ipp.ac.cn; Wei, Junfeng; Li, Yi; Lv, Mei [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Dai, Songyuan, E-mail: zhujzhu@gmail.com, E-mail: sydai@ipp.ac.cn [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China)

2014-06-23T23:59:59.000Z

58

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

59

High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode  

Science Journals Connector (OSTI)

High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode ... Materials Chemistry and Nanochemistry Research Group, Center for Inorganic and Polymeric Nanomaterials, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada ... In addition, he thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada and the NSERC Solar Network for strong and sustained financial support of this work. ...

Nicolas Tétreault; Éric Arsenault; Leo-Philipp Heiniger; Navid Soheilnia; Jérémie Brillet; Thomas Moehl; Shaik Zakeeruddin; Geoffrey A. Ozin; Michael Grätzel

2011-09-30T23:59:59.000Z

60

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

62

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

63

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

SciTech Connect (OSTI)

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

64

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property  

E-Print Network [OSTI]

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

Wang, Wei Hua

65

Performance of Ultra High Efficiency Thin Germanium P-N Junction Solar Cells Intended for Solar Thermophotovoltaic Application  

Science Journals Connector (OSTI)

The theoretical upper limit conversion efficiency as a function of cell thickness and ... is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorp...

E. S. Vera; J. J. Loferski; M. Spitzer…

1981-01-01T23:59:59.000Z

66

Novel wide band gap materials for highly efficient thin film tandem solar cells  

SciTech Connect (OSTI)

Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

Brian E. Hardin, Stephen T. Connor, Craig H. Peters

2012-06-11T23:59:59.000Z

67

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa  

E-Print Network [OSTI]

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

Romeo, Alessandro

68

Hierarchically Structured Microspheres for High-Efficiency Rutile TiO2Based Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

candidate for use in water splitting, photo- catalysis, sensors, and dye-sensitized solar cells (DSSCs) overHierarchically Structured Microspheres for High-Efficiency Rutile TiO2Based Dye-Sensitized Solar and the Ostwald ripening process. Dye-sensitized solar cells (DSSCs) assembled by employing these complex rutile

Lin, Zhiqun

69

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

SciTech Connect (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

70

Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode  

SciTech Connect (OSTI)

In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

Li, Aiyuan; Nie, Riming; Deng, Xianyu, E-mail: xydeng@hitsz.edu.cn [Research Center for Advanced Functional Materials and Devices, Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Wei, Huaixin; Li, Yanqing; Tang, Jianxin [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123 (China); Zheng, Shizhao; Wong, King-Young [Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

2014-03-24T23:59:59.000Z

71

High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion  

Science Journals Connector (OSTI)

We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

R. D. Schaller and V. I. Klimov

2004-05-05T23:59:59.000Z

72

Mass production of high efficiency selective emitter crystalline silicon solar cells employing phosphorus ink technology  

Science Journals Connector (OSTI)

Abstract Phosphorus ink technology has been demonstrated as a simple and cheap method to realize selective emitter (SE) crystalline silicon solar cells through mass production in a professional photovoltaic company. We have achieved an average conversion efficiency (?) of 19.01% with peak ? of 19.27% for the SE solar cells based on commercial-grade p-type silicon substrate, much higher than that of the homogeneous emitter counterparts whose average ? is 18.56%. The standard deviation of the performance for these SE solar cells is also smaller, indicating better repeatability of the phosphorus ink SE technology. Moreover, the SE silicon solar cells can well adapt to various Ag pastes while preserving high cell performance, which offers an opportunity to choose a cheap Ag paste as front metallization material. With the aid of PC1D, we have shown that the ? of the SE solar cells can be further improved as the sheet resistance in the illuminated area increases from the present value of 70 to 120 ?/?.

Sihua Zhong; Wenzhong Shen; Feng Liu; Xiang Li

2013-01-01T23:59:59.000Z

73

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print Wednesday, 27 March 2013 00:00 The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

74

Highly Efficient Dye-Sensitized Solar Cells by Using a Mesostructured Anatase TiO2 Electrode with High Dye Loading Capacity  

Science Journals Connector (OSTI)

Highly Efficient Dye-Sensitized Solar Cells by Using a Mesostructured Anatase TiO2 Electrode with High Dye Loading Capacity ... The growth and assembly of TiO2 nanostructures with enhanced charge transfer and light harvesting have attracted much attention for fabricating highly efficient dye-sensitized solar cells. ... The photovoltaic measurements indicate that the mesoporous TiO2 layer enhances the dye loading capacity, the electron transfer efficiency, and the photocurrent of the cell, contributing to the significant improvement of the energy conversion efficiency of the dye-sensitized solar cells. ...

Wei Shao; Feng Gu; Chunzhong Li; Mengkai Lu

2010-09-03T23:59:59.000Z

75

Large Area and High Efficiency a-Si:H Solar Cell  

Science Journals Connector (OSTI)

A conversion efficiency of 5.4% for a-Si:H solar cell on 10x10 cm2...stainless steel substrate has been obtained. Large area a-Si:H solar cells were fabricated by the C-coupled...2...parallel plates) glow dischar...

Y. Higaki; M. Kato; M. Aiga…

1982-01-01T23:59:59.000Z

76

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

77

Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology  

Science Journals Connector (OSTI)

Abstract Despite the many advantages of thin-film silicon (Si) solar cells, their low efficiencies remain a challenge that must be overcome. Efficient light utilization across the solar spectrum is required to achieve efficiencies over 15%, allowing them to be competitive with other solar cell technologies. To produce high-efficiency thin-film Si solar cells, we have developed triple-junction solar cell structures to enhance solar spectrum utilization. To maximize the light management, in-house ZnO:Al layers with high haze ratios and high transmittances were developed. In addition, novel doping layers, such as n-type microcrystalline silicon oxide (µc-SiOx:H), which has a very low refractive index, and p-type microcrystalline silicon oxide (µc-SiOx:H), which has a wide bandgap, were successfully applied to the optical reflector and the window layer, respectively. Thin-film quality control techniques for the deposition of hydrogenated amorphous silicon (a-Si:H) in the top cell, hydrogenated amorphous silicon-germanium (a-SiGe:H) or hydrogenated microcrystalline silicon (?c-Si:H) in the middle cell, and hydrogenated microcrystalline silicon (?c-Si:H) in the bottom cell were also important factors leading to the production of high-efficiency triple-junction solar cells. As a result of this work, an initial efficiency of 16.1% (in-house measurement) in the a-Si:H/a-SiGe:H/?c-Si:H stack and a stabilized efficiency of 13.4% (confirmed by NREL) in the a-Si:H/?c-Si:H/?c-Si:H stack were successfully achieved in a small-area triple-junction solar cell with dimensions of 1 cm×1 cm.

Soohyun Kim; Jin-Won Chung; Hyun Lee; Jinhee Park; Younho Heo; Heon-Min Lee

2013-01-01T23:59:59.000Z

78

Rapid Thermal Processing of High Efficiency n-Type Silicon Solar Cells with Al Back Junction  

SciTech Connect (OSTI)

In this paper we report on the design, fabrication and modeling of 49 cm{sup 2}, 200-{micro}m thick, 1-5 {Omega}-cm, n- and p-type <111> and <100> screen-printed silicon solar cells. A simple process involving RTP front surface phosphorus diffusion, low frequency PECVD silicon nitride deposition, screen-printing of Al metal and Ag front grid followed by co-firing of front and back contacts produced cell efficiencies of 15.4% on n-type <111> Si, 15.1% on n-type <100> Si, 15.8% on p-type <111> Si and 16.1% on p-type <100> Si. Open circuit voltage was comparable for n and p type cells and was also independent of wafer orientation. High fill factor values (0.771-0.783) for all the devices ruled out appreciable shunting which has been a problem for the development of co-fired n-type <100> silicon solar cells with Al back junction. Model calculations were performed using PC1D to support the experimental results and provide guidelines for achieving >17% n-type silicon solar cells by rapid firing of Al back junction.

Ebong, A.; Upadhyaya, V.; Rounsaville, B.; Kim, D. S.; Meemongkolkiat, V.; Rohatgi, A.; Al-Jassim, M. M.; Jones, K. M.; To, B.

2006-01-01T23:59:59.000Z

79

Nano-structured Organic-Metal Interface for High Efficiency Organic Solar Cells  

Science Journals Connector (OSTI)

High bimolecular recombination has been identified as a performance limiting parameter in organic solar cells. To counter this issue, we introduce a structured-junction device...

Pandey, Ajay K; Aljada, Muhsen; Velusamy, M; Burn, Paul L; Meredith, Paul

80

High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells  

SciTech Connect (OSTI)

Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

2014-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

82

NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

Not Available

2012-09-01T23:59:59.000Z

83

Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication  

Science Journals Connector (OSTI)

We have calculated the limiting conversion efficiency of solar cells utilizing carrier multiplication (CM), using the detailed balance theory. The solar cells were assumed to comprise quantum dots (QDs) embedded in another material. It has been elucidated that three requisites must be fulfilled, so that a sufficient number of photons in the solar spectrum contribute to CM, resulting in significantly higher conversion efficiency than the values of conventional cells. These requisites are as follows: (1) the effective mass of electrons in the \\{QDs\\} should be much lighter than that of holes, so that the threshold photon energy above which CM can occur is close to the energy gap of the QDs. In this respect, InAs is a promising candidate for the QD material, but PbSe and Si are not. (2) The potential barrier height for electrons in the QDs, which determines the upper limit of the quantum yield of photon-to-carrier conversion (?limit), should be slightly larger than the energy gap of the \\{QDs\\} to achieve a ?limit value of 2, when the solar cells are used under the non-concentrated insolation. InAs \\{QDs\\} embedded in AlxGa1?xAsySb1?y is a possible candidate to fulfill these two criteria. A higher barrier does not contribute to generation of more carriers, but likely disturbs electron transport. In contrast, under the concentrated insolation, a potential barrier slightly higher than twice the energy gap to achieve a ?limit value of 3 leads to higher conversion efficiency. (3) The quantum yield of photon-to-carrier conversion as a function of photon energy should rise as steeply as possible at the threshold photon energy. The experimentally observed quantum yield with a sloping rise leads to little improvement in conversion efficiency due to CM, under the non-concentrated insolation. Although it could be improved under the concentrated insolation, the conversion efficiency cannot reach the limiting value for triple-junction solar cells.

Yasuhiko Takeda; Tomoyoshi Motohiro

2010-01-01T23:59:59.000Z

84

High efficiency InGaAs solar cells on Si by InP layer transfer James M. Zahler  

E-Print Network [OSTI]

High efficiency InGaAs solar cells on Si by InP layer transfer James M. Zahler Aonex Technologies, Pasadena, California 91106 Katsuaki Tanabea Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125 Corinne Ladous and Tom Pinnington Aonex Technologies

Atwater, Harry

85

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS  

E-Print Network [OSTI]

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR to those measured on reference cells passivated by an aluminum-annealed thermal SiO2, while those of the Al of aluminum ox- ide (Al2O3) grown by atomic layer deposition (ALD) pro- vide an excellent level of sur

86

Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

None

2010-01-01T23:59:59.000Z

87

High Efficiency, Spectrum Splitting Solar Cell Assemblies: Design, Measurement and Analysis  

Science Journals Connector (OSTI)

A spectrum splitting photovoltaic architecture was proposed for high energy conversion efficiency. Assemblies of this architecture were constructed, measured and analyzed, which allow...

Barnett, Allen; Wang, Xiaoting

88

High efficiency resonant dc/dc converter for solar power applications .  

E-Print Network [OSTI]

??This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage… (more)

Inam, Wardah

2013-01-01T23:59:59.000Z

89

New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

Wang, DongLin

2014-01-01T23:59:59.000Z

90

An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle  

E-Print Network [OSTI]

and impedance spectroscopy. KEYWORDS: Carbon/TiO2 thin film, dye-sensitized solar cells, block copolymer-treated single-wall carbon nanotubes (a-SWCNs) in TiO2 film.37 The a-SWCNs modified solar cell indicated a 25An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin

Lin, Zhiqun

91

DEVELOPMENT OF A HIGH EFFICIENCY MECHANICALLY STACKED MULTI-JUNCTION SOLAR CELL  

E-Print Network [OSTI]

Monolithic, 2-terminal, epitaxially grown multi-junctions represent the state-of-the-art in high efficiency photovoltaic space power. Their in-situ monolithic integration results in an elegant device structure with high efficiency, relatively high specific power, and a simple fabrication process. The monolithic, epitaxially grown nature of these devices also imposes materials and design restrictions which impede the march to significantly higher

Daniel Aiken; Paul Sharps; Mark Stan; Harry Atwater; Anna Fontcuberta I Morral; James Zahler; Mark Wanlass

92

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect (OSTI)

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

93

Performance Measurement Technologies for High-Efficiency Crystalline Silicon Solar Cells  

Science Journals Connector (OSTI)

Accurate measurements of the I–V curves of crystalline silicon c-Si cells and modules are discussed. Special attention is paid to the recent high-efficiency devices. The effect of the sweep speed and direction...

Yoshihiro Hishikawa

2009-01-01T23:59:59.000Z

94

Project Profile: High-Efficiency Thermal Storage System for Solar Plants  

Broader source: Energy.gov [DOE]

SENER, under the Baseload CSP FOA, aims to develop a highly efficient, low-maintenance and economical thermal energy storage (TES) system using solid graphite modular blocks for CSP plants.

95

Investigations to convert CO2, NaCl and H2O into Na2CO3 and \\{HCl\\} by thermal solar energy with high solar efficiency  

Science Journals Connector (OSTI)

Abstract Exhaust CO2, NaCl and H2O can be converted to Na2CO3 and \\{HCl\\} by the MgCl2/MgO modified ammonia soda process at a maximum temperature of 525 °C. Such a temperature is easily reached by solar troughs. Subsequently this process stores thermal solar energy as chemical energy and concomitantly CO2 can be removed from the environment. The process has been investigated theoretically and experimentally to further enhance its solar efficiency. It is shown theoretically that Mg-compounds are unique for this process and that the MgCl2/MgO modification is optimal. Experiments demonstrate that by splitting the main reaction of this process into two steps the solar efficiency can be enhanced to 21.5% and very highly concentrated \\{HClaq\\} can be obtained. The yield of the main chemical reaction exceeds 95% at 525 °C. Suggestions are given for an improved thermal solar trough system to perform the main chemical reaction.

Martin Forster

2014-01-01T23:59:59.000Z

96

Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells  

E-Print Network [OSTI]

1 Performance and Loss Analyses of High-Efficiency CBD-ZnS/Cu(In1-xGax)Se2 Thin-Film Solar Cells, Setagaya-ku, Tokyo 157-8572, Japan (Received ) KEYWORDS: ZnS buffer, Cu(In,Ga)Se2, thin-film solar cells alternative to CdS in polycrystalline thin-film Cu(In1-xGax)Se2 (CIGS) solar cells. Cells with efficiency

Sites, James R.

97

Improved power efficiency for very-high-temperature solar-thermal-cavity receivers  

DOE Patents [OSTI]

This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

McDougal, A.R.; Hale, R.R.

1982-04-14T23:59:59.000Z

98

Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif  

E-Print Network [OSTI]

that concentrate solar energy for conversion into usable energy. Ideally, a solar concentrating system should have, wind and sand loading, and abrasion. Many arid and desert areas, best suited for solar energy advantages of our solar concentrating system: are low cost and durability. Unlike most prior solar

Reif, John H.

99

High-efficiency indium tin oxide/indium phosphide solar cells  

SciTech Connect (OSTI)

Improvements in the performance of indium tin oxide/indium phosphide (ITO/InP) solar cells have been achieved by using dc magnetron sputter deposited /ital n/-ITO onto an epitaxial /ital p///ital p//sup +/ structure grown on good quality commercial /ital p//sup +/ bulk substrates. The composition of the sputtering gas has been investigated and the highest efficiency cells resulted when the surface of the epilayer was exposed to an Ar/H/sub 2/ plasma before depositing the bulk of the ITO in a more typical Ar/O/sub 2/ plasma. With H/sub 2/ processing, record efficiencies of 18.9% global, 1000 W m/sup /minus/2/, 25 /degree/C (17.0% air mass zero) were achieved. Without H/sub 2/ processing, the devices exhibited lower efficiencies and were unstable. Type conversion of the InP was shown to occur and was established as being associated with the ITO (possibly due to Sn donors) rather than sputter damage. These improvements in performance have resulted from the optimization of the doping, thickness, transport, and surface properties of the /ital p/-type base, as well as from better control over the ITO deposition procedure.

Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

1989-06-26T23:59:59.000Z

100

20% efficiency silicon solar cells  

Science Journals Connector (OSTI)

Further improvements in crystalline silicon solar cell performance have been obtained by combining the high levels of surface recombination control demonstrated in earlier passivated emitter solar cells with an improved optical approach. This approach involves the use of microgrooved surfaces which retain the advantages of pyramidally textured surfaces while avoiding some disadvantages of the latter. The approach results in a 5–6% improvement in cell short?circuit current density for cells fabricated on 0.1 and 0.2 ??cm (?p type) substrates. This results in an energy conversion efficiency for these devices above 20% under standard terrestrial test conditions (AM1.5 100 mW/cm2) for the first time.

A. W. Blakers; M. A. Green

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High-efficient solar power systems based on thermionic converter with small gap  

SciTech Connect (OSTI)

Various configurations of power systems based on thermionic converter with small interelectrode gap have been considered. The results of studies of systems energy characteristics are presented. The high efficiency and perspectivety of such systems for different applications have been shown. {copyright} {ital 1996 American Institute of Physics.}

Nikolaev, Y.V.; Eryomin, S.A.; Kalmykov, S.S.; Karpechenko, Y.D.; Kucherov, R.Y.; Lapochkin, N.V. [Research Institute of Scientific Industrial Association ``Lutch``, 142100, Podolsk, Moscow Region (Russian Federation)

1996-03-01T23:59:59.000Z

102

Evaluation of Annual Efficiencies of High Temperature Central Receiver Concentrated Solar Power Plants with Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL3 and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case, which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. The optical designs for all four cases were done using the DELSOL3 computer code; the results were then passed to the SOLERGY computer code, which uses historical typical meteorological year (TMY) data to estimate the plant performance over the course of one year of operation. Each of the four cases was sized to produce 100 \\{MWe\\} of gross electric power, have sensible liquid thermal storage capacity to generate electric power at full rated production level for 6 hours, and have a solar multiple of 1.8. There is a fairly dramatic difference between the design point and annual average performance. The largest differences are in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Another notable finding in the current study is the relatively small difference in annual average efficiencies between the Base and High Temperature cases. For both the Surround Field and North Field cases, the increase in annual solar to electric efficiency is <2%, despite an increase in thermal to electric conversion efficiency of over 8%. The reasons for this include the increased thermal losses due to higher temperature operation and operational losses due to start-up and shut-down of plant sub-systems. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

B. Ehrhart; D. Gill

2014-01-01T23:59:59.000Z

103

Edge photoluminescence of single-crystal silicon with a p-n junction: Structures produced by high-efficiency solar cell technology  

Science Journals Connector (OSTI)

The systematic features and kinetics of edge photoluminescence of silicon structures produced by the high-efficiency solar cell technology is studied at different voltages applied to...p-n junction. It is shown t...

A. M. Emel’yanov

2011-06-01T23:59:59.000Z

104

High efficiency thin-film crystalline Si/Ge tandem solar cell  

Science Journals Connector (OSTI)

We propose and simulate a photovoltaic solar cell comprised of Si and Ge pn junctions in tandem. With an anti-reflection film at the front surface, we have shown that optimal solar...

Sun, G; Chang, F; Soref, R A

2010-01-01T23:59:59.000Z

105

Solution Processed Al-Doped ZnO Nanoparticles/TiOx Composite for Highly Efficient Inverted Organic Solar Cells  

Science Journals Connector (OSTI)

Solution Processed Al-Doped ZnO Nanoparticles/TiOx Composite for Highly Efficient Inverted Organic Solar Cells ... This metal-oxide composition, called AZOTi, has two important elements that benefit production of low cost devices. ... After successful utilization of AZOTi in the fabrication of optimized single layer P3HT/PCBM-inverted solar cells, we also fabricated tandem cells comprising ITO/AZOTi/P3HT/PCBM in the front cell and a blend of a low band gap polymer [2,1,3-benzothiadiazole-4,7-diyl [4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b?]dithiophene-2,6-diyl

Abay Gadisa; Travis Hairfield; Leila Alibabaei; Carrie L. Donley; Edward T. Samulski; Rene Lopez

2013-08-27T23:59:59.000Z

106

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

SciTech Connect (OSTI)

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

107

Absorber processing issues in high-efficiency, thin-film Cu(In,Ga)Se{sub 2}-based solar cells  

SciTech Connect (OSTI)

Three approaches to thin-film Cu(In,Ga)Se{sub 2} absorber fabrication are considered. They are generically described in terms of the sequential or concurrent nature of source material delivery, selenium delivery, and compound formation. A two-stage evaporation process successfully produced the absorber component of a world-record, 17.1{percent} efficient solar cell. Alternative approaches that reduce the requirements for high substrate temperatures are considered. The relationship between absorber process parameters, band gap profile, and device performance are examined. Engineering the [Ga]/([Ga]+[In]) profile in the absorber has led to the reported advances. {copyright} {ital 1996 American Institute of Physics.}

Tuttle, J.R.; Gabor, A.M.; Contreras, M.A.; Tennant, A.L.; Ramanathan, K.R.; Franz, A.; Matson, R.; Noufi, R. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

1996-01-01T23:59:59.000Z

108

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

SciTech Connect (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

109

Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells  

SciTech Connect (OSTI)

A wafer-bonded four-junction cell design consisting of InGaAs, InGaAsP, GaAs, and Ga0.5In0.5P subcells that could reach one-sun AM0 efficiencies of 35.4% is described. The design relies on wafer-bonding and layer transfer for integration of non-lattice-matched subcells. Wafer bonding and layer transfer processes have shown promise in the fabrication of InP/Si epitaxial templates for growth of the bottom InGaAs and InGaAsP subcells on a Si support substrate. Subsequent wafer bonding and layer transfer of a thin Ge layer onto the lower subcell stack can serve as an epitaxial template for GaAs and Ga0.5In0.5P subcells. Additionally, wafer bonded Ge/Si substrates offer the possibility to improve the mechanical performance of existing triple-junction solar cell designs, while simultaneously reducing their cost. Present results indicate that optically active III/V compound semiconductors can be grown on both Ge/Si and InP/Si heterostructures. Current-voltage electrical characterization of the interfaces of these structures indicates that both InP/Si and Ge/Si interfaces have specific resistances lower than 0.1 W?cm2 for heavily doped wafer bonded interfaces, enabling back surface power extraction from the finished cell structure.

Zahler, J. M.; Fontcuberta i Morral, A.; Ahn, C. G.; Atwater, H. A.; Wanlass, M. W.; Chu, C.; Iles, P. A.

2003-05-01T23:59:59.000Z

110

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Btzner, H. Zogg and A.N. Tiwari*  

E-Print Network [OSTI]

to the solar panel that can be adapted to any kind of shape and is easy to deploy in space. In the last yearsDEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg Telephone: +44-1509-227031 E-mail: a.n.tiwari@lboro.ac.uk ABSTRACT: Polycrystalline thin film solar cells

Romeo, Alessandro

111

High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights...  

Office of Scientific and Technical Information (OSTI)

Technologies, NYCA MiaSole, CA HelioVolt, Tx Solyndra, CA SoloPower, CA Wurth Solar, Germany SULFURCELL, Germany CIS Solartechnik, Germany Solarion, Germany Solibro, Sweden...

112

Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

113

Polyacrylamide/Ni0.02Zn0.98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal  

Science Journals Connector (OSTI)

Polyacrylamide/Ni0.02Zn0.98O Nanocomposite with High Solar Light Photocatalytic Activity and Efficient Adsorption Capacity for Toxic Dye Removal ... The effect of adsorption capacity of cross-linked polyacrylamide on photocatalytic activity of Ni0.02Zn0.98O was also studied. ... A significant removal efficiency of 99.17% for RB and 96.55% for MG was achieved in 2 h of solar illumination in the presence of the nanocomposite. ...

Amit Kumar; Gaurav Sharma; Mu Naushad; Pardeep Singh; Susheel Kalia

2014-09-13T23:59:59.000Z

114

Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers  

Science Journals Connector (OSTI)

Abstract In present article the influence of thickness and band gap of microcrystalline silicon emitter layer, amorphous silicon front and back intrinsic layers and p-type crystalline silicon (c-Si) wafer thickness on the performance of TCO/?c-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/?c-Si:H(p+)/Ag Heterojunction with thin intrinsic layer (HIT) solar cell along with other structural possibilities were investigated through computer simulations using AFORS-HET software. These simulations revealed the importance of inclusion of intrinsic a-Si:H thin layer in improving the performance of solar cell with the help of interface passivation. Also microcrystalline BSF can raise the conversion efficiency more than 4% compared to HIT solar cell having no BSF layer. Highest stable efficiency of 24.12% for p-type substrate based HITBSF (HIT with back surface field) solar cells was observed. Furthermore the effect of textured transparent conductive oxide (TCO) on solar cells was investigated where the enhanced light trapping was observed with the use of textured TCO surface which raised the performance of solar cells. These optimizations may help in fabricating ?c-Si emitter and BSF based HIT solar cells with stable efficiencies compared to possibly degraded efficiencies as in case of a-Si:H based HIT solar cell structures studied so far.

Arti Rawat; Mansi Sharma; Deepika Chaudhary; S. Sudhakar; Sushil Kumar

2014-01-01T23:59:59.000Z

115

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Solar Receiver for Use in a Supercritical CO 2 Recompression Cycle Brayton Energy, LLC Award Number: DE-EE0005799 | November 30, 2012 | Sullivan * Numerical Modeling is...

116

Earth-Abundant Materials for High-Efficiency Heterojunction Thin Film Solar Cells  

Science Journals Connector (OSTI)

We investigate materials for thin film solar cells that can meet tens of terawatts level deployment potential. As one of the candidates, cuprous oxide (Cu2O) is synthesized and...

Lee, Yun Seog; Bertoni, Mariana; Buonassisi, Tonio

117

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

118

Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report  

SciTech Connect (OSTI)

This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

Deng, X.; Jones, S.J.; Liu, T.; Izu, M. [Energy Conversion Devices, Inc., Troy, MI (United States)

1998-04-01T23:59:59.000Z

119

High Efficiency Large Area AlGaAs/GaAs Concentrator Solar Cells  

Science Journals Connector (OSTI)

A 1-kWp ( peak at 100 mw/cm2 incident power dencity ) concentrating photovoltaic array with 180 square Presnel plastic lenses and AlGaAs/GaAs concentrator solar cells has been constructed. The AlGaAs/GaAs concetr...

S. Yoshida; K. Mitsui; T. Oda; Y. Yukimoto…

1981-01-01T23:59:59.000Z

120

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Annual subcontract report, May 1985 - Jul 1986  

SciTech Connect (OSTI)

A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

1987-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High Energy Solar Particles  

Science Journals Connector (OSTI)

6 May 1976 research-article High Energy Solar Particles J. J. Quenby Protons, heavy nuclei and electrons are seen to be emitted from solar flares with energies extending up to the relativistic region. Three different...

1976-01-01T23:59:59.000Z

122

High Efficiency Organic Solar Cells: December 16, 2009 - February 2, 2011  

SciTech Connect (OSTI)

Details on the development of novel organic solar cells incorporating Trimetasphere based acceptors are presented including: baseline performance for Lu-PCBEH acceptor blended with P3HT demonstrated at 4.89% PCE exceeding the 4.5% PCE goal; an increase of over 250mV in Voc was demonstrated for Lu-PCBEH blended with low band gap polymers compared to a comparable C60-PCBM device. The actual Voc was certified at 260mV higher for a low band gap polymer device using the Lu-PCBEH acceptor; and the majority of the effort was focused on development of a device with over 7% PCE. While low current and fill factors suppressed overall device performance for the low band gap polymers tested, significant discoveries were made that point the way for future development of these novel acceptor materials.

Walker, K.; Joslin, S.

2011-05-01T23:59:59.000Z

123

Highly Efficient Multi-crystalline Solar Cells Using Rear Surface Passivation Technology  

Science Journals Connector (OSTI)

Abstract In this work, we have successfully demonstrated the rear side passivation technology applied to multi-crystalline p-type wafers. The AlOx/SiNx stack was selected as rear side passivation layer combined with suitable laser opening source and metallization materials. The performance of multi-crystalline cell reached an efficiency level of 18%-19% applying this technology and the light induced degradation and module power output performance are attractive compared with current cell type.

Yan-Kai Chiou; Hung-Ming Lin; Kuang-Hui Hung; Cheng-Yu Ko; Chia-Hung Wu; Hsieng-Chen Yen; Shyuan-Fang Chen; Nai-Tien Ou; Walt K.W. Huang

2014-01-01T23:59:59.000Z

124

Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer  

E-Print Network [OSTI]

advancements, the power conversion efficiency (PCE) of organic solar cells (OSCs) has been improved with PCE more than 4% was demonstrated.7 However,Cs2CO3 exhibitsdeliquescencewhichaffects severely a PCE of 3.09%.14 Hau et al. adopted spin-coated ZnO nanoparticles as the electron selective layer

125

Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces  

DOE Patents [OSTI]

A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

2014-09-09T23:59:59.000Z

126

The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition  

SciTech Connect (OSTI)

InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.

ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.; JONES,ERIC D.; KURTZ,STEVEN R.

1999-09-16T23:59:59.000Z

127

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents [OSTI]

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

128

Efficiency of combined solar photothermal plants  

Science Journals Connector (OSTI)

The efficiency of a combined solar photothermal plant for electric and thermal energy ... evaluated with account for the daily variation of solar radiation and atmospheric temperature. It is shown ... utilize add...

M. N. Tursunov; A. Komilov; Sh. I. Klychev; S. M. Mukhammadiyev

2008-09-01T23:59:59.000Z

129

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas in Substitution of CdCl2  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film Solar Cells Prepared by Treating CdTe Films with a Freon Gas delle Scienze, 37/A-43010 Fontanini, Parma, Italy ABSTRACT: CdTe/CdS thin film solar cells have reached in the preparation of high efficiency CdTe/CdS solar cells is the activation treatment of CdTe film. Most research

Romeo, Alessandro

130

Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations  

SciTech Connect (OSTI)

Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

Bozzola, A., E-mail: angelo.bozzola@unipv.it; Kowalczewski, P.; Andreani, L. C. [Physics Department, University of Pavia and CNISM, via Bassi 6, I-27100 Pavia (Italy)

2014-03-07T23:59:59.000Z

131

Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells  

SciTech Connect (OSTI)

Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30?nm, and absorption peak from 475?nm to 510?nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn; Chen, Guorong, E-mail: yangyunxia@ecust.edu.cn, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Bo [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China)

2014-05-21T23:59:59.000Z

132

Optical design and efficiency improvement for organic luminescent solar concentrators  

E-Print Network [OSTI]

Optical design and efficiency improvement for organic luminescent solar concentrators Chunhua Wanga and efficiency improvement method. Keywords: Organic luminescent solar concentrators, Photovoltaic, solar energy, efficiency, multi-layer, solar cells, liquid crystal, molecular alignment 1. INTRODUCTION By using

Hirst, Linda

133

The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells  

Science Journals Connector (OSTI)

Abstract In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the \\{QDs\\} are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of \\{QDs\\} and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of \\{QDs\\} and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.

A. Mellor; A. Luque; I. Tobías; A. Martí

2014-01-01T23:59:59.000Z

134

Ames Lab 101: Improving Solar Cell Efficiency  

ScienceCinema (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2012-08-29T23:59:59.000Z

135

Ames Lab 101: Improving Solar Cell Efficiency  

SciTech Connect (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2011-01-01T23:59:59.000Z

136

Efficient Polymer Solar Cells - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory researchers have developed a process for producing more efficient polymer solar cells by increasing light absorption through a thin and uniform light-absorbing...

137

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

138

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N. Romeo, A. Bosio, A. Romeo, M. Bianucci, L. Bonci, C. Lenti  

E-Print Network [OSTI]

High Efficiency CdTe/CdS Thin Film solar Cells by a Process Suitable for Large Scale Production. N-mail:Nicola.Romeo@fis.unipr.it ABSTRACT: It has been demonstrated that CdTe/CdS thin film solar cells can exhibit an efficiency around 16 Film. 1 INTRODUCTION CdTe/CdS thin film solar cells have a good possibility to be produced on large

Romeo, Alessandro

139

Solar Tracing Sensors for Maximum Solar Concentrator Efficiency  

Energy Innovation Portal (Marketing Summaries) [EERE]

Concentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful forms of energy. Accurate sun tracking enables higher concentration ratios and improved efficiency through higher temperature processes and lower losses...

2013-03-12T23:59:59.000Z

140

Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell. Annual status report, 31 May 1994-30 May 1995  

SciTech Connect (OSTI)

The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique.

Alfano, R.R.; Wang, W.B.; Mohaidat, J.M.; Cavicchia, M.A.; Raisky, O.Y.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

142

Improving Solar-Cell Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films with different PID2 contents. From L. Lu et al., Nat. Photonics 8, 716 (2014). New light has been shed on solar power generation using devices made with polymers, thanks to...

143

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

2008) “Optimization of a solar-assisted drying system forfuel efficiency, such as the solar assisted air conditioning

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

144

Land-Use Efficiency of Big Solar  

Science Journals Connector (OSTI)

(8) When realized generation data are available, some studies have reported generation-based LUE (e.g., m2 GWh–1), which is a function of a plant’s location (e.g., climatic conditions and solar resources), technological efficiency, and thermal energy storage, the latter enabling the instantaneous capacity to exceed the nameplate (turbine) capacity. ... For example, in the western United States, oil and gas energy systems have impacted approximately 2 orders of magnitude more land (?21 million ha) than solar (?100?000 ha), but given the region’s vast solar resources, solar energy development could impact up to 18.6 million hectares of land. ...

Rebecca R. Hernandez; Madison K. Hoffacker; Christopher B. Field

2013-12-18T23:59:59.000Z

145

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

146

Thermodynamic efficiency of solar concentrators  

Science Journals Connector (OSTI)

The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space,...

Shatz, Narkis; Bortz, John; Winston, Roland

2010-01-01T23:59:59.000Z

147

Efficiency improvement of silicon nanostructure-based solar cells  

Science Journals Connector (OSTI)

Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

Bohr-Ran Huang; Ying-Kan Yang; Wen-Luh Yang

2014-01-01T23:59:59.000Z

148

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Phase II annual subcontract report, 1 January 1985--31 January 1986  

SciTech Connect (OSTI)

This report presents results of the second phase of research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Five glow-discharge deposition systems, including a new in-line, multichamber system, were used to grow both doped and undoped a-Si:H. A large number of silane and disilane gas cylinders were analyzed with a gas chromatography/mass spectroscopy system. Strong correlations were found between the breakdown voltage, the deposition rate, the diffusion length, and the conversion efficiency for varying cathode-anode separations in a DC glow-discharge deposition mode. Tin oxide films were grown by chemical vapor deposition with either tetramethyl tin (TMT) or tin tetrachloride (TTC). The best were grown with TMT, but TTC films had a more controlled texture for light trapping and provided a better contact to the p-layer. The best results were obtained with 7059 glass substrates. Efficiencies as high as 10.86% were obtained in p-i-n cells with superlattice p-layers and as high as 10.74% in cells with both superlattice p- and n-layers. Measurements showed that the boron-doping level in the p-layer can strongly affect transport in the i-layer, which can be minimized by reactive flushing before i-layer deposition. Stability of a-Si:H cells is improved by light doping. 51 refs., 64 figs., 21 tabs.

Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; McVeigh, J.; Newton, J.; O'Dowd, J.; Oswald, R.S.; Rajan, K.

1988-09-01T23:59:59.000Z

149

A Modified Efficiency Equation of Solar Collectors  

Science Journals Connector (OSTI)

Abstract This paper describes the derivation of a modified equation for solar collector efficiency that is expressed using the heating load term instead of the inlet fluid temperature term from the currently used linear collector efficiency equation. The parameters in the modified equation are estimated using test data measured for 14 days. In evaluation of the equation's validity, the calculated daily collector efficiency agrees well with the measured daily collector efficiency, with a correlation coefficient of 0.9110. The equation is also be expressed in another form by including the term for the shape of the hot water storage tank in the solar heating system. Collector efficiencies with parametric changes are calculated with the estimated parameters and compared with different global solar irradiance on solar collectors, daily average ambient temperature and heating loads per collector area. It would be necessary to estimate the parameters for better performance of the efficiency equation with more data from long-term system simulations at various operating conditions.

Kyoung-ho Lee; Nam-choon Baek

2014-01-01T23:59:59.000Z

150

A Path to High-Concentration Luminescent Solar Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells, and our work predicts unprecendented levels of...

151

Process for Fabrication of Efficient Solar Cells - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to provide low-cost solar energy conversion, flexibility, manufacturability, and are light weight. However, the efficiency of organic solar cells is about 4-6%, and increasing...

152

Growth and development of GaInAsP for use in high-efficiency solar cells. Final subcontract report, 1 July 1991--30 December 1993  

SciTech Connect (OSTI)

This report describes accomplishments during Phase 3 of this subcontract. The overall goals of the subcontract were (1) to develop the necessary technology to grow high-efficiency GaInAsP layers that are lattice-matched to GaAs and Ge; (2) to demonstrate highefficiency GaInAsP single-junction solar cells; and (3) to demonstrate GaInAsP/Ge cascade solar cells suitable for operation under concentrated (500X) sunlight. The major accomplishments during Phase 3 include (1) demonstrating a GaInAsP tunnel diode for use as an interconnect in the GaInAsP/Ge cascade cell, and (2) demonstrating a GaInAsP/Ge cascade cell. The development of the GaInAsP tunnel diode is a major accomplishment because it allows for the GaInAsP and Ge cells to be connected without optical losses for the bottom Ge cell, such as a Ge tunnel diode would cause. The GaInAsP/Ge cascade cell development is significant because of the demonstration of a cascade cell with a new materials system.

Sharps, P.R. [Research Triangle Inst., Research Triangle Park, NC (United States)

1994-10-01T23:59:59.000Z

153

High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)  

SciTech Connect (OSTI)

The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

2007-09-17T23:59:59.000Z

154

TiO{sub 2} nanospheres and spiny nanospheres for high conversion efficiency in dye-sensitized solar cells with gel electrolyte  

SciTech Connect (OSTI)

In this paper, the TiO{sub 2} nanospheres and spiny nanospheres were synthesized as the photoanode films of dye-sensitized solar cells (DSSCs) with quasi-solid electrolyte for the improvement of solar conversion efficiency. For a given film thickness, the spherical photoanode films have shorter electron transport time and several times slower recombination than those of nanoparticles, indicating that the charge-collection efficiencies of the spherical photoanodes were markedly improved. DSSCs containing the TiO{sub 2} spherical photoelectrode exhibited higher short circuit current because of this specific morphology.

Wang, Juangang, E-mail: shanxiwangjuangang@126.com; Chen, Tie-dan [College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, Anhui (China)

2014-04-07T23:59:59.000Z

155

High-efficiency thin and compact concentrator photovoltaics using micro-solar cells with via-holes sandwiched between thin lens-array and circuit board  

Science Journals Connector (OSTI)

We have developed a compact concentrator photovoltaic (CPV) module that comprises micro-solar cells with an area of ?0.6 ? 0.6 mm2 sandwiched between a 20-mm-thick lens array and a 1-mm-thick circuit board with no air gap. To establish electrical connections between the circuit board and the micro-solar cells, we developed a micro-solar cell with positive and negative electrodes on the lower face of the cell. In this study, we demonstrated the photovoltaic performance of the micro-solar cell closely approaches that of the standard solar cell measuring ?5 ? 5 mm2 commonly used in conventional CPVs under concentrated illumination. Our study showed that the negative effect on PV performance of perimeter carrier recombination in the micro-solar cell was insignificant under concentrated illumination. Finally, we assembled our micro-solar cells into a CPV module and achieved the module energy conversion efficiency of 34.7% under outdoor solar illumination.

Akihiro Itou; Tetsuya Asano; Daijiro Inoue; Hidekazu Arase; Akio Matsushita; Nobuhiko Hayashi; Ryutaro Futakuchi; Kazuo Inoue; Masaki Yamamoto; Eiji Fujii; Tohru Nakagawa; Yoshiharu Anda; Hidetoshi Ishida; Tetsuzo Ueda; Onur Fidaner; Michael Wiemer; Daisuke Ueda

2014-01-01T23:59:59.000Z

156

NREL: News Feature - Solar System Tops Off Efficient NREL Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar System Tops Off Efficient NREL Building September 29, 2010 Photo of the sun reflecting off of a solar panel on a roof. Enlarge image More than 1,800 solar panels are being...

157

Hydrothermally Grown Upright-Standing Nanoporous Nanosheets of Iodine-Doped ZnO (ZnO:I) Nanocrystallites for a High-Efficiency Dye-Sensitized Solar Cell  

Science Journals Connector (OSTI)

Nanoporous nanosheets of ZnO and ZnO:I nanocrsytallites were washed with DI water and baked in air at 350 °C for 30 min in order to remove any residual organics and optimize solar cell performance. ... The proposed growth process is a simple and low-cost approach for the large scale production of nanomaterials with high conversion efficiency to fabricate DSSCs and hybrid solar cells. ... This method is also anticipated to be equally applicable to other semiconductor photoelectrodes in DSSCs and organic–inorganic hybrid solar cells. ...

Khalid Mahmood; Hyun Wook Kang; Seung Bin Park; Hyung Jin Sung

2013-03-19T23:59:59.000Z

158

California: TetraCell Silicon Solar Cell Improves Efficiency...  

Energy Savers [EERE]

California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award California: TetraCell Silicon Solar Cell Improves Efficiency, Wins R&D 100 Award August 16, 2013 -...

159

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

160

21.9% efficient silicon bifacial solar cells  

SciTech Connect (OSTI)

This paper reports the efficiency of bifacial silicon solar cells and mini-modules fabricated at SunPower Corp. The best cell has AM1.5G front efficiency of 21.9% and rear efficiency of 13.9%. The mini-modules, each containing 20 bifacial cells, attain efficiency as high as the average efficiency of their individual cells. The best module has AM1.5G front efficiency of 20.66% and rear efficiency of 10.54%. Optical properties of the bifacial cells have also been measured and analyzed. The results show that bifacial cells, compared to monofacial cells, absorb less infrared light and thus they can operate at lower temperature in space.

Zhou, C.Z.; Verlinden, P.J.; Crane, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (United States); Sinton, R.A. [Sinton Consulting, San Jose, CA (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of high-efficiency, thin-film CdTe solar cells. Final subcontract report, 1 February 1992--30 November 1995  

SciTech Connect (OSTI)

This report describes work performed by the Georgia Institute of Technology (GIT) to bring the polycrystalline CdTe cell efficiency a step closer to the practically achievable efficiency of 18% through fundamental understanding of detects and loss mechanisms, the role of chemical and heat treatments, and investigation of now process techniques. The objective was addressed by a combination of in-depth characterization, modeling, materials growth, device fabrication, and `transport analyses of Au/Cu/CdTe/CdS/SnO {sub 2} glass front-wall heterojunction solar cells. GiT attempted to understand the loss mechanism(s) in each layer and interface by a step-by-step investigation of this multilayer cell structure. The first step was to understand, quantify, and reduce the reflectance and photocurrent loss in polycrystalline CdTe solar calls. The second step involved the investigation of detects and loss mechanisms associated with the CdTe layer and the CdTe/CdS interface. The third stop was to investigate the effect of chemical and heat treatments on CdTe films and cells. The fourth step was to achieve a better and reliable contact to CdTe solar cells by improving the fundamental understanding. Of the effects of Cu on cell efficiency. Finally, the research involved the investigation of the effect of crystallinity and grain boundaries on Cu incorporation in the CdTe films, including the fabrication of CdTe solar calls with larger CdTe grain size.

Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Inst. of Tech., Atlanta, GA (United States)

1996-01-01T23:59:59.000Z

162

High Penetration Solar Deployment  

Broader source: Energy.gov [DOE]

In October 2009, DOE announced $24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the...

163

Thermal efficiency of single-pass solar air collector  

SciTech Connect (OSTI)

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

164

Simultaneous P and B diffusion, in-situ surface passivation, impurity filtering and gettering for high-efficiency silicon solar cells  

SciTech Connect (OSTI)

A technique is presented to simultaneously diffuse boron and phosphorus in silicon, and grow an in-situ passivating oxide in a single furnace step. It is shown that limited solid doping sources made from P and B Spin-On Dopant (SOD) films can produce optimal n{sup +} and p{sup +} profiles simultaneously without the deleterious effects of cross doping. A high quality passivating oxide is grown in-situ beneath the thin ({approximately} 60 {angstrom}) diffusion glass, resulting in low J{sub o} values below 100 fA/cm{sup 2} for transparent ({approximately} 100 {Omega}/{open_square}) phosphorus and boron diffusions. For the first time it is shown that impurities present in the boron SOD film can be effectively filtered out by employing separate source wafers, resulting in bulk lifetimes in excess of 1 ms for the sample wafers. The degree of lifetime degradation in the sources is related to the gettering efficiency of boron in silicon. This novel simultaneous diffusion, in-situ oxidation, impurity filtering and gettering technique was successfully used to produce 20.3% Fz, and 19.1% Cz solar cells, in one furnace step.

Krygowski, T.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States); Ruby, D. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

165

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response  

E-Print Network [OSTI]

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor...Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor...

Tyra, K.; Hanel, J.

2012-01-01T23:59:59.000Z

166

Thermodynamic Limits of Solar Cell Efficiency  

Science Journals Connector (OSTI)

A general analysis of the coversion of solar heat to electrical energy in solar cells is presented. Some solar cell structures and processes are described which, in...

Würfel, Peter

167

High efficiency diamond solar cells  

DOE Patents [OSTI]

A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

Gruen, Dieter M. (Downers Grove, IL)

2008-05-06T23:59:59.000Z

168

Highly efficient dye-sensitized solar cells based on HfO{sub 2} modified TiO{sub 2} electrodes  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? HfO{sub 2} has been used to modify TiO{sub 2} electrodes in dye sensitized solar cells. ? HfO{sub 2} layer increases the dye adsorption. ? Diffusion coefficient (D{sub e}) and lifetime (?{sub e}) of the photoelectrons were increased. ? Solar cell efficiency (?) was greatly improved from 5.67 to 9.59%. -- Abstract: In this article, we describe the use of hafnium oxide (HfO{sub 2}) as a new and efficient blocking layer material to modify TiO{sub 2} electrodes in dye sensitized solar cells. Different thicknesses of HfO{sub 2} over-layers were prepared by simple dip coating from two different precursors and their effects on the performance of DSSCs were studied. The HfO{sub 2} modification remarkably increases dye adsorption, resulting from the fact that the surface of HfO{sub 2} is more basic than that of TiO{sub 2}. Furthermore, the HfO{sub 2} coating demonstrated increased diffusion coefficient (D{sub e}) and lifetime (?{sub e}) of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases short-circuit current (J{sub sc}) and open-circuit voltage (V{sub oc}). Thereby, the photo conversion efficiency (?) of the solar cell was greatly improved from 5.67 to 9.59% (an improvement of 69.02%) as the HfO{sub 2} layer was coated over TiO{sub 2} films.

Ramasamy, Parthiban [Department of Chemistry and GETRC, Kongju National University, 182 Singkwan, Kongju, Chungnam 314-701 (Korea, Republic of)] [Department of Chemistry and GETRC, Kongju National University, 182 Singkwan, Kongju, Chungnam 314-701 (Korea, Republic of); Kang, Moon-Sung; Cha, Hyeon-Jung [Department of Environmental Engineering, Sangmyung University, 300 Anseo-dong, Dongnam-gu, Cheonan-si, Chungnam 330-720 (Korea, Republic of)] [Department of Environmental Engineering, Sangmyung University, 300 Anseo-dong, Dongnam-gu, Cheonan-si, Chungnam 330-720 (Korea, Republic of); Kim, Jinkwon, E-mail: jkim@kongju.ac.kr [Department of Chemistry and GETRC, Kongju National University, 182 Singkwan, Kongju, Chungnam 314-701 (Korea, Republic of)] [Department of Chemistry and GETRC, Kongju National University, 182 Singkwan, Kongju, Chungnam 314-701 (Korea, Republic of)

2013-01-15T23:59:59.000Z

169

Efficiency of silicon solar cells containing chromium  

DOE Patents [OSTI]

Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

1982-01-01T23:59:59.000Z

170

Holographic technology could increase solar efficiency | Department of  

Broader source: Energy.gov (indexed) [DOE]

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

171

Advanced Optical Materials for Energy Efficiency and Solar Conversion  

Science Journals Connector (OSTI)

Optical materials and coatings play an important role in determining the efficiency of solar conversion processes. At present the best known ... . Since they are of significant consequence to solar conversion and...

Carl M. Lampert

1987-01-01T23:59:59.000Z

172

Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)  

SciTech Connect (OSTI)

Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

Widiyandari, Hendri, E-mail: h.widiyandari@undip.ac.id; Gunawan, S. K.V.; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. H. Soedarto SH, Semarang, Central Java 50275 (Indonesia); Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia); Diharjo, Kuncoro [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia)

2014-02-24T23:59:59.000Z

173

A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells  

Science Journals Connector (OSTI)

Abstract We report a novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays, which is formed directly on transparent conductive fluorine-doped tin oxide (FTO) glass substrate through a one-step facile hydrothermal reaction without the use of a seed layer. The hierarchical homogeneous nanoarchitecture is composed of long TiO2 nanosheet trunks grafted with a large number of TiO2 nanosheet branches, which is an effective structure to improve the charge transport with the increase of the specific surface area. Dye-sensitized solar cell (DSSC) based on TiO2 nanosheets branched TiO2 nanosheet arrays can achieve an outstanding power conversion efficiency of 6.66%, which is attributed to the specific performances such as higher specific surface area for adsorbing more dye molecules, superior light scattering capacity for boosting the light-harvesting efficiency and faster charge transport for efficient charge collection.

Bing-Xin Lei; Xiao-Feng Zheng; He-kang Qiao; Yi Li; Shu-Nuo Wang; Guo-Lei Huang; Zhen-Fan Sun

2014-01-01T23:59:59.000Z

174

High flux solar energy transformation  

DOE Patents [OSTI]

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

175

The Importance of Domain Size and Purity in High-Efficiency Organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs...

176

Solar?energy conversion at high solar intensities  

Science Journals Connector (OSTI)

The concentration of sunlight offers distinct advantages for solar–electrical generation either by thermal conversion or by photovoltaics. A large variety of concentration techniques are available with concentration ratios of 1–1000. Concentration is required for thermal conversion systems to attain the high temperatures needed for efficiencies in the desired range of about 25%–35%. The projected costs for some of the solar thermal systems (especially the central receiver and the fixed mirror) indicate that they could be economically competitive in the southwestern states. The southwest may be required for these high?concentration systems to overcome the main disadvantage of concentration which is the use of the direct component of sunlight only. Other concerns of high?intensity systems are in tracking requirements reflective surface accuracy and material lifetimes of both the reflecting and absorbing components. Selective surface absorbers will be required for systems with concentration ratios below a few hundred. The present high cost of solar?cell?generated electricity can be reduced considerably by using concentrators. Cells can be used with any of the concentrator designs and the major concern is keeping them at acceptable operating temperatures. Planar silicon cells vertical multijunction and gallium–aluminum–arsenide cells all look attractive for concentrating systems.

Charles E. Backus

1975-01-01T23:59:59.000Z

177

Photonic Crystals for Improving Organic Solar Cell Efficiency  

Science Journals Connector (OSTI)

An improvement of the organic solar cells efficiency is theoretically demonstrated by nanostructuring the active layer in the shape of a photonic crystal. An original process...

Duché, David; Escoubas, Ludovic; Simon, Jean-Jacques; Torchio, Philippe; Le Rouzo, Judikael; Vervisch, Wilfried; Flory, François; Labeyrie, Antoine; Roumiguières, Jean-Louis

178

Broadband Diffractive Optics for Enhancing the Efficiency of Solar Cells  

Science Journals Connector (OSTI)

We propose a broadband diffractive optics based spectrum splitting approach to enhance the efficiency of solar cells. Numerical simulations indicate ~27% and ~45% increase in output...

Menon, Rajesh; Wang, Peng; Mohammed, Nabil

179

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

180

Molecular Weight Effect on the Efficiency of Polymer Solar Cells  

Science Journals Connector (OSTI)

Molecular Weight Effect on the Efficiency of Polymer Solar Cells ... § 1-Material Inc., 2290 Chemin St-François, Dorval, Quebec, H9P 1K2, Canada ...

Chang Liu; Kai Wang; Xiaowen Hu; Yali Yang; Chih-Hao Hsu; Wei Zhang; Steven Xiao; Xiong Gong; Yong Cao

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar and Energy Efficiency Justice | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Energy Efficiency Justice and Energy Efficiency Justice Solar and Energy Efficiency Justice June 24, 2010 - 3:00pm Addthis The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. The roof of the justice center where a solar panel array will be installed to power a solar thermal water-heating system | Photo courtesy of Blount County, Tenn. A solar thermal water-heating system at the justice center in Maryville, Tenn., is helping to reduce energy consumption and cut costs for Blount County. Funded by $300,000 of the $501,600 Energy Efficiency and Conservation Block Grant (EECBG) awarded to Blount County through the Recovery Act, the solar thermal water-heating system will retrofit the detention facility's

182

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

183

TiO2-Coated Ultrathin SnO2 Nanosheets Used as Photoanodes for Dye-Sensitized Solar Cells with High Efficiency  

Science Journals Connector (OSTI)

According to the EIS model, the lifetime of electrons in the oxide film (?r) can be estimated from the maximum angular frequency (?max) of the impedance semicircle arc at middle frequencies in the Bode spectrum. ... Zn stannate can be an interesting mesoporous material for DSSC, provided dyes are used which have a higher position of the LUMO compared to that of N719, as it will permit attaining higher photovoltages without affecting the photocurrent. ... The power conversion efficiency (6.40%) of dye-sensitized solar cell based on hierarchical SnO2 octahedra which has a 23% increase compared with that of SnO2 nanoparticle photoelectrode (5.21%) is mainly ascribed to the efficient light scattering for the former, which is further confirmed by the UV/visible reflectance spectra. ...

Jun Xing; Wen Qi Fang; Zhen Li; Hua Gui Yang

2012-02-28T23:59:59.000Z

184

New US Ultra High Efficiency R&D Programme  

E-Print Network [OSTI]

Very high efficiency is an important characteristic of the value proposition for solar to electric conversion. High efficiency is the shortest path to cost-effective commercial applications and leads to new high value applications such as portable battery charging. The Defense Advanced Research Projects Agency has initiated the Very High Efficiency Solar Cell (VHESC) program to address the critical need of the soldier for power in the field. Very High Efficiency Solar Cells for portable applications1,2 that operate at greater than 55 percent efficiency in the laboratory and 50 percent in production are being developed. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space that leads to a new architecture paradigm. An integrated team effort is now underway that requires us to invent, develop and transfer to production these new solar cells. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. We start with a very high performance crystalline silicon solar cell platform. Examples will be presented. Initial solar cell device results are shown for devices fabricated in geometries designed for this VHESC Program.

Allen Barnett Douglas Kirkpatrick

185

Physics and technologies of superhigh-efficiency tandem solar cells  

Science Journals Connector (OSTI)

The present status of superhigh-efficiency tandem solar cells has been reviewed and the key issues for realizing superhigh-efficiency have been discussed. The mechanical, stacked, three-junction cells of monol...

M. Yamaguchi

1999-09-01T23:59:59.000Z

186

High-efficiency silicon concentrator cell commercialization  

SciTech Connect (OSTI)

This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

Sinton, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (US)

1993-05-01T23:59:59.000Z

187

Maximizing efficiency of solar-powered systems by load matching  

Science Journals Connector (OSTI)

Solar power is an important source of renewable energy for many low-power systems. Matching the power consumption level with the supply level can make a great difference in the efficiency of power utilization. This paper proposes a source-tracking power ... Keywords: load matching, photovoltaics, power management, power model, solar energy, solar-aware

Dexin Li; Pai H. Chou

2004-08-01T23:59:59.000Z

188

Investigating the efficiency of Silicon Solar cells at  

E-Print Network [OSTI]

Investigating the efficiency of Silicon Solar cells at different temperatures and wavelengths to study the characteristics of silicon photovoltaic cells (solar cells). We vary the wavelength of light as well as the temperature of the solar cell to investigate how the open voltage across the cell varies

Attari, Shahzeen Z.

189

WORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng  

E-Print Network [OSTI]

in -Si thin film solar cells because there are more defects and surface effects. Figure 1. The diode darkWORKING QUANTUM EFFICIENCY OF CDTE SOLAR CELL Zimeng Cheng 1 , Kwok Lo 2 , Jingong Pan 1 , Dongguo Chen 1 , Tao Zhou 2 , Qi Wang 3 , George E. Georgiou 1 , Ken K. Chin 1 1 Apollo CdTe Solar Energy

190

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically the absorber, junction, and passivation layers. Recently, a number of innovative solar cell light

Atwater, Harry

191

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells  

E-Print Network [OSTI]

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

Atwater, Harry

192

Solar cell efficiency enhancement via light trapping in printable resonant  

E-Print Network [OSTI]

Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid

Grandidier, Jonathan

193

Unleashing Rooftop Solar Energy through More Efficient Government |  

Broader source: Energy.gov (indexed) [DOE]

Unleashing Rooftop Solar Energy through More Efficient Government Unleashing Rooftop Solar Energy through More Efficient Government Unleashing Rooftop Solar Energy through More Efficient Government June 1, 2011 - 11:45am Addthis Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Solar panels on the roof of the Department of Energy Forrestal Building in Washington, D.C. | Credit: DOE photo Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program How can I participate? Teams can include large individual cities or metropolitan areas, regional groups of local governments, states, and Indian Tribes. The Department anticipates providing funding for up to 25 awardees. Learn more here: http://www.eere.energy.gov/solarchallenge/ Across the country, the race is on to drive down the cost of solar energy.

194

Solar, Wind, and Energy Efficiency Easements and Rights Laws | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar, Wind, and Energy Efficiency Easements and Rights Laws Solar, Wind, and Energy Efficiency Easements and Rights Laws Solar, Wind, and Energy Efficiency Easements and Rights Laws < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Colorado Program Type Solar/Wind Access Policy Provider Colorado Energy Office Colorado's solar access laws, which date back to 1979, prohibit any residential covenants that restrict solar access. [http://www.leg.state.co.us/CLICS/CLICS2008A/csl.nsf/fsbillcont3/3F45E0C8... HB 1270] of 2008 extended the law to protect installations of wind turbines that meet the state's interconnection standards, and certain

195

High-Performance Nanostructured Inorganic?Organic Heterojunction Solar Cells  

Science Journals Connector (OSTI)

High-Performance Nanostructured Inorganic?Organic Heterojunction Solar Cells ... Although single-crystalline Si-based solar cells are successfully used to harvest solar energy, inexpensive production of photovoltaic (PV) devices at a cost comparable to the energy production cost of fossil fuels has become a critical issue to meet the global energy crisis. ... The photocurrent output of a solar cell based on exciton dissociation from sensitized solar cells depends on the quantum efficiencies of light harvesting (?lh), electron injection (?inj), and electron collection (?cc), which is determined by the competition between recombination and charge collection. ...

Jeong Ah Chang; Jae Hui Rhee; Sang Hyuk Im; Yong Hui Lee; Hi-jung Kim; Sang Il Seok; Md. K. Nazeeruddin; Michael Gratzel

2010-05-28T23:59:59.000Z

196

Upconversion as a Viable Route to Increased Efficiency Solar Energy  

E-Print Network [OSTI]

Upconversion as a Viable Route to Increased Efficiency Solar Energy Conversion Joshua Zide, Matt University of Delaware Energy Institute #12;Efficiency drives reduced $/W.... http://www.nrel.gov/ncpv/! Shockley-Queisser Limit! *adopted from http://www.lbl.gov/Science-Articles/Archive/MSD-full-spectrum-solar

Firestone, Jeremy

197

High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles  

Broader source: Energy.gov [DOE]

This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more than 50%. This high conversion efficiency drives down the cost of the supporting solar field, tower, and thermal storage systems, which could significantly reduce the lifetime costs of a CSP system to achieve the SunShot goal.

198

Highly Mismatched Alloys for Intermediate Band Solar Cells  

E-Print Network [OSTI]

single-junction intermediate band solar cells. Figure 5:conversion efficiency for a solar cell fabricated from a Znfor Intermediate Band Solar Cells W. Walukiewicz 1 , K. M.

2005-01-01T23:59:59.000Z

199

Novel Organic Solar Cell Design To Enhance The Efficiency Using An Optical Cavity Control  

Science Journals Connector (OSTI)

We fabricated an organic solar cell where the electrodes are metallic layers that form an optical cavity. To be able to optically enhance the efficiency, we used a high fluorescence...

Betancur Lopera, Rafael A; Elias, Xavier; Vuong, Luat T; Martorell, Jordi

200

Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations  

Science Journals Connector (OSTI)

Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations ... The authors kindly thank SJPC, Canada, for providing sample PCDTBT material and for performing the high-temperature GPC analyses. ...

Ardalan Armin; Marappan Velusamy; Pascal Wolfer; Yuliang Zhang; Paul L Burn; Paul Meredith; Almantas Pivrikas

2014-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design Rules for Efficient Organic Solar Cells  

Science Journals Connector (OSTI)

There has been an intensive search for cost-effective photovoltaics since the development of the first solar cells in the 1950s [1-3...]. Among all the alternative technologies to silicon-based pn-junction solar

Z. Zhu; D. Mühlbacher; M. Morana; M. Koppe…

2009-01-01T23:59:59.000Z

202

Crystal Growth and Wafer Processing for High Yield and High Efficiency Solar Cells: Final Report, 1 October 2003 - 15 January 2008  

SciTech Connect (OSTI)

Hardness, elastic modulus, and fracture toughness of low and high carrier-lietime regions in polycrystalline silicon were evaluated using the nanoindentation technique.

Rozgonyi, G. A.; Youssef, K.

2008-11-01T23:59:59.000Z

203

Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)  

SciTech Connect (OSTI)

The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

Not Available

2010-12-01T23:59:59.000Z

204

Solar Junction | Open Energy Information  

Open Energy Info (EERE)

Junction Jump to: navigation, search Name: Solar Junction Place: San Jose, California Zip: CA 95131 Sector: Efficiency, Solar Product: Solar Junction is developing high efficiency...

205

High Speed AB-Solar Sail  

E-Print Network [OSTI]

The Solar sail is a large thin film used to collect solar light pressure for moving of space apparatus. Unfortunately, the solar radiation pressure is very small about 9 mkN/sq.m at Earth's orbit. However, the light force significantly increases up to 0.2 - 0.35 N/sq.m near the Sun. The author offers his research on a new revolutionary highly reflective solar sail which flyby (after special maneuver) near Sun and attains velocity up to 400 km/sec and reaching far planets of the Solar system in short time or enable flights out of Solar system. New, highly reflective sail-mirror allows avoiding the strong heating of the solar sail. It may be useful for probes close to the Sun and Mercury and Venus. Key words: AB-solar sail, highly reflective solar sail, high speed propulsion.

Bolonkin, A

2007-01-01T23:59:59.000Z

206

High Speed AB-Solar Sail  

E-Print Network [OSTI]

The Solar sail is a large thin film used to collect solar light pressure for moving of space apparatus. Unfortunately, the solar radiation pressure is very small about 9 mkN/sq.m at Earth's orbit. However, the light force significantly increases up to 0.2 - 0.35 N/sq.m near the Sun. The author offers his research on a new revolutionary highly reflective solar sail which flyby (after special maneuver) near Sun and attains velocity up to 400 km/sec and reaching far planets of the Solar system in short time or enable flights out of Solar system. New, highly reflective sail-mirror allows avoiding the strong heating of the solar sail. It may be useful for probes close to the Sun and Mercury and Venus. Key words: AB-solar sail, highly reflective solar sail, high speed propulsion.

A. Bolonkin

2007-01-08T23:59:59.000Z

207

Light Management Toward Efficient Organic Solar Cells  

Science Journals Connector (OSTI)

Light management methods for organic solar cells (OSCs) are presented: (i) thin-film optic method utilizing the inherent asymmetry of semitransparent OSCs; (ii) V-groove-based...

Yoo, Seunghyup; Han, Donggeon; Kim, Hoyeon; Cho, Changsoon; Lee, Jung-Yong

208

Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%  

Science Journals Connector (OSTI)

A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2% ... A new class of metal-cluster sensitizers has been explored for designing high-efficiency solar cells. ... layers, suggesting that even greater photocurrent enhancements may be achievable. ...

Yong-Siou Chen; Hyunbong Choi; Prashant V. Kamat

2013-05-29T23:59:59.000Z

209

New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems  

SciTech Connect (OSTI)

GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

2005-11-01T23:59:59.000Z

210

Is efficiency the only important aspect to solar energy?  

E-Print Network [OSTI]

1 Is efficiency the only important aspect to solar energy? Michael G. Debije Chemical Engineering Dag #12;2 Meeting the solar challenge Buildings residential 21% Buildings commercial 18%Industry 33 use 40% of our energy Our inability to control sunlight costs ~16% of worldwide energy consumption

Franssen, Michael

211

Luminescent solar concentrators: effects of shape on efficiency  

Science Journals Connector (OSTI)

The effects of shape and photovoltaic cell placement on efficiency are studied for luminescent solar concentrators. The mean path length of light rays is found to be a poor measure of...

Loh, Eugene; Scalapino, Douglas J

1986-01-01T23:59:59.000Z

212

Sandia National Laboratories: drive affordable efficient so-lar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affordable efficient so-lar power Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy,...

213

Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices  

Science Journals Connector (OSTI)

Maximum efficiencies and potential temperature gradients are estimated using a number of basic assumptions on desired storage lifetimes and energy losses. ... Snaith, H. J.Estimating the maximum attainable efficiency in dye-sensitized solar cells Adv. ... and optical losses in the dye-sensitized system are reviewed, and the main losses in potential from the conversion of an absorbed photon at the optical bandgap of the sensitizer to the open-circuit voltage generated by the solar cell are specifically highlighted. ...

Karl Börjesson; Anders Lennartson; Kasper Moth-Poulsen

2013-04-12T23:59:59.000Z

214

High Efficiency Particulate Air Filters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

215

DEVELOPMENT OF A NOVEL PRECURSOR FOR THE PREPARATION BY SELENIZATION OF HIGH EFFICIENCY CuInGaSe2/CdS THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

/CdS THIN FILM SOLAR CELLS N. Romeo1 , A. Bosio1 , V. Canevari2 , R. Tedeschi1 , S. Sivelli1 , A. Solar cells prepared by depositing in sequence on top of the CuInGaSe2 film 60 nm of CdS, 100 nm of pure(InGa)Se2, Thin Films, Selenization 1 INTRODUCTION CuInGaSe2 based solar cells exhibit the highest

Romeo, Alessandro

216

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

217

High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy  

Science Journals Connector (OSTI)

We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular- ... (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as ... back surface field la...

Shulong Lu; Lian Ji; Wei He; Pan Dai; Hui Yang…

2011-10-01T23:59:59.000Z

218

NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency  

E-Print Network [OSTI]

Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

Clark,L.

2014-01-01T23:59:59.000Z

219

Optimal Efficiency of a Solar Pond and a Rankine Cycle System  

Science Journals Connector (OSTI)

The optimal efficiency of a solar pond — Rankine cycle system is found analytically. The optimum for...

M. H. Cobble; A. R. Shouman

1987-01-01T23:59:59.000Z

220

Solar Decathlon: How Do WE Do Efficiency? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Decathlon: How Do WE Do Efficiency? Decathlon: How Do WE Do Efficiency? Solar Decathlon: How Do WE Do Efficiency? August 31, 2009 - 4:06pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy October is a great time of year in Washington, D.C. The weather is cooling off, the trees look gorgeous and (every other year) the National Mall turns into a beehive of activity when the Solar Decathlon comes to town. Well, it doesn't really "come to town." It's an event that the Department of Energy sponsors every other year. Twenty college and university teams come to D.C. with solar-powered homes that they have designed, built, and transported here-some across the Atlantic Ocean, no less-in order to compete. That's dedication, folks; these college teams put in two years of

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sunshot Initiative High Penetration Solar Portal  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE SunShot Initiative is a collaborative national initiative to make solar energy cost-competitive with other forms of energy by the end of the decade. Reducing the installed cost of solar energy systems by about 75% will drive widespread large-scale adoption of this renewable energy and restore U.S. leadership in the global clean energy race. The High Penetration Solar Portal was created as a resource to aggregate the most relevant and timely information related to high penetration solar scenarios and integrating solar into the grid. The site is designed so that utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. [from https://solarhighpen.energy.gov/about_the_high_penetration_solar_portal

222

Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells  

Broader source: Energy.gov [DOE]

The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

223

A Natural Gas, High Compression Ratio, High Efficiency ICRE ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Natural Gas, High Compression Ratio, High Efficiency ICRE A Natural Gas, High Compression Ratio, High Efficiency ICRE Using natural gas and gasoline modeling, indications are...

224

Novel applications of 40% Efficient Solar Cells  

Science Journals Connector (OSTI)

The good news that the cost of photovoltaic panels is at last in free fall is bad news for smaller 2nd generation manufacturers and developers of 40% efficient triple- junction cells....

Barnham, Keith W

225

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaic Solar Photovoltaic Find More Like This Return to Search Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar Arrays Lawrence Berkeley National Laboratory...

226

European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.2.4 HIGH EFFICIENCY BACK-CONTACT BACK-JUNCTION SILICON SOLAR CELLS WITH CELL  

E-Print Network [OSTI]

Energy Corporation ASA, Kjørboveien 29, NO-1337 Sandvika, Norway 3 Institute for Solid State Physics27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.2 Institute for Solar Energy Research Hamelin (ISFH), Am Ohrberg 1, D-31860 Emmerthal, Germany 2 Renewable

227

Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close  

E-Print Network [OSTI]

to traditional silicon solar cells due to the capacity of producing high- efficiency solar energy in a cost these advantages and progress, organic-inorganic hybrid solar cells still exhibit much lower PCEs (iToward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers

Lin, Zhiqun

228

Excitonic Materials for Hybrid Solar Cells and Energy Efficient Lighting  

Science Journals Connector (OSTI)

Conventional photovoltaic technology will certainly contribute this century but to generate a significant fraction of our global power from solar energy a radically new disruptive technology is required. Research primarily focused on developing the physics and technologies being low cost photovoltaic concepts are required. The materials with carbon?based solution processible organic semiconductors with power conversion efficiency as high as ?8.2% which have emerged over the last decade as promising alternatives to expensive silicon based technologies. We aim at exploring the morphological and optoelectronic properties of blends of newly synthesized polymer semiconductors as a route to enhance the performance of organic semiconductor based optoelectronic devices like photovoltaic diodes (PV) and Light Emitting Diodes (LED). OLED efficiency has reached upto 150 lm/W and going to be next generation cheap and eco friendly solid state lighting solution. Hybrid electronics represent a valuable alternative for the production of easy processible flexible and reliable optoelectronic thin film devices. I will be presenting recent advancement of my work in the area of hybrid photovoltaics PLED and research path towards realization electrically injectable organic laser diodes.

Dinesh Kabra; Li Ping Lu; Yana Vaynzof; Myounghoon Song; Henry J. Snaith; Richard H. Friend

2011-01-01T23:59:59.000Z

229

Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells  

E-Print Network [OSTI]

In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). ...

Dang, Xiangnan

230

Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell  

Science Journals Connector (OSTI)

Since their discovery about 15 years ago, bulk heterojunction (BHJ) organic photovoltaic (OPV) devices made from semiconducting polymers have shown promise for future commercialization due to their low cost, ease of fabrication, and small environmental impact relative to silicon and heavy metal based semiconductor solar cells. ... (1-3) To achieve a high power conversion efficiency (PCE) in solar cells based on BHJ OPV materials, the semiconducting polymer composites must be efficient in light harvesting, exciton splitting, charge carrier generation, and transport. ... The white light continuum probe pulses were generated by focusing a few microjoules of the Ti:sapphire amplifier output onto a sapphire disk. ...

Jianchang Guo; Yongye Liang; Jodi Szarko; Byeongdu Lee; Hae Jung Son; Brian S. Rolczynski; Luping Yu; Lin X. Chen

2009-12-28T23:59:59.000Z

231

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)  

E-Print Network [OSTI]

Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper) Pai H requiring battery replacement. This paper ex- amines technical issues with solar energy harvesting. First power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

Shinozuka, Masanobu

232

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Structure of All-Polymer Solar Cells Impedes Efficiency Structure of All-Polymer Solar Cells Impedes Efficiency Print Wednesday, 27 October 2010 00:00 Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

233

Flexible organic solar cells including efficiency enhancing grating structures  

Science Journals Connector (OSTI)

In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500?nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.

Roana Melina de Oliveira Hansen; Yinghui Liu; Morten Madsen; Horst-G?nter Rubahn

2013-01-01T23:59:59.000Z

234

SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Foundational Program to Solar Foundational Program to Advance Cell Efficiency to someone by E-mail Share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Facebook Tweet about SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Twitter Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Google Bookmark SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Delicious Rank SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on Digg Find More places to share SunShot Initiative: Solar Foundational Program to Advance Cell Efficiency on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy

235

Efficient solar anti-neutrino production in random magnetic fields  

E-Print Network [OSTI]

We have shown that the electron anti-neutrino appearance in the framework of the spin flavor conversion mechanism is much more efficient in the case of neutrino propagation through random than regular magnetic field. This result leads to much stronger limits on the product of the neutrino transition magnetic moment and the solar magnetic field based on the recent KamLAND data. We argue that the existence of the random magnetic fields in the solar convective zone is a natural sequence of the convective zone magnetic field evolution.

O. G. Miranda; T. I. Rashba; A. I. Rez; J. W. F. Valle

2004-05-12T23:59:59.000Z

236

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE  

E-Print Network [OSTI]

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

2014-01-01T23:59:59.000Z

237

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

solar thermal technologies. ..Advances in solar thermal electricity technology”. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

238

Energy and exergy efficiencies of a solar box-cooker  

Science Journals Connector (OSTI)

A simple and low-cost box-type solar cooker (SBC) was designed and tested. The energy and exergy efficiencies of the SBC were experimentally evaluated. The energy output of the SBC ranges from 2.1 to 61.7 kJ, whereas the exergy output ranges from 0.4 to 6.2 kJ during the same time interval. The average daily energy and exergy outputs of the SBC are 21.6 and 2.5 kJ, respectively. A linear regression is developed to find the relationships between the energy/exergy outputs, and the efficiencies and temperature difference. The energy efficiency of the SBC varies between 1.3 and 55.6%, while the exergy efficiency varies between 0.3 and 6% during the same period. The average daily energy and exergy efficiencies of the SBC are 18.3 and 2.2%, respectively.

H. Huseyin Ozturk

2004-01-01T23:59:59.000Z

239

High-flux solar photon processes  

SciTech Connect (OSTI)

This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S [SRI International, Menlo Park, CA (United States)

1992-06-01T23:59:59.000Z

240

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SunShot Initiative: High Penetration Solar Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Penetration Solar Deployment High Penetration Solar Deployment to someone by E-mail Share SunShot Initiative: High Penetration Solar Deployment on Facebook Tweet about SunShot Initiative: High Penetration Solar Deployment on Twitter Bookmark SunShot Initiative: High Penetration Solar Deployment on Google Bookmark SunShot Initiative: High Penetration Solar Deployment on Delicious Rank SunShot Initiative: High Penetration Solar Deployment on Digg Find More places to share SunShot Initiative: High Penetration Solar Deployment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Solar Utility Networks: Replicable Innovations in Solar Energy High Penetration Solar Deployment Grid Integration Advanced Concepts

242

High temperature solar selective coatings  

DOE Patents [OSTI]

Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

Kennedy, Cheryl E

2014-11-25T23:59:59.000Z

243

Impact of High Solar Penetration in the Western Interconnection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of High Solar Penetration Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Technical Report NREL/TP-5500-49667 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Prepared under Task No. SM101610

244

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

245

Estimating the Cost and Energy Efficiency of a Solar Water Heater |  

Broader source: Energy.gov (indexed) [DOE]

Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater Estimating the Cost and Energy Efficiency of a Solar Water Heater May 30, 2012 - 3:09pm Addthis Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR Solar water heaters are more efficient the gas or electric heaters. | Chart credit ENERGY STAR What does this mean for me? Solar water heaters cost more to purchase and install but may save you money in the long run. Estimate the annual operating costs and compare several solar water heaters to determine whether it is worth investing in a more efficient system. Solar water heating systems usually cost more to purchase and install than conventional water heating systems. However, a solar water heater can

246

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network [OSTI]

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

Breedlove, C. W.

247

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

248

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

249

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

250

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

251

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structure of All-Polymer Solar Cells Impedes Efficiency Print Structure of All-Polymer Solar Cells Impedes Efficiency Print Organic solar cells are made of thin layers of interpenetrating structures from two different conducting organic materials and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be "painted" or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. A large community is exploring a number of promising material combinations (polymer/fullerene, polymer/inorganic, all-polymer, and dye-sensitized cells), seeking a deeper understanding of their fundamental structure, operation, and limitations. A team of researchers from North Carolina State University and the UK has now found, through microscopy and resonant scattering and reflectivity studies at ALS Beamlines 6.3.2 and 5.3.2, that the low rate of energy conversion in model all-polymer solar cells is caused by domains that are too large and interfaces that are not sharp enough. This insight will lead to new approaches to all-polymer device technology that will help realize the intrinsic potential of these materials.

252

Recent advances in III-V on Si integration for high-efficiency,  

E-Print Network [OSTI]

. Iso-efficiency contour plots of ideal series-connected two-junction solar cell with an function of topRecent advances in III-V on Si integration for high-efficiency, low cost MJ cells Minjoo Larry Lee Department of Electrical Engineering Yale University Solar Workshop: Terawatt Challenge!!? UD Energy

Firestone, Jeremy

253

High-Efficiency Energy Conversion in a Molecular Triad Connected to Conducting Leads Anatoly Yu. Smirnov,*,,  

E-Print Network [OSTI]

for Theoretical Physics, The UniVersity of Michigan, Ann Arbor, Michigan 48109-1040, and Department of Physics is highly attractive for solar cell applications. The large predicted increase in the efficiency, the efficient conversion of solar energy into chemical or electrical forms has attracted considerable attention

Nori, Franco

254

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation ace012aceves2011o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development...

255

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

A. Widom; Y. N. Srivastava; L. Larsen

2008-04-16T23:59:59.000Z

256

High Energy Particles in the Solar Corona  

E-Print Network [OSTI]

Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

Widom, A; Larsen, L

2008-01-01T23:59:59.000Z

257

Analyser av effektivitet til nyutviklet solfanger i polymermateriale = Analyses of the efficiency for a new polymer solar collector.  

E-Print Network [OSTI]

??In this thesis, variations in efficiency between two different solar collectors have been measured. Solar collector efficiency has been measured at different levels of flow.… (more)

Schakenda, Jeanette A.

2004-01-01T23:59:59.000Z

258

Center for Energy Efficient Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an...

259

Chemical beam epitaxy for high efficiency photovoltaic devices  

SciTech Connect (OSTI)

InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes recent results on PV devices and demonstrates the strength of this new technology.

Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

1994-09-01T23:59:59.000Z

260

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage  

Broader source: Energy.gov [DOE]

The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program supports the development of thermochemical energy storage (TCES) systems that can validate a cost of less than or equal to $15 per kilowatt-hour-thermal (kWht) and operate at temperatures greater than or equal to 650 degrees Celsius. TCES presents opportunities for storing the sun's energy at high densities in the form of chemical bonds for use in utility-scale concentrating solar power (CSP) electricity generation. The SunShot Initiative funds six awardees for $10 million total for ELEMENTS.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Highly Mismatched Alloys for Intermediate Band Solar Cells  

SciTech Connect (OSTI)

It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

2005-03-21T23:59:59.000Z

262

Development of an efficient family size solar dryer  

SciTech Connect (OSTI)

Since the air heater is the most important component in a solar food drying system, improving its performance is desirable, especially when the space available for the dryer is limited and its cost is to be kept as low as possible. The solar system considered is the forced convection type, in which air is driven inside the heater by using a small suction fan of low power consumption. In this work, two configurations of air heaters were tested to increase heat gain without much increase in size or cost. This could be achieved by elongating the air path through the collector or by using two glass covers, between which the air is allowed to flow before it enters the heater. For both configurations, an inexpensive reflecting surface is used to increase heat input. Experimental results show an average increase of daily energy input of 40% and 57% for the first and second heater, respectively. This, in turn, increases the thermal efficiency of both heaters. Although the second type is more efficient than the first, it is accompanied by an increase in power consumption. Tests show that for ratios of temperature rise/insolation up to 0.03, the first type is better from the thermal and economical points of view. However, as this ratio increases, the second type becomes more efficient and economical.

Khattab, N.M. [National Research Center, Cairo (Egypt). Solar Energy Dept.

1996-01-01T23:59:59.000Z

263

Thermal Efficiency of Solar Collector Made from Thermoplastics  

Science Journals Connector (OSTI)

Abstract Thermoplastics solar collectors have been used to replace a typical metal collector because their mechanical and physical properties make the volume production of lightweight, low cost and corrosion resistance. Effect of thermal conductivity and collector area was observed for four type of themoplastics based i.e PVC-B (PVC: Polyvinyl Chloride-Blue), PB (PB: Polybutene), PP-R (PP-R: Polypropylene Random Copolymer) and PVC-CB: (Polyvinyl Chloride-Carbon Black). The collector area of 2 m2 were prepared as for solar collector. The position of collector panel to south orientation and angle of 140 to the horizontal, which was the collector slope obtaining highest annual efficiency in Thailand, were implemented. Data was collected by data logger from 9.00-16.00 am throughout the day in which temperature reached a sufficient level according to standard test method of ASHRAE 93 77. The mass flow rate of water in collector was 0.02 (kg.s-1). The results of the differing thermal conductivity materials have indicated that there is no different of the materials on collector thermal efficiency. The collector efficiency was depends on the areas of the panel. This suggestion that one material should not only be chosen over another in term of its ability to transfer heat to the liquid within the panel but also collector area.

Warunee Ariyawiriyanan; Tawatchai Meekaew; Manop Yamphang; Pongpitch Tuenpusa; Jakrawan Boonwan; Nukul Euaphantasate; Pongphisanu Muangchareon; Supachat Chungpaibulpatana

2013-01-01T23:59:59.000Z

264

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power  

E-Print Network [OSTI]

Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller of the Inter- governmental Panel on Climate Change (IPCC). Thus far much of the effort has been focused, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings

Kammen, Daniel M.

265

Geometric light trapping with a V-trap for efficient organic solar cells  

Science Journals Connector (OSTI)

The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies...

Kim, Soo Jin; Margulis, George Y; Rim, Seung-Bum; Brongersma, Mark L; McGehee, Michael D; Peumans, Peter

2013-01-01T23:59:59.000Z

266

Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon  

SciTech Connect (OSTI)

We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.

Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.; Zhang, Y. B.; Cai, Bin; Zhu, Y. M. [Shanghai Key Lab of Modern Optical System and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yuan, G. D., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Li, J. M. [Semiconductor Lighting R and D Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

2014-05-12T23:59:59.000Z

267

Solar coronal observations at high frequencies  

E-Print Network [OSTI]

The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.

A. C. Katsiyannis; M. Mathioudakis; K. J. H. Phillips; D. R. Williams; F. P. Keenan

2001-11-22T23:59:59.000Z

268

Singlet fission efficiency in tetracene-based organic solar cells  

SciTech Connect (OSTI)

Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153%?±?5% for a tetracene film thickness of 20?nm. The corresponding internal quantum efficiency is 127%?±?18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells.

Wu, Tony C., E-mail: tonyw@mit.edu; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A., E-mail: baldo@mit.edu [Energy Frontier Research Center for Excitonics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-12T23:59:59.000Z

269

Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells  

Science Journals Connector (OSTI)

Add to ACS ChemWorx ... Herein, we clarify the mechanism by which processing additives control the morphology, and using the insight provided by the mechanism, we identify an entire class of processing additives which yields still higher efficiency solar cells than those fabricated with 1,8-octanedithiol as the processing additive. ... AFM images of the BHJ films processed with the additive exhibit larger interconnected regions of PCPDTBT and larger porous domains (the C71-PCBM regions prior to selective removal) compared with images of the BHJ film cast without using the processing additive. ...

Jae Kwan Lee; Wan Li Ma; Christoph J. Brabec; Jonathan Yuen; Ji Sun Moon; Jin Young Kim; Kwanghee Lee; Guillermo C. Bazan; Alan J. Heeger

2008-02-21T23:59:59.000Z

270

Maximizing Efficiency of Solar-Powered Systems by Load Matching  

E-Print Network [OSTI]

energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

Shinozuka, Masanobu

271

Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates  

SciTech Connect (OSTI)

Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A., E-mail: haa@caltech.edu [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States); Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States)

2014-04-07T23:59:59.000Z

272

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect (OSTI)

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

273

High Energy Efficiency Air Conditioning  

SciTech Connect (OSTI)

This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

Edward McCullough; Patrick Dhooge; Jonathan Nimitz

2003-12-31T23:59:59.000Z

274

High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy  

SciTech Connect (OSTI)

Solar cells based on dc magnetron sputtered indium tin oxide onto epitaxially grown films of p-InP have been fabricated and analyzed. The best cells had a global efficiency of 18.4% and an air mass zero (AMO) efficiency of 16.0%. The principal fabrication variable considered was the constituency of the sputtering gas and both argon/hydrogen and argon/oxygen mixtures have been used. The former cells have the higher efficiencies, are apparently stable, and exhibit almost ideal junction characteristics. The latter cells are relatively unstable and exhibit much higher ideality factors and reverse saturation current densities. The temperature dependence of the reverse saturation current indicates totally different charge transfer mechanisms in the two cases.

Li, X.; Wanlass, M.W.; Gessert, T.A.; Emery, K.A.; Coutts, T.J.

1989-05-01T23:59:59.000Z

275

High Efficiency, High Performance Clothes Dryer  

SciTech Connect (OSTI)

This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.

Peter Pescatore; Phil Carbone

2005-03-31T23:59:59.000Z

276

Solar Generator Performance with Load Matching to Water Electrolysis Longterm Averages and Range of Instantaneous Efficiencies  

Science Journals Connector (OSTI)

The efficiency of producing hydrogen by solar energy conversion via solar cells and water electrolysis is determined by the performance of the ... wired to an electronic simulation of an advanced water electrolys...

K. Freudenberg

1982-01-01T23:59:59.000Z

277

Study of the Overall Efficiency of a 7 pkw Solar Photovoltaic Pumpng System at Mugombwa (Rwanda)  

Science Journals Connector (OSTI)

The solar pumping system installed since 1985 by the ... is powered by a photovoltaic array of 132 pannels of 52 peak watt each. Our concern ... efficiency of the system by measuring both the solar global radiati...

Prosper Mpawenayo

1991-01-01T23:59:59.000Z

278

Energy-Efficient Path Planning for Solar-Powered Mobile Robots  

Science Journals Connector (OSTI)

We explore the problem of energy-efficient, time-constrained path planning of a solar powered robot embedded in a terrestrial environment. Because of ... of added solar panels is worthwhile for a mobile robot.

Patrick A. Plonski; Pratap Tokekar; Volkan Isler

2013-01-01T23:59:59.000Z

279

Polycrystalline CdTe Solar Cells on Buffered Commercial TCO-Coated Glass with Efficiencies Above 15%  

SciTech Connect (OSTI)

EPIR Technologies, Inc. reports the production of thin film polycrystalline CdTe devices with National Renewable Energy Laboratory (NREL)-verified efficiencies above 15%. While previous reporting of high efficiency poly-CdTe solar cells utilized high-temperature technical glass, EPIR's cells were produced on commercially-available conductive glass. The devices exhibit fill factors up to 77% and short-circuit current densities around 24 mA/cm{sup 2}. EPIR developed a robust process for producing thin film CdTe solar cells through implementation of a high resistivity SnO{sub 2} buffer layer and optimization of the CdS window layer thickness. The effects of the high resistivity buffer layer on device performance were investigated, demonstrating improved overall performance and yield. To our knowledge, these are among the highest efficiencies yet reported and NREL-verified for a thin film CdTe solar cell fabricated using commercial conductive glass.

Banai, R.; Blissett, C.; Buurma, C.; Colegrove, E.; Bechmann, P.; Ellsworth, J.; Morley, M.; Barnes, S.; Lennon, C.; Gilmore, C.; Dhere, R.; Bergeson, J.; Scott, M.; Gessert, T.

2011-01-01T23:59:59.000Z

280

SunShot Initiative: Development and Productization of High-Efficiency,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Productization of Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells to someone by E-mail Share SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Facebook Tweet about SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Twitter Bookmark SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Google Bookmark SunShot Initiative: Development and Productization of

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design  

E-Print Network [OSTI]

polymers for organic solar cell applications. Chem. Rev.Hummelen, J. C. , Plastic solar cells. Adv. Funct. Mater.Efficient inverted polymer solar cells. Appl. Phys. Lett.

Dou, Letian

2014-01-01T23:59:59.000Z

282

Nanostructured Thermoelectric Materials and High Efficiency Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

283

Theoretical efficiency of 3rd generation solar cells: Comparison between carrier multiplication and down-conversion  

Science Journals Connector (OSTI)

Two of the methods of exceeding the detailed balance limit for a single junction solar cell are down-converting high energy photons to produce two photons and carrier multiplication, whereby high energy photons produce more than one electron–hole pair. Both methods obey the conservation of energy in similar ways, and effectively produce a higher current in the solar cell. Due to this similarity, it has been assumed in the literature that there is no thermodynamic difference between the two methods. Here, we analyzed the two methods using a generalized approach based on Kirchhoff's law of radiation and develop a new model for carrier multiplication. We demonstrate that there is an entropic penalty to be paid for attempting to accomplish all-in-one splitting in carrier multiplication systems, giving a small thermodynamic – and therefore efficiency – advantage to spectral splitting prior to reaching the solar cell. We show this analytically using a derivation of basic thermodynamic identities; numerically by solving for the maximal efficiency; and generally using heat-generation arguments. Our result provides a new limit of entropy generation in solar cells beyond the existing literature, and a new distinction among 3rd generation photovoltaic technologies.

Ze'ev R. Abrams; Majid Gharghi; Avi Niv; Chris Gladden; Xiang Zhang

2012-01-01T23:59:59.000Z

284

The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy  

Science Journals Connector (OSTI)

A light-driven self-charging capacitor was fabricated as an efficient solar energy storage device. The device which we name the photocapacitor achieves in situ storage of visible light energy as an electrical power at high quantum conversion efficiency. The photocapacitor was constructed on a multilayered photoelectrode comprising dye-sensitized semiconductor nanoparticles/hole-trapping layer/activated carbon particles in contact with an organic electrolyte solution in which photogenerated charges are stored at the electric double layer. Repeated charge-discharge cycles with a charging voltage of > 0.45 V yielded a capacitance of 0.69 F cm ? 2 .

Tsutomu Miyasaka; Takurou N. Murakami

2004-01-01T23:59:59.000Z

285

Material and Device Analysis for Efficiency Improvement in Epitaxial Crystalline Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-11-433  

SciTech Connect (OSTI)

Crystal Solar has a novel approach for producing low-cost, monocrystalline silicon wafers that are capable of yielding high-efficiency solar cells. The approach involves epitaxial growth of the substrate and a proprietary lift-off technology. Crystal Solar will send selected wafers and cells to NREL for characterization and analyses. NREL will apply a variety of techniques to help identify mechanism(s) that limit the cell efficiency and suggest suitable approaches for mitigation.

Sopori, B.

2014-01-01T23:59:59.000Z

286

High Rate Laser Pitting Technique for Solar Cell Texturing  

SciTech Connect (OSTI)

High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a production tool and process. The developed technique will have an reducing impact on product pricing. As efficiency has a substantial impact on the economics of solar cell production due to the high material cost content; in essence, improved efficiency through cost-effective texturing reduces the material cost component since the product is priced in terms of $/W. The project is a collaboration between Fraunhofer USA, Inc. and a c-Si PV manufacturer.

Hans J. Herfurth; Henrikki Pantsar

2013-01-10T23:59:59.000Z

287

36Super-fast solar flares ! NASA's Ramaty High Energy Solar  

E-Print Network [OSTI]

36Super-fast solar flares ! NASA's Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite has been studying solar flares since 2002. The sequence of figures to the left shows a flaring region hr/3600 sec = 0.98 kilometers/sec. The solar flare blob was traveling at 207 kilometers per second

288

Path to High Efficiency Gasoline Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

289

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

290

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

glass. . . 18 Figure 2.4: IV curve of a solar cell. . . . .+ 05, Ric06]. IV curve The IV curve of a solar cell is thesuperposition of the IV curve of the solar cell diode in the

Wang, Chunhua

2011-01-01T23:59:59.000Z

291

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

292

Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells  

SciTech Connect (OSTI)

This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

2014-03-01T23:59:59.000Z

293

High-Temperature Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

294

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers [EERE]

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

295

New Funding Boosts Carbon Capture, Solar Energy and High Gas...  

Office of Environmental Management (EM)

Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

296

Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells  

Science Journals Connector (OSTI)

Currently Er3+-doped fluorides are being used as upconversion phosphors to enhance the efficiency of Si solar cells, to our knowledge. However, this enhancement is...

Lahoz, Fernando

2008-01-01T23:59:59.000Z

297

The Influence of the 4n2Light Trapping Factor on Ultimate Solar Cell Efficiency  

Science Journals Connector (OSTI)

The standard Shockley-Queisser approach to ideal ultimate solar cell efficiency makes a number of idealistic assumptions. Under even slightly non-ideal conditions, the...

Yablonovitch, Eli; Miller, Owen

298

Conversion efficiency of broad-band rectennas for solar energy harvesting applications  

Science Journals Connector (OSTI)

Optical antennas have been proposed as an alternative option for solar energy harvesting. In this work the power conversion efficiency of broadband antennas, log-periodic,...

Briones, Edgar; Alda, Javier; González, Francisco Javier

2013-01-01T23:59:59.000Z

299

Effect of Sunlight Polarization on the Absorption Efficiency of V-shaped Organic Solar Cells  

Science Journals Connector (OSTI)

We numerically investigate the effect of sunlight polarization on the absorption efficiency of V-shaped organic solar cells (VOSCs) using the finite element method (FEM). The spectral...

Kang, Kyungnam; Kim, Jungho

2014-01-01T23:59:59.000Z

300

Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of the first liquid silicon on the market that offers a novel path to producing more efficient solar cells at lower cost.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network [OSTI]

Diaz, Chair Solar energy is a prominent renewable source ofalternative energy sources [Abb11]. Solar energy, radiantsolar energy will become a very prominent renewable source

Wang, Chunhua

2011-01-01T23:59:59.000Z

302

High concentration low wattage solar arrays and their applications  

SciTech Connect (OSTI)

Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

Hoffmann, R. [Midway Labs, Inc., 350 N. Ogden Avenue, Chicago, Illinois 60607 (United States); OGallagher, J.; Winston, R. [University of Chicago (United States)

1997-02-01T23:59:59.000Z

303

High-Energy Flare Observations from the Solar Maximum Mission  

Science Journals Connector (OSTI)

...research-article High-Energy Flare Observations from the Solar Maximum Mission W...Vestrand We review high-energy observations of solar flares with emphasis...expectation, high-energy emission is a common property of solar flares. Direct interpretation...

1991-01-01T23:59:59.000Z

304

Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors  

Science Journals Connector (OSTI)

PDI and its derivatives have attracted a great deal of attention as alternative electron acceptors because of their good mobility in organic field-effect transistors, high molar absorptivity, ease of functionalization, and economical starting materials. ... Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. ... Fluorescence lifetime and triplet-state spectral, kinetic, and energetic properties are reported for the 1st time for a perylenebis(dicarboximide) dye, N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenebis(dicarboximide) (I). ...

Yu Zhong; M. Tuan Trinh; Rongsheng Chen; Wei Wang; Petr P. Khlyabich; Bharat Kumar; Qizhi Xu; Chang-Yong Nam; Matthew Y. Sfeir; Charles Black; Michael L. Steigerwald; Yueh-Lin Loo; Shengxiong Xiao; Fay Ng; X.-Y. Zhu; Colin Nuckolls

2014-10-14T23:59:59.000Z

305

Efficiency enhancement in GaAs solar cells using self-assembled microspheres  

Science Journals Connector (OSTI)

In this study we develop an efficient light harvesting scheme that can enhance the efficiency of GaAs solar cells using self-assembled microspheres. Based on the scattering of the...

Chang, Te-Hung; Wu, Pei-Hsuan; Chen, Sheng-Hui; Chan, Chia-Hua; Lee, Cheng-Chung; Chen, Chii -Chang; Su, Yan-Kuin

2009-01-01T23:59:59.000Z

306

Nanoscale Imaging of Photocurrent and Efficiency in CdTe Solar Cells  

Science Journals Connector (OSTI)

Nanoscale Imaging of Photocurrent and Efficiency in CdTe Solar Cells ... The local collection characteristics of grain interiors and grain boundaries in thin-film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. ... photovoltaics; CdTe; scanning photocurrent microscopy; solar cells; NSOM ...

Marina S. Leite; Maxim Abashin; Henri J. Lezec; Anthony Gianfrancesco; A. Alec Talin; Nikolai B. Zhitenev

2014-10-15T23:59:59.000Z

307

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

308

Nanodome Solar Cells with Efficient Light Management and Self-Cleaning  

E-Print Network [OSTI]

Nanodome Solar Cells with Efficient Light Management and Self-Cleaning Jia Zhu, Ching-Mei Hsu Nanocone, nanodome, solar cell, light trapping, photovoltaics S olar cells of nanostructures 94305 ABSTRACT Here for the first time, we demonstrate novel nanodome solar cells, which have periodic

Cui, Yi

309

Efficient high density train operations  

DOE Patents [OSTI]

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P. (Oakland, CA); Evans, John A. (Hayward, CA)

2001-01-01T23:59:59.000Z

310

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

311

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

312

26. 1% solar cell efficiency for Ge mechanically stacked under GaAs  

SciTech Connect (OSTI)

We have processed a diffused Ge wafer into a Ge concentrator solar cell and mechanically stacked it under a GaAs cell fabricated by Varian. We measured this stack's efficiency to be 26.1% for terrestrial air mass 1.5 direct (AM1.5D) conditions at a 285 x concentration ratio. We showed that this efficiency is limited by optical absorption in the Varian GaAs cell caused by high 2--4 (10/sup 18/) cm/sup -3/ substrate doping. We used a 2 x 10/sup 17/ cm/sup -3/ doped GaAs filter to estimate the stack efficiency as 27.4%, which would be achieved with the same Varian GaAs cell formed on a lower doped substrate. We project efficiencies assuming the best properties reported for a GaAs device. This gives a 29.6% efficiency for an improved, planar Ge cell and 31.6% efficiency for a proposed point contact geometry for the Ge cell. The corresponding space (AM0) efficiencies at a 159 x concentration ratio range from the 23.4% value we measured on the stack up to 28.4% projected for the point contact Ge place under the best GaAs cell. We showed that Ge cells give higher efficiencies than Si when stacked under GaAs.

Partain, L.D.; Kuryla, M.S.; Weiss, R.E.; Ransom, R.A.; McLeod, P.S.; Fraas, L.M.; Cape, J.A.

1987-10-01T23:59:59.000Z

313

Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier  

SciTech Connect (OSTI)

Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

Ip, Alexander H.; Labelle, André J.; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)

2013-12-23T23:59:59.000Z

314

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

315

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network [OSTI]

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

316

New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars  

Broader source: Energy.gov (indexed) [DOE]

New Funding Boosts Carbon Capture, Solar Energy and High Gas New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - 12:00am Addthis WASHINGTON D.C. --- U.S. Energy Secretary Steven Chu today announced more than $300 million worth of investments that will boost a range of clean energy technologies - including carbon capture from coal, solar power, and high efficiency cars and trucks. The move reflects the Obama Administration's commitment to a broad based strategy that will create millions of jobs while transforming the way we use and produce energy. "There's enormous potential for new jobs and reduced carbon pollution just by implementing existing technologies like energy efficiency and wind

317

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission  

E-Print Network [OSTI]

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) Mission R. P. fla B. Dennis, G mission is to investigate the physics of particle acceleration and energy release in solar flares, through-ray/gamma-ray spectroscopy 1. INTRODUCTION The primary scientific objective of the Reuven Ramaty High Energy Solar

California at Berkeley, University of

318

Ultra High Efficiency Electric Motor Generator  

Science Journals Connector (OSTI)

The Ultra High Efficiency Electric Motor Generator is an exciting opportunity to leverage ... in green technology. Marand currently produces this motor/generator at our Moorabbin facility for application ... sola...

Jeff Brown

2012-01-01T23:59:59.000Z

319

Multicolor, High Efficiency, Nanotextured LEDs  

SciTech Connect (OSTI)

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Jung Han; Arto Nurmikko

2011-09-30T23:59:59.000Z

320

Tuning of Plasmonic Nanoparticles for Enhancing Solar Cell Efficiency  

Science Journals Connector (OSTI)

Plasmonic nanoparticles based thin film solar cells plays a crucial role in designing the current breed of third generation solar cells. To decrease the material cost for economic viability without compromising o...

Somik Chakravarty; Lingeswaran Arunagiri…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

natural gas and using solar thermal energy. There is a solarnatural gas or on solar thermal energy before it will switcha solar thermal system, strictly in terms of energy only.

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

322

Effect of directional dependency of wall reflectivity and incident concentrated solar flux on the efficiency of a cavity solar receiver  

Science Journals Connector (OSTI)

Abstract Managing the optical properties of a cavity solar receiver to create spectral and directional selectivities is a solution to improve receiver efficiencies. A reduction in the incident solar power lost by reflection and by emission in a solar receiver allows the absorption of the solar flux to be maximized. This report investigates the influence of the cavity walls directional reflectivity on the thermal radiative efficiency of a cubic cavity solar receiver. A Monte Carlo ray-tracing method is used to calculate the power lost by reflections and by emission with respect to the incident radiation angular distribution and the bidirectional reflectance distribution function of the cavity walls. To study the influence of the directional dependency of the incident flux on the radiative efficiency, four patterns are considered: collimated, diffuse, focused, and Themis incidences. The directional-hemispherical reflectivity for the bottom wall (face to aperture) and lateral walls are distinguished. For diffuse walls, the absorption efficiency is primarily affected by the lateral walls reflectivity because of the back reflection losses. For specular walls, the driving parameter is the bottom wall reflectivity. In addition, the radiative efficiency with thermal emission was studied for the Themis configuration and a slightly weakest dependency of the efficiency on the lateral walls reflectivity was found.

Florent Larrouturou; Cyril Caliot; Gilles Flamant

2014-01-01T23:59:59.000Z

323

14%-efficient flexible CdTe solar cells on ultra-thin glass substrates  

SciTech Connect (OSTI)

Flexible glass enables high-temperature, roll-to-roll processing of superstrate devices with higher photocurrents than flexible polymer foils because of its higher optical transmission. Using flexible glass in our high-temperature CdTe process, we achieved a certified record conversion efficiency of 14.05% for a flexible CdTe solar cell. Little has been reported on the flexibility of CdTe devices, so we investigated the effects of three different static bending conditions on device performance. We observed a consistent trend of increased short-circuit current and fill factor, whereas the open-circuit voltage consistently dropped. The quantum efficiency under the same static bend condition showed no change in the response. After storage in a flexed state for 24 h, there was very little change in device efficiency relative to its unflexed state. This indicates that flexible glass is a suitable replacement for rigid glass substrates, and that CdTe solar cells can tolerate bending without a decrease in device performance.

Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Meysing, D. M.; Wolden, C. A. [Colorado School of Mines, Golden, Colorado 80401 (United States); Garner, S.; Cimo, P. [Corning Incorporated, Corning, New York 14831 (United States)

2014-04-07T23:59:59.000Z

324

Efficiency enhancement of InGaN/GaN solar cells with nanostructures  

SciTech Connect (OSTI)

We demonstrate InGaN/GaN multi-quantum-well solar cells with nanostructures operating at a wavelength of 520?nm. Nanostructures with a periodic nanorod or nanohole array are fabricated by means of modified nanosphere lithography. Under 1 sun air-mass 1.5 global spectrum illumination, a fill factor of 50 and an open circuit voltage of 1.9?V are achieved in spite of very high indium content in InGaN alloys usually causing degradation of crystal quality. Both the nanorod array and the nanohole array significantly improve the performance of solar cells, while a larger enhancement is observed for the nanohole array, where the conversion efficiency is enhanced by 51%.

Bai, J.; Yang, C. C.; Athanasiou, M.; Wang, T. [Department of Electronics and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2014-02-03T23:59:59.000Z

325

NREL: News Feature - Super-Efficient Cells Key to Low-Cost Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super-Efficient Cells Key to Low-Cost Solar Power Super-Efficient Cells Key to Low-Cost Solar Power February 16, 2011 This photo shows eight Amonix 7700 solar power generators, those in front tilted horizontally, those in the rear tilted near vertically. Each is a huge rectangle divided into hundreds of squares holding cells and lenses. Enlarge image The Amonix 7700 Concentrated Photovoltaic (CPV) Solar Power Generators are showcasing reliability and undergoing validation-of-performance measurements at the SolarTAC facility in Aurora, Colo. Credit: Dennis Schroeder In this photo, a man in an orange safety vest and hardhat is using a laptop, with large concentrated photovoltaic generators in the background. Enlarge image A technician at SolarTAC in Aurora, CO, enters some numbers into a laptop as he monitors validation of the Amonix 7700 Solar Power Generators.

326

Cost efficiency estimations and the equity returns for the US public solar energy firms in 1990–2008  

Science Journals Connector (OSTI)

......efficiency. Keywords: solar energy; cost efficiency analysis; stochastic...returns. 1. Introduction Solar energy is considered the cleanest, most abundant, renewable energy source available. It provides a cost-effective solution for daytime......

Chris Kuo

2011-10-01T23:59:59.000Z

327

Highly efficient and robust molecular ruthenium catalysts for water oxidation  

Science Journals Connector (OSTI)

...driven by solar radiation (H2O...high-capacity energy carrier. One of the obstacles now is the...sustainable energy systems such as solar fuels, much...driven by solar radiation (H...high-capacity energy carrier. One of the obstacles now is the...

Lele Duan; Carlos Moyses Araujo; Mårten S.G. Ahlquist; Licheng Sun

2012-01-01T23:59:59.000Z

328

Impact of High Solar Penetration in the Western Interconnection  

SciTech Connect (OSTI)

This paper presents an overview of the variable characteristics of solar power, as well as the accompanying grid dynamic performance and operational economics for a system with significant solar generation. The paper will show results of economic operational simulations of a very high solar generation future for the western half of the United States.

Lew, D.; Miller, N.; Clark, K.; Jordan, G.; Gao, Z.

2010-12-01T23:59:59.000Z

329

Modelling of radiation exposure at high altitudes during solar storms  

Science Journals Connector (OSTI)

......with a different energy spectrum. To estimate...exposure due to solar flares, a model...measuring the flux of solar and galactic particles...and the high-energy proton and alpha...Exposure during Solar Maximum) project. One flight from......

H. Al Anid; B. J. Lewis; L. G. I. Bennett; M. Takada

2009-10-01T23:59:59.000Z

330

Multiple Rankine topping cycles offer high efficiency  

SciTech Connect (OSTI)

The efficiency of a Rankine cycle is primarily determined by the temperatures of heat addition and heat rejection. However, no working fluid has been identified that will operate in a Rankine cycle over an extremely wide temperature range. Multiple Rankine topping cycles offer a technique for achieving high thermal efficiencies in power plants by allowing the use of several working fluids to span larger temperature ranges.

McWhirter, J.D. [Idaho State Univ., Pocatello, ID (United States)

1997-10-01T23:59:59.000Z

331

A COMPARISON OF THE COMMUNITY PLANNING IMPLICATIONS FOR PASSIVE SOLAR, EARTH SHELTERED AND CONVENTIONAL HIGHLY INSULATED HOUSING DEVELOPMENTS  

Science Journals Connector (OSTI)

ABSTRACT Earth sheltered, passive solar and conventional highly-insulated houses have large variations in their need for solar exposure to maintain a high energy efficiency. They also have inherent implications for the minimum spacing of units under various assumed site conditions. The effect of full solar exposure on maximum densities of prototypical earth sheltered and solar developments is presented and compared to non-solar conventional construction. The effect of ground slope angles on the densities attainable is also included in the discussion.

John C. Carmody; Raymond L. Sterling

1982-01-01T23:59:59.000Z

332

High Resolution Solar Energy Resource Assessment within the UNEP Project  

Open Energy Info (EERE)

High Resolution Solar Energy Resource Assessment within the UNEP Project High Resolution Solar Energy Resource Assessment within the UNEP Project SWERA Dataset Summary Description (Abstract): To expand the world wide use of renewable energy a consistent, reliable, verifiable, and easily accessible database of solar energy resources is needed. Within the UNEP (United Nations Environment Programme) Project SWERA (Solar and Wind Energy Resource Assessment, http://swera.unep.net), funded by GEF (Global Environment Facility), a global database of solar and wind energy resources will be set up. SWERA will provide, beside the wind products, global horizontal irradiance, which is mostly used to plan photovoltaic systems, and direct normal irradiance, which is needed for solar concentrating systems. For selected countries throughout the world, additionally high resolution data will be produced which is required to plan solar energy systems in detail. Within SWERA, the partners DLR, SUNY and INPE calculate solar irradiance with high temporal resolution of 1 hour and with a spatial resolution of 10km x 10km. By processing data from geostationary satellites we provide solar irradiance data for Cuba, El Salvador, Honduras, Nicaragua, Guatemala, Brazil, Ghana, Ethiopia, Kenya, China, Sri Lanka, Nepal, and Bangladesh. In this paper we describe the ongoing work of developing this high resolution solar irradiance tx_metadatatool and cross-checking of the used solar irradiance algorithms for various satellite data.

333

Dielectric microconcentrators for efficiency enhancement in concentrator solar cells  

Science Journals Connector (OSTI)

Metal fingers typically cover more than 10% of the active area of concentrator solar cells. Microfabricated dielectric optical designs that can completely eliminate front contact...

Korech, Omer; Gordon, Jeffrey M; Katz, Eugene A; Feuermann, Daniel; Eisenberg, Naftali

2007-01-01T23:59:59.000Z

334

Spectrally selective surface coatings for energy efficiency and solar applications  

Science Journals Connector (OSTI)

The radiative properties of surfaces emittance transmittance reflectance and absorptance are considered as they relate to photothermal conversion of solar radiation. (AIP)

C. G. Granqvist

1984-01-01T23:59:59.000Z

335

Energy collection efficiency of holographic planar solar concentrators  

Science Journals Connector (OSTI)

We analyze the energy collection properties of holographic planar concentrator systems. The effects of solar variation on daily and annual energy collection are evaluated. Hologram...

Castro, Jose M; Zhang, Deming; Myer, Brian; Kostuk, Raymond K

2010-01-01T23:59:59.000Z

336

Structure of All-Polymer Solar Cells Impedes Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thin films of semiconducting polymers as a possible alternative to silicon-based solar cells. Such devices would have the advantages of being cheap to produce,...

337

Minding the Gap Makes for More Efficient Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of these materials go through a dramatic change that makes them ideal for solar energy applications. These materials can go from indirect band gap semiconductors to...

338

Silicon Ink Technology Offers Path to Higher Efficiency Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office (SETO) focuses on achieving the...

339

Solar Circuitry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Circuitry" with the Solar Powered Energy Kit Curriculum: Solar Power- (lightelectromagnetic radiation, electricity, circuitry, efficiency, energy transformation, subatomic...

340

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS  

E-Print Network [OSTI]

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS M. Gloeckler and J. R. Sites Department of Physics, Colorado State@lamar.colostate.edu ABSTRACT: When the quantum efficiency of a CdS/CdTe solar cell is measured under forward voltage

Sites, James R.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6-10 September 2010, 2CO.4.3 IMPACT OF LATERAL VARIATIONS ON THE SOLAR CELL EFFICIENCY  

E-Print Network [OSTI]

analyze various monocrystalline silicon solar cells. The light-IV curves around the maximum power point.3 IMPACT OF LATERAL VARIATIONS ON THE SOLAR CELL EFFICIENCY David Hinken, Karsten Bothe and Rolf Brendel-dimensional approach to calculate the impact of local parameters on the global solar cell efficiency. The presented

342

Highly efficient photochemical HCOOH production from CO{sub 2} and water using an inorganic system  

SciTech Connect (OSTI)

We have constructed a system that uses solar energy to react CO{sub 2} with water to generate formic acid (HCOOH) at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In) cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH) can be used as a renewable energy source.

Yotsuhashi, Satoshi; Hashiba, Hiroshi; Deguchi, Masahiro; Zenitani, Yuji; Hinogami, Reiko; Yamada, Yuka [Advanced Technology Research Laboratory, Panasonic Corporation, Soraku-gun, Kyoto 619-0237 (Japan); Deura, Momoko; Ohkawa, Kazuhiro [Department of Applied Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601 (Japan)

2012-12-15T23:59:59.000Z

343

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect (OSTI)

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

344

New Fabrication Method Improves the Efficiency and Economics of Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Synthetic fabrication strategy optimizes the illumination geometry and transport properties of dye-sensitized solar cells. Using oriented titanium oxide (TiO{sub 2}) nanotube (NT) arrays has shown promise for dye-sensitized solar cells (DSSCs). High solar conversion efficiency requires that the incident light enters the cell from the photoelectrode side. However, for NT-based DSSCs, the light normally enters the cell through the counter electrode because a nontransparent titanium foil is typically used as the substrate for forming the aligned NTs and for making electrical contact with them. It has been synthetically challenging to prepare transparent TiO{sub 2} NT electrodes by directly anodizing Ti metal films on transparent conducting oxide (TCO) substrates because it is difficult to control the synthetic conditions. National Renewable Energy Laboratory (NREL) researchers have developed a general synthetic strategy for fabricating transparent TiO{sub 2} NT films on TCO substrates. With the aid of a conducting Nb-doped TiO{sub 2} (NTO) layer between the Ti film and TCO substrate, the Ti film can be anodized completely without degrading the TCO. The NTO layer protects the TCO from degradation through a self-terminating mechanism by arresting the electric field-assisted dissolution process at the NT-NTO interface. NREL researchers found that the illumination direction and wavelength of the light incident on the DSSCs strongly influenced the incident photon-to-current conversion efficiency, light-harvesting, and charge-collection properties, which, in turn, affect the photocurrent density, photovoltage, and solar energy conversion efficiency. Researchers also examined the effects of NT film thickness on the properties and performance of DSSCs and found that illuminating the cell from the photoelectrode side substantially increased the conversion efficiency compared with illuminating it from the counter-electrode side. This method solves a key challenge in fabricating NT-based DSSCs and determines an optimal illumination direction to use in these cells. The synthetic fabrication strategy will improve the economics and conversion efficiency of DSSCs.

Not Available

2012-07-01T23:59:59.000Z

345

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

Rancho Cordoba, CA More Documents & Publications High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series Zero...

346

Colored solar-thermal absorbing coatings with high absorptance  

Science Journals Connector (OSTI)

It's difficult to obtain different color appearance and keep high absorptance simultaneously. We introduced AR films into solar-thermal absorbing coatings to tune the color appearance...

Wang, Shao-Wei; Chen, Feiliang; Liu, Xingxing; Wang, Xiaofang; Yu, Liming; Lu, Wei

347

Project Profile: High-Flux Microchannel Solar Receiver | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of a rectangle shape. The research team seeks to reduce the size, weight, and thermal loss from high-temperature solar receivers by applying microchannel heat-transfer...

348

Preparation of cuxinygazsen (X=0-2, Y=0-2, Z=0-2, N=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells  

DOE Patents [OSTI]

High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

Bhattacharya, Raghu N. (Littleton, CO); Contreras, Miguel A. (Golden, CO); Keane, James (Lakewood, CO); Tennant, Andrew L. (Denver, CO); Tuttle, John R. (Denver, CO); Ramanathan, Kannan (Lakewood, CO); Noufi, Rommel (Golden, CO)

1998-03-24T23:59:59.000Z

349

High Bandgap III-V Alloys for High Efficiency Optoelectronics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a...

350

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

(Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency &...

351

The maximum efficiency of the conversion of solar energy into wind energy  

Science Journals Connector (OSTI)

In the present paper the Gordon and Zarmi model is applied for the conversion of solar energy into wind energy in such a way that simple calculations lead to a universal result: The upper bound for the conversion efficiency of solar energy into wind energy equals 8.3%.

Alexis De Vos; Guust Flater

1991-01-01T23:59:59.000Z

352

Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John  

E-Print Network [OSTI]

Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega by the American Institute of Physics. Related Articles Solar energy trapping with modulated silicon nanowire multiple carrier generation via singlet exciton fission Appl. Phys. Lett. 101, 153507 (2012) Light trapping

John, Sajeev

353

Plasmonic Back Structures Designed for Efficiency Enhancement of Thin Film Solar Cells  

Science Journals Connector (OSTI)

Metallic back structures with one-dimensional periodic nanoridges attached to thin-film amorphous silicon (a-Si) solar cell are proposed to enhance the cell efficiency in a wide...

Bai, Wenli; Gan, Qiaoqiang; Bartoli, Filbert; Song, Guofeng

354

Analyzing the efficiency of a photovoltaic-thermal solar collector based on heat pipes  

Science Journals Connector (OSTI)

The structure of a photovoltaic/thermal solar collector based on aluminum heat pipes and ... , along with the results from analyzing its efficiency. Its optimum mode of operation is shown...

S. M. Khairnasov

2014-01-01T23:59:59.000Z

355

Effect of liquid dielectrics on the efficiency of silicon solar cells  

Science Journals Connector (OSTI)

The results of experimental studies of the change in the photoelectric characteristics of silicon solar cells produced as a result of depositing ... open-circuit voltage, and significantly increases the efficiency

Yu. A. Abramyan; G. G. Karamyan; A. A. Murodyan; V. I. Stafeev…

1999-12-01T23:59:59.000Z

356

President Obama Announces Commitments and Executive Actions to Advance Solar Deployment and Energy Efficiency  

Broader source: Energy.gov [DOE]

On May 9, 2014, President Obama announced more than 300 private and public sector commitments to create jobs and cut carbon pollution by advancing solar deployment and energy efficiency.

357

Multi-objective-optimization-based approach to improve the electrical efficiency for organic solar cells  

Science Journals Connector (OSTI)

In this paper, new electrical scheme modeling and optimization approaches are proposed to improve the conversion efficiency of the organic solar cells. The electrical parameters such as shunt resistance ... Regio...

A. Maoucha; F. Djeffal

2012-12-01T23:59:59.000Z

358

E-Print Network 3.0 - amplified-efficiency solar cells Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: amplified-efficiency solar cells Page: << < 1 2 3 4 5 > >> 1 The global demand for energy is expanding continually. Therefore, realization of green power sources are needed...

359

Design and global optimization of high-efficiency thermophotovoltaic  

E-Print Network [OSTI]

). © 2010 Optical Society of America OCIS codes: (230.5298) Photonic crystals; (350.6050) Solar energy, PhC-based designs present a set of non-convex optimization problems requiring efficient objective micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold

360

Electron Transfer Dynamics in Efficient Molecular Solar Cells  

SciTech Connect (OSTI)

This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

Meyer, Gerald John

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

362

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

363

Enabling High Efficiency Ethanol Engines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

364

Transmural Catalysis - High Efficiency Catalyst Systems for NOx...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation...

365

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

366

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

367

Energy Efficiency Opportunities in Federal High Performance Computing...  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study...

368

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

369

Combustion Targets for Low Emissions and High Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Targets for Low Emissions and High Efficiency Combustion Targets for Low Emissions and High Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

370

Energy-Efficient Melting and Direct Delivery of High Quality...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

371

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

372

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Vehicle Technologies Office Merit Review 2014: High Efficiency...

373

Highly Energy Efficient Directed Green Liquor Utilization (D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

374

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

375

Dispersion, Wave Propagation and Efficiency Analysis of Nanowire Solar Cells  

Science Journals Connector (OSTI)

We analyze the electromagnetic properties of InP/InAs nanowire solar cells for different geometries. We address both eigenvalue calculations to determine the wave propagation as well...

Kupec, J; Witzigmann, B

2009-01-01T23:59:59.000Z

376

Efficient light-trapping nanostructures in thin silicon solar cells  

E-Print Network [OSTI]

We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

Han, Sang Eon

377

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

378

Proper solar wind power estimation and planetary radiometric efficiencies  

Science Journals Connector (OSTI)

... for electromagnetic wave production, restricting their attention to the emissions known to be controlled by solar wind energy inputs to the magnetospheres of the Earth, Jupiter and Saturn. Our purpose here is ...

D. N. BAKER; L. F. BARGATZE

1985-04-25T23:59:59.000Z

379

High-Temperature Solar Thermoelectric Generators (STEG)  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

380

Ongoing Commissioning of a high efficiency supermarket with a ground coupled carbon dioxide refrigeration plant  

E-Print Network [OSTI]

Ongoing Commissioning of a high efficiency supermarket with a ground coupled carbon dioxide refrigeration plant Nicolas R?hault 1 and Doreen Kalz 2 1 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany 2 Fraunhofer Institute... for Solar Energy Systems, Freiburg, Germany Email: nicolas.rehault@ise.fraunhofer.de Abstract: A significant reduction in the energy consumption and greenhouse gas emissions of supermarkets can be reached by the combination of several innovative...

Rehault, N.; Kalz, D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) Cell  

Science Journals Connector (OSTI)

The photoelectrochemical cell [p-type InP(Ru)]/HCl-KCl/Pt(Rh) converts 12% of the incident solar energy into two useful chemicals, hydrogen and chlorine, by photoassisted electrolysis of aqueous hydrochloric acid. At the threshold for electrolysis, the voltage required is reduced from 1.3 to 0.65 V. Hydrogen evolution takes place at microscopic islands of catalysts such as Rh, Ru, and Pt. The high efficiency of the cell derives from a thin surface oxide on InP, preventing carrier recombination, and from efficient transport of electrons to the catalyst.

Adam Heller and Richard G. Vadimsky

1981-04-27T23:59:59.000Z

382

Highly Transparent Carbon Counter Electrode Prepared via an in Situ Carbonization Method for Bifacial Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of org. ... The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially advantages and disadvantages of each type of platinum-free catalyst and share techniques for guiding the design of catalysts in future research. ...

Chenghao Bu; Yumin Liu; Zhenhua Yu; Sujian You; Niu Huang; Liangliang Liang; Xing-Zhong Zhao

2013-06-28T23:59:59.000Z

383

Toward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage: Theoretical evaluation  

E-Print Network [OSTI]

solar cells are gaining a growing market share in the photovoltaic field. CIGS thin film solar cells. In this paper, the behavior of microscale thin film solar cells under concen- tration will be studied. We focusToward microscale Cu,,In,Ga...Se2 solar cells for efficient conversion and optimized material usage

Boyer, Edmond

384

Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating Plasmonic Effects of Spheroidal Metallic Nanoparticles  

E-Print Network [OSTI]

Improving the Power Conversion Efficiency of Ultrathin Organic Solar Cells by Incorporating be exploited to achieve efficient harvesting of solar energy. Notably, the incorporation of plasmonic effects can allow the light harvesting capability of a solar cell to be maintained even as the thickness

Park, Namkyoo

385

Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors  

E-Print Network [OSTI]

Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using achieved 0.1% power-conversion efficiency. KEYWORDS: organic electronics, solar cells, photovoltaic devices significantly different behav- iors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT

McGehee, Michael

386

New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009  

Broader source: Energy.gov [DOE]

This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

387

High-rate counting efficiency of VLPC  

SciTech Connect (OSTI)

A simple model is applied to describe dependencies of Visible Light Photon Counter (VLPC) characteristics on temperature and operating voltage. Observed counting efficiency losses at high illumination, improved by operating at higher temperature, are seen to be a consequence of de-biasing within the VLPC structure. A design improvement to minimize internal de-biasing for future VLPC generations is considered. {copyright} {ital 1998 American Institute of Physics.}

Hogue, H.H. [Research and Technology Center, Boeing Electronic Systems and Missile Defense, 3370 Miraloma Ave M/S HB17, Anaheim, California 92803 (United States)

1998-11-01T23:59:59.000Z

388

Building Technologies Office: High Efficiency, Low Emission Supermarket  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Efficiency, Low High Efficiency, Low Emission Supermarket Refrigeration Research Project to someone by E-mail Share Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Facebook Tweet about Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Twitter Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Google Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Delicious Rank Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Digg Find More places to share Building Technologies Office: High

389

Thermal Strategies for High Efficiency Thermoelectric Power Generation  

Broader source: Energy.gov [DOE]

Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency

390

High Efficiency Colloidal Quantum Dot Phosphors  

SciTech Connect (OSTI)

The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

Kahen, Keith

2013-12-31T23:59:59.000Z

391

NREL: News - NREL Reports 31.1% Efficiency for III-V Solar Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

913 913 NREL Reports 31.1% Efficiency for III-V Solar Cell Conversion-efficiency mark is a world record for a two-junction solar cell measured under one-sun illumination June 24, 2013 The Energy Department's National Renewable Energy Lab has announced a world record of 31.1% conversion efficiency for a two-junction solar cell under one sun of illumination. NREL Scientist Myles Steiner announced the new record June 19 at the 39th IEEE Photovoltaic Specialists Conference in Tampa, Fla. The previous record of 30.8% efficiency was held by Alta Devices. The tandem cell was made of a gallium indium phosphide cell atop a gallium arsenide cell, has an area of about 0.25 square centimeters and was measured under the AM1.5 global spectrum at 1,000 W/m2. It was grown inverted, similar to the NREL-developed inverted metamorphic multi-junction

392

Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Portland, OR, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

393

Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Ann Arbor, Michigan, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

394

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Philadelphia, PA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

395

San Diego, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

396

San Francisco, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Francisco, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

397

Berkeley, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

398

Sacramento, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

399

Santa Rosa, California: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Santa Rosa, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

400

Boston Massachusetts: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Knoxville, Tennessee: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Knoxville, TN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

402

San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of San Antonio, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

403

Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Houston, TX, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

404

Madison, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

405

Austin, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

406

New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

407

Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

408

Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

409

Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

410

Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

411

Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)  

Broader source: Energy.gov [DOE]

This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

412

Comparison of cost and treatment efficiency of solar assisted advance oxidation processes for textile dye bath effluent  

Science Journals Connector (OSTI)

The study investigated the efficiency and cost effectiveness of solar-assisted photochemical processes in comparison with advance oxidation ... removing color was almost double in comparison to solar radiation al...

Abdullah Yasar; Sadia Khalil; Amtul Bari Tabinda…

2013-01-01T23:59:59.000Z

413

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

state-of-the-art photovoltaic cells. Prog. Photovolt: Res.efficiency of an ideal photovoltaic cell with charge carrierefficiency of photovoltaic and photoelectrolysis cells with

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

414

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

Physical Limitations to Photovoltaic Energy Conversion (AdamThermodynamic Limit of Photovoltaic Energy Conversion. Appl.efficiencies for photovoltaic energy conversion in multigap

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

415

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

416

Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint  

SciTech Connect (OSTI)

This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600?C-650?C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.2efficiencies >18% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

2011-07-01T23:59:59.000Z

417

Self-Organizing Mesomorphic Diketopyrrolopyrrole Derivatives for Efficient Solution-Processed Organic Solar Cells  

Science Journals Connector (OSTI)

Organic solar cells (OSCs) are drawing considerable interest for the great promise as a next-generation clean and renewable energy source. ... T.Y. is grateful for the financial support from the Murata Science Foundation, the Fujifilm Award in Synthetic Organic Chemistry, and Kyushu University Interdisciplinary Programs in Education and Projects in Research Development. ... utilizing a novel 4,9-bis(2-ethylhexyloxy)naphtho[1,2-b:5,6-b']dithiophene "zig-zag" core (zNDT) exhibits high hole mobility, upshifted frontier MO energies, and enhanced photovoltaic cell short-circuit currents, fill-factors, and power conversion efficiencies (4.7%) vs. the linear NDT isomer. ...

Woong Shin; Takuma Yasuda; Go Watanabe; Yu Seok Yang; Chihaya Adachi

2013-06-05T23:59:59.000Z

418

Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011  

SciTech Connect (OSTI)

This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

Kurtin, J.

2011-05-01T23:59:59.000Z

419

Efficient scale for photovoltaic systems and Florida's solar rebate program  

Science Journals Connector (OSTI)

This paper presents a critical view of Florida's photovoltaic (PV) subsidy system and proposes an econometric model of PV system installation and generation costs. Using information on currently installed systems, average installation cost relations for residential and commercial systems are estimated and cost-efficient scales of installation panel wattage are identified. Productive efficiency in annual generating capacity is also examined under flexible panel efficiency assumptions. We identify potential gains in efficiency and suggest changes in subsidy system constraints, providing important guidance for the implementation of future incentive programs. Specifically, we find that the subsidy system discouraged residential applicants from installing at the cost-efficient scale but over-incentivized commercial applicants, resulting in inefficiently sized installations.

Christopher S. Burkart; Nestor M. Arguea

2012-01-01T23:59:59.000Z

420

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters  

SciTech Connect (OSTI)

Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

None

2012-02-13T23:59:59.000Z

422

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

423

High Engine Efficiency at 2010 Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engine Efficiency at 2010 Emissions High Engine Efficiency at 2010 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deernelson.pdf...

424

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

blending marginally improved thermal efficiency due to high pressure rise rate and heat transfer loss. Gasoline blending achieves better efficiency at lower smoke...

425

Analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production  

Science Journals Connector (OSTI)

Abstract This paper presents a simulative analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. Solar heat has been considered as available at 250 °C in three gasification processes: i) gasification reactor followed by two water gas shift reactors and a pressure swing adsorber; ii) gasification reactor followed by an integrated membrane water gas shift reactor; iii) supercritical gasification reactor followed by two flash separators and a pressure swing adsorber. Simulations are performed with the commercial software Aspen Plus® by considering biomass moisture content and the amount of solar heat as system variables. Results are presented in terms of energy and exergy system efficiency and are discussed and compared with the case of no solar integration.

Lucia Salemme; Marino Simeone; Riccardo Chirone; Piero Salatino

2014-01-01T23:59:59.000Z

426

Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells  

E-Print Network [OSTI]

We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

2013-01-01T23:59:59.000Z

427

Documentation of high resolution solar resource assessment for Sri Lanka  

Open Energy Info (EERE)

Sri Lanka Sri Lanka provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Sri Lanka provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2002 and 2003. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems.

428

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

429

Solar energy utilisation efficiency in environment-controlled agriculture in China  

Science Journals Connector (OSTI)

In the light of an analysis of the solar radiation and temperature resources in different part of China, this paper classifies Environment-Controlled Agriculture (ECA) in China into zones and briefly introduces the feature of each zone. Meanwhile, features of different ECA types such as heliogreenhouse, plastic arched shed, adumbral net and their contributions to increasing solar energy utilisation efficiency are analysed. On the basis of the above analysis, possible technical ways to increase potential production of ECA are put forward.

Li Pingping; Hu Yongguang; Liu Jizhan

2004-01-01T23:59:59.000Z

430

Community-Scale High-Performance with Solar: Pulte Homes, Tucson...  

Energy Savers [EERE]

Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ - Building America Top Innovation Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ -...

431

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

432

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

433

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High-Performance Wireless Embedded Systems  

E-Print Network [OSTI]

A Scheduling Algorithm for Consistent Monitoring Results with Solar Powered High but critical task for solar powered wireless high power embedded systems. Our algorithm relies on an energy

Simunic, Tajana

434

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2012-09-11T23:59:59.000Z

435

High throughput solar cell ablation system  

DOE Patents [OSTI]

A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

2014-10-14T23:59:59.000Z

436

White LED with High Package Extraction Efficiency  

Office of Scientific and Technical Information (OSTI)

WHITE LED WITH HIGH PACKAGE WHITE LED WITH HIGH PACKAGE EXTRACTION EFFICIENCY Final Report Report Period Start Date: 10/01/2006 Report Period End Date: 09/30/2008 Authors: Yi Zheng and Matthew Stough Report Submission Date: November 2008 DOE Award Number: DE-FC26-06NT42935 Project Manager: Ryan Egidi OSRAM SYLVANIA Product Inc Central Research and Service Laboratory 71 Cherry Hill Dr., Beverly, MA 01915 2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

437

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Results from the DOE-CPUC High Penetration Solar Forum  

Broader source: Energy.gov [DOE]

This presentation provides information on the results of the second High Penetration Solar Forum that convened in February, including an overview of DOE's and CPUC's grid integration awards as well as future efforts.

439

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

440

High-Temperatuer Solar Selective Coating Development for Power...  

Broader source: Energy.gov (indexed) [DOE]

plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized * Pyromark has a high solar...

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power |  

Broader source: Energy.gov (indexed) [DOE]

Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power Geek-Up[4.29.2011]: Boosting the Efficiency of Wind and Solar Power April 29, 2011 - 5:14pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs It's a big month for the National Wind Technology Center. Earlier this week, the Department of Energy's National Renewable Energy Laboratory (NREL) commemorated the successful installation and full capacity operation of a 3 megawatt Alstom ECO 100 wind turbine at the center. As part of a long-term collaboration between NREL and Alstom, engineers from the two institutions will perform a series of analyses and tests to evaluate Alstom's unique drive train configuration technology. After this initial testing is complete, the joint team will continue

442

PV Solar Site Assessment (Milwaukee High School)  

Broader source: Energy.gov [DOE]

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

443

Indium oxide/n-silicon heterojunction solar cells  

DOE Patents [OSTI]

A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1982-12-28T23:59:59.000Z

444

Heat insulation solar glass and application on energy efficiency buildings  

Science Journals Connector (OSTI)

Abstract Building integrated photovoltaics are among the best methods for generating power using solar energy. To promote and respond to the concept of BIPVs, this study developed a type of multi-functional heat insulation solar glass (HISG) that differs from traditional transparent PV modules, providing functions such as heat insulation and self-cleaning in addition to power generation. This study also made thorough preparations for the safety of future HISG installation on curtain walls in large-scale buildings. Furthermore, this study provides a comprehensive discussion regarding the energy-saving performance of HISG and relevant practical applications. Two experimental houses were constructed, which independently employed HISG and single-layer tempered glass. Taiwan's climate was adopted as the environmental condition for the experiment, and the effects of HISG and single-layer tempered glass on indoor temperature variation and the energy consumed by air conditioners and heaters were explored. Related software was also employed to simulate, compare, and verify HISG efficacy.

Chin-Huai Young; Yi-Lin Chen; Po-Chun Chen

2014-01-01T23:59:59.000Z

445

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

446

Thermodynamics, Entropy, Information and the Efficiency of Solar Cells  

E-Print Network [OSTI]

since in certain materials, high energy photons can generatesome crystalline materials under high energy illumination. Amaterial, since the absorption coefficient is energy (frequency) dependent, and is typically quite high

Abrams, Zeev R.

2012-01-01T23:59:59.000Z

447

Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300  

SciTech Connect (OSTI)

The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

Gray, M. H.

2014-01-01T23:59:59.000Z

448

High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane  

SciTech Connect (OSTI)

The deposition rate, electronic and optical properties of hydrogenated amorphous silicon films prepared from rf glow discharge decomposition of disilane (Si/sub 2/H/sub 6/) diluted in helium have been measured. These films show excellent electrical and optical properties and, most importantly, a high deposition rate coupled with satisfactory solar cell application was realized for the first time. At a deposition rate of 11 A/s, 5.47% and 6.5% conversion efficiencies were obtained with a first trial of n-i-p type solar cells deposited on SnO/sub 2//ITO glass and metal substrates, respectively.

Ohashi, Y.; Kenne, J.; Konagai, M.; Takahashi, K.

1983-06-15T23:59:59.000Z

449

Efficient solar energy conversion with CuInS2  

Science Journals Connector (OSTI)

... film is displayed in the inset of Fig. 26. The light attenuation for photon energies above the CuInS2 band gap (830 nm) can be estimated by the area under ... the area under the transmittivity curve. Since the total transmission is 25% in this energy range, a correction factor of 4 for efficiency calculation is obtained. This would result ...

H. J. Lewerenz; H. Goslowsky; K.-D. Husemann; S. Fiechter

1986-06-12T23:59:59.000Z

450

High efficiency Brayton cycles using LNG  

DOE Patents [OSTI]

A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

Morrow, Charles W. (Albuquerque, NM)

2006-04-18T23:59:59.000Z

451

Heat efficiency of “translucent cover-radiation absorbing heat-exchange panel” system of flat solar collectors  

Science Journals Connector (OSTI)

An analytic expression is proposed for determining the heat efficiency of the “translucent cover-radiation absorbing heat-exchange panel” system of flat solar collectors, and on its base the heat efficiency of th...

R. R. Avezov; N. R. Avezova

2008-09-01T23:59:59.000Z

452

A University Consortium on Efficient and Clean High-Pressure...  

Broader source: Energy.gov (indexed) [DOE]

Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines 2010 DOE Vehicle Technologies and...

453

Vehicle Technologies Office Merit Review 2014: High Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

454

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

455

High Efficiency Organic Light Emitting Devices for Lighting  

SciTech Connect (OSTI)

Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

So, Franky; Tansu, Nelson; Gilchrist, James

2013-06-30T23:59:59.000Z

456

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance...

457

Process Development for High Voc CdTe Solar Cells  

SciTech Connect (OSTI)

This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

Ferekides, C. S.; Morel, D. L.

2011-05-01T23:59:59.000Z

458

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

459

Documentation of high resolution solar resource assessment (10km) for  

Open Energy Info (EERE)

for for Ethiopia provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Ethiopia provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. For the selected

460

Documentation of high resolution solar resource assessment for Ghana  

Open Energy Info (EERE)

Ghana Ghana provided by DLR Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Ghana provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country) (Purpose): The data are helpful for the assessment of the solar potential of the country and can give projet developer a first impression of the solar resource of the country. For the selected

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

462

Possibilities of increasing the efficiency of Si and CuInSe2 solar cells  

Science Journals Connector (OSTI)

The paper proposes a method of increasing the efficiency of Si and CuInSe2 solar cells using the impact ionization and impurity...pZnTe-pSi-nSi and pZnTe-pCuInSe2-n(CuInSe2)1?x (2InAs) ...

M. S. Saidov

2011-09-01T23:59:59.000Z

463

PATHS TO ULTRA-HIGH EFFICIENCY (>50% EFFICIENT) PHOTOVOLTAIC DEVICES C. B. Honsberg and A.M. Barnett  

E-Print Network [OSTI]

to approach the thermodynamic efficiency limits of solar energy conversion [1]. All of the proposed approaches the key challenges, advantages and disadvantages of each approach. Efficiency calculations using in photovoltaic energy conversion arises from the broad range of photon energies in the solar spectrum compared

Honsberg, Christiana

464

Achieving High Performance Polymer Tandem Solar Cells via Novel Materials Design  

E-Print Network [OSTI]

assisted preparation of narrow-bandgap conjugated polymers for high performance bulk heterojunction solar

Dou, Letian

2014-01-01T23:59:59.000Z

465

High efficiency thin-film multiple-gap photovoltaic device  

DOE Patents [OSTI]

A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

Dalal, Vikram L. (Newark, DE)

1983-01-01T23:59:59.000Z

466

Folded reflective tandem polymer solar cell doubles efficiency  

Science Journals Connector (OSTI)

Conjugated polymers are promising materials for the production of inexpensive and flexible photovoltaic cells. Organic materials display tunable optical absorption within a large spectral range. This enables the construction of organic tandem photovoltaic cells. The authors here demonstrate a reflective tandem cell where single cells are reflecting the nonabsorbed light upon another adjacent cell. By folding two planar but spectrally different cells toward each other spectral broadening and light trapping are combined to give an enhancement of power conversion efficiency of a factor of 1.8 ± 0.3 .

Kristofer Tvingstedt; Viktor Andersson; Fengling Zhang; Olle Inganäs

2007-01-01T23:59:59.000Z

467

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

468

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- Graphene-Polypyrrole Nanocomposite as a Highly...

469

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

470

Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements  

SciTech Connect (OSTI)

Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 ?m), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

Nalwa, Kanwar

2012-11-03T23:59:59.000Z

471

High deposition rate preparation of amorphous silicon solar cells by rf glow discharge decomposition of disilane  

SciTech Connect (OSTI)

The optical and electrical properties of hydrogenated amorphous silicon films produced by rf glow discharge decomposition of disilane diluted in helium (Si/sub 2/H/sub 6//He = 1/9) have been studied while systematically varying the film deposition rate. The properties and composition of the films were monitored by measuring the optical band gap, IR vibrational spectrum, dark conductivity, and the photoconductivity as a function of the deposition rate. The photoluminescence of the high deposition rate films gave a peak at 1.33 eV. These films, whose properties are rather similar to those of the conventional a-Si:H films prepared from monosilane, have been used to fabricate nip-type a-Si:H solar cells. At a deposition rate of 11 A/sec, a conversion efficiency of 6.86% was obtained. This high efficiency shows that disilane is applicable for mass production fabrication of a-Si:H solar cells.

Kenne, J.; Ohashi, Y.; Matsushita, T.; Konagai, M.; Takahashi, K.

1984-01-15T23:59:59.000Z

472

Counterfactual quantum key distribution with high efficiency  

SciTech Connect (OSTI)

In a counterfactual quantum key distribution scheme, a secret key can be generated merely by transmitting the split vacuum pulses of single particles. We improve the efficiency of the first quantum key distribution scheme based on the counterfactual phenomenon. This scheme not only achieves the same security level as the original one but also has higher efficiency. We also analyze how to achieve the optimal efficiency under various conditions.

Sun Ying [State Key Laboratory of Networking and SwitchingTechnology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Electronic Science and Technology Institute, Beijing 100070 (China); Wen Qiaoyan [State Key Laboratory of Networking and SwitchingTechnology, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

2010-11-15T23:59:59.000Z

473

Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure  

SciTech Connect (OSTI)

We have investigated the effects induced by periodic nanosphere arrays on the performance of organic solar cells (OSCs). Two-dimensional periodic arrays of polystyrene nanospheres were formed by using a colloidal lithography method together with plasma etching to trim down the size to various degrees on the substrates of OSCs. It is found that the devices prepared on such substrates can have improved light harvesting, resulting in as high as 35% enhancement in power conversion efficiency over that of the reference devices. The measured external quantum efficiency and finite-difference time-domain simulation reveal that the controlled periodic morphology of the substrate can efficiently increase light scattering in the device and thus enhance the absorption of incident light.

Zu, Feng-Shuo [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Shi, Xiao-Bo; Liang, Jian; Xu, Mei-Feng; Wang, Zhao-Kui, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China); Lee, Chun-Sing, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)

2014-06-16T23:59:59.000Z

474

High-Efficiency Engine Technologies Session Introduction  

Broader source: Energy.gov [DOE]

Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

475

High Efficiency Engine Systems Development and Evaluation  

Broader source: Energy.gov (indexed) [DOE]

efficiency Limited by non-ideal processes: friction, combustion irreversibility, heat loss, inefficient work extraction, etc * Additional factors beyond the scope of...

476

Efficiency of a volumetric receiver using aqueous suspensions of multi-walled carbon nanotubes for absorbing solar thermal energy  

Science Journals Connector (OSTI)

Abstract This paper analytically investigates the efficiency of a nanofluid volumetric receiver (NVR) for absorbing solar thermal energy considering the experimentally measured extinction coefficient of aqueous suspensions of multi-walled carbon nanotubes (MWCNT) according to the wavelength from 200 to 2000 nm. For this purpose, considering the spectral behavior of nanofluids, we obtained analytical solutions of temperature fields as well as the efficiency of the NVR based on the condition of fully developed flow between the two plates. The aqueous MWCNT nanofluids were prepared using the two-step method, and their extinction coefficients were experimentally measured by the UV/Vis/NIR spectrophotometer according to the wavelength. With the analytical equations, we identified those key engineering parameters that affect the efficiency of an NVR: the Nusselt number of heat loss, the concentration of nanoparticles, the Peclet number, and aspect ratio. Also, we systematically observed the effects of key engineering parameters on the temperature fields and on the efficiency of the NVR. The current results clearly show that the efficiency calculated under the assumption of plug-flow through an NVR reported by previous researchers is overestimated in the case of high heat loss. Moreover, the present results show that NVR efficiency is proportional to the Peclet number as well as to the concentration of nanoparticles, while it is inversely proportional to the Nusselt number of heat loss and aspect ratio. The results of this study may be helpful to design and predict the efficiency of an NVR.

Seung-Hyun Lee; Seok Pil Jang

2015-01-01T23:59:59.000Z

477

High-efficiency photovoltaics based on semiconductor nanostructures  

SciTech Connect (OSTI)

The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

Yu, Paul K.L. [University of California, San Diego; Yu, Edward T. [University of Texas at Austin; Wang, Deli [University of California, San Diego

2011-10-31T23:59:59.000Z

478

Design and Performance of Solar Decathlon 2011 High-Penetration Microgrid: Preprint  

SciTech Connect (OSTI)

The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The Solar Decathlon 2011 was held in Washington, D.C., from September 23 to October 2, 2011 . A high-penetration microgrid was designed, installed, and operated for the Solar Decathlon 2011 to grid-connect 19 highly energy-efficient, solar-powered competition houses to a single utility connection point. The capacity penetration of this microgrid (defined as maximum PV generation divided by maximum system load over a two-week period) was 74% based on 1-minute averaged data. Temporary, ground-laid conductors and electrical distribution equipment were installed to grid-connect the Solar Decathlon village, which included the houses as well as other electrical loads used by the event organizers. While 16 of the houses were connected to the 60 Hz microgrid, three houses from Belgium, China, and New Zealand were supplied with 50 Hz power. The design of the microgrid, including the connection of the houses powered by 50 Hz and a standby diesel generator, is discussed in this paper. In addition to the utility-supplied net energy meters at each house, a microgrid monitoring system was installed to measure and record energy consumption and PV energy production at 1-second intervals at each house. Bidirectional electronic voltage regulators were installed for groups of competition houses, which held the service voltage at each house to acceptable levels. The design and successful performance of this high-penetration microgrid is presented from the house, microgrid operator, and utility perspectives.

Stafford, B.; Coddington, M.; Butt, R.; Solomon, S.; Wiegand, G.; Wagner, C.; Gonzalez, B.

2012-04-01T23:59:59.000Z

479

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

480

Case Studies of High Efficiency Electric Motor Applicability  

E-Print Network [OSTI]

Much has been written about the advantages and disadvantages of high efficiency electric motors. For a given motor application it is possible to find literature that enables a plant engineer to make an informed choice between a standard efficiency...

Wagner, J. R.

Note: This page contains sample records for the topic "high efficiency solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development of the High Efficiency X1 Rotary Diesel Engine  

Broader source: Energy.gov [DOE]

This poster describes the design, modeling, and build of a 70-hp prototype of a high efficiency hybrid cycle engine that is expected to attain 57 percent efficiency across a range of loads.

482

High efficiency quasi-monochromatic infrared emitter  

SciTech Connect (OSTI)

Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri, E-mail: henri.benisty@institutoptique.fr; Greffet, Jean-Jacques [Laboratoire Charles Fabry, UMR 8501, Institut d’Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Bouchon, Patrick; Haïdar, Riad [Office National d’Études et de Recherches Aérospatiales, Chemin de la Hunière, 91761 Palaiseau (France)

2014-02-24T23:59:59.000Z

483

Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? NG sheets are prepared through a hydrothermal reduction of graphite oxide. ? The transparent NG counter electrodes of DSCs are fabricated at room temperature. ? Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup ?}. ? The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ? The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup ?}/I{sub 3}{sup ?} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

Wang, Guiqiang, E-mail: wgqiang123@163.com [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Fang, Yanyan; Lin, Yuan [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China)] [Institute of Chemistry, Chinese Academy of Science, Beijing 100080 (China); Xing, Wei; Zhuo, Shuping [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)] [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China)

2012-12-15T23:59:59.000Z

484

Solar High Temperature Water-Splitting Cycle with Quantum Boost  

SciTech Connect (OSTI)

A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.

Taylor, Robin [SAIC] [SAIC; Davenport, Roger [SAIC] [SAIC; Talbot, Jan [UCSD] [UCSD; Herz, Richard [UCSD] [UCSD; Genders, David [Electrosynthesis Co.] [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.] [Electrosynthesis Co.; Brown, Lloyd [TChemE] [TChemE

2014-04-25T23:59:59.000Z

485

High Spatial Resolution Observations of Loops in the Solar Corona  

E-Print Network [OSTI]

Understanding how the solar corona is structured is of fundamental importance to determining how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in July 2012. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270km. We also use Atmospheric Imaging Assembly (AIA) data for a subset of 79 of these loops and find that their temperature distributions are narrow. These observations provide further evidence that loops in the solar corona are structured at a scale of several hundred kilometers, well above the spatial scale of proposed physical mechanisms.

Brooks, David H; Ugarte-Urra, Ignacio; Winebarger, Amy R

2013-01-01T23:59:59.000Z

486

HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA  

SciTech Connect (OSTI)

Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

2013-08-01T23:59:59.000Z

487

Strategies to Boost Efficiencies of Quantum Pralay K. Santra  

E-Print Network [OSTI]

for achieving low cost, high efficiency conversion of solar energy to electricity. quantum dot solar cells Efficiencies of Quantum Dot Solar Cells Pralay K. Santra of Chemical Engineering, Stanford University The most is that of the quantum dot which has the potential for achieving low cost, high efficiency conversion of solar energy

Shyamasundar, R.K.

488

The excitation of solar-like oscillations in a delta Scuti star by efficient envelope convection  

E-Print Network [OSTI]

Delta Scuti (delta Sct) stars are opacity-driven pulsators with masses of 1.5-2.5M$_{\\odot}$, their pulsations resulting from the varying ionization of helium. In less massive stars such as the Sun, convection transports mass and energy through the outer 30 per cent of the star and excites a rich spectrum of resonant acoustic modes. Based on the solar example, with no firm theoretical basis, models predict that the convective envelope in delta Sct stars extends only about 1 per cent of the radius, but with sufficient energy to excite solar-like oscillations. This was not observed before the Kepler mission, so the presence of a convective envelope in the models has been questioned. Here we report the detection of solar-like oscillations in the delta Sct star HD 187547, implying that surface convection operates efficiently in stars about twice as massive as the Sun, as the ad hoc models predicted.

Antoci, V; Campante, T L; Thygesen, A O; Moya, A; Kallinger, T; Stello, D; Grigahcène, A; Kjeldsen, H; Bedding, T R; Lüftinger, T; Christensen-Dalsgaard, J; Catanzaro, G; Frasca, A; De Cat, P; Uytterhoeven, K; Bruntt, H; Houdek, G; Kurtz, D W; Lenz, P; Kaiser, A; Van Cleve, J; Allen, C; Clarke, B D

2011-01-01T23:59:59.000Z

489

Efficiency Enhancement InGaP/GaAs Dual-junction Solar Cell by Broad-band and Omnidirectional Antireflection Nanorod Arrays  

Science Journals Connector (OSTI)

10% efficiency enhancement of the solar cell by Broad-band and Omnidirectional Antireflection Nanorod Arrays was demonstrated. The enhanced efficiency attributed to increased light...

Tsai, Min-An; Tseng, P C; Yu, Peichen; Chiu, C H; Kuo, Hao-Chung

490

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 1, NO. 1, JULY 2011 49 High Efficiency n-Type Emitter-Wrap-Through  

E-Print Network [OSTI]

, Verena Mertens, Stefan Bordihn, Christina Peters, and J¨org W. M¨uller Abstract--In the ALBA-II project, Emmerthal, Germany, are developing high-efficiency emitter-wrap-through (EWT) solar cells on n-type silicon cell development as it offers high bulk carrier lifetimes. The EWT device structure allows us to em

491

Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint  

SciTech Connect (OSTI)

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

2006-08-01T23:59:59.000Z

492

Evaluation of a High-Performance Solar Home in Loveland, Colorado  

SciTech Connect (OSTI)

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

2006-01-01T23:59:59.000Z

493

Scientists at ALS Find New Path to More Efficient Organic Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists at ALS Find New Path to Scientists at ALS Find New Path to More Efficient Organic Solar Cells Scientists at ALS Find New Path to More Efficient Organic Solar Cells Print Monday, 07 January 2013 00:00 Harald Ade, a physicist at North Carolina State University, led a study at the Advanced Light Source that revealed a second pathway to improved performances of polymer/organic solar cells. Whereas the first pathway demands crystals of ultrapure domains, the new pathway shows that impure domains if sufficiently small can also lead to improved photovoltaic performances. Also working on this project were Brian Collins, Zhe Li, John Tumbleston, Eliot Gann and Christopher McNeill. Read the News Release Molecular view of polymer/fullerene solar film showing an interface between acceptor and donor domains. Red dots are PC71BM molecules and blue lines represent PTB7 chains. Excitons are shown as yellow dots, purple dots are electrons and green dots represent holes

494

Quantum Dots Promise to Significantly Boost Solar Cell Efficiencies (Fact Sheet)  

SciTech Connect (OSTI)

In the search for a third generation of solar-cell technologies, a leading candidate is the use of 'quantum dots' -- tiny spheres of semiconductor material measuring only about 2-10 billionths of a meter in diameter. Quantum dots have the potential to dramatically increase the efficiency of converting sunlight into energy -- perhaps even doubling it in some devices -- because of their ability to generate more than one bound electron-hole pair, or exciton, per incoming photon. NREL has produced quantum dots using colloidal suspensions; then, using molecular self-assembly, they have been fabricated into the first-ever quantum-dot solar cells. While these devices operate with only 4.4% efficiency, they demonstrate the capability for low-cost manufacturing.

Not Available

2013-08-01T23:59:59.000Z

495

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

496

Novel High Efficiency Photovoltaic Devices Based on the III-N Material System: Final Technical Report, 7 December 2005 - 29 August 2008  

SciTech Connect (OSTI)

The research shows that InGaN material system can be used to realize high-efficiency solar cells, making contributions to growth, modeling, understanding of loss mechanisms, and process optimization.

Hornsberg, C.; Doolittle, W. A.; Ferguson, I.

2008-10-01T23:59:59.000Z

497

Self-Assembled Nanostructured Photoanodes with Staggered Bandgap for Efficient Solar Energy Conversion  

Science Journals Connector (OSTI)

Self-Assembled Nanostructured Photoanodes with Staggered Bandgap for Efficient Solar Energy Conversion ... X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements confirm the staggered band-alignment between Ta2O5 and WO3, which facilitates the separation of charge carriers. ... The TA measurements showed the elimination of trap states upon annealing Ta–W–O nanotubes and, hence, minimizing the charge carrier trapping, whereas the trap states remain in pristine Ta2O5 nanotubes even after annealing. ...

Ramy Nashed; Paul Szymanski; Mostafa A. El-Sayed; Nageh K. Allam

2014-04-14T23:59:59.000Z

498

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Broader source: Energy.gov (indexed) [DOE]

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

499

Evaluation of High Efficiency Clean Combustion (HECC) Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

500

High Efficiency Microturbine with Integral Heat Recovery - Presentatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report AMO Peer Review,...