National Library of Energy BETA

Sample records for high efficiency electric

  1. Electrical and Thermal Transport Optimization of High Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

  2. Energy efficiency indicators for high electric-load buildings

    SciTech Connect (OSTI)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  3. Analysis of highly-efficient electric residential HPWHs

    SciTech Connect (OSTI)

    Baxter, Van D; Murphy, Richard W; Rice, C Keith; Shen, Bo; Gao, Zhiming

    2011-09-01

    A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

  4. Electrical and Thermal Transport Optimization of High Efficient n-type

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudites | Department of Energy Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented. PDF icon yang.pdf More Documents & Publications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites On

  5. City of High Point Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of High Point offers the Hometown Green Program to help customers reduce energy use. Under this program, rebates are available for newly constructed energy efficient homes, heat pumps, and...

  6. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  7. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment December 2013 i NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  8. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  9. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOE Patents [OSTI]

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  10. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  11. High-Efficiency Solar Cells for Large-Scale Electricity Generation

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

    2008-09-26

    One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

  12. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  13. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa...

  14. Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors

    SciTech Connect (OSTI)

    Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

    2003-09-26

    The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

  15. Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites

    Broader source: Energy.gov [DOE]

    Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented.

  16. Cost Effectiveness of Electricity Energy Efficiency Programs...

    Open Energy Info (EERE)

    Effectiveness of Electricity Energy Efficiency Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost Effectiveness of Electricity Energy Efficiency Programs...

  17. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  18. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect (OSTI)

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  19. Southwest Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Electric Cooperative offers rebates to its customers for a variety of energy efficiency improvements, including: 

  20. Roseville Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Roseville Electric offers incentives for its commercial customers to increase the efficiency of existing facilities. Customers interested in pursuing rebates should contact Roseville Electric...

  1. Tampa Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

  2. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  3. (Electric) Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

  4. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  5. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  6. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  7. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  8. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  9. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  10. Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for ENERGY STAR clothes washers,...

  11. Murfreesboro Electric Department- Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Murfreesboro Electric Department, in collaboration with the Tennessee Valley Authority, offers incentives to home builders and homeowners for the construction of energy efficient homes through the...

  12. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  13. Berkeley Electric Cooperative- Energy Efficiency Loan Programs

    Broader source: Energy.gov [DOE]

    Berkeley Electric Cooperative provides HomeAdvantage Loans to qualifying homeowners for energy efficiency upgrades to residences. Measures typically include air infiltration measures, insulation...

  14. Intercounty Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Intercounty Electric Cooperative provides rebates to its customers for the purchase of a variety of energy efficient equipment and appliances. Eligible technologies include: geothermal, air source,...

  15. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY Most likely your operation's motors account for a large part of your monthly electric bill. Far too often motors are mismatched-or oversized-for the load they are intended to serve, or have been re- wound multiple times. To compare the operating costs of an existing standard motor with an appropriately-sized energy- efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to

  16. UES (Electric)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers rebates to its residential customers who have certain energy efficient equipment installed by participating contractors. The rebate is provided directly to...

  17. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  18. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of ...

  19. UES (Electric)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    UniSource Energy Services (UES) offers the Commercial Energy Solutions Program for non-residential electric customers to upgrade existing equipment with more energy efficient measures. Rebates are...

  20. Berkeley Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkeley Electric Cooperative (BEC) offers several rebates to residential customers for energy efficiency upgrades. The H2O Advantage Water Heater Rebate Program offers a rebate of up to $400 for...

  1. Buying an Energy-Efficient Electric Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Electrical and Elec- tronics Engineers (IEEE ) 112 Method B, which uses a dynamometer ... uses bands of efficiency values based on IEEE 112 testing. 4. When should I consider ...

  2. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  3. CoServ Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CoServ Electric Cooperative's "Think Green Rebate Program" provides a range of incentives encouraging its residential customers to upgrade to high efficiency equipment in their homes. Rebates are...

  4. Buying an Energy-Efficient Electric Motor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying an Energy-Efficient Electric Motor Buying an Energy-Efficient Electric Motor Efficiency is an important factor to consider when buying or rewinding an electric motor. This...

  5. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  6. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  7. Delta-Montrose Electric Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Delta-Montrose Electric Association (DMEA) offers a variety of rebates for customers who buy energy efficient appliances and equipment. Rebates are available for energy efficient electric water...

  8. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  9. Cumberland Valley Electric Cooperative- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric Cooperative offers businesses rebates for energy efficient lighting and compressed air delivery retrofits.

  10. Unitil (Electric) - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    rebate New Construction Air Compressors: 45-140 New Construction High Efficiency Dryer: 5-7CFM New Construction Custom: 75% of incremental cost Summary Unitil offers...

  11. El Paso Electric Company- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    EPE offers incentives to residential customers in its New Mexico service territory that purchase and install high efficiency equipment for residential use. Some incentives, including insulation,...

  12. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  13. High efficiency photoionization detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  14. Development of Ulta-Efficient Electric Motors

    SciTech Connect (OSTI)

    Shoykhet, B.; Schiferl, R.; Duckworth, R.; Rey, C.M.; Schwenterly, S.W.; Gouge, M.J.

    2008-05-01

    Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrial motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performa

  15. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  16. Energy-efficient electric motors study

    SciTech Connect (OSTI)

    Not Available

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  17. Firelands Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes:

  18. Dixie Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a...

  19. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  20. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  1. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  2. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Program for Business offers prescriptive incentives for both electric and natural gas energy efficient improvements in areas of lighting, HVAC, processes, compressed air,...

  3. Ames Electric Department- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The City of Ames Electric Services offers a variety of services and rebates for residential customers interested in purchasing energy efficient appliances or making energy efficiency improvements...

  4. Delta-Montrose Electric Association- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Delta-Montrose Electric Association (DMEA) offers a variety of rebates to commercial customers which upgrade to energy efficient equipment. Rebates are available for energy efficient heat pumps,...

  5. Coast Electric Power Association- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association provides incentives for commercial customers to increase the energy efficiency of facilities. Rebates are provided for new or replacement energy efficient heat...

  6. Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced

    Office of Environmental Management (EM)

    Programs (301) | Department of Energy Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs (301) Driving Change in Residential Energy Efficiency: Electric Vehicles Advanced Programs (301) April 28

  7. Integrated Solar Thermochemical Reaction System for High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Electricity | Department of Energy Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_wegeng.pdf More Documents & Publications Highly Efficient Solar

  8. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  9. Lane Electric Cooperative- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative provides rebates for duct sealing measures, heat pumps, and newly constructed Energy Star Homes. Lane Electric Cooperative must receive the necessary application forms in...

  10. Rural Electric Cooperatives Energy Efficiency Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    (REC) and one municipal electric cooperative in the state of Iowa. They are: Clarke Electric Cooperative Consumers Energy Cooperative East-Central Iowa REC Eastern Iowa Light and...

  11. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  12. High Efficiency Microturbine with Integral Heat Recovery

    SciTech Connect (OSTI)

    2010-10-01

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency.

  13. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A. (Belmont, MA)

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  14. Development of an International Electric Cooperative Initiative on Energy Efficiency

    SciTech Connect (OSTI)

    Paul Clark; David South

    2004-05-01

    NRECA conceived of the International Electric Cooperative Initiative on Energy Efficiency (IECIEE) in order to provide an ongoing means of contributing voluntary actions on greenhouse gas emissions mitigation as an integral component of its international programs and projects. This required designing the IECIEE to be integrated directly with the core interests and attributes of participating cooperatives in the U.S. and Latin America, which was the initial focus area selected for the IECIEE. In the case of NRECA International, the core interests related to promoting and strengthening the electric cooperative model, which has proved highly successful in maximizing operational efficiencies in electric power generation, distribution and retailing, as compared to government-owned entities. The approach involved three basic components: (i) establishing the IECIEE mechanism, which involved setting up a functioning organizational vehicle providing for investment, management, and emissions credit accounting; (ii) developing a portfolio of projects in countries where NRECA International could effectively implement the broader mandate of cooperative development as energy efficient suppliers and distributors of electrical energy; and (iii) conducting outreach to obtain the commitment of participants and resources from U.S. and Latin American cooperatives and partnering agencies in the development financing community.

  15. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Modules | Energy Frontier Research Centers Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007 Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this

  16. Lane Electric Cooperative- Residential and Commercial Weatherization & Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a residential cash grant for 25% of measure costs up to $1,000,...

  17. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar,

  18. Stearns Electric Association - Commercial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Association Website https:www.stearnselectric.orgconservation-incentivesenergy-efficienc... State Minnesota Program Type Rebate Program Rebate Amount Variable...

  19. Empire District Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Empire District Electric Company (EDEC) offers rebates to residential customers for energy audits, weatherization measures, central air conditioning systems, and energy efficient home appliances. ...

  20. Empire Electric Association- Residential Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    Empire Electric Association provides financial incentives to its residential consumers who upgrade to energy efficient appliances and HVAC equipment.  These rebates are offered in conjunction with...

  1. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  2. Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

  3. Empire Electric Association- Commercial Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    Empire Electric Association provides rebates for its commercial customers who upgrade to energy efficient lighting, HVAC equipment, and motors. These rebates are offered in conjunction with Tri...

  4. Chicopee Electric Light Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light Department (CELD) offers a variety of energy efficiency rebates for its residential customers. CELD provides rebates for heat pump water heaters, refrigerators, freezers,...

  5. Burlington Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Burlington Electric Department offers a variety of rebate incentives that encourage residential customers to upgrade to energy efficient equipment in the their homes.. Rebates are available for...

  6. Clay Electric Cooperative, Inc- Energy Smart Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are available only to Clay Electric Cooperative (CEC) residential members who are making efficiency upgrades to primary residence served by CEC. Rebates are available for residential...

  7. Lodi Electric Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers several residential energy efficiency programs, including the Appliance Rebate Program and the Home Improvement Rebate Program. 

  8. Redding Electric- Residential and Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Redding Electric Utility offers a variety of financial incentives for energy efficiency through its Residential and Commercial Rebate Programs. Rebates are for weatherization measures, HVAC...

  9. Sangre De Cristo Electric Association- Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    The Sangre De Cristo Electric Association (SDCEA) offers the Energy Efficiency Credit Program, a rebate program which offers incentives for heat pumps, water heaters, appliances, and LED lighting.

  10. Mansfield Municipal Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Mansfield Municipal Electric Department encourages energy efficiency through the ENERGY STAR Appliance Rebate Incentive Program. Cash rebates are offered for ENERGY STAR central air conditioners,...

  11. Low Interest Energy Efficiency Loan Program (Electric and Gas)

    Broader source: Energy.gov [DOE]

    Energize CT offers low interest loans for commercial and industrial customers for investments in energy efficiency improvements. Electric customers of Connecticut Light & Power, United...

  12. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  13. Electric Utility Energy Efficiency Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    national trends in electric utility energy efficiency programs for industrial customers, insights from investor-owned utilities, and national trendsdevelopments among ...

  14. Approaches to Electric Utility Energy Efficiency for Low Income...

    Open Energy Info (EERE)

    Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches...

  15. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  16. Ozarks Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Ozarks Electric Cooperative, a Touchstone Energy Cooperative, offers the Energy Resource Conservation (ERC) Loan Program to residential members to help make energy efficiency improvements in...

  17. Citizens Electric Corporation- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Citizens Electric Corporation offers rebates and price reductions to its residential customers for purchasing and installing energy efficient equipment. Eligible equipment and measures include a...

  18. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  19. Central Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Central Electric Cooperative (CEC) offers a variety of financial incentives to promote energy efficiency among residential members. Rebates are provided for qualifying weatherization measures,...

  20. Douglas Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures.  Rebates include clothes washers, heat pumps, manufactured homes, and...

  1. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  2. San Isabel Electric Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    San Isabel Electric Association (SIEA) provides incentives for its residential customers to install energy efficient equipment. Rebates are available for certain water heaters, washers, dryers,...

  3. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers energy efficiency incentives to eligible commercial and multifamily residential customers. More information regarding the rebate programs, including application...

  4. Grayson Rural Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Grayson Rural Electric Cooperative provides rebates to its customers for increasing their energy efficiency. Members who make improvements based on recommendations by the utility's energy advisor...

  5. Missouri Rural Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Missouri Rural Electric Cooperative (MREC) offers a number of rebates to residential customers for the purchase and installation of energy efficient equipment. Eligible equipment includes room air...

  6. Orange and Rockland Utilities (Electric)- Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities offers electric energy efficiency program that provides rebates to replace various appliances. To apply for rebate, submit rebate application form along with required...

  7. Burlington Electric Department-Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Burlington Electric Department (BED) offers a variety of rebate incentives to its commercial customers. The Commercial Energy Efficiency Program provides significant rebates for , HVAC systems,...

  8. Farmers Electric Cooperative (Kalona)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Farmers Electric Cooperative (FEC) offers a variety of rebates for the purchase and proper installation of energy efficient equipment for the home. Incentives are available for geothermal heat...

  9. Making the most of Responsive Electricity Customer. Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive ...

  10. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  11. Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

  12. Consumers Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Prescriptive incentives are available for energy efficiency equipment upgrades and are paid based on the quantity, size and efficiency of the equipment. Custom incentives are available to...

  13. Energy Optimization (Electric)- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The "Michigan Public Clean, Renewable, and Efficient Energy Act" (Public Act 295 passed in 2008) provided original authorization to create utility energy efficiency programs across the state. Com...

  14. Baltimore Gas & Electric Company (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Baltimore Gas and Electric (BGE) offers four different programs for its commercial customers for technical assistance, retrofitting inefficient equipment, purchasing new equipment, and combined...

  15. Mass Save (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Mass Save organizes residential energy conservation services for programs administered by Massachusetts electric companies, gas companies, and municipal aggregators. Rebates for various energy...

  16. Golden Valley Electric Association - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    30 Timer Controlling Exterior Vehicle Plug-In Outlet: 20 Switch Controlling Exterior Vehicle Plug-In Outlet: 10 Summary Golden Valley Electric Association's (GVEA) Builder...

  17. Redding Electric - Residential and Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    REU for Commercial Program Info Sector Name Utility Administrator Redding Electric Utility Website http:www2.reupower.comrebates.asp State California Program Type Rebate...

  18. Adams Electric Cooperative - Energy Efficiency Loan Program ...

    Broader source: Energy.gov (indexed) [DOE]

    Insulation Windows Doors Other EE Program Info Sector Name Utility Administrator Adams Electric Cooperative Website http:www.adamsec.comcontentlow-cost-financing State...

  19. Minnesota Valley Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    heat pumps, ground-source heat pumps, Energy Star appliances, and electric resistance heating products. Equipment rebates are only available to those participating in the...

  20. Shrewsbury Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    In collaboration with EFI, Shrewsbury Electric offers rebates on ENERGY STAR appliances. Eligible products include washing machines, dishwashers, refrigerators, and room air conditioners. Customers...

  1. FMC high power density electric drive technology

    SciTech Connect (OSTI)

    Shafer, G.A.

    1994-12-31

    FMC has developed a unique capability in energy-efficient, high-performance AC induction electric drive systems for electric and hybrid vehicles. These drives will not only be important to future military ground combat vehicles, but will also provide significant competitive advantages to industrial and commercial machinery and vehicles. The product line under development includes drive motors and associated power converters directed at three power/vehicle weight classes. These drive systems cover a broad spectrum of potential vehicle applications, ranging from light pickup trucks to full-size transit buses. The drive motors and power converters are described.

  2. Electric Power Board- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Electric Power Board provides a financial incentive for residential customers to replace old water heaters with new ones which meet the minimum standards set forth by the DOE. The rebate is worth ...

  3. Douglas Electric Cooperative- Residential Energy Efficiency Loans

    Broader source: Energy.gov [DOE]

    Douglas Electric Cooperative offers financing for heat pumps and weatherization. Insulation levels for this climate zone should be a minimum of R-38 in the ceiling, R-30 in the floor and R-11 in...

  4. Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- from Wastewater

    SciTech Connect (OSTI)

    Zhang, Sheng; Shao, Yuyan; Liu, Jun; Aksay, Iihan A.; Lin, Yuehe

    2011-10-10

    Perchlorate (ClO4-) contamination is now recognized as a widespread concern affecting many water utilities. In this report, graphene is employed as the scaffold to synthesize novel graphene-polypyrrole nanocomposite, which is demonstrated as excellent electrically switched ion exchanger for perchlorate removal. Scanning electron microscopy (SEM) and electrochemical measurements showed that the 3D nanostructured graphene/Ppy nanocomposite exhibited the significantly improved uptake capacity for ClO4- compared with Ppy film. X-ray photoelectron spectroscopy (XPS) confirmed the uptake and release process of ClO4- in graphene/Ppy nanocomposite. In addition, the presence of graphene substrate resulted in high stability of graphene/Ppy nanocomposite during potential cycling. The present work provides a promising method for large scale water treatment.

  5. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  6. Consumers Energy (Electric)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Residential Income Qualified Energy Efficiency Program is working with existing Michigan Weatherization Assistance Program delivery to support weatherization providers with more funding for...

  7. Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...

    Broader source: Energy.gov (indexed) [DOE]

    refrigeration, lighting, motors, variable frequency drives, appliances, personal computers, retro-commissioning, and other energy efficient measures. Below is a list of...

  8. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  9. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  10. Making the most of Responsive Electricity Customer. Energy Efficiency and

    Office of Environmental Management (EM)

    Demand Response: How do we make the most out of using less energy? | Department of Energy Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of

  11. Appalachian Power (Electric)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    On June 24, 2015 the Virginia State Corporation Commission approved various rate-payer funding energy efficiency programs for residential Appalachian Power customers in Virginia. Appalachian Power...

  12. Determining Electric Motor Load and Efficiency

    Broader source: Energy.gov [DOE]

    To compare the operating costs of an existing standard motor with an appropriately-sized energy-efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to describe the actual load served by the motor as compared to the rated full-load capability of the motor. Motor part-loads may be estimated through using input power, amperage, or speed measurements. This fact sheet briefly discusses several load estimation techniques.

  13. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace012_flowers_2012_o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

  14. Farmers Electric Cooperative (Kalona)- Residential Efficiency Matching Grant Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements...

  15. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  16. La Plata Electric Association- Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    La Plata Electric Association (LPEA) offers a variety of rebates for members to improve the efficiency of homes and facilities. Rebates are available for a variety of Energy Star appliances, the...

  17. ConEd (Electric)- Multifamily Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Multifamily electric customers a rebate program for energy efficient cooling and lighting equipment in 5-75 unit buildings in the eligible service area. All equipment...

  18. Co-Mo Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Co-Mo Electric Cooperative provides rebates to its residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. Heat...

  19. Lane Electric Cooperative- Residential Energy Efficiency Loan Programs

    Broader source: Energy.gov [DOE]

    Lane Electric provides 0% loans to residents for the installation of efficient heat pumps and weatherization measures through the Home Energy Loan Program. Participating single or multi-family...

  20. City of Concord Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Concord Electric Department offers an incentive program encouraging its residential customers to replace their existing HVAC system with a more energy efficient heat pump system.  Heat...

  1. State Electric Efficiency Regulatory Frameworks (July 2012 IEE Report)

    Broader source: Energy.gov [DOE]

    This report summarizes ongoing and recent policy developments that support utility investments in energy efficiency, including program cost recovery, fixed cost recovery, and performance incentives for electric utilities on a state-by-state basis.

  2. SDG&E (Electric)- Energy Efficiency Business Rebates

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Business Rebates can help pay for business, industrial and agricultural retrofits for customers that have a monthly electrical demand of at least 100 kilowatts. Rebates are...

  3. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Broader source: Energy.gov [DOE]

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  4. Chicopee Electric Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a variety of incentives for its residential customers to increase the energy efficiency of participating homes. CEL provides rebates for heat pump water heaters...

  5. CoServ Electric Cooperative- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.20/watt saved is available on interior...

  6. Ultra-Efficient and Power-Dense Electric Motors

    SciTech Connect (OSTI)

    2009-01-01

    This factsheet describes a research project whose goal is to develop line-start and line-run constant-speed electric motors and simple-to-control electric motors with the goal of obtaining at least a 30% reduction in motor losses as compared to conventional energy-efficient induction motors and a 15% reduction in motor losses as compared to NEMA Premium® efficient induction motors.

  7. Enabling High Efficiency Ethanol Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Ethanol Engines (VSSP 12) Presented by Robert Wagner Oak Ridge National Laboratory 2009 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review This presentation does not contain any proprietary, confidential, or otherwise restricted information. May 20, 2009 Lee Slezak Vehicle Technologies U.S. Department of Energy David Smith Sentech Inc Keith Confer, John MacBain Delphi Automotive Systems Project ID: vssp_12_wagner 2 Managed by UT-Battelle for the U.S. Department of

  8. High Efficiency Solar Fuels Reactor Concept | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Fuels Reactor Concept High Efficiency Solar Fuels Reactor Concept This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042513_henry.pdf More Documents & Publications Highly Efficient Solar Thermochemical Reaction Systems Meeting Materials: June 12, 2012 Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity

  9. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have...

  10. System and method to determine electric motor efficiency nonintrusively

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.

    2011-08-30

    A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.

  11. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore »be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  12. High Efficiency Microturbine Leads to Increased Market Share | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High Efficiency Microturbine Leads to Increased Market Share High Efficiency Microturbine Leads to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has seen more than $83 million in revenue

  13. High-efficiency photovoltaic cells

    DOE Patents [OSTI]

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  14. High efficiency laser spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R.

    1980-01-01

    A high efficiency laser spectrum conditioner for generating a collinear parallel output beam containing a predetermined set of frequencies from a multifrequency laser. A diffraction grating and spherical mirror are used in combination, to disperse the various frequencies of the input laser beam and direct these frequencies along various parallel lines spatially separated from one another to an apertured mask. Selection of the desired frequencies is accomplished by placement of apertures at locations on the mask where the desired frequencies intersect the mask. A recollimated parallel output beam with the desired set of frequencies is subsequently generated utilizing a mirror and grating matched and geometrically aligned in the same manner as the input grating and mirror.

  15. Orange and Rockland Utilities (Electric)- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities (O&R) offers energy efficiency program for both small business and large commercial and industrial customers to install high-efficiency equipment in eligible...

  16. High efficiency shale oil recovery

    SciTech Connect (OSTI)

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  17. High Efficiency Multiple-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Efficiency Multiple-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (937 KB) Technology Marketing SummarySingle junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region. Higher efficiency and optical to electrical energy conversion is achieved by stacking

  18. High-Efficiency Multijunction Photovoltaics | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Efficiency Multijunction Photovoltaics This Task Group focuses on novel approaches to InGaN and multijunction photovoltaics for unprecedented high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient simultaneous coupling of electrons and photons through the various junctions. Figure 1 shows a device architecture that is one of the goals of the project: a five-junction (5J) solar cell using a high-bandgap InGaN top junction

  19. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination...

  20. High efficiency turbine blade coatings.

    SciTech Connect (OSTI)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered periodic microstructures in the coating, the Direct Simulation Monte Carlo (DSMC) modeling of particle transport in the PVD plume, functional graded layer development, the deposition of all layers to form a complete coating, and materials characterization including thermal testing. Ion beam-assisted deposition, beam sharing through advanced digital rastering, substrate pivoting, hearth calorimetry, infrared imaging, fiber optic-enabled optical emission spectroscopy and careful thermal management were used to achieve all the milestones outlined in the FY02 LDRD proposal.

  1. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  2. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace012_aceves_2010_o.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines

  3. High efficiency diamond solar cells

    DOE Patents [OSTI]

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  4. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  5. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S Wegeng, PI FCTO Webinar 2014 R&D 100 Award Winning Technology January 13, 2015 HIGHLY EFFICIENT, SOLAR THERMOCHEMICAL REACTION SYSTEMS Robert S Wegeng, PI FCTO Webinar January 13,

  6. Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Highly Efficient Solar Thermochemical Reaction Systems" held on January 13, 2015.

  7. High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Electrolysis for Efficient Hydrogen Production from Nuclear Energy - INL Research Program Summary Jim O'Brien Idaho National Laboratory Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory Golden, CO February 27-28, 2014 NGNP/VHTR Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis * Directly coupled to high-temperature gas-cooled reactor for electrical power and process heat * 600 MWth reactor

  8. Electricity Regulatory Reforms to Encourage Energy Efficiency: What Air Regulators and Energy Officials Need to Know

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation by Chris James and Doug Hurley of Synapse Energy Economics, Inc., was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  9. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency. ... Turbine Corporation, June 2011 2011 CHPIndustrial Distributed Energy R&D Portfolio ...

  10. High Efficiency Microturbine with Integral Heat Recovery- Fact Sheet, 2014

    Broader source: Energy.gov [DOE]

    Fact sheet: this project will develop a clean, cost-effective 370 kW microturbine with 42% net electrical efficiency and 85% total CHP efficiency

  11. Efficient high density train operations

    DOE Patents [OSTI]

    Gordon, Susanna P.; Evans, John A.

    2001-01-01

    The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference. During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

  12. High Efficiency Engine Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies High Efficiency Engine Technologies The energy wasted in combustion process is a huge untapped resource and the recovery or conversion of this energy into useful power is a huge opportunity. PDF icon deer09_nelson_2.pdf More Documents & Publications Innovative Approaches to Improving Engine Efficiency High Engine Efficiency at 2010 Emissions The Development and On-Road Performance and Durability of the Four-Way Emission Control SCRTTM System

  13. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  14. Computationally Efficient Modeling of High-Efficiency Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace012_aceves_2011_o.pdf More Documents & Publications Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development

  15. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.

    2015-10-27

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  16. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G

    2015-11-06

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  17. System and method to determine electric motor efficiency using an equivalent circuit

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G.

    2011-06-07

    A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.

  18. Multicolor, High Efficiency, Nanotextured LEDs

    SciTech Connect (OSTI)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  19. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  20. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  1. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  2. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL); Nicol, Thomas H. (St. Charles, IL)

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  3. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and ...

  5. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric ...

  6. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  7. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  8. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  9. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  10. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light Department (CELD) is participating in the Massachusetts Municipal Whoesale Electric Company's Green Opportunity Proagram to encourage non-residential, commercial, and...

  11. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect (OSTI)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  12. Ultra-Efficient and Power-Dense Electric Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient and Power-Dense Electric Motors Ultra-Efficient and Power-Dense Electric Motors PDF icon electric_motors.pdf More Documents & Publications Advance Patent Waiver W(A)2009-030 Improving Motor and Drive System Performance - A Sourcebook for Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

  13. Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Â… Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 30, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Renewable Electricity Generation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic

  14. High slot utilization systems for electric machines

    DOE Patents [OSTI]

    Hsu, John S (Oak Ridge, TN)

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  15. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  16. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect (OSTI)

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  17. High Efficiency Cold Climate Heat Pump

    Energy Savers [EERE]

    High Efficiency Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Bo Shen, shenb@ornl.gov Oak Ridge National Laboratory High Efficiency Cold Climate Heat Pump -(CCHP) CRADA Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2015 Key Milestones (single-stage) 1. Equipment modeling and EnergyPlus simulation report - March/2013 2. Lab prototype fabricated and installed - Dec/2013 3. Meet 77% capacity at-13°F vs. 47°F; COP=4.1 at 47°F - March/2014

  18. Tri-County Electric Cooperative- Energy Efficient Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating...

  19. City of New Bern Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of New Bern Electric Department offers rebates to its residential customers for installing new replacement energy efficient water heaters and heat pumps. Appliances must be electric and...

  20. High Efficiency Microturbine Leads to Increased Market Share...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of...

  1. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore »R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  2. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  3. Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers Natural Gas Connection program to residential customers to switch from electric to natural gas for heat. The program waives connection charge (...

  4. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of...

  5. Linn County Rural Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    County Rural Electric Cooperative Association Website http:www.linncountyrec.comenergy-efficiencyincentivescurrent-incent... State Iowa Program Type Rebate Program Rebate...

  6. White River Valley Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The White River Electric Coop's Rebate Program offers both residential and commercial rebates. Items available in the program include:

  7. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office September 27, 2014 Dickson Ozokwelu, Technology Manager Presentation Outline 1. What is Process Intensification? 2. DOE's !pproach to Process Intensification 3. Opportunity for Cross-Cutting High-Impact Research 4. Goals of the Process Intensification Institute 5. Addressing the 5 EERE Core Questions 2 | Advanced

  8. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  9. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  10. Midwest Energy (Gas and Electric)- How$mart Energy Efficiency Finance Program

    Broader source: Energy.gov [DOE]

    Midwest Energy offers its residential and small commercial electricity and natural gas customers in good standing a way to finance energy efficiency improvements on eligible properties. Under the...

  11. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  12. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  14. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Impact Buildings are categorically the largest energy consumer, and their 1 electricity demand is Lighting, often responsible for >40% their consumption. Modern electric ...

  15. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power-Dense Electric Motors Advanced Electric Motors Offer Large Energy Savings in Industrial Applications Pumps, fans, and compressors use more than 60% of industrial electric motor energy in the United States. The most widely used motors in these applications are constant-speed motors that are started and run across the line. In some applications, variable- speed motors, powered from an open-loop variable-speed drive, are utilized without any rotor position feedback device to achieve more

  16. MassSAVE (Electric) - Residential Energy Efficiency Programs...

    Broader source: Energy.gov (indexed) [DOE]

    include Columbia Gas of Massachusetts, The Berkshire Gas Company, Cape Light Compact, National Grid, New England Gas Company, NSTAR, Unitil, and Western Massachusetts Electric...

  17. Gunnison County Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gunnison County Electric Association (GCEA), a Touchstone Energy Cooperative, has a residential rebate program for eligible Energy Star appliances including clothes washers, dishwashers,...

  18. North Arkansas Electric Cooperative, Inc- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    North Arkansas Electric Cooperative (NAEC), a Touchstone Energy Cooperative, serves approximately 35,000 member accounts in seven different counties. The coop provides low interest rates for energy...

  19. Mountain View Electric Association, Inc - Energy Efficiency Credit...

    Broader source: Energy.gov (indexed) [DOE]

    75 for controlled unit, additional 25 for lifetime warranty Marathon Water Heater: 300unit, plus 2gallon Electric Motor: 10hp RefrigeratorFreezer: 40 Clothes Washer: 40...

  20. Linn County Rural Electric Cooperative - Commercial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    water heater installed, additional 25 bonus if electric dryer installed Energy Star Television: 50 Appliance Recycling: 25 - 50 Custom Measures: Varies, contact Linn County...

  1. Southern Pine Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards....

  2. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  3. Holyoke Gas & Electric - Commercial Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Administrator Holyoke Gas and Electric Department Website http:www.hged.comhtmlincentiveprograms.htmlCommercialAssist State Massachusetts Program Type Loan...

  4. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  5. Webinar: Highly Efficient Solar Thermochemical Reaction Systems |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015. In addition to this text version of the audio, you can access the presentation slides. Amit Talapatra: Hello, everyone, and thanks for joining today's webinar. Today's webinar is being recorded, so a recording, along with slides, will be posted to our website in about ten days. We will send out an email once these are posted to our website. [Slide 2] Everyone in this

  6. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

  7. 2008 Annual Merit Review Results Summary - 8. High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle...

  8. Tailored Materials for High Efficiency CIDI Engines (Caterpillar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  9. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  10. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  11. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  12. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding ...

  13. Analyses Guided Optimization of Wide Range and High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor...

  14. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

  15. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation...

  16. Heavy Duty HCCI Development Activities - DOE High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) ...

  17. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  18. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-efficiency Low Global-Warming Potential (GWP) Compressor High-efficiency Low Global-Warming Potential (GWP) Compressor Lead Performer: United Technologies Research Center - ...

  19. Developments in High Efficiency Engine Technologies and an Introductio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to...

  20. Los Alamos develops new technique for growing high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January Growing high-efficiency perovskite solar cells Los Alamos develops new technique for growing high-efficiency perovskite solar cells Researchers reveal a new...

  1. Technology Development for High Efficiency Clean Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC Enabling High Efficiency...

  2. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean,...

  3. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  4. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies ...

  5. Energy Efficiency Opportunities in Federal High Performance Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes...

  6. MidAmerican Energy (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of eligible homes. The Iowa Energy Efficiency Rebate Information For Your Home brochure...

  7. Xcel Energy (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Customers interested in comprehensive home energy efficiency improvements may alternatively receive rebates through the Home Performance with ENERGY STAR program.

  8. High Efficiency Colloidal Quantum Dot Phosphors

    SciTech Connect (OSTI)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of thousands of hours of LED operation. Once the LED phosphor lifetime specifications are met, these nanocrystals will enable white LEDs for solid state lighting to simultaneously have increased efficiency and improved light quality, in addition to enabling the creation of custom light spectrums. These improvements to white LEDs will help accelerate the adoption of SSL, leading to large savings in US and worldwide energy costs.

  9. Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

  10. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  11. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  12. New Hampshire Electric Co-Op- Residential Energy Efficiency Loan

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op offers loans to be used for eligible projects under the NHEC Home Performance with ENERGY STAR program for weatherization. This loan program can be combined with NHEC...

  13. Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas and Electric (LGE) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps...

  14. New Hampshire Electric Co-Op- Business Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-op offers incentives to commercial and municipal members for both new construction and retrofit projects. Incentives vary by demand and size of the customer:

  15. Denton Municipal Electric- GreenSense Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Denton Municipal Electric pays residential and small commercial customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce...

  16. Mountain View Electric Association, Inc- Energy Efficiency Rebates Program

    Broader source: Energy.gov [DOE]

    Mountain View Electric Association, Inc. (MVEA) and Tri-State Generation and Transmission Association Inc., MVEA’s power supplier, offers rebates to MVEA customers who install qualifying energy...

  17. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect (OSTI)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  18. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  19. AEP Ohio (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Ohio offers energy efficient appliance rebates, a Multi-family Direct Install Program, and an In-home Energy Program.

  20. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver® program offers incentives for residential customers to increase their energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  1. Duke Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Smart $aver® program offers incentives for residential customers to increase residential energy efficiency. Incentives are provided for qualifying heating and cooling equipment installation and...

  2. Central Hudson Gas & Electric (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The program offers rebates on furnaces, water boilers, steam boilers, boiler reset controls, indirect water heaters, and programmable thermostats. Some incentives vary based upon the efficiency of...

  3. Ashland Electric Utility- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Ashland Conservation District also encourages energy efficiency within the residential sector through the Energy Conservation Programs. Among the services offered through these programs, reside...

  4. NorthWestern Energy (Electric) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    homes. Customers who purchase or implement energy efficient appliances, lighting, HVAC services, insulation and programmable thermostats are eligible for prescriptive rebates...

  5. New Energy Efficiency Standards for Electric Motors and Walk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON - As part of President Obama's Climate Action Plan, which called for efficiency standards that cut carbon pollution and save money by saving energy, the Energy ...

  6. Liberty Utilities (Electric)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers incentives and technical support to help customers implement energy efficiency upgrades to existing homes or build an ENERGY STAR certified home. Eligible equipment...

  7. New Hampshire Electric Co-Op - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    efficiency incentive programs for its residential members. First, members can receive a free Home Energy Analysis through the Home Performance with Energy Star Program. The...

  8. CPS Energy (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy offers a variety of rebates for energy efficiency related improvements to residential homes, including: appliances, HVAC equipment, insulation, and equipment recycling.. Rebate...

  9. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect (OSTI)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  10. EERE Success Story-High Efficiency Microturbine Leads to Increased Market

    Office of Environmental Management (EM)

    Share | Department of Energy High Efficiency Microturbine Leads to Increased Market Share EERE Success Story-High Efficiency Microturbine Leads to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a combined heat and power system that led to the commercialization of that product. Capstone increased electrical efficiency of the unit from about 17%-22% to 33%, and it has

  11. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine PDF icon deer10_johansson.pdf More Documents & Publications Partially Premixed Combustion High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control Advanced Lean-Burn DI Spark Ignition Fuels Research

  12. High Efficiency Adsorption Chillers: High Efficiency Adsorption Cooling Using Metal Organic Heat Carriers

    SciTech Connect (OSTI)

    2010-10-01

    BEETIT Project: PNNL is incorporating significant improvements in materials that adsorb liquids or gases to design more efficient adsorption chillers. An adsorption chiller is a type of air conditioner that is powered by heat, solar or waste heat, or combustion of natural gas. Unlike typical chillers, this type has few moving parts and uses almost no electricity to operate. PNNL is designing adsorbent materials at the molecular level with at least 3 times higher refrigerant capacity and up to 20 times faster kinetics than adsorbents used in current chillers. By using the new adsorbent, PNNL is able to create a chiller that is significantly smaller, has twice the energy efficiency, and lower costs for materials and assembly time compared to conventional adsorption chillers.

  13. Charge Trapping in High Efficiency Alternating Copolymers: Implications in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaic Device Efficiency | ANSER Center | Argonne-Northwestern National Laboratory Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency

  14. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  15. Energy Efficiency First Fuel Requirement (Gas and Electric)

    Broader source: Energy.gov [DOE]

    Note: The Massachusetts Energy Efficiency Advisory Council and the Department of Public Utilities are in the process of developing the next three-year plan, for the years 2016-2018. To follow this...

  16. Dakota Electric Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Limited rebate funds are available, and rebates are awarded on a first-come, first-served basis. Some incentives vary by the efficiency of the purchased equipment. Detailed program requirements a...

  17. PPL Electric Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Additional incentives are available for qualifying low-income residential customers. The E-power Wise program provides energy education workshops and provides low cost energy efficiency kits to...

  18. Xcel Energy (Electric)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Xcel Energy offers rebate programs for Colorado commercial and industrial customers for a wide range of energy efficiency technologies including but not limited to heating and cooling, motors, l...

  19. Duke Energy (Electric)- Non-Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy’s Smart $aver Incentive program offers prescriptive and custom rebates to non-residential customers to install energy efficient equipment in their facilities. All Duke Energy South...

  20. Appalachian Power (Electric)- Non-Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Appalachian Power provides financial incentives to its non-residential customers to promote energy efficiency in their facilities. The incentive is designed as a custom program which provides $0.05...

  1. Liberty Utilities (Electric)- Commercial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers qualified commercial customers zero interest financing for energy efficiency improvements. Customers may borrow up to $50,000 per project and up to $150,000 per year. Loans...

  2. Duke Energy (Gas & Electric)- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy provides a financial incentive for its residential customers to purchase energy efficient HVAC products through the Smart $aver program. A $200 rebate is available for geothermal heat...

  3. Simulation of High Efficiency Clean Combustion Engines and Detailed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Kinetic Mechanisms Development | Department of Energy continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies PDF icon deer12_flowers.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines

  4. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. PDF icon deer09_stanton.pdf More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  5. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Improving Energy Efficiency by Developing Components for Distributed Cooling...

  6. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

  7. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficiency and cost, from the high-temperature capabilities of advanced nuclear reactors. The more promising cycles were then analyzed in depth as to their adaptability to advanced high-temperature nuclear reactors. As a result, the Sulfur-Iodine (S-I) cycle was selected for integration into the advanced nuclear reactor system. In Phases 2 and 3, alternative flowsheets were developed and compared. This effort entailed a considerable effort into developing the solution thermodynamics pertinent to the S-I cycle.

  8. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  9. A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy

    SciTech Connect (OSTI)

    Post, R F

    2009-09-24

    Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing', that is, a bearing that uses magnetic forces to support the rotor against gravity. Magnetic bearings are a virtual necessity for the E-M battery in order to achieve long service life, and to minimize frictional losses so that the battery does not lose its charge (run down) too rapidly. These considerations mitigate against the use of conventional mechanical bearings in the E-M battery for most applications. The Laboratory has pioneered the development of a new form of magnetic bearing to meet the special requirements of the E-M battery: the 'ambient-temperature passive magnetic bearing'. Simpler, and potentially much less expensive than the existing 'active' magnetic bearings (ones requiring electronic amplifiers and feedback circuits for their operation) development of the ambient-temperature passive magnetic bearing represents a technological breakthrough. Beyond its use in the E-M battery, the ambient-temperature magnetic bearing could have important applications in replacing conventional lubricated mechanical bearings in electrical machinery. Here the gains would be two-fold: reduced frictional losses, leading to higher motor efficiency, and, of equal importance, the elimination of the need for lubricants and for routine replacement of the bearings owing to mechanical wear. Thus an added benefit from a vigorous pursuit of our electromechanical battery concepts could be its impact on many other areas of industry where rotating machinery in need of improved bearings is involved. If perfected, passive magnetic bearings would seem to represent an almost ideal replacement for the mechanical bearings in many types of industrial electrical machinery. Returning to the issued of energy storage, the E-M battery itself has much to contribute in the area of improving the efficiency of stationary energy storage systems. For example, many electrical utilities utilize 'pumped hydro' energy storage systems as a means of improving the utilization of their 'base-load' power plants. That is, electrical energy is stored during off-peak hours for delivery at times of peak usage. These pumped hydro systems employ upper and lower reservoirs, between which water is shuttled to store and recover the energy. Of necessity, pumped hydro storage facilities are located in mountainous areas, usually far, both from the urban centers where power uses are concentrated, and from the sites of the power plants themselves, increasing the transmission line losses that subtract from the useful energy. More importantly, pumped hydro systems themselves only return from 65 to 70 percent of the electrical energy input required to pump the water from the lower reservoir to the upper one. Thus, including the extra transmission losses from distant siting of the facility, of order 40 percent of the input electrical energy is wasted in every cycle of use of the facility.

  10. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  11. City of Statesville Electric Utility Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Statesville Electric Utility Department offers rebates to its residential customers for installing new, energy efficient water heaters and heat pumps. To qualify for the heat pump...

  12. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for CFL and LED light bulbs,...

  13. New Hampshire Electric Co-Op- SmartSTART Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    New Hampshire Electric Co-Op's SmartSTART (Savings Through Affordable Retrofit Technologies) Program is a no-money-down option to have energy efficient products installed in a business. The cost...

  14. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect (OSTI)

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ?0.27?wt.?%, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3?wt.?% exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250?°C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  15. White LED with High Package Extraction Efficiency

    SciTech Connect (OSTI)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  16. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  17. Tailored Materials for High Efficiency CIDI Engines

    SciTech Connect (OSTI)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

  18. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency Power Conversion and Managed Supply Improve Energy Utilization Information technology (IT) and telecommunications facilities consume ~48 billion kWh of electricity in the United States. Energy consumption within IT data center facilities could be improved in three key areas:

  19. Thermal Strategies for High Efficiency Thermoelectric Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations that can achieve high heat exchange effectiveness and thus, high TE system efficiency PDF icon agrawal.pdf More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power

  20. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es129_eitouni_2012_p.pdf More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for

  1. Energy Efficiency Opportunities in Federal High Performance Computing Data

    Office of Environmental Management (EM)

    Centers | Department of Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Energy Efficiency Opportunities in Federal High Performance Computing Data Centers Case study describes an outline of energy efficiency opportunities in federal high-performance computing data centers. PDF icon dc_hpcc.pdf More Documents & Publications Case Study: Opportunities to Improve Energy Efficiency in Three Federal Data Centers Case Study: Innovative Energy Efficiency

  2. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high effciency and minimal emissions, fuel cells are an attractive ...

  3. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect (OSTI)

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  4. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies. This makes them attractive candidates for producing green chemical feedstocks and biofuels, particularly oil-based aviation fuels. However, there...

  5. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  6. Multi-petascale highly efficient parallel supercomputer

    DOE Patents [OSTI]

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  7. High efficiency, radiation-hard solar cells

    SciTech Connect (OSTI)

    Ager III, J.W.; Walukiewicz, W.

    2004-10-22

    The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

  8. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  9. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum PDF icon itmdelivery.pdf...

  10. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell award ...

  11. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty ...

  12. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty ...

  13. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for...

  14. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect (OSTI)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  15. High density electrical card connector system

    DOE Patents [OSTI]

    Haggard, J. Eric (Elgin, IL); Trotter, Garrett R. (Aurora, IL)

    2000-01-01

    An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.

  16. Advanced CFD Models for High Efficiency Compression Ignition Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CFD Models for High Efficiency Compression Ignition Engines Advanced CFD Models for High Efficiency Compression Ignition Engines Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. PDF icon p-19_raja.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems

  17. Combustion Targets for Low Emissions and High Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Targets for Low Emissions and High Efficiency Combustion Targets for Low Emissions and High Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_ryan.pdf More Documents & Publications Diesel Engine Alternatives An Experimental Investigation of Low Octane Gasoline in Diesel Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

  18. High-Efficiency Engine Technologies Session Introduction | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High-Efficiency Engine Technologies Session Introduction High-Efficiency Engine Technologies Session Introduction Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_rotz.pdf More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Super Truck -- 50% Improvement In Class 8 Freight Efficiency Vehicle Technologies Office Merit

  19. Toughened Graphite Electrode for High Heat Electric Arc Furnaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Toughened Graphite Electrode for High Heat Electric Arc Furnaces Oak Ridge National Laboratory Contact ORNL About This Technology Technology...

  20. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  1. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  2. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?electrical characteristics of Si NC LED were significantly improved, which was attributed to an enhancement in the current spreading property due to densely interconnecting ITO NWs. In addition, light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

  3. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High ... High Efficiency Clean Combustion for Heavy-Duty Engine Heavy Truck Engine Development & ...

  4. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in millions of units). And these products are very

  5. High Efficiency Driving Electronics for General Illumination LED Luminaires

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: High Efficiency Driving Electronics for General Illumination LED Luminaires Citation Details In-Document Search Title: High Efficiency Driving Electronics for General Illumination LED Luminaires New generation of standalone LED driver platforms developed, which are more efficient These LED Drivers are more efficient (≥90%), smaller in size ( 0.15 in3/watt), lower in cost ( 12 cents/watt in high volumes in

  6. High efficiency stoichiometric internal combustion engine system

    DOE Patents [OSTI]

    Winsor, Richard Edward (Waterloo, IA); Chase, Scott Allen (Cedar Falls, IA)

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  7. Development of High Energy Lithium Batteries for Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es137_lopez_2012_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage R&D

  8. Highly Efficient Small Form Factor LED Retrofit Lamp

    SciTech Connect (OSTI)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  9. Development of the High Efficiency X1 Rotary Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster describes the design, modeling, and build of a 70-hp prototype of a high efficiency hybrid cycle engine that is expected to attain 57 percent efficiency across a range of loads.

  10. Simulation of High Efficiency Clean Combustion Engines and Detailed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Kinetic Mechanisms Development | Department of Energy ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance PDF icon deer11_flowers.pdf More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

  11. Enabling High Efficiency Clean Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Enabling High Efficiency Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_40_stanton.pdf More Documents & Publications Advanced Diesel Engine Technology Development for HECC Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Light Duty Efficient Clean Combustion

  12. Technology Development for Light Duty High Efficient Diesel Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization. PDF icon deer09_stanton.pdf More Documents & Publications Light Duty Efficient Clean Combustion Advanced Diesel Engine Technology Development for HECC Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Enduran

  13. New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freezers to Save on Energy Bills and Reduce Carbon Pollution | Department of Energy for Electric Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution May 9, 2014 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of President Obama's Climate Action Plan, which called for efficiency standards that

  14. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Environmental Management (EM)

    AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  15. Electric coheating as a means to test duct efficiency: A review and analysis of the literature

    SciTech Connect (OSTI)

    Andrews, J.W.

    1995-08-01

    Recent published literature on electric coheating was reviewed in order to assess its suitability for use in a method of test for the efficiency of residential duct systems. Electric coheating is the research use of electric heaters within the heated space to assess the thermal integrity of the building envelope. Information was sought in two primary areas: (1) experimental methodology and (2) accuracy of the coheating method. A variety of experimental variations was found, and the method was judged, on the basis of published data, to be capable of sufficient accuracy for use in duct testing.

  16. High Efficiency Low Emission Refrigeration System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Low Emission Refrigeration System 2014 Building Technologies Office Peer Review Brian Fricke, frickeba@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Start date: 1 October 2011 Planned end date: 30 September 2016 Key Milestones 1. Evaluate System Design Strategies; March 2013 2. Develop Prototype System; March 2013 3. Fabricate Prototype System; March 2014 Budget: Total DOE $ to date: $700k Total future DOE $: $1,000k Target Market/Audience: The primary market

  17. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  18. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon vssp_12_wagner.pdf More Documents & Publications Ignition Control for HCCI High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines Expanding Robust HCCI Operation (Delphi CRADA)

  20. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_35_patton.pdf More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion

  1. High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) |

    Energy Savers [EERE]

    Department of Energy High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) High Efficiency Particulate Air (HEPA) Filter Test Facility (FTF) DOE-STD-3020-2015 Specification for HEPA Filters Used by DOE Contractors The purpose of this standard is to establish specifications and quality assurance (QA) requirements for the procurement, packaging, shipping and storage of high efficiency particulate air (HEPA) filters. DOE-STD-3025-2007 Quality Assurance Inspection and Testing of HEPA

  2. New methods for tightly regulated gene expression and highly efficient

    Office of Scientific and Technical Information (OSTI)

    chromosomal integration of cloned genes for Methanosarcina species (Journal Article) | SciTech Connect New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species Citation Details In-Document Search Title: New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species A highly efficient method for chromosomal integration of cloned DNA into

  3. Achieving High Efficiency at 2010 Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_nelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Exhaust Energy Recovery

  4. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency Thermoelectrics Recent Progress in the Development of High Efficiency Thermoelectrics PDF icon 2003_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si/Si0.8GE0.2 and B4C/B9C Superlattices for Harvesting of Waste Heat in Diesel Engines

  5. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion in Multi-Cylinder Light-Duty Engines | Department of Energy High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency clean combustion in multi-cylinder

  6. Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming. PDF icon p-10_hou.pdf More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

  7. Vehicle Technologies Office: Materials for High-Efficiency Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve the efficiency of advanced internal combustion engines for automotive, light trucks, and heavy-truck applications by 25% to 50%. However, many of these combustion strategies require high operating temperatures and pressures that exceed current materials' abilities to reliably operate

  8. A Natural Gas, High Compression Ratio, High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    Using natural gas and gasoline modeling, indications are that a free piston-floating stroke engine configuration can realize engine efficiency greater than 60 percent.

  9. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx...

  10. Materials-Enabled High-Efficiency Diesel Engines (CRADA with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines (CRADA with Caterpillar) Materials-Enabled High-Efficiency Diesel Engines (CRADA with Caterpillar) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  11. Technology and System Level Demonstration of Highly Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting arravt081vssnewhouse2012o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8...

  12. High Engine Efficiency at 2010 Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Engine Efficiency at 2010 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deernelson.pdf More Documents & ...

  13. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems Advanced Combustion Modeling with STAR-CD using Transient ...

  14. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called ...

  15. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion ...

  16. High Efficiency Thermal Energy Storage System for CSP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermal Energy Storage System for CSP High Efficiency Thermal Energy Storage System for CSP This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042413_singh.pdf More Documents & Publications High Efficiency Thermal Energy Storage System for CSP - FY13 Q1 High-Efficiency Thermal Energy Storage System for CSP - FY13 Q3 High-Efficiency Thermal Energy Storage

  17. Simulation of High Efficiency Clean Combustion Engines and Detailed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance PDF icon ...

  18. High Thermal Efficiency and Low Emissions with Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty ...

  19. Enabling High Efficiency Clean Combustion with Micro-Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel ...

  20. High Efficiency Engine Systems Development and Evaluation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace017_briggs_2011_o.pdf More Documents & Publications Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones Identification and Evaluation of Near-term Opportunities for Efficiency Improvement High Efficiency Engine Systems Development and Evaluation

  1. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect (OSTI)

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

  2. Power to the Plug: An Introduction to Energy, Electricity, Consumption and Efficiency

    SciTech Connect (OSTI)

    DOE / EERE / NEED Project

    2011-06-07

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  3. Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    The NEED Project and the U.S. Department of Energy have collaborated to bring you this educational four-page guide to energy, electricity, consumption and efficiency. It includes, on the last page, a home energy survey to help you analyze your home energy use.

  4. Electrical system architecture having high voltage bus

    DOE Patents [OSTI]

    Hoff, Brian Douglas (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL)

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  5. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  6. Energy efficiency of electric vehicles at the 1994 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

    1994-11-01

    In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

  7. Estimates of achievable potential for electricity efficiency improvements in U.S. residences

    SciTech Connect (OSTI)

    Brown, Richard

    1993-05-01

    This paper investigates the potential for public policies to achieve electricity efficiency improvements in US residences. This estimate of achievable potential builds upon a database of energy-efficient technologies developed for a previous study estimating the technical potential for electricity savings. The savings potential and cost for each efficiency measure in the database is modified to reflect the expected results of policies implemented between 1990 and 2010. Factors included in these modifications are: the market penetration of efficiency measures, the costs of administering policies, and adjustments to the technical potential measures to reflect the actual energy savings and cost experienced in the past. When all adjustment factors are considered, this study estimates that policies can achieve approximately 45% of the technical potential savings during the period from 1990 to 2010. Thus, policies can potentially avoid 18% of the annual frozen-efficiency baseline electricity consumption forecast for the year 2010. This study also investigates the uncertainty in best estimate of achievable potential by estimating two alternative scenarios -- a

  8. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect (OSTI)

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  9. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeting EPA 2010 Emissions | Department of Energy Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon

  10. Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T

    Office of Scientific and Technical Information (OSTI)

    Using NiTi Wires (Journal Article) | SciTech Connect Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires Citation Details In-Document Search Title: Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the

  11. Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressor | Department of Energy Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Analyses Guided Optimization of Wide Range and High Efficiency Turbocharger Compressor Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_sun.pdf More Documents & Publications Advanced boost system development for diesel HCCI/LTC applications Optimization of a

  12. Cummins SuperTruck Program - Technology Demonstration of Highly Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Diesel Powered Class 8 Trucks | Department of Energy Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Low temperature combustion at part load combined with diffusion controlled combustion at higher loads, and robust control system dynamically adjusting engine operation, maximize engine efficiency while meeting tailpipe emissions standards PDF icon

  13. DOE's Launch of High-Efficiency Thermiekectrics Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Launch of High-Efficiency Thermiekectrics Projects DOE's Launch of High-Efficiency Thermiekectrics Projects 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: U.S. Department of Energy, EERE PDF icon 2004_deer_fairbanks2.pdf More Documents & Publications Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics The 60% Efficient Diesel Engine: Probably, Possible, Or Just a Fantasy?

  14. Unregulated Emissions from High-Efficiency Clean Combustion Modes -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL-FEERC | Department of Energy Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_storey.pdf More Documents &

  15. Enabling the Next Generation of High Efficiency Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of High Efficiency Engines Enabling the Next Generation of High Efficiency Engines Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel

  16. Vehicle Technologies Office Merit Review 2015: High-Efficiency...

    Office of Environmental Management (EM)

    On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs...

  17. Evaluation of Thermal to Electrical Energy Conversion of High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite-Based Thermoelectric Modules | Department of Energy Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Discusses progress toward the fabrication of a skutterudite-based TE module and provides module performance data under operating conditions similar to those for automotive applications PDF icon deer11_salvador.pdf

  18. Compact and highly efficient laser pump cavity

    DOE Patents [OSTI]

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  19. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  20. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L.; Geller, H.; Nadel, S.

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  1. Easily disassembled electrical connector for high voltage, high frequency connections

    DOE Patents [OSTI]

    Milner, J.R.

    1994-05-10

    An easily accessible electrical connector capable of rapid assembly and disassembly is described wherein a wide metal conductor sheet may be evenly contacted over the entire width of the conductor sheet by opposing surfaces on the connector which provide an even clamping pressure against opposite surfaces of the metal conductor sheet using a single threaded actuating screw. 13 figures.

  2. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    SciTech Connect (OSTI)

    Sathaye, Jayant; Gupta, Arjun

    2010-04-30

    Electricity demand has consistently exceeded available supply in India. While the electricity deficit varies across states, nationally it was estimated to be of the order of 12percent on peak and 11percent for electricity during 2008-09. This paper explores a demand-side focused potential for energy efficiency improvement to eliminate the electricity deficit compared to a business as usual (BAU) supply-side focused scenario. The limited availability of finance and other legal and administrative barriers have constrained the construction of new power plant capacity in India. As a result, under the BAU scenario, India continues to face an electricity deficit beyond the end of the Twelfth Five Year Plan. The demand-side cost-effective potential achieved through replacement of new electricity-using products, however, is large enough to eliminate the deficit as early as 2013 and subsequently reduce the future construction of power plants and thus reduce air pollutant emissions. Moreover, energy efficiency improvements cost a fraction of the cost for new supply and can lead to a substantial increase in India's economic output or gross domestic product (GDP). Eliminating the deficit permits businesses that have experienced electricity cutbacks to restore production. We estimate the size of the cumulative production increase in terms of the contribution to GDP at a $505 billion between 2009 and 2017, the end of India's Twelfth Five Year Plan, which may be compared with India's 2007-08 GDP of $911 billion. The economic output is influenced by the size of the electricity savings and rate of penetration of energy efficient technologies, and that of self-generation equipment and inverters used by businesses faced with electricity cuts. Generation and inverters are estimated to service 23percent of these customers in 2009, which increase to 48percent by 2020. The reduction in the construction and operation of new power plants reduces the cumulative CO2 emissions by 65 Mt, and those of sulfur dioxide and nitrogen oxides by 0.4 Mt each, while also reducing India's imports of coal and natural gas. By 2020, the cumulative GDP benefit increases to $608 billion, the CO2 savings expand to 333 Mt and SO2 and NOx to 2.1 Mt.

  3. High-frequency electric field measurement using a toroidal antenna

    DOE Patents [OSTI]

    Lee, Ki Ha (Lafayette, CA)

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  4. Heavy Duty HCCI Development Activities - DOE High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (HECC) | Department of Energy Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_duffy.pdf More Documents & Publications Development of Enabling Technologies for High

  5. High Efficiency Microturbine with Integral Heat Recovery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Efficiency Microturbine with Integral Heat Recovery High Efficiency Microturbine with Integral Heat Recovery Introduction The U.S. economic market potential for distributed generation is significant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines have many advantages, including high power density, light weight, clean emissions, fuel flexibility, low vibration, low maintenance,

  6. Cost efficiency of flame-guniting the lining of open-hearth and electric steelmaking furnaces

    SciTech Connect (OSTI)

    Voronov, M.V.; Kozenko, N.I.; Moiseenko, V.D.; Bondarenko, A.G.

    1988-05-01

    The use of flame-guniting for lining repair to the open-hearth and electric steelmaking furnaces of a number of Soviet plants is reviewed. Equipment and technology for flame-guniting the lining of furnaces, which provide for both local and general repairs to the walls, roofs, and bottoms of furnaces, are discussed. Methods are given for calculating expenditures for repair work and determining the cost efficiency of flame guniting relative to the increased number of heats per lining life. Results are given from calculations of the projected cost-efficiency of using flame-guniting for furnace lining repair at the metallurgical plants of the Ukranian Ministry of Ferrous Metallurgy.

  7. High Efficiency Combustion and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Controls High Efficiency Combustion and Controls 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace042_sisken_2010_o.pdf More Documents & Publications Increased Engine Efficiency via Advancements in Engine Combustion Systems Advanced Diesel Engine Technology Development for HECC Light Duty Efficient Clean Combustion

  8. High Efficiency Full Expansion (FEx) Engine for Automotive Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system. PDF icon p-18_taylor.pdf More Documents & Publications Two-Stroke Engines: New Frontier in Engine Efficiency Two-Stroke Uniflow Turbo-Compound IC Engine

  9. Stabilization void-fill encapsulation high-efficiency particulate filters

    SciTech Connect (OSTI)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment.

  10. High-speed electrical motor evaluation

    SciTech Connect (OSTI)

    Not Available

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  11. Developments in High Efficiency Engine Technologies and an Introduction to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's Dedicated EGR Concept | Department of Energy Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Provides overview of high efficiency engine technologies and introduces a dedicated exhaust gas recirculation concept where EGR production and gas stream is separate from the rest of the exhaust2012-11-06 PDF icon deer12_alger.pdf More

  12. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  13. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of SiSi0.8GE0.2 and B4CB9C ...

  14. Webinar January 13: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  15. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012. progressreportsunshotbraytonfy12q4.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1...

  16. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines...

  17. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  18. 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Enabling Technologies | Department of Energy 8. High Efficiency Clean Combustion and Enabling Technologies 2008 Annual Merit Review Results Summary - 8. High Efficiency Clean Combustion and Enabling Technologies DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_8.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation 2008

  19. High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve

    Office of Scientific and Technical Information (OSTI)

    Advances in Technology (Journal Article) | SciTech Connect Journal Article: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology Citation Details In-Document Search Title: High-Efficiency Rooftop Air Conditioners: Innovative Procurement to Achieve Advances in Technology The U.S. Department of Energy, Defense Logistics Agency, and Pacific Northwest National Laboratory recently conducted a technology procurement to increase the availability of

  20. Low-Temperature Combustion Demonstrator for High-Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion | Department of Energy Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace043_de_ojeda_2010_o.pdf More Documents & Publications Impact of Variable Valve Timing on Low Temperature Combustion Low Temperature Combustion Demonstrator

  1. High Thermal Efficiency and Low Emissions with Supercritical Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Injection-Ignition in a Light Duty Engine | Department of Energy High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine High Thermal Efficiency and Low Emissions with Supercritical Gasoline Injection-Ignition in a Light Duty Engine A novel fuel injector has been developed and tested that addresses the technical challenges of LTC, HCCI, gasoline PPC, and RCCI by reducing complexity and cost. PDF icon p-16_zoldak.pdf More Documents &

  2. High-Efficiency Clean Combustion Design for Compression Ignition Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_potter.pdf More Documents & Publications Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Sources and

  3. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for spot cooling and for installing air conditioning into homes that lack ductwork. However, window air conditioners have low

  4. Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals

  5. Glass-like thermal conductivity in high efficiency thermoelectric materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to design thermoelectric materials with extremely low lattice thermal conductivity through modifications of the phonon band structure and phonon relaxation time. PDF icon toberer.pdf More Documents & Publications NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat

  6. Evaluation of High Efficiency Clean Combustion (HECC) Strategies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Future Emissions Regulations in Light-Duty Engines | Department of Energy High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  7. Field Demonstration of High Efficiency Gas Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Demonstration of High Efficiency Gas Heaters Field Demonstration of High Efficiency Gas Heaters For many buildings that do not require space cooling, non-centralized equipment such as unit heaters provide space heating to building occupants. Unit heaters are a major source of energy use nationally, accounting for nearly 18% of primary space heating energy use for commercial buildings, and most prominently appear in warehouses, distribution centers, loading docks, etc. Several

  8. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion in Multi-Cylinder Light-Duty Engines | Department of Energy High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean combustion in multi-cylinder light-duty engines.

  9. Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While Avoiding Control Problems of HCCI | Department of Energy Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_mueller.pdf More Documents & Publications Multicylinder Diesel Engine Design for HCCI Operation

  10. CBEA High-Efficiency Parking Structure Lighting Specification | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy CBEA High-Efficiency Parking Structure Lighting Specification CBEA High-Efficiency Parking Structure Lighting Specification A Commercial Building Energy Alliance Project, Version 1.1. Released 2/15/2012. PDF icon creea_parking_structure_spec.pdf More Documents & Publications CBEA LED Site Lighting Specification - Version 1.3, Released 2/15/2012 LED T8 Replacement Lamps Model Specification for LED Roadway Luminaires, V2.0

  11. Stable, High-Efficiency White Electrophosphorescent Organic Light Emitting

    Energy Savers [EERE]

    Devices by Reduced Molecular Dissociation | Department of Energy Stable, High-Efficiency White Electrophosphorescent Organic Light Emitting Devices by Reduced Molecular Dissociation Stable, High-Efficiency White Electrophosphorescent Organic Light Emitting Devices by Reduced Molecular Dissociation Lead Performer: University of Michigan - Ann Arbor - Ann Arbor, MI Partners: - University of California - City, CA - Universal Display Corporation - Ewing, NJ DOE Total Funding: $1,314,240 Cost

  12. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt081_vss_newhouse_2011_o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and

  13. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt081_vss_damon_2013_o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8

  14. Technology and System Level Demonstration of Highly Efficient and Clean,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Powered Class 8 Trucks | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt081_vss_newhouse_2012_o.pdf More Documents & Publications Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8

  15. Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and SCR | Department of Energy Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_atkinson.pdf More Documents & Publications Reductant Utilization in a LNT + SCR System Lean NOx Trap

  16. Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Efficiency CIDI Engines (Caterpillar CRADA) Tailored Materials for High Efficiency CIDI Engines (Caterpillar CRADA) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pm_08_grant.pdf More Documents & Publications Tailored Materials for Advanced CIDI Engines Tailored Materials for Advanced CIDI Engines

  17. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The project’s research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The project’s literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a “heat mirror” that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nation’s future electricity and transportation needs that is entirely “home grown” and carbon free. As CPV enter the nation’s utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this project’s findings.

  18. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Broader source: Energy.gov [DOE]

    This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to increase conversion efficiency to more than 50%. This high conversion efficiency drives down the cost of the supporting solar field, tower, and thermal storage systems, which could significantly reduce the lifetime costs of a CSP system to achieve the SunShot goal.

  19. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  20. "Tuning" microalgae for high photosynthesis efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Tuning" Microalgae For High Photosynthesis Efficiency "Tuning" microalgae for high photosynthesis efficiency Los Alamos scientist Richard Sayre and his team of researchers have recently developed more efficient microalgae. March 25, 2013 Shown here is a model for light absorption and use by algae as a function of antenna size. Shown here is a model for light absorption and use by algae as a function of antenna size. The team's work in this area is reported in a paper

  1. Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE

    Broader source: Energy.gov [DOE]

    performance of a high compression ratio (32:1 to 74:1) high efficiency (50 to 60% BTE) ICRE operating on natural gas and gasoline

  2. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  3. Advanced Nanomaterials for High-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Chen, Junhong

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.

  4. Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings On May 4, 2007, a massive tornado struck Greensburg, an agricultural community of about 1,400 people in south-central Kansas. Since then, city and community leaders and residents have been committed to rebuilding the town as a model sustainable community. When the tornado struck, 11 people were killed, and more than 90% of the city's structures, most vehicles, and the electricity infrastructure were

  5. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  6. Field Demonstration of High-Efficiency Gas Heaters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2014 Field Demonstration of High-Efficiency Gas Heaters Prepared for Better Buildings Alliance Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy By: Jim Young, Navigant Consulting, Inc. Disclaimer ďż˝ This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor Navigant

  7. Development of Enabling Technologies for High Efficiency, Low Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homogeneous Charge Compression Ignition (HCCI) Engines | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace038_fiveland_2010_o.pdf More Documents & Publications Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines The Role of Advanced Combustion in Improving Thermal Efficiency

  8. Development of Enabling Technologies for High Efficiency, Low Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homogeneous Charge Compression Ignition (HCCI) Engines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_38_fiveland.pdf More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

  9. DOE FACT SHEET: Transition to High Efficiency Space Heating

    Office of Environmental Management (EM)

    DOE FACT SHEET: Transition to High Efficiency Space Heating Overview The City of Seattle was recognized as a Climate Action Champion (CAC) by The White House and the Department of Energy (DOE) in December 2014. In 2015, DOE released a Notice of Technical Assistance (NOTA) to provide CACs with additional opportunities for financial and technical assistance to support and advance their greenhouse gas emissions reduction and climate resilience objectives. DOE's Office of Energy Efficiency and

  10. EERE Success Story—Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  11. Method for improving performance of highly stressed electrical insulating structures

    DOE Patents [OSTI]

    Wilson, Michael J. (Modesto, CA); Goerz, David A. (Brentwood, CA)

    2002-01-01

    Removing the electrical field from the internal volume of high-voltage structures; e.g., bushings, connectors, capacitors, and cables. The electrical field is removed from inherently weak regions of the interconnect, such as between the center conductor and the solid dielectric, and places it in the primary insulation. This is accomplished by providing a conductive surface on the inside surface of the principal solid dielectric insulator surrounding the center conductor and connects the center conductor to this conductive surface. The advantage of removing the electric fields from the weaker dielectric region to a stronger area improves reliability, increases component life and operating levels, reduces noise and losses, and allows for a smaller compact design. This electric field control approach is currently possible on many existing products at a modest cost. Several techniques are available to provide the level of electric field control needed. Choosing the optimum technique depends on material, size, and surface accessibility. The simplest deposition method uses a standard electroless plating technique, but other metalization techniques include vapor and energetic deposition, plasma spraying, conductive painting, and other controlled coating methods.

  12. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  13. Investigation of beat-waves generation with high efficiency

    SciTech Connect (OSTI)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  14. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  15. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect (OSTI)

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  16. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  17. Opportunities for Energy Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    Broader source: Energy.gov [DOE]

    From 2000-2012, about 6% of U.S. electricity generation did not reach any customer, instead being lost in the transmission and distribution system. This report describes sources of energy loss in the transmission and distribution of electricity, and reviews research on both the magnitude and potential for reducing these losses. Strategies to improve energy efficiency on the grid include upgrades in physical infrastructure as well as information technologies and operational strategies that can help grid operators make the system run more efficiently. The report also describes engineering, economic, and policy barriers to implementing these loss reduction strategies. For transmission, emerging technologies such as superconductors and power flow control technologies can reduce transmission loss 50% or more, but these technologies may not be cost-effective in all areas. On the distribution system, theoretical studies of reducing overloading lines through reconfiguration have identified loss reductions of up to 40%; however, studies of real systems have observed loss reductions of only 5-20%.

  18. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  19. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  20. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect (OSTI)

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  1. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect (OSTI)

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  2. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Yok; Gonzalez, Roberto; Summers, Geoffrey P.

    1984-01-01

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of an oxide selected from the group consisting of magnesium oxide and calcium oxide and possessing a concentration ratio of H.sup.- ions to F centers in the range of about 0.05 to about 10.

  3. High-quantum efficiency, long-lived luminescing refractory oxides

    DOE Patents [OSTI]

    Chen, Y.; Gonzalez, R.; Summers, G.P.

    A crystal having a high-quantum efficiency and a long period of luminescence is formed of MgO or CaO and possessing a concentration ratio of H/sup -/ ions to F centers in the range of about 0.05 to about 10.

  4. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  5. Ultra-Compact High-Efficiency Luminaire for General Illumination

    SciTech Connect (OSTI)

    Ted Lowes

    2012-04-08

    Cree has developed a new ultra-compact light emitting diode (LED) luminaire capable of providing high efficacy with excellent color quality that can lead to significant energy savings in todayâ??s commercial and retail applications. This success was based on an integrated development effort tailoring the LED component characteristics, optics, thermal management and driver design for the small footprint to achieve an overall system efficiency of â?Ą 70%. A new LED component was designed to provide high brightness and efficacy in a form factor that allowed for a small directional beam with a luminaire housing design able to dissipate the heat effectively using a small physical envelope. A very compact, 90% efficient driver was developed to meet the system performance while not taking away any thermal mass from the heat sink. A 91% efficient secondary optics was designed to maximize efficiency while providing a smooth beam. The reliability of the new LED component was robust under accelerated testing conditions. Luminaires were assembled integrating the novel LED component, secondary optics, heat sink and driver technology to demonstrate the system improvement. Cree has successfully completed this project by developing an ultra-compact LED luminaire that provided 380 lumens at a correlated color temperature (CCT) of 2822 K and color rendering index (CRI) of 94 with an efficacy of 94 lumens per watt (LPW) when operating at 4 W input power (steady state) with an overall system efficiency of 81%. At a higher input power of 9 Watts, the lamp provided 658 lumens at 71 LPW.

  6. Minnesota Valley Electric Cooperative -Residential Energy Resource...

    Broader source: Energy.gov (indexed) [DOE]

    installation Heat pump installation Heat pump with high efficient gas furnace Electric heating solutions to supplement propane heat Electric heat product installations (i.e....

  7. High energy XeBr electric discharge laser

    DOE Patents [OSTI]

    Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  8. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  9. A Perspective on the Future of High Efficiency Engines

    SciTech Connect (OSTI)

    Wagner, Robert M; Curran, Scott; Green Jr, Johney Boyd

    2013-01-01

    New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

  10. Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs | Department of Energy High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Vehicle Technologies Office Merit Review 2015: High-Efficiency High-Density GaN-Based 6.6kW Bidirectional On-Board Charger for PEVs Presentation given by Delta Products Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-efficiency

  11. High-frequency electric field measurement using a toroidal antenna

    SciTech Connect (OSTI)

    Lee, K.H.

    1997-01-01

    In this paper the author describes an innovative method of measuring high-frequency electric fields using a toroid. For typical geophysical applications the new sensor will detect electric fields for a wide range of spectrum starting from 1.0 MHz. This window, in particular the lower frequency range between 1.0 to 100 MHz, has not been used for existing electromagnetic or radar systems to detect small objects in the upper few meters of the ground. Ground penetrating radar (GPR) can be used successfully in this depth range if the ground is resistive but most soils are, in fact, conductive (0.01 to 1.0 S/m) rendering GPR inefficient. Other factors controlling the resolution of GPR system for small objects is the spatial averaging inherent in the electric dipole antenna and the scattering caused by soil inhomogeneities of dimensions comparable to the wavelength (and antenna size). For maximum resolution it is desirable to use the highest frequencies but the scattering is large and target identification is poor. Time-varying magnetic fields induce an emf (voltage) in a toroid. The electric field at the center of the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroid one can easily and accurately determine the electric field. The new sensor will greatly simplify the cumbersome procedure involved with GPR measurements with its center frequency less than 100 MHz. The overall size of the toroidal sensor can be as small as a few inches. It is this size advantage that will not only allow easy fabrication and deployment of multi-component devices either on the surface or in a borehole, but it will render greatly improved resolution over conventional systems.

  12. LBNL High-Tech Buildings Energy Efficiency Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sponsors California Energy Commission California Energy Commission - - PIER program PIER program Pacific Gas and Electric Company Pacific Gas and Electric Company ...

  13. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    SciTech Connect (OSTI)

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  14. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  15. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  16. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  17. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  18. High resolution PET breast imager with improved detection efficiency

    DOE Patents [OSTI]

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  19. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  20. Blanket options for high-efficiency fusion power

    SciTech Connect (OSTI)

    Usher, J L; Lazareth, O W; Fillo, J A; Horn, F L; Powell, J R

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by argon) utilizing Li/sub 2/O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  1. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  2. Highly Efficient Multigap Solar Cell Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Efficient Multigap Solar Cell Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Yu, K. M., Walukeiwicz, W., Wu J., Shan, W., Beeman, J. W., Scarpulla, M. A., Dubon, O. D., Becla, P. "Diluted II-VI Oxide Semiconductors with Multiple Band Gaps," Physical Review Letters, Vo. 91, No. 24, Dec. 12, 2003. (178 KB) Technology Marketing Summary Scientists at Berkeley Lab have invented multiband gap semiconducting

  3. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Highly Efficient, Scalable Microbial Fuel Cell University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2773D (Microbial Fuel Cell) Marketing Summary (129 KB) Technology Marketing Summary With present day environmental and energy concerns rising, the development of environmentally friendly energy

  4. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. PDF icon deer10_reitz.pdf More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  5. Field Demonstration of High Efficiency Gas Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    For many buildings that do not require space cooling, non-centralized equipment such as unit heaters provide space heating to building occupants. Unit heaters are a major source of energy use nationally, accounting for nearly 18% of primary space heating energy use for commercial buildings, and most prominently appear in warehouses, distribution centers, loading docks, etc. Several high-efficiency gas-fired space heating, or gas heater, technologies exist that consume significantly less energy

  6. Full-Spectrum Semiconducting Material for Affordable, Highly Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells - Energy Innovation Portal Full-Spectrum Semiconducting Material for Affordable, Highly Efficient Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication N. Lopez, L. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Phys. Rev. Lett. 106, 128701 (2011). (863 KB) Technology Marketing Summary Wladyslaw Walukiewicz and Kin Man Yu of

  7. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  8. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures and pressures than

  9. Measure Guideline: High-Efficiency Natural Gas Furnaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Efficiency Natural Gas Furnaces L. Brand and W. Rose Partnership for Advanced Residential Retrofit October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors or affiliates makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  10. Enabling High Efficiency Clean Combustion with Micro-Variable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI | Department of Energy Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Key characteristics of variable orifice fuel injector are described that will extend the operation maps of early PCCI combustion and enable dual-mode combustion over full operating maps. PDF icon deer08_hou.pdf

  11. Method and Apparatus for High-Efficiency Direct Contact Condensation -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Geothermal Geothermal Find More Like This Return to Search Method and Apparatus for High-Efficiency Direct Contact Condensation National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication White Paper (925 KB) Technology Marketing Summary Geothermal resources, the steam and water that lie below the earth's surface, have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power

  12. VP 100: Smart Meters Will Help Customers Avoid High Electric...

    Broader source: Energy.gov (indexed) [DOE]

    For Wade and other officials at the electric power service ... between the various electrical grid components. ... which can detect customer outages remotely, isolate damaged ...

  13. High-Efficiency Absorber for Damping the Transverse Wake Fields

    SciTech Connect (OSTI)

    Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC

    2007-02-28

    Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.

  14. NASA's Marshall Space Flight Center Saves Water with High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and Urinal Program NASA's Marshall Space Flight Center Saves Water with High-Efficiency Toilet and...

  15. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine ...

  16. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  17. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  18. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  19. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    SciTech Connect (OSTI)

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  20. Walcot Electric Machines | Open Energy Information

    Open Energy Info (EERE)

    Efficiency Product: A spin-out from Bath University which that will develop and licence process relating to high efficiency electric motors for fixed speed applications, and will...

  1. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  2. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  3. High Efficiency and Stable White OLED Using a Single Emitter

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jian Li, jian.li.1@asu.edu Arizona State University High efficiency and stable white OLED using a single emitter 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 10/1/2011 Planned end date: 9/30/2014 Key Milestones 1. demonstrating a single-doped white device (CRI> 80) with a PE of 40 lm/W @ 1000 cd/m 2 and an operational lifetime over 100 hrs @ 1000 cd/m 2 ; 9/30/13 2. blue device using halogen-free Pt-based emitters with an EQE of over 15%; 9/30/14 3.

  4. High-Efficiency Commercial Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Commercial Cold Climate Heat Pump 2014 Building Technologies Office Peer Review Dr. Ahmad M. Mahmoud, mahmouam@utrc.utc.com United Technologies Research Center This document contains no technical data subject to the EAR or the ITAR. Project Summary Timeline: Start date: March 1, 2013 Planned end date: May 29, 2015 Key Milestones (SOPO) 1. 2/ 2013: Down-selection of key components that meet DOE capacity and COP targets (COP=2.5 at -13F ambient condition) through modeling. 2. 6/

  5. High-Efficiency Commercial Cold Climate Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ahmad M. Mahmoud, mahmouam@utrc.utc.com United Technologies Research Center High-Efficiency Commercial Cold Climate Heat Pump 2015 Building Technologies Office Peer Review This document contains no technical data subject to the EAR or the ITAR. 2 Project Summary Timeline: Start date: March 1, 2013 Planned end date: May 29, 2015 Key Milestones (SOPO) 1. 2/ 2013: Down-selection of key components that meet DOE capacity and COP targets (COP=2.5 at -13F ambient condition) through modeling. 2. 8/ 2014

  6. Energy Efficiency Opportunities in Federal High Performance Computing Data Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Opportunities in Federal High Performance Computing Data Centers Prepared for the U.S. Department of Energy Federal Energy Management Program By Lawrence Berkeley National Laboratory Rod Mahdavi, P.E. LEED A.P. September 2013 2 Contacts Rod Mahdavi, P.E. LEED AP Lawrence Berkeley National Laboratory (510) 495-2259 rmahdavi@lbl.gov For more information on FEMP: Will Lintner, P.E. Federal Energy Management Program U.S. Department of Energy (202) 586-3120 william.lintner@ee.doe.gov 3

  7. High-Efficiency Parking Lighting in Federal Facilities

    Energy Savers [EERE]

    High-Efficiency Parking Lighting in Federal Facilities FEdEraL EnErgy ManagEMEnt PrograM MC Realty Group Saving Energy and Money with the IRS MC Realty Group, LLC, won a 2014 LEEP Award for cutting energy use by 76% at the Internal Revenue Service (IRS) Facility Parking Garage in Kansas City, Missouri. MC Realty replaced 1,500 metal halide fxtures with an equal number of T8 fuorescent fxtures in the fve-story parking structure to cut energy use by 2 million kilowatt-hours (kWh) annually, which

  8. High-Efficiency Deflection of High-Energy Protons through Axial Channeling

    Office of Scientific and Technical Information (OSTI)

    in a Bent Crystal (Journal Article) | SciTech Connect High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal Citation Details In-Document Search Title: High-Efficiency Deflection of High-Energy Protons through Axial Channeling in a Bent Crystal Beam deflection due to axial channeling in a silicon crystal bent along the <111> axis was observed with 400 GeV/c protons at the CERN Super Proton Synchrotron. The condition for doughnut scattering of

  9. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  10. Water Impacts of High Solar PV Electricity Penetration

    SciTech Connect (OSTI)

    Macknick, Jordan; Cohen, Stuart

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  11. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y

    2009-01-01

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  12. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect (OSTI)

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

  13. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  14. Method of fabricating high-density hermetic electrical feedthroughs

    DOE Patents [OSTI]

    Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.

    2015-06-02

    A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.

  15. The Importance of Domain Size and Purity in High-Efficiency Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs energized by...

  16. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  17. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  18. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  19. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Clean Combustion in Light-Duty Multi-Cylinder Diesel Engines High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines High ...

  20. Efficient binning for bitmap indices on high-cardinality attributes

    SciTech Connect (OSTI)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2004-11-17

    Bitmap indexing is a common technique for indexing high-dimensional data in data warehouses and scientific applications. Though efficient for low-cardinality attributes, query processing can be rather costly for high-cardinality attributes due to the large storage requirements for the bitmap indices. Binning is a common technique for reducing storage costs of bitmap indices. This technique partitions the attribute values into a number of ranges, called bins, and uses bitmap vectors to represent bins (attribute ranges) rather than distinct values. Although binning may reduce storage costs, it may increase the access costs of queries that do not fall on exact bin boundaries (edge bins). For this kind of queries the original data values associated with edge bins must be accessed, in order to check them against the query constraints.In this paper we study the problem of finding optimal locations for the bin boundaries in order to minimize these access costs subject to storage constraints. We propose a dynamic programming algorithm for optimal partitioning of attribute values into bins that takes into account query access patterns as well as data distribution statistics. Mathematical analysis and experiments on real life data sets show that the optimal partitioning achieved by this algorithm can lead to a significant improvement in the access costs of bitmap indexing systems for high-cardinality attributes.